FINITE-TIME STABILITY OF POLYHEDRAL SWEEPING
PROCESSES WITH APPLICATION TO ELASTOPLASTIC SYSTEMS *
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Abstract. We use the ideas of Adly-Attouch-Cabot [Adv. Mech. Math., 12, Springer, 2006] on
finite-time stabilization of dry friction oscillators to establish a theorem on finite-time stabilization of
differential inclusions with a moving polyhedral constraint (known as polyhedral sweeping processes)
of the form C'+c¢(t). We then employ the ideas of Moreau [New variational techniques in mathematical
physics, CIME, 1973] to apply our theorem to a system of elastoplastic springs with a displacement-
controlled loading. We show that verifying the condition of the theorem ultimately leads to the
following two problems: (i) identifying the active vertex “A” or the active face “A” of the polyhedron
that the vector ¢’(¢) points at; (ii) computing the distance from ¢/(¢) to the normal cone to the
polyhedron at “A”. We provide a computational guide for solving problems (i)-(ii) in the case of
an arbitrary elastoplastic system and apply it to a particular example. Due to the simplicity of the
particular example, we can solve (i)-(ii) by the methods of linear algebra and basic combinatorics.
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1. Introduction. Finite-time stability of an attractor is typical for differential
equations with nonsmooth right-hand-sides. This fact is used in control theory since
long ago, see e.g. Orlov [26]. Finite-time stability is often proved by showing that a
Lyapunov function V satisfies the estimate (Bernuau et al. [5], Bhat-Bernstein [6],
Oza et al. [27], Sanchez et al. [30], etc.)

4
dt
for some £ > 0, where z is a solution. Specifically, if (1.1) holds for a function z(t),
then V' (z(t1)) = 0 at some t; > 0, where (see Lemma B.1)
1

i1 < gV(x(O))
Motivated by applications in frictional mechanics, Adly et al. [2] extended the Lya-
punov function approach to finite-time stability analysis of differential inclusions. Let
V f(x) be the gradient of a function f : R — R™, 9®(z) be the subdifferential of a
convex function ® : R — R", and B.(0) be the ball of R™ of radius e centered at 0.
By focusing on differential inclusions of the form
(1.2) —a"(t) = Vf(x(t)) € 02(2' (1)),
the paper [2] discovered (see the proof of [2, Theorem 24.8]) that the property

(1.3) — Vf(z(t)) + B:(0) C 9®(0) a.e. on [0,00)

(1.1) [V(z(t))] +2e/V(z(t)) <0 a.e. on [0,00)

implies (1.1) for a suitable Lyapunov function V' that measures the distance from 2’ (¢)
to 0 and for any solution z of (1.2).
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More recently, a significant interest in the study of finite-time stability of differential
inclusions has developed due to new applications in elastoplasticity (see e.g. Gudosh-
nikov et al. [18]). We remind the reader (see Section 6 for full details) that according
to the pioneering work by Moreau [25] (revisited in Gudoshnikov-Makarenkov [16]),
the stresses in a network of m elastoplastic springs with time-varying displacement-
controlled loadings are governed by

V is a d — dimensional subspace of R™

) A
(1.4) y e Nc(t)(y)’ yev, with the scalar product (z,y)a = (z, Ay),

where A is a positive diagonal m x m-matrix, Né(t) (y) is a normal cone to the set
C(t) = C+c(t) at a point y, C C R™ is a polyhedron, and ¢(t) € R™ is a vector. The
solutions y(t) of differential inclusion (1.4) never escape from C(t) (i.e. y(t) is swept by
C(t)) for which reason (1.4) is called the sweeping process. Spring j undergoes plastic
deformation when the inequality ¢; < (n;, Ay) < c;L is violated, where ¢, cj+ € R,
nj € R™ are mechanical parameters of the spring (yield stresses) and vectors n; € R™
come from geometry of the network (see Section 6 for details). Therefore, knowing the
evolution of y(t) allows to make conclusions about the regions of plastic deformation
(that lead to low-cycle fatigue or incremental failure, see Yu [33, §4.6]).

Krejci [22] proved that if ¢(t) is T-periodic then the set Y of T-periodic solutions
of (1.4) is always asymptotically stable. Examining finite-time stability of Y is re-
lated to the interaction of Y with the boundary of the moving constraint C + ¢(¢)
(plastic deformation). In particular, the analysis of finite-time stability helps to un-
derstand whether the plastic deformation will repeatedly progress or cease which is
related to the phenomena of alternating plasticity, ratchetting, and shakedown in the
theory of elastoplasticity, see e.g. Yu [33], Boissier et al [7]. In the case where Y
consists of just one solution (and the state space is 2-dimensional), the finite-time
stability is established in Gudoshnikov et al. [18] (with an application to an elasto-
plastic system). However, as shown in Gudoshnikov-Makarenkov [17], the case where
the periodic attractor consists of a family of solutions is often structurally stable for
sweeping processes of elastoplastic systems. The assumption that Y consists of one
solution was dropped by Colombo et al. [10] who worked in higher-dimensional states
spaces and allowed the size of the moving constraint to change but focused on moving
constraints of parallelepipedal shape (naturally arising in applications to soft locomo-
tors with dry friction). The mathematical contribution of the present paper is that
we simultaneously address the case where Y is a family of solutions and the moving
constraint is a translation of an arbitrary polyhedron.

Predicting the behavior of solutions of sweeping process (1.4) within a guaranteed time
is of importance for materials science. Current methods of computing the asymptotic
response of networks of elastoplastic springs (see e.g. Boudy et al. [8], Zouain-
SantAnna [34]) run numeric routines until the difference between the responses cor-
responding to two successive cycles of loading get smaller than a prescribed tolerance
(without an estimate as for how soon such a desired accuracy will be reached).

The present paper adapts condition (1.3) in order to predict the behavior of solutions
of (1.4) within a guaranteed finite time. We do not prove the finite-time stability of
Y, but still prove that all solutions of (1.4) will reach a certain computable set } in
finite time. Specifically, let F'(t) be a face of C(t). Then, as we clarify in Section 2,
F(t) = F + ¢(t). We prove that if

(15) - C/(t) + B?(O) N Né(y) c Né(y)a Y€ Fa a.e. t € [OaTd]a
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where B2(0) is a ball in the norm induced by the scalar product (z,y)4 = (x, Ay)
(cf. (1.4)), then, for any solution y(t) of (1.4), the function

(1.6) (t) = y(t) — c(t)

satisfies estimate (1.1) on [0, 74] for a suitable Lyapunov function V' that measures
the distance from z(t) to F. Since, by (2.2), the distances from z(t) to F' equals the
distance from y(t) to F(¢), then the relation 74 > V(2(0))/e ensures that the solution
y(t) sticks to the face F(t) by the time V(z(0))/e. In particular, when 74 > 7 for
T = max V(v)/e, our result implies that the dynamics of sweeping process (1.4) is

fully determined by the trajectories ) with the initial conditions y(7) € F(7). When
¢(t) is T-periodic with T' > 7 and F(7) is a singleton (i.e. a vertex), T-periodicity of
Y follows from Krejci [22]. When ¢(¢) is T-periodic, but F(7) is not a singleton, our
result doesn’t imply T-periodicity of the trajectories of ), but still implies T-periodic
occurrence of plastic deformations in applications of (1.4) to elastoplastic systems.

The paper is organized as follows. Sections 2-5 present the theory of finite-time
stability of sweeping process (1.4), where we first establish an abstract theorem (The-
orem 3.1) and then propose various criteria to verify condition (1.5) depending on the
dimension of F'(t) (Corollary 4.1, Corollary 5.2, Corollary 5.4). Section 6 summarizes
the approach by Moreau [25] to the use of sweeping process (1.4) for modeling networks
of elastoplastic springs. Section 7 combines the results of Sections 3-6 to formulate a
simple algebraic condition (7.1) identifying possible options for plastic deformations
in a network of elastoplastic springs with a displacement-controlled loading, which
is the main contribution of the present paper. The workings of formula (7.1) are
further explained in Propositions 7.3, 7.8, and 7.10 where both the case of gradually
stretching and cyclic loadings are considered. Section 8 illustrates the efficiency of
the methodology of Section 7 through a benchmark example (taken from Rachinskiy
[28]). We show that all formulas of Section 7 can be computed in closed form (us-
ing Wolfram Mathematica) and explicit conditions for one or another scenario of the
distribution of plastic deformations can be obtained (Propositions 8.1, 8.2, 8.3). The
Mathematica notebook is uploaded as supplementary material and stored at Zenodo
[15]. Appendix A contains a few proofs omitted in the main text. Appendex B collects
more substantial auxiliary results that are known (the proofs are included where we
were unable to find the exact required formulations in the literature).

