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Abstract. We use the ideas of Adly-Attouch-Cabot [Adv. Mech. Math., 12, Springer, 2006] on
finite-time stabilization of dry friction oscillators to establish a theorem on finite-time stabilization of
differential inclusions with a moving polyhedral constraint (known as polyhedral sweeping processes)
of the form C+c(t). We then employ the ideas of Moreau [New variational techniques in mathematical
physics, CIME, 1973] to apply our theorem to a system of elastoplastic springs with a displacement-
controlled loading. We show that verifying the condition of the theorem ultimately leads to the
following two problems: (i) identifying the active vertex “A” or the active face “A” of the polyhedron
that the vector c′(t) points at; (ii) computing the distance from c′(t) to the normal cone to the
polyhedron at “A”. We provide a computational guide for solving problems (i)-(ii) in the case of
an arbitrary elastoplastic system and apply it to a particular example. Due to the simplicity of the
particular example, we can solve (i)-(ii) by the methods of linear algebra and basic combinatorics.
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1. Introduction. Finite-time stability of an attractor is typical for differential
equations with nonsmooth right-hand-sides. This fact is used in control theory since
long ago, see e.g. Orlov [26]. Finite-time stability is often proved by showing that a
Lyapunov function V satisfies the estimate (Bernuau et al. [5], Bhat-Bernstein [6],
Oza et al. [27], Sanchez et al. [30], etc.)

(1.1)
d

dt
[V (x(t))] + 2ε

√
V (x(t)) ≤ 0 a.e. on [0,∞)

for some ε > 0, where x is a solution. Specifically, if (1.1) holds for a function x(t),
then V (x(t1)) = 0 at some t1 ≥ 0, where (see Lemma B.1)

t1 ≤
1

ε
V (x(0)).

Motivated by applications in frictional mechanics, Adly et al. [2] extended the Lya-
punov function approach to finite-time stability analysis of differential inclusions. Let
∇f(x) be the gradient of a function f : R → Rm, ∂Φ(x) be the subdifferential of a
convex function Φ : R → Rn, and Bε(0) be the ball of Rn of radius ε centered at 0.
By focusing on differential inclusions of the form

(1.2) − x′′(t)−∇f(x(t)) ∈ ∂Φ(x′(t)),

the paper [2] discovered (see the proof of [2, Theorem 24.8]) that the property

(1.3) −∇f(x(t)) +Bε(0) ⊂ ∂Φ(0) a.e. on [0,∞)

implies (1.1) for a suitable Lyapunov function V that measures the distance from x′(t)
to 0 and for any solution x of (1.2).
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More recently, a significant interest in the study of finite-time stability of differential
inclusions has developed due to new applications in elastoplasticity (see e.g. Gudosh-
nikov et al. [18]). We remind the reader (see Section 6 for full details) that according
to the pioneering work by Moreau [25] (revisited in Gudoshnikov-Makarenkov [16]),
the stresses in a network of m elastoplastic springs with time-varying displacement-
controlled loadings are governed by

(1.4) − y′ ∈ NA
C(t)(y), y ∈ V , V is a d− dimensional subspace of Rm

with the scalar product (x, y)A = 〈x,Ay〉 ,

where A is a positive diagonal m × m-matrix, NA
C(t)(y) is a normal cone to the set

C(t) = C+ c(t) at a point y, C ⊂ Rm is a polyhedron, and c(t) ∈ Rm is a vector. The
solutions y(t) of differential inclusion (1.4) never escape from C(t) (i.e. y(t) is swept by
C(t)) for which reason (1.4) is called the sweeping process. Spring j undergoes plastic
deformation when the inequality c−j < 〈nj , Ay〉 < c+j is violated, where c−j , c

+
j ∈ R,

nj ∈ Rm are mechanical parameters of the spring (yield stresses) and vectors nj ∈ Rm
come from geometry of the network (see Section 6 for details). Therefore, knowing the
evolution of y(t) allows to make conclusions about the regions of plastic deformation
(that lead to low-cycle fatigue or incremental failure, see Yu [33, §4.6]).

Krejci [22] proved that if c(t) is T -periodic then the set Y of T -periodic solutions
of (1.4) is always asymptotically stable. Examining finite-time stability of Y is re-
lated to the interaction of Y with the boundary of the moving constraint C + c(t)
(plastic deformation). In particular, the analysis of finite-time stability helps to un-
derstand whether the plastic deformation will repeatedly progress or cease which is
related to the phenomena of alternating plasticity, ratchetting, and shakedown in the
theory of elastoplasticity, see e.g. Yu [33], Boissier et al [7]. In the case where Y
consists of just one solution (and the state space is 2-dimensional), the finite-time
stability is established in Gudoshnikov et al. [18] (with an application to an elasto-
plastic system). However, as shown in Gudoshnikov-Makarenkov [17], the case where
the periodic attractor consists of a family of solutions is often structurally stable for
sweeping processes of elastoplastic systems. The assumption that Y consists of one
solution was dropped by Colombo et al. [10] who worked in higher-dimensional states
spaces and allowed the size of the moving constraint to change but focused on moving
constraints of parallelepipedal shape (naturally arising in applications to soft locomo-
tors with dry friction). The mathematical contribution of the present paper is that
we simultaneously address the case where Y is a family of solutions and the moving
constraint is a translation of an arbitrary polyhedron.

Predicting the behavior of solutions of sweeping process (1.4) within a guaranteed time
is of importance for materials science. Current methods of computing the asymptotic
response of networks of elastoplastic springs (see e.g. Boudy et al. [8], Zouain-
SantAnna [34]) run numeric routines until the difference between the responses cor-
responding to two successive cycles of loading get smaller than a prescribed tolerance
(without an estimate as for how soon such a desired accuracy will be reached).

The present paper adapts condition (1.3) in order to predict the behavior of solutions
of (1.4) within a guaranteed finite time. We do not prove the finite-time stability of
Y , but still prove that all solutions of (1.4) will reach a certain computable set Y in
finite time. Specifically, let F (t) be a face of C(t). Then, as we clarify in Section 2,
F (t) = F + c(t). We prove that if

(1.5) − c′(t) +BAε (0) ∩NA
F (y) ⊂ NA

C (y), y ∈ F, a.e. t ∈ [0, τd],
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where BAε (0) is a ball in the norm induced by the scalar product (x, y)A = 〈x,Ay〉
(cf. (1.4)), then, for any solution y(t) of (1.4), the function

(1.6) x(t) = y(t)− c(t)

satisfies estimate (1.1) on [0, τd] for a suitable Lyapunov function V that measures
the distance from x(t) to F. Since, by (2.2), the distances from x(t) to F equals the
distance from y(t) to F (t), then the relation τd ≥ V (x(0))/ε ensures that the solution
y(t) sticks to the face F (t) by the time V (x(0))/ε. In particular, when τd ≥ τ for
τ = max

v∈C
V (v)/ε, our result implies that the dynamics of sweeping process (1.4) is

fully determined by the trajectories Y with the initial conditions y(τ) ∈ F (τ). When
c(t) is T -periodic with T ≥ τ and F (τ) is a singleton (i.e. a vertex), T -periodicity of
Y follows from Krejci [22]. When c(t) is T -periodic, but F (τ) is not a singleton, our
result doesn’t imply T -periodicity of the trajectories of Y, but still implies T -periodic
occurrence of plastic deformations in applications of (1.4) to elastoplastic systems.

The paper is organized as follows. Sections 2-5 present the theory of finite-time
stability of sweeping process (1.4), where we first establish an abstract theorem (The-
orem 3.1) and then propose various criteria to verify condition (1.5) depending on the
dimension of F (t) (Corollary 4.1, Corollary 5.2, Corollary 5.4). Section 6 summarizes
the approach by Moreau [25] to the use of sweeping process (1.4) for modeling networks
of elastoplastic springs. Section 7 combines the results of Sections 3-6 to formulate a
simple algebraic condition (7.1) identifying possible options for plastic deformations
in a network of elastoplastic springs with a displacement-controlled loading, which
is the main contribution of the present paper. The workings of formula (7.1) are
further explained in Propositions 7.3, 7.8, and 7.10 where both the case of gradually
stretching and cyclic loadings are considered. Section 8 illustrates the efficiency of
the methodology of Section 7 through a benchmark example (taken from Rachinskiy
[28]). We show that all formulas of Section 7 can be computed in closed form (us-
ing Wolfram Mathematica) and explicit conditions for one or another scenario of the
distribution of plastic deformations can be obtained (Propositions 8.1, 8.2, 8.3). The
Mathematica notebook is uploaded as supplementary material and stored at Zenodo
[15]. Appendix A contains a few proofs omitted in the main text. Appendex B collects
more substantial auxiliary results that are known (the proofs are included where we
were unable to find the exact required formulations in the literature).

2. Formulation of the moving constraint. We will work with C(t) given by

(2.1) C(t) = C + c(t), C =
m⋂
j=1

Vj ,
Vj = L(−1, j) ∩ L(+1, j),

L(α, j) =
{
y ∈ V: 〈αnj , Ay〉 ≤ αcαj

}
.