2. Formulation of the moving constraint. We will work with C(t) given by

(2].) C(t) =C+ C(t)7 C= ﬂ Vj L(a:;j) i f;el’]j){;ri(’z];;); OZCQ} .

The particular face F(t) of interest will be defined through the set of indexes I; C
{-1,1} x 1,m, ¢ € 0, M, as follows:

M
F(t)=F +c(t), F= Lej) | n [ ) L) |,
(a,4)€o i=1(a,j)EI;

L(a.j) = {y € V: (nj, Ay) = &3},
3
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where the ingredients in (2.2) satisfy the following assumptions (and where ri( F) stays
for the relative interior of F'):

each Ig U I; defines  for each i € 1, M, {y:y € L(v,j), (ov,j) € Iy UL}

2.3
(2.3) a vertex of F': is a non-empty singleton {y. ;},
F has no other vertices, all each y € F defines J, C 1, M U 0, such

(24) " Constraints are accounted for : that {(a,5):y € L(o, )} = Io UN;ey. Lis
1eJy

(2.5) vertices do not coincide : J,, , = {i}, i € 1, M,

(2.6) vertices do not reduce ri(F) : {(a,j):y € f(a,j)} =1y, y € ri(F),
(2.7) Fisfeasible: F C C,

(2.8) (v j), (ovj) € Iy U I;, are independent :  |Io| + 1] = d, i € 1, M.

The case where F is a vertex of C' is accounted for by M = 0, see formulas (4.1)-(4.3)
below for the corresponding reduced form of (2.2)-(2.8).

Assumptions (2.3)-(2.8) control the construction of the sets I; (to make the verification
of assumption (1.5) of Theorem 3.1 possible algorithmically). They do not restrict
the generality of the results. Corollary 4 about the finite-time convergence to a vertex
uses (2.3) and (2.7) with M = 0, which, by definition, simplify to (4.2) (F is a
singleton) and (4.3) (F' C C'). The full power of assumptions (2.3)-(2.8) is explored in
Corollaries 5.2 and 5.4 about the finite-time convergence to a face. Assumption (2.4)
is a way (convenient for proofs and verification) to state that F' has no vertexes other
than y. ;, i € 1, M, while assumption (2.3) relates y, ; to normals an; (termed vertex
enumeration in discrete geometry), thus allowing to express NZ&(y. ;) through the
normals an;, see formula (5.6). The combination (2.3)-(2.4) is used in Corollary 5.2
to reduce the verification of (1.5) on the entire F' to the verification at the vertexes of
F. Assumption (2.5) doesn’t restrict the generality because coinciding vertexes can
always be dropped. We use (2.5) to have certainty concerning the normal vectors
in formulas for NZ(y.;) and N#(ys;), see (5.6). Assumption (2.6) simply ensures
that the indexes Iy are chosen correctly, i.e. the dimension of the space formed by the
normal vectors with indexes from I coincides with the dimension of lin(F"). Therefore,
the same normal vectors define Ny (y) at y € 1i(F) and at y € F, which is used in
Corollary 5.4 to reduce the verification of (1.5) from the entire F to ri(F). If (2.3)
holds, then (2.8) can be achieved by removing appropriate indexes from I;, i € 0, M.
In other words, assumption (2.8) doesn’t restrict generality. It is used e.g. to ensure
that the spaces lin{n; : (o, j) € Iy} and lin{n; : (o, j) € I;} in the definition of the
map L; of Lemma 5.3 are linearly independent. Finally, assumption (2.7) is just a
part of the definition of the face F of C.

3. A sufficient condition for finite-time stability. We remind the reader
that the normal cone N‘é‘ (y) to the set C at a point y € C' in a scalar product space
V with the scalar product

(3.1) (z,y)a = (x, Ay), where A is a diagonal positive m X m—matrix,

is defined as (see Bauschke-Combettes [4, §6.4])
N’c“(y)z{ {r eV :{(x,A(€ —y)) <0 for any £ € C} %fyeC,
0, if y & C.
In what follows (see Bauschke-Combettes [4, §3.2]),
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|24 = \/{x, Az),  proj’(v, F) = argﬂgnllv — o' A
v'e

Finally, recall that the solution of an initial-value problem for a sweeping processes
with Lipschitz continuous moving set exists, is unique, and features Lipschitz conti-
nuity (thus differentiability almost everywhere) and continuous dependence on initial
conditions (see e.g. Kunze and Monteiro Marques [23, Theorems 1-3]).

THEOREM 3.1. LetV be a d-dimensional linear subspace of R™ with scalar product
(5.1), ¢ :]0,00) = V be Lipschitz continuous, and FF C C C V be closed convex sets.
Assume that there exists an e > 0 such that condition (1.5) holds on an interval [0, 74]
with A

Td 2 T? T = g s max ’U1€C, ’UQGF ||/U1 - U2|| :
Then, every solution y of (1.4) with C(t) = C + ¢(t) and any initial condition y(0) €
C(0), satisfies y(t) € F 4 c(t), t € [1,74], and y'(t) — ' (t) =0 a.e. on [1,74].
What we will effectively prove is that the function
(3.2) V(v) = (v— proj (v, F), A (v— proj* (v, F)))
is a Lyapunov function for the sweeping process
(3-3) —a'(t) = ¢ (t) € No(a(t),
which is related to (1.4) through the change of variables (1.6). Since (see Proposi-
tion B.9)

proj (v, F) + ¢ = proj* (v + ¢, F + ¢),
we have
. 2 . 2

V(a(t)) = (l(t) = proj* (z(t), F)I*)" = (ly(t) — proj* (y(t), F + c(t))|I*)
for the function x(t) given by (1.6). Therefore, as expected, V(z(t1)) = 0 will imply
y(tl) e F+ C(tl).

In what follows, D f(u) is the bilateral directional derivative (Giorgi et al. [14, §2.6],

Correa-Thibault [12]) of f:V — V; at the point u € V in the direction £ € V), i.e.
De f(u) =lim;o(f(v + 7€) = f(v))/7.

Here V; are finite-dimensional scalar product spaces.

If the bilateral directional derivative Deproj” (-, F')(v) of v ~ proj” (v, F) at the point
v € V in the direction £ € V exists, then the existence of D¢V (v) and the formula

(3.4) D¢V (v) = 2(§ — Deproj (-, F)(v), A(v — proj” (v, F)))
follow by observing that
. 2 . .
(Jlv— proj (v, )4 =(v— proj (v, F), A(v — prOJA(v,F))> ,
see Lemma B.2. What we significantly use in the proof of Theorem 3.1 is that any
directional derivative of v — proj(v, F) is orthogonal to v — proj” (v, F), as it is a
projection on the respective critical cone (see Lemma B.4 in Appendix B), so that
formula (3.4) reduces to D¢V (v) = 2 (&, A(v — projA(v,F))>, meaning that D¢V (v)
is actually linear in &.
Proof of Theorem 3.1. Let y(¢) be an arbitrary solution of (1.4). For the function
xz(t) given by (1.6) consider
*) (1.6) v(t) = V(z(t)).
Note, that x(t) is differentiable almost everywhere on [0,00) because c¢(t) is Lips-

chitz continuous. Since v — proj(v, F) is Lipschitz continuous (see e.g. Bauschke-
Combettes [4, Proposition 4.16]), the function t — proj?(z(t), F) is differentiable
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almost everywhere on [0, 00). Let us fix some ¢ > 0 such that both proj” (z(t), F) and
z(t) are differentiable at ¢. Then Dw/(t)projA(~,F)(:v(t)) exists (see Lemma B.3) and
by Lemma B.4 we conclude

D)V (a(t)) = 2 (2 (1), A(x(t) — proj” (x(t), F))) -
Without loss of generality we can assume that ¢ > 0 is chosen so that V(x(t)) is
differentiable at t. Then (see Lemma B.3),

(3.5) V'(t) = V(z(t) < (), A (x(t) — projA(x(t),F))> .

) =
By definition of normal cone, (3.3) implies
(=2'(t) = (), A(§ — 2(t))) <0, for any § € C.
Therefore, taking & = proj(z(t), F) we conclude from (3.5) that

(3.6) V' (t) < 2(=c(t), A (2(t) — proj*(z(t), F))).
Now we use assumption (1.5), which is equivalent to
—(t) +e¢/IICI* € N&(v), forany ¢ € N (v), veF,
or, using the definition of the normal cone,
(=) +e¢/|¢II* A —v)) <0, forany (€ Nii(v), vEF, £ €C.
Therefore, letting & = z(t), v = proj*(z(t), F), and ¢ = z(t) — proj* (z(t), F), we get
t) — proj* (z(t), F
<C,(t) G proj’ (z(1), )A7
[[#(t) — proj” (=(t), F)||
which allows to further rewrite inequality (3.6) as
t) — proj* (z(t), F
V() < 2€< x(t) proj’ (z(t), F)
[(t) — proj” (z(t), F)|

Therefore, the Lyapunov function (3.2) satisfies (1.1) and so v(¢) =0, t € [r, 74).