The particular face F (t) of interest will be defined through the set of indexes Ii ⊂
{−1, 1} × 1,m, i ∈ 0,M, as follows:

(2.2)
F (t) = F + c(t), F =

 ⋂
(α,j)∈I0

L(α, j)

 ∩
 M⋂
i=1

⋂
(α,j)∈Ii

L(α, j)

 ,

L(α, j) =
{
y ∈ V: 〈nj , Ay〉 = cαj

}
,
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where the ingredients in (2.2) satisfy the following assumptions (and where ri(F ) stays
for the relative interior of F ):

each I0 ∪ Ii defines
a vertex of F :

for each i ∈ 1,M, {y : y ∈ L(α, j), (α, j) ∈ I0 ∪ Ii}
is a non-empty singleton {y∗,i},

(2.3)

F has no other vertices, all
constraints are accounted for :

each y ∈ F defines Jy ⊂ 1,M ∪ ∅, such

that {(α, j) : y ∈ L(α, j)} = I0 ∪
⋂
i∈Jy Ii,

(2.4)

vertices do not coincide : Jy∗,i = {i}, i ∈ 1,M,(2.5)

vertices do not reduce ri(F ) : {(α, j) : y ∈ L(α, j)} = I0, y ∈ ri(F ),(2.6)

F is feasible : F ⊂ C,(2.7)

L(α, j), (α, j) ∈ I0 ∪ Ii, are independent : |I0|+ |Ii| = d, i ∈ 1,M.(2.8)

The case where F is a vertex of C is accounted for by M = 0, see formulas (4.1)-(4.3)
below for the corresponding reduced form of (2.2)-(2.8).

Assumptions (2.3)-(2.8) control the construction of the sets Ii (to make the verification
of assumption (1.5) of Theorem 3.1 possible algorithmically). They do not restrict
the generality of the results. Corollary 4 about the finite-time convergence to a vertex
uses (2.3) and (2.7) with M = 0, which, by definition, simplify to (4.2) (F is a
singleton) and (4.3) (F ⊂ C). The full power of assumptions (2.3)-(2.8) is explored in
Corollaries 5.2 and 5.4 about the finite-time convergence to a face. Assumption (2.4)
is a way (convenient for proofs and verification) to state that F has no vertexes other
than y∗,i, i ∈ 1,M , while assumption (2.3) relates y∗,i to normals αnj (termed vertex
enumeration in discrete geometry), thus allowing to express NA

C (y∗,i) through the
normals αnj , see formula (5.6). The combination (2.3)-(2.4) is used in Corollary 5.2
to reduce the verification of (1.5) on the entire F to the verification at the vertexes of
F . Assumption (2.5) doesn’t restrict the generality because coinciding vertexes can
always be dropped. We use (2.5) to have certainty concerning the normal vectors
in formulas for NA

C (y∗,i) and NA
F (y∗,i), see (5.6). Assumption (2.6) simply ensures

that the indexes I0 are chosen correctly, i.e. the dimension of the space formed by the
normal vectors with indexes from I0 coincides with the dimension of lin(F ). Therefore,
the same normal vectors define NA

F (y) at y ∈ ri(F ) and at y ∈ F , which is used in
Corollary 5.4 to reduce the verification of (1.5) from the entire F to ri(F ). If (2.3)
holds, then (2.8) can be achieved by removing appropriate indexes from Ii, i ∈ 0,M .
In other words, assumption (2.8) doesn’t restrict generality. It is used e.g. to ensure
that the spaces lin{nj : (α, j) ∈ I0} and lin{nj : (α, j) ∈ Ii} in the definition of the
map Li of Lemma 5.3 are linearly independent. Finally, assumption (2.7) is just a
part of the definition of the face F of C.

3. A sufficient condition for finite-time stability. We remind the reader
that the normal cone NA

C (y) to the set C at a point y ∈ C in a scalar product space
V with the scalar product

(3.1) (x, y)A = 〈x,Ay〉 , where A is a diagonal positive m×m−matrix,

is defined as (see Bauschke-Combettes [4, §6.4])

NA
C (y) =

{
{x ∈ V : 〈x,A(ξ − y)〉 6 0 for any ξ ∈ C} if y ∈ C,
∅, if y 6∈ C.

In what follows (see Bauschke-Combettes [4, §3.2]),
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‖x‖A =
√
〈x,Ax〉, projA(v, F ) = argmin

v′∈F
‖v − v′‖A.

Finally, recall that the solution of an initial-value problem for a sweeping processes
with Lipschitz continuous moving set exists, is unique, and features Lipschitz conti-
nuity (thus differentiability almost everywhere) and continuous dependence on initial
conditions (see e.g. Kunze and Monteiro Marques [23, Theorems 1-3]).

Theorem 3.1. Let V be a d-dimensional linear subspace of Rm with scalar product
(3.1), c : [0,∞) → V be Lipschitz continuous, and F ⊂ C ⊂ V be closed convex sets.
Assume that there exists an ε > 0 such that condition (1.5) holds on an interval [0, τd]
with

τd ≥ τ, τ =
1

ε
·max v1∈C, v2∈F ‖v1 − v2‖

A.

Then, every solution y of (1.4) with C(t) = C + c(t) and any initial condition y(0) ∈
C(0), satisfies y(t) ∈ F + c(t), t ∈ [τ, τd], and y′(t)− c′(t) = 0 a.e. on [τ, τd].

What we will effectively prove is that the function

(3.2) V (v) =
〈
v − projA(v, F ), A

(
v − projA(v, F )

)〉
is a Lyapunov function for the sweeping process

(3.3) − x′(t)− c′(t) ∈ NA
C (x(t)),

which is related to (1.4) through the change of variables (1.6). Since (see Proposi-
tion B.9)

projA(v, F ) + c = projA(v + c, F + c),
we have

V (x(t)) =
(
‖x(t)− projA(x(t), F )‖A

)2
=
(
‖y(t)− projA(y(t), F + c(t))‖A

)2
for the function x(t) given by (1.6). Therefore, as expected, V (x(t1)) = 0 will imply
y(t1) ∈ F + c(t1).

In what follows, Dξf(u) is the bilateral directional derivative (Giorgi et al. [14, §2.6],
Correa-Thibault [12]) of f : V → V1 at the point u ∈ V in the direction ξ ∈ V , i.e.

Dξf(u) = limτ→0(f(v + τξ)− f(v))/τ.

Here V1 are finite-dimensional scalar product spaces.

If the bilateral directional derivative DξprojA(·, F )(v) of v 7→ projA(v, F ) at the point
v ∈ V in the direction ξ ∈ V exists, then the existence of DξV (v) and the formula

(3.4) DξV (v) = 2
〈
ξ −DξprojA(·, F )(v), A(v − projA(v, F ))

〉
follow by observing that(

‖v − projA(v, F )‖A
)2

=
〈
v − projA(v, F ), A(v − projA(v, F ))

〉
,

see Lemma B.2. What we significantly use in the proof of Theorem 3.1 is that any
directional derivative of v 7→ projA(v, F ) is orthogonal to v − projA(v, F ), as it is a
projection on the respective critical cone (see Lemma B.4 in Appendix B), so that
formula (3.4) reduces to DξV (v) = 2

〈
ξ, A(v − projA(v, F ))

〉
, meaning that DξV (v)

is actually linear in ξ.

Proof of Theorem 3.1. Let y(t) be an arbitrary solution of (1.4). For the function
x(t) given by (1.6) consider

v(t) = V (x(t)).

Note, that x(t) is differentiable almost everywhere on [0,∞) because c(t) is Lips-
chitz continuous. Since v 7→ projA(v, F ) is Lipschitz continuous (see e.g. Bauschke-
Combettes [4, Proposition 4.16]), the function t 7→ projA(x(t), F ) is differentiable
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almost everywhere on [0,∞). Let us fix some t ≥ 0 such that both projA(x(t), F ) and
x(t) are differentiable at t. Then Dx′(t)projA(·, F )(x(t)) exists (see Lemma B.3) and
by Lemma B.4 we conclude

Dx′(t)V (x(t)) = 2
〈
x′(t), A(x(t)− projA(x(t), F ))

〉
.

Without loss of generality we can assume that t ≥ 0 is chosen so that V (x(t)) is
differentiable at t. Then (see Lemma B.3),

(3.5) v′(t) = Dx′(t)V (x(t)) = 2
〈
x′(t), A

(
x(t)− projA(x(t), F )

)〉
.

By definition of normal cone, (3.3) implies

〈−x′(t)− c′(t), A(ξ − x(t))〉 ≤ 0, for any ξ ∈ C.
Therefore, taking ξ = projA(x(t), F ) we conclude from (3.5) that

(3.6) v′(t) ≤ 2
〈
−c′(t), A

(
x(t)− projA(x(t), F )

)〉
.

Now we use assumption (1.5), which is equivalent to

−c′(t) + εζ/‖ζ‖A ∈ NA
C (v), for any ζ ∈ NA

F (v), v ∈ F,
or, using the definition of the normal cone,〈

−c′(t) + εζ/‖ζ‖A, A(ξ − v)
〉
≤ 0, for any ζ ∈ NA

F (v), v ∈ F, ξ ∈ C.
Therefore, letting ξ = x(t), v = projA(x(t), F ), and ζ = x(t)− projA(x(t), F ), we get〈

−c′(t) + ε
x(t)− projA(x(t), F )

‖x(t)− projA(x(t), F )‖A
, A
(
x(t)− projA(x(t), F )

)〉
≤ 0,

which allows to further rewrite inequality (3.6) as

v′(t) ≤ −2ε

〈
x(t)− projA(x(t), F )

‖x(t)− projA(x(t), F )‖A
, A(x(t)− projA(x(t), F ))

〉
= −2ε

√
v(t).

Therefore, the Lyapunov function (3.2) satisfies (1.1) and so v(t) = 0, t ∈ [τ, τd].

To prove that y(t)− c(t) is constant on [τ, τd] we introduce z(t) = y(τ)− c(τ) + c(t),
t ∈ [τ, τd]. Then −z′(t) = −c′(t) a.e. on [τ, τd]. Since we already proved that y(t) ∈
F + c(t) on [τ, τd], we have y(t)− c(t) ∈ F on [τ, τd], and so, by (1.5),

−c′(t) ∈ NA
C (y(t)− c(t)) = NA

C(t)(y(t)) a.e. on [τ, τd].

Therefore, z(t) is a solution of (1.4) on [τ, τd] and since z(τ) = y(τ) by construction,
we get z(t) = y(t) on [τ, τd] by the uniqueness of solutions of (1.4), see e.g. Kunze
and Monteiro Marques [23, Theorem 3]. The proof of the theorem is complete. �

4. Finite-time convergence to a vertex. In this section we consider the case
of ri(F ) = ∅ or, equivalently, M = 0. When M = 0, formula (2.2) reduces to

(4.1) F =
⋂

(α,j)∈I0

L(α, j).

In this case, of all the conditions (2.3), (2.4), (2.5), (2.6), (2.8), and (2.7), only
conditions (2.3) and (2.7) are needed. These two conditions take the following form:

Condition (2.3) : {y : y ∈ L(α, j), (α, j) ∈ I0} is a singleton {y∗,0} 6= ∅,(4.2)

Condition (2.7) : y∗,0 ∈ C.(4.3)
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Corollary 4.1. Let V be a d-dimensional linear subspace of Rm with scalar
product (3.1), and c : [0,∞)→ V be Lipschitz continuous. Assume that C is given by
(2.1) and F is given by (4.1) with conditions (4.2) and (4.3) satisfied. Assume that
there exists an ε > 0 such that

(4.4) −c′(t)+BAε (0) ⊂ NA
C (y∗,0) a.e. on [0, τd], τd ≥ τ, τ =

1

ε
· max
v∈C

‖v−y∗,0‖A.

Then, every solution y of sweeping process (1.4) with the initial condition y(0) ∈ C(0)
satisfies y(t) = y∗,0 + c(t), t ∈ [τ, τd]. Furthermore, let y∗(t), t ≥ τ, be the solution of
(1.4) with the initial condition y∗(τ) = y∗,0 + c(τ). If c(t) is T -periodic with T ≥ τ ,
then y∗ is a globally one-period stable T -periodic solution of (1.4) satisfying y∗(t) =
y∗,0 + c(t), t ∈ [τ + jT, τd + jT ], j ∈ N.

Proof of Corollary 4.1. Since

NA
{y∗,0}(y∗,0) = V,

the inclusion (1.5) takes the form of that of (4.4). Therefore, by Theorem 3.1,
y(τd) = y∗,0 + c(τd). Since c(t) is Lipschitz continuous, sweeping process (1.4) fea-
tures uniqueness of solutions and so y(t) = y∗(t), t ≥ τd. Since c(t) is T -periodic,
sweeping process (1.4) admits a T -periodic solution (by Brouwer fixed point theorem).
Therefore, y∗ is a unique T -periodic solution of (1.4) (on [τd,∞)). Therefore, y∗ is
the attractor of (1.4) by Massera-Krejci theorem (see Krejci [22, Theorem 3.14] or
Gudoshnikov-Makarenkov [16, Theorem 4.6]). The proof is complete. �

More properties of NA
F (y) and NA

C (y) are required to obtain an applicable corollary
of Theorem 3.1 in the case where ri(F ) 6= ∅.

5. Finite-time convergence to a face. Assume now that ri(F ) 6= ∅. To
compute NA

C (y) and NA
F (y) for y ∈ F , we want to use the following corollary of

(Rockafellar-Wets [29, Theorem 6.46]). Recall that cone{ξ1, ..., ξK} stays for the cone
formed by vectors ξ1, ..., ξK .

Lemma 5.1. Let V be a d-dimensional linear subspace of Rm with the scalar prod-
uct (3.1). Consider

(5.1) C̃ =
K⋂
k=1

{y ∈ V : 〈ñk, Ay〉 ≤ ck} ,

where ñk ∈ V, ck ∈ R, K ∈ N. If Ĩ(y) =
{
k ∈ 1,K : 〈ñk, Ay〉 = ck

}
, then

NA
C̃

(y) = cone
{
ñk : k ∈ Ĩ(y)

}
.

Both, the statement of [29, Theorem 6.46] and a proof of Lemma 5.1 are given in
appendix B.

In what follows, we call ñk, k ∈ Ĩ(y), the active normal vectors of the set C̃ at y.

To match the format of formula (5.1), we rewrite L(α, j) and L(α, j) as

L(α, j) =
{
y ∈ V : 〈αnj , Ay〉 ≤ αcαj

}
,(5.2)

L(α, j) =
{
y ∈ V : 〈−nj , Ay〉 ≤ −cαj

}
∩
{
y ∈ V : 〈nj , Ay〉 ≤ cαj

}
.(5.3)
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Using the representations (5.2)-(5.3), we can formulate the active normals of C and
F at y as follows:

active normals of C at y ∈ F : {αnj : y ∈ L(α, j)} ∪ {αnj : (α, j) ∈ I0},(5.4)

active normals of F at y ∈ F : {αnj : y ∈ L(α, j)} ∪ {−nj , nj : (α, j) ∈ I0}.(5.5)

Formula (5.4) uses condition (2.7) to make sure that the term {αnj : (α, j) ∈ I0} is a

part of {αnj : y ∈ L(α, j)}. We keep this “redundant” term to ease the comparison
between the formulas (5.4) and (5.5). Formula (5.5) uses assumption (2.4) to claim

that all vectors of {αnj : y ∈ L(α, j)} are normal vectors of F .

Using assumption (2.5) we can conclude from (5.4)-(5.5) that the sets of active normals
are given by

active normals of C at y∗,i : {αnj : (α, j) ∈ Ii} ∪ {αnj : (α, j) ∈ I0}, i ∈ 1,M,

active normals of F at y∗,i : {αnj : (α, j) ∈ Ii} ∪ {−nj , nj : (α, j) ∈ I0}, i ∈ 1,M.

Therefore, by (2.3) and Lemma 5.1,

(5.6)
NA
C (y∗,i) = cone {αnj : (α, j) ∈ I0, αnj : (α, j) ∈ Ii} , i ∈ 1,M,

NA
F (y∗,i) = cone {−nj , nj : (α, j) ∈ I0, αnj : (α, j) ∈ Ii} , i ∈ 1,M.

Using assumption (2.4) we can specify the lists of active normals at y ∈ F as follows:

active normals of C at y ∈ F : {αnj : (α, j) ∈ ∩
i∈Jy

Ii} ∪ {αnj : (α, j) ∈ I0},

active normals of F at y ∈ F : {αnj : (α, j) ∈ ∩
i∈Jy

Ii} ∪ {−nj , nj : (α, j) ∈ I0}.

Therefore, by (5.6),

(5.7) NA
C (y) =

⋂
i∈Jy

NA
C (y∗,i), NA

F (y) =
⋂
i∈Jy

NA
F (y∗,i), y ∈ F,

where Jy are given by assumption (2.4).

Provided that condition (2.3) holds, the boundary of the d-dimensional cone NA
C (y∗,i)

is the following union of (d− 1)-dimensional cones:

(5.8) ∂NA
C (y∗,i) =

⋃
(α∗,j∗)∈I0∪Ii

cone {αnj : (α, j) ∈ (I0 ∪ Ii)\{(α∗, j∗)}} ,

see appendix A for a proof. We note that symbol ∂ refers to the boundary or subdif-
ferential according to whether it is used with a set or with a function.

Now we use assumption (2.6) for the first time. This assumption allows us to conclude
from (5.4)-(5.5) that

active normals of C at y ∈ ri(F ) : {αnj : (α, j) ∈ I0},
active normals of F at y ∈ ri(F ) : {−nj , nj : (α, j) ∈ I0}.

Therefore, by (2.6) and Lemma 5.1,

(5.9)
NA
C (y) = cone {αnj : (α, j) ∈ I0} , y ∈ ri(F ),

NA
F (y) = cone {−nj , nj : (α, j) ∈ I0} , y ∈ ri(F ).
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Corollary 5.2. Let V be a d-dimensional linear subspace of Rm with scalar
product (3.1), and c : [0,∞)→ V be Lipschitz continuous. Assume that F (t) is given
by (2.2) with F satisfying properties (2.3)-(2.5) and (2.7). Let y∗,i be the vertices of
F given by (2.3). If there exists an ε > 0 such that

−c′(t) +BAε (0) ∩NA
F (y∗,i) ⊂ NA

C (y∗,i) a.e. on [0, τd], i ∈ 1,M,(5.10)

and τd ≥ τ, τ =
1

ε
max

v∈C, i∈1,M
‖v − y∗,i‖A,

then every solution y of (1.4) with the initial condition y(0) ∈ C(0) satisfies y(t) ∈
F (t), t ∈ [τ, τd]. In particular, if c(t) is T -periodic with T ≥ τ and if Y denotes the
set of all solutions y of (1.4) with the initial conditions y(τ) ∈ F (τ), then the set
Y is globally one-period stable for which and every y∗ ∈ Y verifies y∗(t) ∈ F (t) and
y′∗(t)− c′(t) = 0, a.e. t ∈ [τ + jT, τd + jT ], j ∈ 1,∞.
Proof. We need to prove that (5.10) implies (1.5). Formulas (5.7) and (5.10) allow
to conclude that, for any y ∈ F,

−c′(t) +BAε (0) ∩NA
F (y) ⊂ −c′(t) +BAε (0) ∩NA

F (y∗,i) ⊂ NA
C (y∗,i), i ∈ Jy.

Therefore,

−c′(t) +BAε (0) ∩NA
F (y) ⊂

⋂
i∈Jy

NA
C (y∗,i), y ∈ F,

which implies (1.5) due to formula (5.7). �

For each i ∈ 1,M , we denote by Li : V → V the linear map which projects each
element ξ ∈ V onto the subspace lin{nj : (α, j) ∈ I0} along the subspace lin{nj :
(α, j) ∈ Ii}. The map Li is well defined if condition (2.8) holds.