A(a(t) - prof* (0. 7)) ) <0

‘A,A(z(t) - projA(z(t),F))> = —2e/v(t).

To prove that y(t) — c(¢) is constant on [r,74] we introduce z(t) = y(7) — ¢(7) + ¢(t),
t € [1,74]. Then —2/(t) = —/(t) a.e. on [1,74]. Since we already proved that y(¢) €
F + ¢(t) on [1,74], we have y(t) — ¢(t) € F on [r,74], and so, by (1.5),

—c(t) € N&(y(t) — c(t)) = Né‘(t)( (t)) a.e.on [T, 74
Therefore, z(t) is a solution of (1.4) on |7, 74] and since z(7) = y(7) by construction,
we get z(t) = y(t) on [1,74] by the uniqueness of solutions of (1.4), see e.g. Kunze
and Monteiro Marques [23, Theorem 3]. The proof of the theorem is complete. O

4. Finite-time convergence to a vertex. In this section we consider the case
of ri(F') = () or, equivalently, M = 0. When M = 0, formula (2.2) reduces to

(4.1) F= (] Llaj).
(a,4)€lo
In this case, of all the conditions (2.3), (2.4), (2.5), (2.6), (2.8), and (2.7), only

conditions (2.3) and (2.7) are needed. These two conditions take the following form:

(4.2) Condition (2.3): {y:ye€ f(a,j), (a,j) € Ip} is a singleton {y. o} # 0,
(4.3) Condition (2.7) : y. 0 € C.



COROLLARY 4.1. Let V be a d-dimensional linear subspace of R™ with scalar
product (3.1), and ¢ : [0,00) = V be Lipschitz continuous. Assume that C is given by
(2.1) and F is given by (4.1) with conditions (4.2) and (4.3) satisfied. Assume that
there exists an € > 0 such that

1
(4.4) 76/(15)4’3?(0) C Né(y*,o) ae.on (0,74, T4 >T, T= . meaé( ||117y*70||A.

Then, every solution y of sweeping process (1.4) with the initial condition y(0) € C(0)
satisfies y(t) = y«,0 + c(t), t € [T, 7q]. Furthermore, let y.(t), t > T, be the solution of
(1.4) with the initial condition y.(T) = Yo + (7). If c(t) is T-periodic with T > T,
then y. is a globally one-period stable T-periodic solution of (1.4) satisfying y.(t) =
Yuo +c(t), t € [14+ 4T, 74+ jT), j € N.

Proof of Corollary 4.1. Since

N{Ay*,o} (y*70) =V,

the inclusion (1.5) takes the form of that of (4.4). Therefore, by Theorem 3.1,
Y(Td) = Y0 + ¢(74). Since ¢(t) is Lipschitz continuous, sweeping process (1.4) fea-
tures uniqueness of solutions and so y(t) = y.(t), t > 74. Since ¢(t) is T-periodic,
sweeping process (1.4) admits a T-periodic solution (by Brouwer fixed point theorem).
Therefore, y. is a unique T-periodic solution of (1.4) (on [r4,00)). Therefore, y. is
the attractor of (1.4) by Massera-Krejci theorem (see Krejci [22, Theorem 3.14] or
Gudoshnikov-Makarenkov [16, Theorem 4.6]). The proof is complete. O

More properties of Na(y) and N&(y) are required to obtain an applicable corollary
of Theorem 3.1 in the case where ri(F) # ().

5. Finite-time convergence to a face. Assume now that ri(F) # 0. To
compute NZ(y) and Ng(y) for y € F, we want to use the following corollary of
(Rockafellar-Wets [29, Theorem 6.46]). Recall that cone{¢y, ...,{x } stays for the cone
formed by vectors &1, ..., €k

LEMMA 5.1. Let V be a d-dimensional linear subspace of R™ with the scalar prod-
uct (3.1). Consider

K
(5.1) C = m{yEV:<ﬁk,Ay> <c},
k=1

where ng, €V, ¢, € R, K € N. Iff(y) = {k: e, K : (ng, Ay) = ck}, then
Ng(y):cone{ﬁk:kef(y)}.

Both, the statement of [29, Theorem 6.46] and a proof of Lemma 5.1 are given in
appendix B.

In what follows, we call ng, k € I (y), the active normal vectors of the set C at Y.

To match the format of formula (5.1), we rewrite L(«, j) and f(mj) as

(5.2) L(a,j) = {y € V: (an;, Ay) < ac§ },

(5:3)  L(ej)={yeV:(-n;,Ay) < —cf}n{yeV:(n; Ay) <}
7



Using the representations (5.2)-(5.3), we can formulate the active normals of C' and
F at y as follows:

(5.4) active normals of C at y € F': {an; 1y € f(mj)} U{an; : (a,7) € Ip},
(5.5) active normals of Frat y € F: {an; :y € f(a,j)} U{—nj,n; : (o, j) € Ip}.

Formula (5.4) uses condition (2.7) to make sure that the term {an; : (a,j) € Iy} is a

part of {an; : y € L(c, j)}. We keep this “redundant” term to ease the comparison
between the formulas (5.4) and (5.5). Formula (5.5) uses assumption (2.4) to claim

that all vectors of {an; : y € L(«,j)} are normal vectors of F.

Using assumption (2.5) we can conclude from (5.4)-(5.5) that the sets of active normals
are given by

active normals of C at y,; : {an; : (o, j) € L;} U{an; : (o)) € I}, i€ 1, M,
active normals of F' at y,; : {an; : (o,j) € L} U{—nj,n;: (o,j) € I}, i€1,M.
Therefore, by (2.3) and Lemma 5.1,

(5.6) N&(ys,i) = cone {an; : (o, 7) € Iy, an;: (a,j) € L}, iel,M,
. N#(yai) = cone {—n;,n; : (o, j) € Iy, anj : (a,5) € I}, i€l,M.
Using assumption (2.4) we can specify the lists of active normals at y € F as follows:
active normals of C at y € F': {an; : (a,j) € n L} U{an; : (o, ) € o},
1€Jy
active normals of F' at y € F': {an; : (a,j) € ﬂJ L} U{—nj,n;: (o, ]) € Io}.
1€ Jy
Therefore, by (5.6),
(5.7) Né@) = () Né(wes), Ne@) = () Ne(yes), yeF
i€, i€,
where J,, are given by assumption (2.4).

Provided that condition (2.3) holds, the boundary of the d-dimensional cone N& (y. ;)
is the following union of (d — 1)-dimensional cones:
(58)  ONG(wa)= |J  cone{an;:(aj) € (IoUL)\{(a,j)}},

(s j«)EIQUI;

see appendix A for a proof. We note that symbol 0 refers to the boundary or subdif-
ferential according to whether it is used with a set or with a function.

Now we use assumption (2.6) for the first time. This assumption allows us to conclude
from (5.4)-(5.5) that

active normals of C' at y € ri(F) : {an; : (o, j) € o},
active normals of F' at y € ri(F) : {—n;,n; : (o, j) € Ip}.

Therefore, by (2.6) and Lemma 5.1,

(5.9) N&(y) = cone {an; : (a,5) € Ip}, y € ri(F),
N#(y) = cone {—nj,n; : (o, 5) € Iy}, y € ri(F).
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COROLLARY 5.2. Let V be a d-dimensional linear subspace of R™ with scalar
product (3.1), and c: [0,00) — V be Lipschitz continuous. Assume that F(t) is given
by (2.2) with F' satisfying properties (2.3)-(2.5) and (2.7). Let y.; be the vertices of
F given by (2.3). If there exists an € > 0 such that

(510)  —c(t) + BA0) N N (yui) C N&(yei) a.e. on [0,74], i € 1, M,

1
and 74> 7T, T=- max ||U - y*,iHAv
£ vel, iel,M

then every solution y of (1.4) with the initial condition y(0) € C(0) satisfies y(t) €
F(t), t € [1,74]. In particular, if c(t) is T-periodic with T > 7 and if Y denotes the
set of all solutions y of (1.4) with the initial conditions y(7) € F(7), then the set
Y is globally one-period stable for which and every y. € Y wverifies y.(t) € F(t) and
Y (t) = (t) =0, ae. t €[+ jT,7q+ 5T, j € 1, 00.
Proof. We need to prove that (5.10) implies (1.5). Formulas (5.7) and (5.10) allow
to conclude that, for any y € F,

—c(t) + BA0) N N (y) € —c(t) + BA0) N N (ye i) C NA(yss), i€ Jy.