Lemma 5.3. Let V be a d-dimensional linear subspace of Rm with scalar product
(3.1). Let the polyhedron C and its face F be given by formulas (2.1) and (2.2).
Assume that |I0| < d and

(5.11) − c1 +BAε0(0) ∩NA
F (y) ⊂ NA

C (y), for any y ∈ ri(F ),

and for some c1 ∈ V . If conditions (2.3)-(2.8) hold, then

−c1 +BAεi(0) ∩NA
F (y∗,i) ⊂ NA

C (y∗,i), for any i ∈ 1,M,

where

(5.12) εi = ε0/‖Li‖A.

Proof. Fix i ∈ 1,M. By conditions of the lemma, the vectors {nj : (α, j) ∈ I0 ∪ Ii}
form a basis of V. Therefore, using formulas (5.6) and (5.9), any ξ ∈ NA

F (y∗,i) is
uniquely decomposable as

ξ = ξ1 + ξ2, ξ1 ∈ NA
F (y), ξ2 ∈ span{nj : (α, j) ∈ Ii},

where ξ1 = Liξ and y is an arbitrary element of ri(F ). Fix an arbitrary ξ ∈ NA
F (y∗,i)

with ‖ξ‖A < εi. Using condition (5.12), we can estimate the norm of ξ1 as follows
‖ξ1‖A ≤ ‖Li‖A · ‖ξ‖A = ‖Li‖A · εi = ε0.

By (5.11),
−c1 + ξ1 ∈ NA

C (y), y ∈ ri(F )
and so

−c1 + ξ ∈ NA
C (y) + ξ2, y ∈ ri(F ).

But NA
C (y) + ξ2 ⊂ NA

C (y∗,i) by (5.6) and (5.9), which completes the proof. �
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Corollary 5.4. Let V be a d-dimensional linear subspace of Rm with scalar
product (3.1). Let the polyhedron C(t) and its face F (t) be given by formulas (2.1)
and (2.2). Assume that ri(F ) 6= ∅ and c′(t) = c1 for all t ≥ 0. Assume that F satisfies
conditions (2.3)-(2.8). If

−c1 ∈ ri(NA
C (y)), y ∈ ri(F ),

then there exists an ε > 0 such that (1.5) holds on any interval [0, τd] and, in partic-
ular, the solution y of sweeping process (1.4) with any initial condition y(0) ∈ C(0)
satisfies y(t) ∈ F (t) and y′(t)− c1 = 0, for almost all sufficiently large t > 0.

The conclusion of Corollary 5.4 follows by combining Lemma 5.3 and Corollary 5.2.
The assumption on c1 of Corollary 5.4 implies that the respective assumption of
Lemma 5.3 holds for some ε > 0.

The statement of the following remark is a part of the proof of [16, Proposition 3.14].

Remark 5.5. Both max
v∈C, i∈1,M

‖v−y∗,i‖A from Corollary 5.2 and max
v∈C

‖v−y∗,0‖A

from Corollary 4.1 can be estimated using the following inequality:

(5.13) max
u,v∈C

‖u− v‖A ≤ ‖A−1c+ −A−1c−‖A.

For completeness, we included a proof of formula (5.13) in Appendix A.

6. Finite-time stability of elastoplastic systems with uniaxial displace-
ment-controlled loading. We remind the reader that according to Moreau [25] a
network of m elastoplastic springs on n nodes with 1 displacement-controlled loading
is fully defined by an m× n kinematic matrix D associated with the topology of the
network, m ×m matrix of stiffnesses (Hooke’s coefficients) A = diag(a1, ..., am), an
m-dimensional hyperrectangle S =

∏m
j=1[c−j , c

+
j ] of the achievable stresses of springs

(beyond which plastic deformation begins), a vector R ∈ Rm of the location of the
displacement-controlled loading, and a scalar function l(t) that defines the magnitude
of the displacement-controlled loading. Such an elastoplastic system will be referred
to as (D,A, S,R, l(t)). When all springs are connected (form a connected graph), we
have (see Bapat [3, Lemma 2.2])

(6.1) rankD = n− 1.

We furthermore assume that
m ≥ n and rank(DTR) = 1.

To formulate the Moreau sweeping process corresponding to the elastoplastic system
(D,A, S,R, l(t)), we follow the 3 steps described in Gudoshnikov-Makarenkov [17, §5]:

1. Find an n× (n− 2)−matrix M of rank(DM) = n− 2 that solves RTDM = 0
and use M to introduce Ubasis = DM.

2. Find a matrix Vbasis of m−n+ 2 linearly independent column vectors of Rm
that solves (Ubasis)TAVbasis = 0.

3. Find an m× (m−n+ 1)−matrix D⊥ that solves (D⊥)TD = 0(m−n+1)×n and

(6.2) rank(D⊥) = m− n+ 1.

With the new matrices introduced, the parameters of the sweeping process (1.4) cor-
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responding to the elastoplastic system (D,A, S,R, l(t)) are given by

(6.3)

nj = VbasisW−1
(

RT

(D⊥)T

)
ej , W =

(
RT

(D⊥)T

)
Vbasis, V = VbasisRd,

c(t) = −VbasisW−1
(

1
0d−1

)
l(t), ej = (0, ..., 0︸ ︷︷ ︸

j−1

, 1, 0, ..., 0)T , d = m− n+ 2.

The existence of W−1 is demonstrated in Gudoshnikov-Makarenkov [17, 16] for par-
ticular examples. Since this section intends to offer a general recipe, Lemma B.5 in
the appendix features a proof of the invertibility of W in the general case. The
solution y(t) of sweeping process (1.4) is linked to the vector of stresses s(t) =
(s1(t), ..., sm(t))T of the springs of elastoplastic system (D,A, S,R, l(t)) by the for-
mula y(t) = A−1s(t) + c(t).

Therefore, the conclusion y(τd) ∈ F (τd) of Theorem 3.1 is equivalent to the inclusion
s(τd) ∈ AF, or, upon combining with Lemma B.10, to

(6.4) s(τd) ∈ conv{Ay∗,1, ..., Ay∗,M}.

7. A step-by-step guide for analytic computations.

Step 1. Find appropriate indexes I0 (springs that will reach plastic deformation).
Spot an I0 ⊂ {−1, 1} × 1,m such that

(7.1)

(
1

0m−n+1

)
l′(t) ∈ cone

((
RT

(D⊥)T

)
{αej : (α, j) ∈ I0}

)
.

Definition 7.1. We say that a family of indexes I0 is irreducible, if I0 cannot
be represented in the form

(7.2) I0 = Ĩ0 ∪ {(α∗, j∗)},

where Ĩ0 satisfies

(7.3)

(
1

0m−n+1

)
l′(t) ∈ cone

((
RT

(D⊥)T

){
αej : (α, j) ∈ Ĩ0

})
.

By Corollary B.7 (see below), I0 with |I0| = d always exists. However, some I0 with
|I0| = d may appear to be reducible, in which case an irreducible subset of I0 needs to
be considered. Proposition 7.11 below explains why our results do not apply when I0
is reducible. Intuitively, a vertex cannot be finite-time stable, if finite-time stability
holds for the entire face that the vertex belongs to.

Remark 7.2. Relation (7.1) implies (see Appendix A for a proof) that

(7.4) − c′(t) ∈ cone {αnj : (α, j) ∈ I0} .

Step 2. Fix appropriate indexes Ii (springs that may reach plastic deformation
and that affect the convergence of springs I0 to plastic deformation). Skip this step,
if |I0| = d. We will consider the simplest possible way to design Ii which ensures
that F 6= ∅ and assumptions (2.2)-(2.7) are satisfied. This simplest way utilizes
the minimal possible number d − |I0| of springs. The conditions to be imposed on
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the remaining m − d springs will ensure that those m − d springs do not affect the
convergence of the stress vector to F (t) and, in particular, do not undergo plastic
deformation when close to F (t).

Find some I1 such that

(7.5) |I0|+ |I1| = d

and

(7.6) rank

((
RT

(D⊥)T

)
({αej : (α, j) ∈ I0 ∪ I1})

)
= d.

Based on I1 we can obtain more vertexes Ii by changing the elements of I1 from (α, n)
to (−α, n). Let Ii, where i ∈ 1,M,

(7.7) M = 2d−|I0|,

be all different families of indexes obtained through this process, i.e.

(7.8) Ii1 6= Ii2 , i1 6= i2, i1, i2 ∈ 1,M.

Use I0 and Ii, i ∈ 1,M, to define F by formula (2.2).

Step 3. Compute the vertexes of F and impose conditions ensuring feasi-
bility of F. Depending on whether |I0| = d or |I0| < d, compute y∗,0 or y∗,i, i ∈ 1,M ,
respectively, using the formula (see Appendix A for a proof)

(7.9) y∗,i = Vbasis
(

({ej , (α, j) ∈ I0 ∪ Ii})T AVbasis
)−1 ({

cαj , (α, j) ∈ I0 ∪ Ii
})T

.

The feasibility condition (2.7) holds if

(7.10)
|I0| < d : c−j < 〈ej , Ay∗,i〉 < c+j , i ∈ 1,M, (α, j) 6∈ I0 ∪ I1 ∪ ... ∪ IM ,
|I0| = d : c−j < 〈ej , Ay∗,0〉 < c+j , (α, j) 6∈ I0.

Assumption (2.5) concerning non-coincidence of the vertices holds if

(7.11)
|I0| < d : c−j < c+j , for all (α, j) ∈ Ii, i ∈ 1,M,

|I0| = d : does not apply.

We will say that relation (7.1) holds in a strict sense if, in addition to (7.1), the
following property is satisfied:

(7.12)

(
1

0m−n+1

)
l′(t) 6∈ rb

(
cone

((
RT

(D⊥)T

)
{αej : (α, j) ∈ I0}

))
.

With the moving constraint C(t) introduced in Section 6 and with the face F in-
troduced in Steps 1-3, the Corollaries 4.1 and 5.4 lead to the following qualitative
description of the asymptotic behavior of the elastoplastic system (D,A,C,R, l(t))
and the associated sweeping process (1.4). In the sequel, by loosely saying “springs
with indexes I0” we refer to all springs j for which either (−1, j) ∈ I0 or (1, j) ∈ I0.
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Proposition 7.3. (Conclusion of Steps 1-3). If l′(t) = const, relation (7.1)
holds in a strict sense, and if properties (7.10) and (7.11) hold, then there exists an
ε > 0 such that condition (1.5) is satisfied on any [0, τd]. Accordingly, there exists
t0 > 0 such that, beginning t = t0 and regardless of the initial distribution of stresses,
(i) the springs of the elastoplastic system (D,A,C,R, l(t)) with the indexes I0 all stay
in the plastic mode; (ii) the stress vector s(t) of (D,A,C,R, l(t)) holds a constant
value satisfying (6.4).

When |I0| = d, the statement of Proposition 7.3 follows from Corollary 4.1 almost di-
rectly. Assumption (4.2) holds because I0 is irreducible. Assumption (4.3) is satisfied
by (7.10). Conditions (7.1) and (7.12) ensure the existence of ε > 0 for which (4.4)
holds for any t ≥ 0.

Considering |I0| < d and deriving the statement of Proposition 7.3 from Corollary 5.4
requires establishing validity of assumptions (2.3), (2.4), (2.5), (2.6), (2.8), and (2.7).
Property (2.3) follows from (7.6). Property (2.5) follows from (7.8) and (7.11). Prop-
erty (2.7) follows from (7.10). Property (2.8) coincides with (7.5). Verifying conditions
(2.4) and (2.6) is less straightforward. This is done in the two propositions below.

Proposition 7.4. Assume M ≥ 1. Let F be the face defined in Step 2. If (7.10)
holds, then (2.4) holds as well. In other words, (7.10) implies that

{(α, j) : y ∈ L(α, j)} = I0 ∪
⋂
i∈I

Ii for some I ⊂ 1,M or for I = ∅.

Proof. Let y ∈ F and I∗ = {(α, j) : y ∈ L(α, j)}. By condition (7.10), I∗ = I0 ∪ I∗∗,
where I∗∗ ⊂ I1 ∪ . . . ∪ IM . By construction,

(7.13) Ii = {(±, nj1), . . . , (±, njd−|I0|)},

where different i correspond to different choices of ′′+′′ and ′′−′′ in each symbol ′′±′′.
Therefore, I∗∗ can either be an empty set or a set of the form

(7.14) I∗∗ = {(α∗∗1 , nj∗∗1 ), . . . , (α∗∗d−|I0|, nj∗∗d−|I0|
)},

where {j∗∗1 , . . . , j∗∗d−|I0|} ⊂ {j1, . . . , jd−|I0|}. If I∗∗ = ∅, then the proof is complete. So,

from now on we assume that I∗∗ 6= ∅.

From expressions (7.13) and (7.14), we see that I∗∗ ⊂ Ii for at least one index i0 ∈
1,M . Define I as I = {i ∈ 1,M : I∗∗ ⊂ Ii}.
Therefore

(7.15) I∗∗ ⊂
⋂
i∈I

Ii.

Since the elements of Ii\I∗∗ are obtained from the elements of Ii0\I∗∗ by taking all

possible replacements of (α, n) by (−α, n), we have
⋂
i∈I

(Ii\I∗∗) = ∅.

Therefore,
⋂
i∈I

Ii ⊂ I∗∗, and so (7.15) turns into equality. �

Lemma 7.5. Assume that the face F is given by (2.2). Assume that conditions
(2.3) and (2.8) hold. If

(7.16) there exists ȳ ∈ F such that 〈aej , Aȳ〉 < αcαj , (α, j) ∈ Ii, i ∈ 1,M,

then condition (2.6) is satisfied.
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Proof. Part 1. If (7.16) holds then there exists a full-dimensional ball Bδ(ȳ) in V
such that Bδ(ȳ) ⊂ L(α, j), (α, j) ∈ Ii, i ∈ 1,M.

Therefore,

aff(F ) ⊃ aff

( ⋂
(α,j)∈I0

L(α, j) ∩Bδ(ȳ)

)
= aff

( ⋂
(α,j)∈I0

L(α, j)

)
,

where aff(A) is the affine hull of the set A (see [24]) Directly from the definition of F ,

aff(F ) ⊂ aff

( ⋂
(α,j)∈I0

L(α, j)

)
.

So we conclude that

(7.17) aff(F ) = aff

( ⋂
(α,j)∈I0

L(α, j)

)
.

Part 2. Consider y ∈ F and assume that y ∈ L(α∗, j∗) for some (α∗, j∗) ∈ Ii∗ and some
i∗ ∈ 1,M. By properties (2.3) and (2.8), the subspace (7.17) intersects the subspace

L(α∗, j∗) transversally. Therefore, if we consider a ball of space (7.17) centered at
y, then part of this ball will lie outside of L(α∗, j∗), hence y ∈ rb(F ). Therefore, if

y ∈ ri(F ), then y 6∈ L(α, j), (α, j) ∈ Ii, i ∈ 1,M , which completes the proof. �

Proposition 7.6. Assume M ≥ 1. Let F be the face defined in Step 2. If (7.11)
holds, then (7.16) holds as well.

Proof. We will construct the required ȳ as the solution of the following system of d
algebraic equations: 〈ej , Aȳ〉 = cαj , (α, j) ∈ I0,

〈ej , Aȳ〉 =
c−j + c+j

2
, (α, j) ∈ Ii, i ∈ 1,M.

As in the proof of formula (7.9), this system admits a unique solution ȳ because F

satisfies assumptions (2.3) and (2.8). Condition (7.11) yields c−j <
c−j + c+j

2
< c+j .

Therefore, by construction,

ȳ ∈
⋂

(α,j)∈I0
L(α, j), c−j < 〈ej , Aȳ〉 < c+j , (α, j) ∈ Ii, i ∈ 1,M,

which implies (7.16). �

One has to proceed to Steps 4 and 5, if an estimate for τd is of interest.

Step 4. Compute ε0. Our next argument will be based on application of Corol-
lary 4.1 (when |I0| = d) and Corollary 5.2 in combination with Lemma 5.3. This step
is devoted to finding ε for which the respective assumptions (4.4) and (5.11) hold. As-
sumptions (4.4) and (5.11) require computing the distance from −c′(t) to the bound-
ary of the cone NA

C (y) at the point F when F is a singleton and at the points of ri(F )
when ri(F ) 6= ∅. In either case, the required boundary is ∂ cone {αnj : (α, j) ∈ I0}.
Using formula (5.8), we compute

(7.18)
ε̄0(t) = distA (−c′(t), ∂cone {αnj : (α, j) ∈ I0}) =

= min
(α∗,j∗)∈I0

distA (−c′(t), cone {αnj : (α, j) ∈ I0\{(α∗, j∗)}}) .

The following lemma can be used to compute the distances from −c′(t) to the required
cones (see Appendix B for a proof of the lemma).
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Lemma 7.7. Assume that {ni1 , ..., nik} is a linearly independent subset of vectors
{n1, ..., nm}. Introduce N = (ni1 ... nik). Then the matrix N TAN is invertible and,
for any c′ ∈ Rm,

distA (−c′, span {ni1 , ..., nik}) =
∥∥−c′ − projA (−c′, span {ni1 , ..., nik})

∥∥A ,
projA (−c′, span {ni1 , ..., nik}) = −N

[
N TAN

]−1N TAc′.(7.19)

Based on Lemma 7.7 we can rewrite formula (7.18) as

ε̄0(t) = min
(α∗,j∗)∈I0

∥∥−c′(t)− projA (−c′(t), span {αnj : (α, j) ∈ I0\{(α∗, j∗)}})
∥∥A ,

(7.20)

projA (−c′(t), span {αnj : (α, j) ∈ I0\{(α∗, j∗)}}) =
= −({nj , (α, j) ∈ I0\{(α∗, j∗)}})◦
◦
[
({nj , (α, j) ∈ I0\{(α∗, j∗)}})TA({nj , (α, j) ∈ I0\{(α∗, j∗)}})

]−1 ◦
◦({nj , (α, j) ∈ I0\{(α∗, j∗)}})TAc′(t).

Choose ε0 > 0 such that ε0 ≤ ε̄0(t) for all t ∈ [0, τd]. Corollary 4.1, Remark 5.5 and
formula (6.4) lead to the following conclusion.

Proposition 7.8. (Conclusion of Steps 1-4). Assume that |I0| = d, i.e.
F = {y∗,0}. If conditions (7.1) and (7.10) hold on [0, τd], then (1.5) holds on the
same time interval. If, in addition,

τd ≥ τ, τ =
1

ε0
· ‖A−1c+ −A−1c−‖A,

then, for any initial distribution of stresses s(0) in the elastoplastic system
(D,A,C,R, l(t)), (i) the springs with the indexes I0 undergo plastic deformations
on the time interval [τ, τd], (ii) s(t) = Ay∗,0, t ∈ [τ, τd]. If l(t) is T -periodic with
T ≥ τd, then (i) the springs with the indexes I0 undergo plastic deformations on
[τ + jT, τd+ jT ], j ∈ 0,∞, (ii) s(t) = Ay∗,0 on the same time intervals. In particular,
if l(t) is T -periodic, then s(t) exhibits a unique T -periodic behavior after the time τ.

One more step is required to produce an estimate for τd when |I0| < d.