Therefore,

—c'(t) + B2(0) N Np(y) C O] Né(ysi), ye€F,
1€y

which implies (1.5) due to formula (5.7). O

For each i € 1, M, we denote by £; : V — V the linear map which projects each
element & € V onto the subspace lin{n; : (a,j) € Ip} along the subspace lin{n; :
(o, 7) € I;}. The map £, is well defined if condition (2.8) holds.

LEMMA 5.3. Let V be a d-dimensional linear subspace of R™ with scalar product
(3.1). Let the polyhedron C and its face F be given by formulas (2.1) and (2.2).
Assume that |Iy] < d and

(5.11) —c + B;(‘)(O) N N?(y) - Né‘(y), for any y € ri(F),

and for some ¢1 € V. If conditions (2.3)-(2.8) hold, then
—c1+ BA0) NN (i) € N&(ysi),  for any i€ 1, M,

where
(5.12) ei = o/ Lill .

Proof. Fix i € 1, M. By conditions of the lemma, the vectors {n; : (o, j) € Ip U I}
form a basis of V. Therefore, using formulas (5.6) and (5.9), any & € N (y. ;) is
uniquely decomposable as
§=&+8&, & eNpy), & espan{n;: (a,j) € L},
where & = £,;£ and y is an arbitrary element of ri(F'). Fix an arbitrary £ € N;é‘ (Ys,i)
with [|£]|4 < &;. Using condition (5.12), we can estimate the norm of &; as follows
€l < Ll - llEl? = 11L:)14 - &5 = eo.

By (5.11),
—c1 + & € N&(y), yeri(F)
and so
—c1 + &€ NA(y) + &,y eri(F).
But N4 (y) + & C N&(y«i) by (5.6) and (5.9), which completes the proof. O
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COROLLARY 5.4. Let V be a d-dimensional linear subspace of R™ with scalar
product (3.1). Let the polyhedron C(t) and its face F(t) be given by formulas (2.1)
and (2.2). Assume that ti(F) # 0 and ¢/ (t) = ¢ for allt > 0. Assume that F satisfies
conditions (2.5)-(2.8). If

—c1 €1i(NA(y)), yeri(F),

then there exists an € > 0 such that (1.5) holds on any interval [0,74] and, in partic-
ular, the solution y of sweeping process (1.4) with any initial condition y(0) € C(0)
satisfies y(t) € F(t) and y'(t) — c1 = 0, for almost all sufficiently large t > 0.

The conclusion of Corollary 5.4 follows by combining Lemma 5.3 and Corollary 5.2.
The assumption on ¢; of Corollary 5.4 implies that the respective assumption of
Lemma, 5.3 holds for some € > 0.

The statement of the following remark is a part of the proof of [16, Proposition 3.14].

Remark 5.5. Both  max  |lv—y..||* from Corollary 5.2 and max ||v—y. o4
vel, i€1,M veC
from Corollary 4.1 can be estimated using the following inequality:

(5.13) max |lu —v[|* < [[A7 et — A7 e || A
u,veC

For completeness, we included a proof of formula (5.13) in Appendix A.

6. Finite-time stability of elastoplastic systems with uniaxial displace-
ment-controlled loading. We remind the reader that according to Moreau [25] a
network of m elastoplastic springs on n nodes with 1 displacement-controlled loading
is fully defined by an m x n kinematic matrix D associated with the topology of the
network, m x m matrix of stiffnesses (Hooke’s coefficients) A = diag(ay, ..., am), an
m-dimensional hyperrectangle S = H;’;l[cj_,c;r] of the achievable stresses of springs
(beyond which plastic deformation begins), a vector R € R™ of the location of the
displacement-controlled loading, and a scalar function /(t) that defines the magnitude
of the displacement-controlled loading. Such an elastoplastic system will be referred
to as (D, A, S, R,[(t)). When all springs are connected (form a connected graph), we
have (see Bapat [3, Lemma 2.2])

(6.1) rank D =n — 1.

We furthermore assume that

m>n and rank(DTR) = 1.
To formulate the Moreau sweeping process corresponding to the elastoplastic system
(D,A,S,R,I(t)), we follow the 3 steps described in Gudoshnikov-Makarenkov [17, §5]:

1. Find an n x (n —2)—matrix M of rank(DM) = n — 2 that solves RF DM =0
and use M to introduce Upqsis = DM.

2. Find a matrix Vpesis of m —n 4+ 2 linearly independent column vectors of R™
that solves Upasis)? AVpasis = 0.

3. Find an m x (m —n+ 1)—matrix D+ that solves (D+)TD = O(m—n+1)xn and

(6.2) rank(Dt) =m —n + 1.

With the new matrices introduced, the parameters of the sweeping process (1.4) cor-
10



responding to the elastoplastic system (D, A, S, R,[(t)) are given by

15 = VoasisW ! R i W = R Vhasi V = VyasisR?
j — Vbasis (DJ_)T €5, - (DJ_)T basis» — Vbasis )

1
_ . —1
C(t) = Viyasis W (Odl

(6.3) _ T g_
I(t), e;=(0,..,0,1,0,...,00T, d=m —n+2.
——

j—1

The existence of W~ is demonstrated in Gudoshnikov-Makarenkov [17, 16] for par-
ticular examples. Since this section intends to offer a general recipe, Lemma B.5 in
the appendix features a proof of the invertibility of W in the general case. The
solution y(t) of sweeping process (1.4) is linked to the vector of stresses s(t) =
(51(t), ..., 8m(t))T of the springs of elastoplastic system (D, A, S, R,[(t)) by the for-
mula y(t) = A7 ts(t) + c(t).

Therefore, the conclusion y(74) € F(74) of Theorem 3.1 is equivalent to the inclusion
s(1q) € AF, or, upon combining with Lemma B.10, to

(6.4) s(1q) € conv{Ays 1, ..., Ays am}-

7. A step-by-step guide for analytic computations.

Step 1. Find appropriate indexes Iy (springs that will reach plastic deformation).
Spot an Iy C {—1,1} x 1, m such that

(7.1) < Om_1n+1 )Z’(t) € cone (( (lff)T ){aej : () eIO}>.

DEFINITION 7.1. We say that a family of indexes Iy is irreducible, if Iy cannot
be represented in the form

(7.2) Iy :E)U{(a*,j*)},

where Iy satisfies

(7.3) ( om_lnH )l’(t) € cone (( (lff)T ){aej () € 13})

By Corollary B.7 (see below), Iy with |Iy| = d always exists. However, some Iy with
|Io| = d may appear to be reducible, in which case an irreducible subset of Iy needs to
be considered. Proposition 7.11 below explains why our results do not apply when I,
is reducible. Intuitively, a vertex cannot be finite-time stable, if finite-time stability
holds for the entire face that the vertex belongs to.

Remark 7.2. Relation (7.1) implies (see Appendix A for a proof) that

(7.4) —(t) € cone{an; : (o, j) € Ip}.

Step 2. Fix appropriate indexes I; (springs that may reach plastic deformation
and that affect the convergence of springs Iy to plastic deformation). Skip this step,
if |Io] = d. We will consider the simplest possible way to design I; which ensures
that F # @ and assumptions (2.2)-(2.7) are satisfied. This simplest way utilizes
the minimal possible number d — |Iy| of springs. The conditions to be imposed on
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the remaining m — d springs will ensure that those m — d springs do not affect the
convergence of the stress vector to F(t) and, in particular, do not undergo plastic
deformation when close to F'(t).

Find some I; such that
(7.5) [Tol + 11| = d

and
(7.6) rank (( (lff)T ) ({ae; : (a,) € ToU 11})> —d

Based on I; we can obtain more vertexes I; by changing the elements of I; from («, n)
to (—a,n). Let I;, where i € 1, M,

(7.7) M = 2% 1ol
be all different families of indexes obtained through this process, i.e.
(78) Ii1 7& Ii27 11 7é io, 11,12 € 1, M.

Use Iy and I;, i € 1, M, to define F' by formula (2.2).

Step 3. Compute the vertexes of F and impose conditions ensuring feasi-
bility of F. Depending on whether |Iy| = d or |I| < d, compute y. o or y.;, i € 1, M,
respectively, using the formula (see Appendix A for a proof)

. -1 . ) T
(7.9) Yo = Voasis ((Leg: (,9) € Lo ULNT AViasis) ({5 () € UL}
The feasibility condition (2.7) holds if

(7.10) ol <d: ¢ <({ej,Ayei)<cf, i€ M, (a,j) € IhUL U...U Iy,
Io|=d: ¢ <(ej,Ayso) < c;r, (o, ) € Ip.

Assumption (2.5) concerning non-coincidence of the vertices holds if

) -t ; e TT
(7.11) ol <d: ¢ <cj, forall (a,j)€l;, i€l,M,
|Iop| =d:  does not apply.
We will say that relation (7.1) holds in a strict sense if, in addition to (7.1), the
following property is satisfied:

(7.12) ( om}nﬂ )l’(t) ¢ b (cone (( ( ;T)T ){aej (0, )) € 10})).

With the moving constraint C(¢) introduced in Section 6 and with the face F' in-
troduced in Steps 1-3, the Corollaries 4.1 and 5.4 lead to the following qualitative
description of the asymptotic behavior of the elastoplastic system (D, A, C, R,I(t))
and the associated sweeping process (1.4). In the sequel, by loosely saying “springs
with indexes Iy” we refer to all springs j for which either (—1,75) € Iy or (1,5) € Ip.
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PROPOSITION 7.3. (Conclusion of Steps 1-3). If I'(t) = const, relation (7.1)
holds in a strict sense, and if properties (7.10) and (7.11) hold, then there exists an
e > 0 such that condition (1.5) is satisfied on any [0,74]. Accordingly, there exists
to > 0 such that, beginning t = tg and regardless of the initial distribution of stresses,
(i) the springs of the elastoplastic system (D, A, C, R,1(t)) with the indezxes Iy all stay
in the plastic mode; (ii) the stress vector s(t) of (D, A,C,R,l(t)) holds a constant
value satisfying (6.4).

When |Iy| = d, the statement of Proposition 7.3 follows from Corollary 4.1 almost di-
rectly. Assumption (4.2) holds because Iy is irreducible. Assumption (4.3) is satisfied
by (7.10). Conditions (7.1) and (7.12) ensure the existence of € > 0 for which (4.4)
holds for any ¢ > 0.

Considering |Iy| < d and deriving the statement of Proposition 7.3 from Corollary 5.4
requires establishing validity of assumptions (2.3), (2.4), (2.5), (2.6), (2.8), and (2.7).
Property (2.3) follows from (7.6). Property (2.5) follows from (7.8) and (7.11). Prop-
erty (2.7) follows from (7.10). Property (2.8) coincides with (7.5). Verifying conditions
(2.4) and (2.6) is less straightforward. This is done in the two propositions below.

PROPOSITION 7.4. Assume M > 1. Let F be the face defined in Step 2. If (7.10)
holds, then (2.4) holds as well. In other words, (7.10) implies that

{(e,5) : y ef(a,j)} =IoU (N I; for someI C1,M or for I =10.
iel

Proof. Let y € F and I, = {(«o,j) : y € f(a,j)}. By condition (7.10), I, = Iy U L,
where I, C I; U...U I;. By construction,

(7~13) I = {(:l:7nj1)7"'7(:l:7njd—|10\)}7

where different ¢ correspond to different choices of ”+” and ”—" in each symbol ”+".
Therefore, I, can either be an empty set or a set of the form

(7.14) J— {(04*1‘*771]'1«*), ey (Oé;*_|10|’nj;i\10\)}’
where {ji*,... ’j;illo\} C {15+ Ja—i1o|}- If Is = 0, then the proof is complete. So,
from now on we assume that I, # 0.

From expressions (7.13) and (7.14), we see that I, C I; for at least one index iy €
1,M. Define Il as I ={ie 1, M : I, C I;}.
Therefore

(7.15) Ls € ) 1.
iel

Since the elements of I;\I,, are obtained from the elements of I;,\ .. by taking all
possible replacements of («,n) by (—a,n), we have iQI(Ii\I**) =0
Therefore, (] I; C L., and so (7.15) turns into equality. O
iel
LEMMA 7.5. Assume that the face F is given by (2.2). Assume that conditions
(2.3) and (2.8) hold. If

(7.16) there exists y € I such that (ae;, Ay) < acf, (a,j) € Ii; i € 1, M,

then condition (2.6) is satisfied.
13



Proof. Part 1. If (7.16) holds then there exists a full-dimensional ball Bs(g) in V/
such that Bs(y) C L(a,j), (a,j) €I, i €1, M.

Therefore,

aff(F):aff( N L(a,j>m35<y>)=aﬂ<( N L<a,j>>,

(a5)€lo a,j)€lo
where aff(A) is the affine hull of the set A (see [24]) Directly from the definition of F,

aﬁ’(F)Caff( N L(a,j)>.

(a,g)€l
So we conclude that e

(7.17) aff(F)—aff( N L(a,j)).

(ev,5)€Io
Part 2. Consider y € F and assume that y € f(a*,j*) for some (., j«) € I;, and some
ix € 1, M. By properties (2.3) and (2.8), the subspace (7.17) intersects the subspace

L(aw, j«) transversally. Therefore, if we consider a ball of space (7.17) centered at
y, then part of this ball will lie outside of L(av, j«), hence y € rb(F). Therefore, if

y € 1i(F), then y € L(a, j), (o, j) € I;, i € 1, M, which completes the proof. O

PROPOSITION 7.6. Assume M > 1. Let F be the face defined in Step 2. If (7.11)
holds, then (7.16) holds as well.

Proof. We will construct the required 4 as the solution of the following system of d
algebraic equations:

<ejaAy>:C?7 (aaj) GIO»
c. + ct

(ej, Ay) = -2 5 L (j) e, i€1,M.

As in the proof of formula (7.9), this system admits a unique solution j because F
¢ +cf
satisfies assumptions (2.3) and (2.8). Condition (7.11) yields ¢; < ! L < c;r.
Therefore, by construction,
7€ N L), c; < (e, Ay) < cj+7 (,5) e l;, i €1, M,
(a,j)EIo

which implies (7.16). O

One has to proceed to Steps 4 and 5, if an estimate for 74 is of interest.

Step 4. Compute gg. Our next argument will be based on application of Corol-
lary 4.1 (when |Iy| = d) and Corollary 5.2 in combination with Lemma 5.3. This step
is devoted to finding ¢ for which the respective assumptions (4.4) and (5.11) hold. As-
sumptions (4.4) and (5.11) require computing the distance from —¢’(¢) to the bound-
ary of the cone N& (y) at the point F when F is a singleton and at the points of ri(F)
when ri(F') # (0. In either case, the required boundary is dcone {an; : (o, j) € Ip}.

Using formula (5.8), we compute
Eo(t) = dist™ (= (t), dcone {an; : (a,j) € Ip}) =

of mi? . dist® (—¢/(t), cone {an; : (o, §) € To\{(,7:)}}) -
ax,Jx)Elg

(7.18)

The following lemma can be used to compute the distances from —¢/(¢) to the required
cones (see Appendix B for a proof of the lemma).
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LEMMA 7.7. Assume that {n,,...,n;, } is a linearly independent subset of vectors
{n1,..;nm}. Introduce N'= (n;, ... n;,). Then the matriz NTAN is invertible and,
for any ¢ € R™,

dist? (=, span {n, , ...,n;, }) = |—¢ — proj* (=, span {n;, , ..., nzk})HA )
(7.19)  proj® (=c,span{n;,,...,n;, }) = —N [NTAN]A/\//TAC'.
Based on Lemma 7.7 we can rewrite formula (7.18) as
fo(t) = min [|=¢'(t) — proj* (=¢/(t), span {an; : (a,5) € Io\{(a, 5)11)]| "

(T IS )

proj” (=¢'(t),span {an; : () € I\{(e,j:)}}) =

= —({ny, (a,7) € Io\{(v, j)}})o )
o [({n;, (o j) € Io\{(es, g I NTA({n;, (,j) € Io\{(aw, ) }})] o
o({nj, (@,j) € Io\{(a,j.)}HTAC(t).

Choose ¢y > 0 such that g < &y(¢) for all t € [0,74]. Corollary 4.1, Remark 5.5 and
formula (6.4) lead to the following conclusion.

(7.20)

PROPOSITION 7.8. (Conclusion of Steps 1-4). Assume that || = d, i.e.
F = {y.o0}. If conditions (7.1) and (7.10) hold on [0,74], then (1.5) holds on the
same time interval. If, in addition,

1
2T, T=_— [A7tet — A7t |14,

then, for any initial distribution 0(} stresses s(0) in the elastoplastic system
(D, A,C,R,I(t)), (i) the springs with the indexes Iy undergo plastic deformations
on the time interval [1,74), (i) s(t) = Ay.o, t € [1,7q]. If I(t) is T-periodic with
T > 74, then (i) the springs with the indexes Iy undergo plastic deformations on
[T+jT,1a+jT], j € 0,00, (ii) s(t) = Ay.o on the same time intervals. In particular,
if 1(t) is T-periodic, then s(t) exhibits a unique T-periodic behavior after the time 7.