Step 5. Compute σi. Having found ε0 for which (5.11) holds, we can now use
Lemma 5.3 to compute ε for which assumption (5.10) of Corollary 5.2 is satisfied.
Specifically, formula (5.12) of Lemma 5.3 implies that the required ε is given by

ε = ε0 min
i∈1,M

(1/‖Li‖A) = ε0 max
i∈1,M

‖Li‖A.

Next lemma provides a computational formula for the linear map Li. In what follows,
[A]k stays for the matrix formed by the first k lines of the matrix A.

Lemma 7.9. In the settings of Lemma 5.3, assume that the parameters of sweep-
ing process (1.4) are given by (6.3). Then the linear map Li : V → V can be expressed
through the following m×m matrix:

(7.21)

Li = ({nj , (α, j) ∈ I0})◦

◦

[((
RT

(D⊥)T

)
({ej , (α, j) ∈ I0}, {ej , (α, j) ∈ Ii})

)−1]
|I0|

(
RT

(D⊥)T

)
.

Proof. Since {nj : (α, j) ∈ I0 ∪ Ii} is a basis of V, we can decompose ξ ∈ V as

ξ = ({nj , (α, j) ∈ I0}, {nj , (α, j) ∈ Ii})
(
ζ1
ζ2

)
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for some ζ1 ∈ R|I0| and ζ2 ∈ R|Ii|. On the other hand, ξ = Vbasisv for some v ∈ Rd.
Combining this formula and formula (6.3) for normals nj , we get

Vbasisv = VbasisW−1
(

RT

(D⊥)T

)
({ej , (α, j) ∈ I0}, {ej , (α, j) ∈ Ii})

(
ζ1
ζ2

)
or, equivalently,[(

RT

(D⊥)T

)
({ej , (α, j) ∈ I0}, {ej , (α, j) ∈ Ii})

]−1
Wv =

(
ζ1
ζ2

)
.

Therefore,[((
RT

(D⊥)T

)
({ej , (α, j) ∈ I0}, {ej , (α, j) ∈ Ii})

)−1]
|I0|

◦
(

RT

(D⊥)T

)
ξ = ζ1,

which implies (7.21). �

In order to compute ‖Li‖A, we first observe that

‖Liξ‖A =
√
〈Liξ, ALiξ〉 =

√〈√
ALiξ,

√
ALiξ

〉
= ‖
√
ALiξ‖ =

= ‖
√
ALi
√
A−1
√
Aξ‖ ≤ ‖

√
ALi
√
A−1‖ · ‖

√
Aξ‖ = ‖

√
ALi
√
A−1‖ · ‖ξ‖A.

Therefore, ‖Li‖A ≤ ‖
√
ALi
√
A−1‖. But, based on e.g. Friedberg et al. [13, §6.10,

Corollary 1], ‖
√
ALi
√
A−1‖ =

√
σi, where

(7.22) σi is the largest eigenvalue of the matrix
(√

ALi
√
A−1

)T √
ALi
√
A−1.

Therefore, εi can be computed as εi = ε0 / max
i∈1,M

√
σi.

Corollary 5.2, Remark 5.5, and formula (6.4) can now be summarized as follows.

Proposition 7.10. (Conclusion of Steps 1-5). Assume that |I0| < d. If (7.1)
and (7.10) hold on [0, τd] then (1.5) holds on the same time interval. If, in addition,

τd ≥ τ, τ =
max{√σ1, . . . ,

√
σM}

ε0
· ‖A−1c+ −A−1c−‖A,

then all conclusions about the time intervals of plastic deformations stay the same
as in Proposition 7.8. As for the stress vector s(t), it holds a constant value s(t) ∈
conv{Ay∗,1, ..., Ay∗,M} during each of the above-mentioned plastic deformations.

We remind the reader that inclusion (7.1) is called strict, if (7.12) holds.

Proposition 7.11. If I0 is reducible, then inclusion (7.1) is never strict and, in
particular, ε̄0(t) given by formula (7.18) is necessarily zero.

Proof. By definition, I0 is representable as (7.2). Therefore, as in the proof of formula

(5.8), we can conclude that cone{αnj : (α, j) ∈ Ĩ0} ⊂ rb (cone {αnj : (α, j) ∈ I0}) .
Hence, by (7.3), −c′(t) ∈ rb (cone {αnj : (α, j) ∈ I0}) . Therefore, inclusion (7.1) is
not strict (we use Remark 7.2 again) and ε̄0(t) given by (7.18) vanishes. �

8. Application to a system of elastoplastic springs. The focus of the
present section is on the elastoplastic model shown in Fig. 1 (earlier introduced in
Rachinskii [28]), which allows to fully illustrate the practical implementation of The-
orem 3.1. According to Gudoshnikov-Makarenkov [17, §2], the elastoplastic system of
Fig. 1 leads to the following expressions for D and R:
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l(t) 

Fig. 1. A system of 5 elastoplastic springs on 4 nodes that we investigate to illustrate our
method. A displacement-controlled loading l(t) is applied as the arrows show.

D =


−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1

 , R =


1
0
1
0
1

 .

We now follow Section 6 to formulate a sweeping process (1.4) corresponding to the
elastoplastic system (D,A,C,R, l(t)). First of all, based on (6.3), we compute the
dimension of sweeping process (1.4) as d = m− n+ q + 1 = 5− 4 + 1 + 1 = 3.

According to [17, §5, Step 1], we then look for an 4×2 matrixM such that RTDM = 0
and such that the matrix DM is full rank. Such a matrix M can be taken as

M =


0 0
1 1
1 −1
0 0

 with DM =


1 1
1 −1
0 −2
−1 −1
−1 1

 .

The next step is determining Vbasis which consists of d = 3 linearly independent
columns of Rm = R5 and solves (DM)TAVbasis = 0. Such a Vbasis can be taken as

Vbasis =


0 1/a1 1/a1
0 1/a2 −1/a2

1/a3 0 1/a3
−1/a4 1/a4 0
1/a5 1/a5 0

 with AVbasis =


0 1 1
0 1 −1
1 0 1
−1 1 0
1 1 0

 .

Finally, a 5× 2 full rank matrix D⊥ satisfying (D⊥)TD = 0 can be taken as

D⊥ =


0 1
0 −1
1 1
−1 0
1 0

 leading to

(
RT

(D⊥)T

)
=

 1 0 1 0 1
0 0 1 −1 1
1 −1 1 0 0

 .

In what follows, we consider two types of loading:

l(t) = l0 + l1 · t, t ≥ 0,(8.1)

l(t) =

{
l0 + l1 · t, t ∈ [0, T/2],
l0 + l1 · (T/2)− l1 · (t− T/2), t ∈ [T/2, T ],

extended to [0,∞)
by T -periodicity,

(8.2)

where l0, l1, T > 0 are fixed constants.

Step 1. To shorten the presentation, we address only two possible I0 (of different
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cardinality) along with the corresponding inclusion (7.1):

Î0 = {(+, 1), (+, 2)} :

 1
0
0

l1 ∈ cone


 −1

0
−1

 ,

 0
0
1


 ,

Ĩ0 = {(+, 1), (−, 3), (+, 5)} :

 1
0
0

l1 ∈ cone


 1

0
1

 ,

 −1
−1
−1

 ,

 1
1
0


 .

Step 2. Since |Î0| < d, we need some I1 satisfying (7.6). Let us pick Î1 = {(−, 3)}.
Since, by (7.7), M = 2, we have to use I1 to make one additional vertex I2, which is

determined by Î1 uniquely as Î2 = {(+, 3)}.

Step 3. For the above Î0, Î1, and Î2, we use formula (7.9) in order to compute

(8.3) Aŷ∗,i =
(
c+1 , c

+
2 , c

2i−3
3 , c+1 − c

2i−3
3 , c+2 + c2i−33

)T
, i ∈ {1, 2},

as well as to formulate the respective feasibility condition (7.10) which consists of 4
two-sided inequalities

(8.4) for ŷ∗,1 :
c−4 ≤ c

+
1 − c

−
3 ≤ c

+
4 ,

c−5 ≤ c
+
2 + c−3 ≤ c

+
5 ,

for ŷ∗,2 :
c−4 ≤ c

+
1 − c

+
3 ≤ c

+
4 ,

c−5 ≤ c
+
2 + c+3 ≤ c

+
5 .

For Ĩ0, formulas (7.9) and (7.10) give the following single vertex along with the re-
spective feasibility condition:

(8.5) Aỹ∗,0 =
(
c+1 ,−c

−
3 + c+5 , c

−
3 ,−c

−
3 + c+1 , c

+
5

)
,

c−2 ≤ −c
−
3 + c+5 ≤ c

+
2 ,

c−4 ≤ −c
−
3 + c+1 ≤ c

+
4 .

Sine each of the inclusions in Step 1 holds in a strict sense (i.e. the vector (1, 0, 0)T

never belongs to the boundary of the respective cone), we can now use Proposition 7.3
to obtain the following statement about the evolution of the model shown in Fig. 1.

Proposition 8.1. (i) If elastic limits c−i , c
+
i of the elastoplastic springs of the

model of Fig. 1 satisfy the feasibility condition (8.4) with displacement-controlled
loading (8.1), then there exists an ε > 0 such that springs with the indexes 1 and
2 undergo plastic deformation for all sufficiently large t > 0. During this plastic
deformation, the stress vector of all 5 springs holds a constant value from the line seg-
ment [Aŷ∗,1, Aŷ∗,2]. (ii) If elastic limits c−i , c

+
i satisfy the feasibility condition (8.5),

then there exists an ε > 0 such springs 1, 3, and 5 undergo plastic deformation for
all sufficiently large t > 0. During this plastic deformation, the stress vector of all 5
springs holds the constant value Aỹ∗,0.