One more step is required to produce an estimate for 74 when |Ip| < d.

Step 5. Compute o;. Having found ey for which (5.11) holds, we can now use
Lemma 5.3 to compute ¢ for which assumption (5.10) of Corollary 5.2 is satisfied.
Specifically, formula (5.12) of Lemma 5.3 implies that the required ¢ is given by
e = eo min (1/][£i]|*) = eo max || £]|*.
ie1,M i€, M

(IS 1el,

Next lemma provides a computational formula for the linear map £;. In what follows,
[A]; stays for the matrix formed by the first k lines of the matrix A.

LEMMA 7.9. In the settings of Lemma 5.3, assume that the parameters of sweep-
ing process (1.4) are given by (6.3). Then the linear map L; :V — V can be expressed

through the following m X m matriz:
RT
()

Li = ({nj; (@,j) € lo})o
Proof. Since {n; : (a,j) € Iy U I;} is a basis of V, we can decompose { € V as

(7.21) [(( (;’f)T ) ({ejs (@, 5) € I}, {ej, (,)) eIi}))_1]
&= ({nj, (o4) € Io} {nj. (@.4) € I.}) ( gi )

15
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for some ¢; € Rl and ¢ € Rl On the other hand, & = Vyauisv for some v € R%.
Combining this formula and formula (6.3) for normals n;, we get
RT . .
Vbasis'U = VbasisW_l < (DJ_)T ) ({eja (Oé,j) € IO}v{ejv (O&,j) € Iz}) < g; )

or, equivalently,

(0 ) tter @i et ten @aenp] wo= (&),

Therefore,
[(( (lﬁiT )({eg» (@) € Io}, {ej, (@, ]) e[i}))_ll o( (liT)T >£=<1,
which implies (7.21). " -

In order to compute ||£;||#, we first observe that

1L:&)|14 = V(L& ALE) = \/<\/Z£i§, \/Z£z£> = |VAL¢| =
= WALV AWAL < [|VALVA| - |[VAE| = VALV A - [|€] 2.

Therefore, ||£;]|4 < ||VAL;V/A~1||. But, based on e.g. Friedberg et al. [13, §6.10,
Corollary 1], [|[VAL;VA~Y|| = /5;, where

T
(7.22) o; is the largest eigenvalue of the matrix (\/Zﬁi\/ A—l) VALANAT

Therefore, &; can be computed as g; = g9 / max ,/0;.
iel,M

Corollary 5.2, Remark 5.5, and formula (6.4) can now be summarized as follows.

PROPOSITION 7.10. (Conclusion of Steps 1-5). Assume that |Io| < d. If (7.1)
and (7.10) hold on [0, 74] then (1.5) holds on the same time interval. If, in addition,

_ maX{\/a,--~>\/0M} . ||Aflc+ —A7167|‘A

then all conclusions about the time intervals of plastic deformations stay the same
as in Proposition 7.8. As for the stress vector s(t), it holds a constant value s(t) €
conv{Ay, 1, ..., AYs m } during each of the above-mentioned plastic deformations.

We remind the reader that inclusion (7.1) is called strict, if (7.12) holds.

Tqg>T, T

PROPOSITION 7.11. If Iy is reducible, then inclusion (7.1) is never strict and, in
particular, Ey(t) given by formula (7.18) is necessarily zero.

Proof. By definition, Ij is representable as (7.2). Therefore, as in the proof of formula
(5.8), we can conclude that cone{an; : (o,j) € Iy} C rb(cone {an; : (o, j) € Ip}).
Hence, by (7.3), —c/(t) € rb(cone {an; : (a,j) € Iy}). Therefore, inclusion (7.1) is
not strict (we use Remark 7.2 again) and £y(¢) given by (7.18) vanishes. O

8. Application to a system of elastoplastic springs. The focus of the
present section is on the elastoplastic model shown in Fig. 1 (earlier introduced in
Rachinskii [28]), which allows to fully illustrate the practical implementation of The-
orem 3.1. According to Gudoshnikov-Makarenkov [17, §2], the elastoplastic system of
Fig. 1 leads to the following expressions for D and R:
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1)

A
\4

Fic. 1. A system of 5 elastoplastic springs on 4 nodes that we investigate to illustrate our
method. A displacement-controlled loading l(t) is applied as the arrows show.

1 1 0 0 1
1 0 1 0 0
D= 0o -1 1 of, R=]|1
0 -1 0 1 0
0 0 -1 1 1

We now follow Section 6 to formulate a sweeping process (1.4) corresponding to the
elastoplastic system (D, A, C, R,I(t)). First of all, based on (6.3), we compute the
dimension of sweeping process (1.4) asd=m—-n+q+1=5—-4+1+1=3.
According to [17, §5, Step 1], we then look for an 4 x 2 matrix M such that R DM = 0
and such that the matrix DM is full rank. Such a matrix M can be taken as

0 0 1 1

1 1 1 -1

M= 1 1 with DM = 0o -2
0 0 -1 -1

-1 1

The next step is determining Vp,sis which consists of d = 3 linearly independent
columns of R™ = R® and solves (DM)T AVyasis = 0. Such a Vy,ss can be taken as

0 1o /o 0 1 1
0 1/(12 —1/a2 0 1 -1
Vbasis = 1/0,3 0 1/@3 With AVbaSZ-S = 1 0 1
—1/&4 1/a4 0 -1 1 0
1/as 1/as 0 1 1 0
Finally, a 5 x 2 full rank matrix D+ satisfying (D)7 D = 0 can be taken as
0 1
0 -1 o 1 0 1 0 1
Dt=] 1 1 leading to ( DLyT ) =0 0o 1 -1 1
-1 0 ( ) 1 1 1 0 0
1 0

In what follows, we consider two types of loading:

(8.1) I(t)=lo+11-t, t>0,
(8.2) I(t) = lo+1y - ¢, t€0,7/2], extended to [0,0)
’ Tl o+l (T/2)=1-(t—=T/2), te[T/2,T), by T-periodicity,

where lg, 11,7 > 0 are fixed constants.

Step 1. To shorten the presentation, we address only two possible I (of different
17



cardinality) along with the corresponding inclusion (7.1):

1 -1 0
TO ={(+1),(+,2)}: 0 |l € cone 0 | o ,

0 -1 1
_ 1 1 -1 1
Iy ={(+,1),(—,3),(+,5)} : 0 |l; € cone o], -1 1], 1
0 1 —1 0

Step 2. Since |Io| < d, we need some I; satisfying (7.6). Let us pick I; = {(—,3)}.
Since, by (7.7), M = 2, we have to use I; to make one additional vertex I5, which is
determined by I; uniquely as Is = {(+,3)}.

Step 3. For the above IAO, IAl, and fQ, we use formula (7.9) in order to compute
~ . . . T .
(8.3) Ay = (CT’C;’C? 3vcii_ _ng 370; +C§l 3) , 1e{l,2},

as well as to formulate the respective feasibility condition (7.10) which consists of 4
two-sided inequalities

cy Scf—c;{ <cjf,

¢y < c;Jrc;' < c}f.

CZSCT—C;SCZ,

A4 for 4, 1 :
B4 forfr: S g g <o,

for yi 2 :

For Iy, formulas (7.9) and (7.10) give the following single vertex along with the re-
spective feasibility condition:

— - +
~ o + _ + - _ + o+ C S —Cq +¢C S Cy
(85) Ay*,O—(cl,_CS +C57C37_C3 +C1765)7 CES_C§+C?SCE_-

Sine each of the inclusions in Step 1 holds in a strict sense (i.e. the vector (1,0,0)T
never belongs to the boundary of the respective cone), we can now use Proposition 7.3
to obtain the following statement about the evolution of the model shown in Fig. 1.

PROPOSITION 8.1. (i) If elastic limits ci_,cj' of the elastoplastic springs of the
model of Fig. 1 satisfy the feasibility condition (8.4) with displacement-controlled
loading (8.1), then there exists an ¢ > 0 such that springs with the indexes 1 and
2 undergo plastic deformation for all sufficiently large t > 0. During this plastic
deformation, the stress vector of all 5 springs holds a constant value from the line seg-
ment [AYx1, As2]. (i1) If elastic limits c; , ¢ satisfy the feasibility condition (8.5),
then there exists an € > 0 such springs 1, 3, and 5 undergo plastic deformation for
all sufficiently large t > 0. During this plastic deformation, the stress vector of all 5

springs holds the constant value Ay o.

Step 4. |Io| = 2. In this case, for any (o, j«) € lo, the set To\{(c, j«)} consists of
just one element {(«,j)} and formula (7.20) takes the form ¢(¢t) = min S, with

(a,5)€lo

ni Ac(t)
niAn;
Therefore, for Iy = {(+,1), (+,2)}, we get £o = min{S;, S}, and a computation in
Mathematica gives

§1 = h(274)7 S1\2 = h(175)7 h(la.j) = ll\/
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Sj = ||=¢(t) — proj(=¢'(t), span{n; })|| ", proj*(—¢'(t),span{n;}) = —n;

a; (asas + a3 (ag + as))
a; (CL3 + aj) + aqas + as (a4 + a5) '




[Io] = 3. In this case, for any (., j.) € Iy, the set Io\{(cx,j«)} con-
sists of two elements {(a1,j1), (Oéz,jg)} and formula (7.20) can be rewritten as

. A
€0 (t) = o S]1]2’ Jij2 — ”C prOJ )» Span{njl ) n]z})H
(a1,91),(2,52)€lo .
An n; An nT
projA(c'(t) span{n;,,n;,}) = (nj, nj,) ” ” ]Tl Ad(t).
ni, Anj, nj Anj, "
Therefore, for Iy = {(+,1),( (+,5)}, we have gg = mln{Slg, 5’15, 535} and com-

putation in Mathematica glves

~ asQs ~ a1y 20304
Sz =10 , S35 = Sis = .
az + as ar + a4’ aza3 + a204 + azay

Proposition 7.8 (applied with 7, = T//2) leads to the following result about the evo-
lution of the model of Fig. 1 .

PROPOSITION 8.2. Assume that elastic limits of the elastoplastic springs of the
model of Fig. 1 with loading (8.1) satisfy feasibility condition (8.5). Put

= (1/m1n {§13, §15, §35}> . ||x4716Jr — AilciHA.
Then, for any initial distribution of stresses, springs 1, 8, and 5 undergo plastic
deformation for t > 7. For cyclic loading (8.2) with T/2 > 7 (and the same feasibility
condition), springs 1, 3, and 5 undergo plastic deformation on time intervals [T +

JT,T/2+ jT], j € 0,00. During the above-mentioned plastic deformations, the stress
vector of the 5 springs holds the constant value Ay, o given by (8.5).

Step 5. Computing o;. For each of the vertexes IAl and j\g we setup the matrixes El
and Ly according to formula (7.21) and use Mathematica to compute the corrections
01 and 09 as defined by formula (7.22). This gives
51 = 5y = max 41, (a1 + aq) (a2 + as) (agas + a3 (ag + as))
asas (azaq + a2 (a3 + a4) + azas + asas + a1 (a2 + az + as))

PROPOSITION 8.3. Assume that elastic limits of the elastoplastic springs of the
model of Fig. 1 with loading (8.1) satisfy feasibility condition (8.4). Put

T= (\/max{ﬁl,ag}/min {§1, §2}) JJAT e — ATl | A
Then, for any initial values of stresses, springs 1 and 2 undergo plastic deformation for
t > 1. For the cyclic loading (8.2) with T/2 > T (and the same feasibility condition),
springs 1 and 2 undergo plastic deformation on time intervals [t + jT,T/2 + jT,
j € 0,00. During the above-mentioned plastic deformations, the stress-vector s(t) of
the & springs holds a constant value (that depends on s(0)) from the line segment
[AYs 1, AYs 2] given by (8.3).

Remark 8.4. (Implications for shakedown theory of continuous media) In
terms of the shakedown theory for continuous media (Kachanov [20, Ch. 9], Yu [33,
§4.6]) the conclusions of Propositions 7.8, 7.10, 8.2, 8.3 imply that an elastoplastic
structure that periodically crosses the extreme values will not shakedown (i.e. will not
cease to fully elastic behavior over time), but will keep deforming plastically upon each
cycle of loading. The corresponding result is known as Koiter’s shakedown theorem
in elastoplasticity literature (as opposed to Melan’s shakedown theorem which gives
conditions for shakedown to occur). The repeating plastic deformation guaranteed by
the present paper usually appears in the form of alternating plasticity or ratcheting
in the literature (see e.g. Yu [33, p. 62], Boissier et al [7, Fig. 1]) but our framework
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is not capable to identify the type of the underlying plastic deformation.

9. Conclusions. In this paper we adapted and applied the ideas of Adly et al.
[2] about finite-time stability of frictional systems to finite-time stability of sweeping
processes with polyhedral moving constraints. Our condition (1.5) takes the form
(1.3) (copied from [2]) in the particular case when F' is a singleton, in which sense we
extended the condition of [2] to cover the case of finite-time convergence to a given
face instead of a single point. Based on these results, we proposed a step-by-step guide
to analyze finite-time reachability of plastic deformation in networks of elastoplastic
springs. The analysis was applied to an example of 5 elastoplastic springs on 4 nodes.

Our step-by-step guide of Section 7 addresses a particular (most straightforward) way
of creating the list of scenarios of how the terminal distribution of plastic deformations
(7.1) can be reached. Specifically, as seen from Step 2 of Section 7, we complemented
the polyhedron given by the planes with indexes from (7.1) by suitable pairs of parallel
facets to form a bounded polyhedron of dimension d. Extending the list of scenar-
ios by using arbitrary available facets (not necessarily pairs of parallel facets) is a
technical task in the field of discrete geometry that we omitted in the present paper.
Generalizing (7.1) to the case of multiple displacement-controlled loadings and allow-
ing for stress-controlled loadings (where the shape of the moving constraint changes
with time [16]) is a subject of future research. Investigating finite-time stability of
sweeping process (1.4) in the case of moving constraint of changing shape will also
be required to account for hardening and softening of the elastoplastic system (of
Section 6), see Chaboche [9]. Another limitation of the paper is that, when loading is
periodic and the periodic attractor is a family of functions, we prove one-period sta-
bility of the entire face that contains the periodic attractor, not one-period stability of
the periodic attractor itself (unlike Colombo et al. [10]). The non-periodic properties
of the finite-time attractor in case of a non-periodically moving constraint is also an
open question (the ideas of Kamenskii et al. [21] can help in the quasi-periodic case).

Although the focus of the present paper is on applications in elastoplasticity, the
finite-time stability results of Section 3 can be applied to sweeping processes of other
applied sciences, e.g. electrical circuits (see Acary et al. [1]). Extending the results
to perturbed sweeping processes would enlarge the domain of applications further (to
allow for more complex electric circuits, swarms of robots, traffic control problems,
see Acary et al. [1], Colombo et al. [11], Hedjar-Bounkhel [19]). The results on
disturbance rejection for Lyapunov functions of type (1.1) (see e.g. Orlov [26], Santi-
esteban et al. [31]) might be useful in this regard (the perturbation term of perturbed
sweeping process could be viewed as the disturbance).
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Appendix

Appendix A. Skipped proofs.
Proof of implication (2.3) = (5.8). By definition (5.6), if £ € N&(y«.i), then
there exist non-negative numbers Ay, ..., Ay such that
€= ({an; : (,5) € (U L)} (A1, M)
20



But by (2.3), {an; : (o, j) € (IpUI;)} is a basis of V. Therefore, the correspondence
between £ € Né‘(y*yi) and non-negative \q,..., \q is one-to-one. Therefore, any & €
N&(y«,i) for which the corresponding Ai, ..., Aq contains \; = 0 is from ONZ (ys),
which is exactly the statement of formula (5.8). O

1 1
Proof of formula (5.13). By (2.1), —c¢; <y; < —c , for all y € C. Therefore,
a;

max ([lu—v|4 ) Zlaj(uj - <X a— ¢ ) = (|A7tet — Al |7 .0
J: :

u,veC

Proof of the equivalence (7.1) <= (7.4). Statement (7.1) implies the existence
of (A1, ..., Ajy|) such that

A1
-1 1 / -1 RT .
VbasisW l (t) = VbusisW IRVA ({O‘ej : (Oz,]) € IO}) :
OmfnJrl (D )
Aol
Due to (6.3), the latter formula just coincides with
A1
- (t) ={an; : (a,j) € Ip} ,
Aol
which yields (7.4). 0

Proof of the implication (2.2)-(2.7) = (7.9). Based on formula (2.3), finding
Y«,; means solving a system of d algebraic equations

<ej7Ay*,i> = C?ﬂ (Oé,j) S IOUI'L"
or, equivalently,

) , T
({ej, (,5) € U LY AVpasisvei = ({c5 (a,j) e LU L)),
where Yx,i = Vbasisv*,i- O
Appendix B. Technical lemmas.
LEMMA B.1. If a non-negative continuously differentiable function v(t) satisfies
1
the differential inequality v'(t) < —2e\/v(t), then v(t1) = 0 for some t1 < gv(O).
Proof. The proof follows by observing that the solution of the dlfferentlal equation
v'(t) = —2e4/9(t) with 9(0) > 0 is given by o(t ( et + 4/ ) on [0, 1], where
t1 = (1/¢) /v(0). O