Step 4. |I0| = 2. In this case, for any (α∗, j∗) ∈ I0, the set I0\{(α∗, j∗)} consists of
just one element {(α, j)} and formula (7.20) takes the form ε0(t) = min

(α,j)∈I0
Sj , with

Sj =
∥∥−c′(t)− projA(−c′(t), span{nj})

∥∥A , projA(−c′(t), span{nj}) = −nj
nTj Ac

′(t)

nTj Anj
.

Therefore, for Î0 = {(+, 1), (+, 2)}, we get ε0 = min{Ŝ1, Ŝ2}, and a computation in
Mathematica gives

Ŝ1 = h(2, 4), Ŝ2 = h(1, 5), h(i, j) = l1

√
ai (a4a5 + a3 (a4 + a5))

ai (a3 + aj) + a4a5 + a3 (a4 + a5)
.
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|I0| = 3. In this case, for any (α∗, j∗) ∈ I0, the set I0\{(α∗, j∗)} con-
sists of two elements {(α1, j1), (α2, j2)} and formula (7.20) can be rewritten as

ε0(t) = min
(α1,j1),(α2,j2)∈I0

Sj1j2 , Sj1j2 = ‖c′(t)− proj(c′(t), span{nj1 , nj2})‖
A
,

projA(c′(t), span{nj1 , nj2}) = (nj1 nj2)

nTj1Anj1 nTj1Anj2

nTj2Anj1 nTj2Anj2

−1nTj1
nTj2

Ac′(t).
Therefore, for Ĩ0 = {(+, 1), (−, 3), (+, 5)}, we have ε0 = min{S̃13, S̃15, S̃35}, and com-
putation in Mathematica gives

S̃13 = l1

√
a2a5
a2 + a5

, S̃35 = l1

√
a1a4
a1 + a4

, S̃15 = l1

√
a2a3a4

a2a3 + a2a4 + a3a4
.

Proposition 7.8 (applied with τd = T/2) leads to the following result about the evo-
lution of the model of Fig. 1 .

Proposition 8.2. Assume that elastic limits of the elastoplastic springs of the
model of Fig. 1 with loading (8.1) satisfy feasibility condition (8.5). Put

τ =
(

1/min
{
S̃13, S̃15, S̃35

})
· ‖A−1c+ −A−1c−‖A.

Then, for any initial distribution of stresses, springs 1, 3, and 5 undergo plastic
deformation for t ≥ τ. For cyclic loading (8.2) with T/2 > τ (and the same feasibility
condition), springs 1, 3, and 5 undergo plastic deformation on time intervals [τ +
jT, T/2 + jT ], j ∈ 0,∞. During the above-mentioned plastic deformations, the stress
vector of the 5 springs holds the constant value Aỹ∗,0 given by (8.5).

Step 5. Computing σi. For each of the vertexes Î1 and Î2 we setup the matrixes L̂1

and L̂2 according to formula (7.21) and use Mathematica to compute the corrections
σ̂1 and σ̂2 as defined by formula (7.22). This gives

σ̂1 = σ̂2 = max

{
1,

(a1 + a4) (a2 + a5) (a4a5 + a3 (a4 + a5))

a4a5 (a3a4 + a2 (a3 + a4) + a3a5 + a4a5 + a1 (a2 + a3 + a5))

}
.

Proposition 8.3. Assume that elastic limits of the elastoplastic springs of the
model of Fig. 1 with loading (8.1) satisfy feasibility condition (8.4). Put

τ =
(√

max{σ̂1, σ̂2}/min
{
Ŝ1, Ŝ2

})
· ‖A−1c+ −A−1c−‖A.

Then, for any initial values of stresses, springs 1 and 2 undergo plastic deformation for
t ≥ τ. For the cyclic loading (8.2) with T/2 > τ (and the same feasibility condition),
springs 1 and 2 undergo plastic deformation on time intervals [τ + jT, T/2 + jT ],
j ∈ 0,∞. During the above-mentioned plastic deformations, the stress-vector s(t) of
the 5 springs holds a constant value (that depends on s(0)) from the line segment
[Aŷ∗,1, Aŷ∗,2] given by (8.3).

Remark 8.4. (Implications for shakedown theory of continuous media) In
terms of the shakedown theory for continuous media (Kachanov [20, Ch. 9], Yu [33,
§4.6]) the conclusions of Propositions 7.8, 7.10, 8.2, 8.3 imply that an elastoplastic
structure that periodically crosses the extreme values will not shakedown (i.e. will not
cease to fully elastic behavior over time), but will keep deforming plastically upon each
cycle of loading. The corresponding result is known as Koiter’s shakedown theorem
in elastoplasticity literature (as opposed to Melan’s shakedown theorem which gives
conditions for shakedown to occur). The repeating plastic deformation guaranteed by
the present paper usually appears in the form of alternating plasticity or ratcheting
in the literature (see e.g. Yu [33, p. 62], Boissier et al [7, Fig. 1]) but our framework
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is not capable to identify the type of the underlying plastic deformation.

9. Conclusions. In this paper we adapted and applied the ideas of Adly et al.
[2] about finite-time stability of frictional systems to finite-time stability of sweeping
processes with polyhedral moving constraints. Our condition (1.5) takes the form
(1.3) (copied from [2]) in the particular case when F is a singleton, in which sense we
extended the condition of [2] to cover the case of finite-time convergence to a given
face instead of a single point. Based on these results, we proposed a step-by-step guide
to analyze finite-time reachability of plastic deformation in networks of elastoplastic
springs. The analysis was applied to an example of 5 elastoplastic springs on 4 nodes.

Our step-by-step guide of Section 7 addresses a particular (most straightforward) way
of creating the list of scenarios of how the terminal distribution of plastic deformations
(7.1) can be reached. Specifically, as seen from Step 2 of Section 7, we complemented
the polyhedron given by the planes with indexes from (7.1) by suitable pairs of parallel
facets to form a bounded polyhedron of dimension d. Extending the list of scenar-
ios by using arbitrary available facets (not necessarily pairs of parallel facets) is a
technical task in the field of discrete geometry that we omitted in the present paper.
Generalizing (7.1) to the case of multiple displacement-controlled loadings and allow-
ing for stress-controlled loadings (where the shape of the moving constraint changes
with time [16]) is a subject of future research. Investigating finite-time stability of
sweeping process (1.4) in the case of moving constraint of changing shape will also
be required to account for hardening and softening of the elastoplastic system (of
Section 6), see Chaboche [9]. Another limitation of the paper is that, when loading is
periodic and the periodic attractor is a family of functions, we prove one-period sta-
bility of the entire face that contains the periodic attractor, not one-period stability of
the periodic attractor itself (unlike Colombo et al. [10]). The non-periodic properties
of the finite-time attractor in case of a non-periodically moving constraint is also an
open question (the ideas of Kamenskii et al. [21] can help in the quasi-periodic case).

Although the focus of the present paper is on applications in elastoplasticity, the
finite-time stability results of Section 3 can be applied to sweeping processes of other
applied sciences, e.g. electrical circuits (see Acary et al. [1]). Extending the results
to perturbed sweeping processes would enlarge the domain of applications further (to
allow for more complex electric circuits, swarms of robots, traffic control problems,
see Acary et al. [1], Colombo et al. [11], Hedjar-Bounkhel [19]). The results on
disturbance rejection for Lyapunov functions of type (1.1) (see e.g. Orlov [26], Santi-
esteban et al. [31]) might be useful in this regard (the perturbation term of perturbed
sweeping process could be viewed as the disturbance).
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accomplished while the first author has been a postdoctoral fellow at Complex Materi-
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Appendix

Appendix A. Skipped proofs.
Proof of implication (2.3) =⇒ (5.8). By definition (5.6), if ξ ∈ NA

C (y∗,i), then
there exist non-negative numbers λ1, ..., λd such that

ξ = ({αnj : (α, j) ∈ (I0 ∪ Ii)}})(λ1, ..., λd)T .
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But by (2.3), {αnj : (α, j) ∈ (I0 ∪ Ii)} is a basis of V . Therefore, the correspondence
between ξ ∈ NA

C (y∗,i) and non-negative λ1, ..., λd is one-to-one. Therefore, any ξ ∈
NA
C (y∗,i) for which the corresponding λ1, ..., λd contains λi = 0 is from ∂NA

C (y∗,i),
which is exactly the statement of formula (5.8). �

Proof of formula (5.13). By (2.1),
1

aj
c−j ≤ yj ≤

1

aj
c+j , for all y ∈ C. Therefore,

max
u,v∈C

(
‖u− v‖A

)2
=

m∑
j=1

aj(uj −vj)2 ≤
m∑
j=1

1

aj
(c+j − c

−
j )2 =

(
‖A−1c+ −A−1c−‖A

)2
.�

Proof of the equivalence (7.1) ⇐⇒ (7.4). Statement (7.1) implies the existence
of (λ1, ..., λ|I0|) such that

VbasisW−1
(

1
0m−n+1

)
l′(t) = VbasisW−1

{(
RT

(D⊥)T

)
({αej : (α, j) ∈ I0})

} λ1
...

λ|I0|

 .

Due to (6.3), the latter formula just coincides with

−c′(t) = {αnj : (α, j) ∈ I0}

 λ1
...

λ|I0|

 ,

which yields (7.4). �

Proof of the implication (2.2)-(2.7) =⇒ (7.9). Based on formula (2.3), finding
y∗,i means solving a system of d algebraic equations

〈ej , Ay∗,i〉 = cαj , (α, j) ∈ I0 ∪ Ii,
or, equivalently,

({ej , (α, j) ∈ I0 ∪ Ii})T AVbasisv∗,i =
({
cαj , (α, j) ∈ I0 ∪ Ii

})T
,

where y∗,i = Vbasisv∗,i. �

Appendix B. Technical lemmas.