LEMMA B.2. Consider f,g : V — Vi, where V, V1 are scalar product spaces. If
both D¢ f(v) and Deg(v) exist then D¢ (f(-),g(-)) (v) exists and

De (f(),9()) (v) = (Def(v), g(v)) + ([ (v), Deg(v)) -

Proof. We have

De (F(),9()) (v) = tim LLF 00+ 70) = {F(w),9(v) _

T7—0 T
_ <;13% f(”“? - f(v),g(v)> + <f(v),y£%w> N
i (0476 = 0, LFETIZIOY —(Defa), 0 + (0, Deae).



where we used that

C TH fw+718 = f(v)

‘<f(v+7§) —f(v)’g(v+7'£)—g(1))>

T

‘.Hg@ 7€) = g(v)

T

by Cauchy-Schwartz inequality. O

LemMmA B.3. Consider f :V — Vi and u : R — V, where V, V1 are scalar product
spaces. If both u'(ty) and the derivative (f o u) (to) of f ou exist at a point ty and if
[ is Lipschitz continuous in the neighborhood of ug = u(to), then D) f(uo) exists
and Doy (1y) f (uo) = (f o u)'(to)-
Proof. We have

- flug + 7! (t0)) — f(uo)

Du/(to)f(UO) = 71_11)1%) =

(f(U(to) + 7 (to)) = flulto+ 7)) | flulto + 7)) — fluo)

T T

) = o),

where we used Lipschitz continuity of f to conclude that the first fraction in the limit
converges to 0 as 7 — 0. U

LEMMA B.4. Let V be a scalar product space, C CV be a nonempty convex poly-
hedral set, v € V. Then proj(v,C) is directionally differentiable at v, and, for any
£eV,

De¢ proj(v, C) = proj(&,Cy),
where Cy, := {h € Te(proj(v, C)) : (v—proj(v,C), h) = 0} is the so-called critical cone
and Te(proj(z, C)) is the tangent cone to C at proj(v,C). In particular, if v € C,
then C, = T (v).
Lemma B.4 is a particular (polyhedral) case of [32, Theorem 3.1].
LEMMA B.5. Form > n, consider a m X n-matrix D and m x (m —n+1)-matriz

D+, such that (D+)T'D = 0,5 (m—nt1y- If (6.1) and (6.2) hold, then
(B.1) DIR™" ! — (DR™)L.

Proof. By the definition of D+,

(B.2) DR™ " KerDT.

Furthermore, we have

(B.3) (DR™)* = Ker DT,

see e.g. Friedberg et al. [13, Exercise 17, p. 367]. To prove the backwards im-
plication in (B.1), we use (B.3) and assumption (6.1) to conclude that Ker DT =
dim ((DR™)*) = m —n + 1. On the other hand, assumption (6.2) implies that
dim (DLRm_"H) = m — n + 1 too. Therefore, the dimensions of the spaces in the
two sides of (B.2) coincide and the inclusion (B.2) is actually an equality. O

COROLLARY B.6. Assume that m > n. Let R be an m x g-matriz. Let D' be as
defined in Lemma B.5. Consider U = {x € DR™ : R"z = 0} . If conditions (6.1) and

T
(6.2) hold, then x € U if and only if ( (DRJ_)T > z=0.
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Proof. The proof follows by observing that (D+)T2 = 0 if and only if

z € Ker ((D1)T) = (DAR™—"+1)* — ((DR")*)™ = DR,
where the first equality is the property that we already used in the proof of Lemma B.5
(see formula (B.3)) and the second equality is the conclusion of Lemma B.5. O

COROLLARY B.7. In the settings of Corollary B.6, assume that rank(DT R) = q,
in addition to (6.1) and (6.2). Putd = m —n+ q+ 1. Let Vyusis be a matriz of
d linearly independent vectors of R™ which are orthogonal to vectors of U in some
scalar product. Then,

T
(i) the d x d-matriz ( (D47 ) Viasis 1S tnvertible,
T
(i) rank( (DRJ_)T > =m-n+q+1.
T
Proof. (i) If (l;i)T ViasisV = 0 for some v € R%, then Vp,sisv must be an

element of U by Corollary B.6. On the other hand, vector Vp,s;sv is orthogonal to the
vectors of U, which implies Vpqs;5sv = 0 which can only happen if v = 0.

(ii) By the rank-nullity theorem (see e.g. Friedberg et al. [13, Theorem 2.3]) and by
o ) =t (e (gl ) ) =
Corollary B.6 we have rank =m—dim | ker = m—dim(U).
Yy ( (DL)T (DL)T )
In this formula, dim(i/) = n — ¢ — 1 by Gudoshnikov-Makarenkov [16, Lemma 3.8]. O
LEMMA B.8. (Rockafellar-Wets [29, Theorem 6.46]) Consider a polyhedron
K
C=N{veR: (ng,v) <},
k=1
where ny € R, ¢, € R, K € N. If I(v) = {k e, K : (ng,v) = ck}, then
Ne(y) = cone{ny : k € I(v)}.
Proof of Lemma 5.1. Fix y € V. The definition of Ng(y) reads as

(B.4) <Ng(y),A(5— y)> <0, ¢eC.

Let d be the dimension of V and let Vyqs:s be a m x d-matrix of some linearly inde-
pendent vectors of V. Then we can represent C' as

~ K
C = VpasisC, where C = ) {v € R?: (ng,v) < ck} , g = (AVpasis) T Nige.
k=1
Defining v € R< in such a way that y = Vpasisv, statement (B.4) can be rewritten as
<Ng (Vbasisv)a A(E - Vbasisv)> S 0; c S Vbasisca
<<Avbasis)TNg(Vbasisv)7 c— U> S Oa ceC.
But the definition of N¢(v) reads as (Ng(v), ¢ —v) <0, c e C.

Therefore, (AVyusis)T N ‘Ci‘(Vbasisv) = Ng¢(v) or, incorporating the conclusion of
Lemma B.8§, (AVbaSiS)TNg(Vbasisv) = cone {(AVbaSiS)Tﬁk ke I(U)} ,
from where the required statement follows. O

ProrosiTiON B.9. For any convex set F' C R™,
proj (v, F) + ¢ = proj*(v + ¢, F +¢), wv,ce F.
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Proof. Indeed, let v/ = proj*(v 4 ¢, F + ¢). Then v” satisfies one of the following
three properties

mingrepye|[v+ec—v"||4 = |jv+c— o4,

lv4+c—v"[|A > [v+c—v?|* forallv” € F+ec, v #0!,

lo =04 > lv4+c—v”||A forallv € F, c+v' #.
Introducing v, = v/ — ¢, ||[v —V'||* > |[[v —vL||4 for all v € F, v' # v.. Therefore,
mingep [v —v'[|4 = Jv — vL||4, ie. v, = proj(v, F). O

Proof of Lemma 7.7. Invertibility of the k x k-matrix N7 AN follows from the
fact that rank(v/AN) = k and so rank(NT AN) = rank((v/AN)TVAN) = k, sce e.g.
Friedberg et al. [13, §6.3, Lemma 2]. To prove formula (7.19), we observe that

dist? (=c,span{n;,,....,n;. }) = H—c’ — projA (=c,span{n;,, ..., nik})HA .
By the definition of projection (see e.g. Bauschke-Combettes [4, §3.2]),

proj? (=c,span{ng,, ..., n; }) = Aing, + ...+ Agna,,

where A1, ..., A\x € R minimize the quantity
<7Cl - Alnil — ... )\k, A(*C/ - )\1711‘1 i )‘k)> .
Therefore,
<—C/ — Alnil .. )\k,AnZ—1> = 0,
<7C/ — )\1711‘1 i S )\k,Anik> == 0,

for the unknown Ay, ..., Ag, or, equivalently, —N7Ac/ — NTAN (A1 ... )T = 0.
Formula (7.19) follows by solving this equation for (A1 ...\;)? and by plugging the
result into proj* (—¢, span {niys o ) =N )T O

LEMMA B.10. If conditions (2.3), (2.4), and (2.8) hold, then all vertices of F' are
contained in the set {Yu 1, ..., Ys,a }-
Proof. Assume that F has a vertex §. & {y«.1, ..., Y« am }. We have

{g*} = {y 'y € I(a?j)7 (Oé,j) € IO U {j17 "'7jd7|lo|}}7

where |IO U {jh "'7jd—|[0|}| =d. By (24)7 {jl, ...7jd_|[0|} = I() U miEJg* [1 But |Iz| =
d — |Io| by (2.8). Therefore, there exists ¢ € .J;, such that {ji, o Ja—in} = I, ie.
Ys =y, ;- The proof of the lemma is complete. O
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