Lemma B.1. If a non-negative continuously differentiable function v(t) satisfies

the differential inequality v′(t) ≤ −2ε
√
v(t), then v(t1) = 0 for some t1 ≤

1

ε
v(0).

Proof. The proof follows by observing that the solution of the differential equation

v̄′(t) = −2ε
√
v̄(t) with v̄(0) ≥ 0 is given by v̄(t) =

(
−εt+

√
v̄(0)

)2
on [0, t̄1], where

t̄1 = (1/ε)
√
v̄(0). �

Lemma B.2. Consider f, g : V → V1, where V, V1 are scalar product spaces. If
both Dξf(v) and Dξg(v) exist then Dξ 〈f(·), g(·)〉 (v) exists and

Dξ 〈f(·), g(·)〉 (v) = 〈Dξf(v), g(v)〉+ 〈f(v), Dξg(v)〉 .

Proof. We have

Dξ 〈f(·), g(·)〉 (v) = lim
τ→0

〈f(v + τξ), g(v + τξ)〉 − 〈f(v), g(v)〉
τ

=

=

〈
lim
τ→0

f(v + τξ)− f(v)

τ
, g(v)

〉
+

〈
f(v), lim

τ→0

g(v + τξ)− g(v)

τ

〉
+

+ lim
τ→0

〈
f(v + τξ)− f(v),

g(v + τξ)− g(v)

τ

〉
= 〈Dξf(v), g(v)〉+ 〈f(v), Dξg(v)〉 ,
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where we used that∣∣∣∣〈f(v + τξ)− f(v),
g(v + τξ)− g(v)

τ

〉∣∣∣∣2 ≤ τ ·∥∥∥∥f(v + τξ)− f(v)

τ

∥∥∥∥·∥∥∥∥g(v + τξ)− g(v)

τ

∥∥∥∥
by Cauchy-Schwartz inequality. �

Lemma B.3. Consider f : V → V1 and u : R→ V, where V, V1 are scalar product
spaces. If both u′(t0) and the derivative (f ◦ u)′(t0) of f ◦ u exist at a point t0 and if
f is Lipschitz continuous in the neighborhood of u0 = u(t0), then Du′(t0)f(u0) exists
and Du′(t0)f(u0) = (f ◦ u)′(t0).

Proof. We have

Du′(t0)f(u0) = lim
τ→0

f(u0 + τu′(t0))− f(u0)

τ
=

= lim
τ→0

(
f(u(t0) + τu′(t0))− f(u(t0 + τ))

τ
+
f(u(t0 + τ))− f(u0)

τ

)
= (f ◦ u)′(t0),

where we used Lipschitz continuity of f to conclude that the first fraction in the limit
converges to 0 as τ → 0. �

Lemma B.4. Let V be a scalar product space, C ⊂ V be a nonempty convex poly-
hedral set, v ∈ V. Then proj(v, C) is directionally differentiable at v, and, for any
ξ ∈ V,

Dξ proj(v, C) = proj(ξ, Cv),
where Cv := {h ∈ TC(proj(v, C)) : 〈v−proj(v, C), h〉 = 0} is the so-called critical cone
and TC(proj(x,C)) is the tangent cone to C at proj(v, C). In particular, if v ∈ C,
then Cv = TC(v).

Lemma B.4 is a particular (polyhedral) case of [32, Theorem 3.1].

Lemma B.5. For m ≥ n, consider a m×n-matrix D and m× (m−n+ 1)-matrix
D⊥, such that (D⊥)TD = 0n×(m−n+1). If (6.1) and (6.2) hold, then

(B.1) D⊥Rm−n+1 = (DRn)⊥.

Proof. By the definition of D⊥,

(B.2) D⊥Rm−n+1 ⊂ KerDT .

Furthermore, we have

(B.3) (DRn)⊥ = KerDT ,

see e.g. Friedberg et al. [13, Exercise 17, p. 367]. To prove the backwards im-
plication in (B.1), we use (B.3) and assumption (6.1) to conclude that KerDT =
dim

(
(DRn)⊥

)
= m − n + 1. On the other hand, assumption (6.2) implies that

dim
(
D⊥Rm−n+1

)
= m − n + 1 too. Therefore, the dimensions of the spaces in the

two sides of (B.2) coincide and the inclusion (B.2) is actually an equality. �

Corollary B.6. Assume that m ≥ n. Let R be an m× q-matrix. Let D⊥ be as
defined in Lemma B.5. Consider U =

{
x ∈ DRn : RTx = 0

}
. If conditions (6.1) and

(6.2) hold, then x ∈ U if and only if

(
RT

(D⊥)T

)
x = 0.

22



Proof. The proof follows by observing that (D⊥)Tx = 0 if and only if

x ∈ Ker
(
(D⊥)T

)
=
(
D⊥Rm−n+1

)⊥
=
(
(DRn)⊥

)⊥
= DRn,

where the first equality is the property that we already used in the proof of Lemma B.5
(see formula (B.3)) and the second equality is the conclusion of Lemma B.5. �

Corollary B.7. In the settings of Corollary B.6, assume that rank(DTR) = q,
in addition to (6.1) and (6.2). Put d = m − n + q + 1. Let Vbasis be a matrix of
d linearly independent vectors of Rm which are orthogonal to vectors of U in some
scalar product. Then,

(i) the d× d-matrix

(
RT

(D⊥)T

)
Vbasis is invertible,

(ii) rank

(
RT

(D⊥)T

)
= m− n+ q + 1.

Proof. (i) If

(
RT

(D⊥)T

)
Vbasisv = 0 for some v ∈ Rd, then Vbasisv must be an

element of U by Corollary B.6. On the other hand, vector Vbasisv is orthogonal to the
vectors of U , which implies Vbasisv = 0 which can only happen if v = 0.

(ii) By the rank-nullity theorem (see e.g. Friedberg et al. [13, Theorem 2.3]) and by

Corollary B.6 we have rank

(
RT

(D⊥)T

)
= m−dim

(
ker

(
RT

(D⊥)T

))
= m−dim(U).

In this formula, dim(U) = n− q− 1 by Gudoshnikov-Makarenkov [16, Lemma 3.8]. �

Lemma B.8. (Rockafellar-Wets [29, Theorem 6.46]) Consider a polyhedron

C =
K⋂
k=1

{
v ∈ Rd : 〈nk, v〉 ≤ ck

}
,

where nk ∈ Rd, ck ∈ R, K ∈ N. If I(v) =
{
k ∈ 1,K : 〈nk, v〉 = ck

}
, then

NC(y) = cone {nk : k ∈ I(v)} .
Proof of Lemma 5.1. Fix y ∈ V . The definition of NA

C̃
(y) reads as

(B.4)
〈
NA
C̃

(y), A(c̃− y)
〉
≤ 0, c̃ ∈ C̃.

Let d be the dimension of V and let Vbasis be a m × d-matrix of some linearly inde-
pendent vectors of V. Then we can represent C̃ as

C̃ = VbasisC, where C =
K⋂
k=1

{
v ∈ Rd : 〈nk, v〉 ≤ ck

}
, nk = (AVbasis)T ñk.

Defining v ∈ Rd in such a way that y = Vbasisv, statement (B.4) can be rewritten as〈
NA
C̃

(Vbasisv), A(c̃− Vbasisv)
〉
≤ 0, c̃ ∈ VbasisC,

or 〈
(AVbasis)TNA

C̃
(Vbasisv), c− v

〉
≤ 0, c ∈ C.

But the definition of NC(v) reads as 〈NC(v), c− v〉 ≤ 0, c ∈ C.
Therefore, (AVbasis)TNA

C̃
(Vbasisv) = NC(v) or, incorporating the conclusion of

Lemma B.8, (AVbasis)TNA
C̃

(Vbasisv) = cone
{

(AVbasis)T ñk : k ∈ I(v)
}
,

from where the required statement follows. �

Proposition B.9. For any convex set F ⊂ Rm,

projA(v, F ) + c = projA(v + c, F + c), v, c ∈ F.
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Proof. Indeed, let v′′∗ = projA(v + c, F + c). Then v′′∗ satisfies one of the following
three properties

minv′′∈F+c ‖v + c− v′′‖A = ‖v + c− v′′∗‖A,
‖v + c− v′′‖A > ‖v + c− v′′∗‖A for all v′′ ∈ F + c, v′′ 6= v′′∗ ,
‖v − v′‖A > ‖v + c− v′′∗‖A for all v′ ∈ F, c+ v′ 6= v′′∗ .

Introducing v′∗ = v′′∗ − c, ‖v − v′‖A > ‖v − v′∗‖A for all v′ ∈ F, v′ 6= v′∗. Therefore,
minv′∈F ‖v − v′‖A = ‖v − v′∗‖A, i.e. v′∗ = proj(v, F ). �

Proof of Lemma 7.7. Invertibility of the k × k-matrix N TAN follows from the
fact that rank(

√
AN ) = k and so rank(N TAN ) = rank((

√
AN )T

√
AN ) = k, see e.g.

Friedberg et al. [13, §6.3, Lemma 2]. To prove formula (7.19), we observe that

distA (−c′, span {ni1 , ..., nik}) =
∥∥−c′ − projA (−c′, span {ni1 , ..., nik})

∥∥A .
By the definition of projection (see e.g. Bauschke-Combettes [4, §3.2]),

projA (−c′, span {ni1 , ..., nik}) = λ1ni1 + . . .+ λknik ,

where λ1, . . . , λk ∈ R minimize the quantity

〈−c′ − λ1ni1 − . . .− λk, A(−c′ − λ1ni1 − . . .− λk)〉 .
Therefore,

〈−c′ − λ1ni1 − . . .− λk, Ani1〉 = 0,
...

〈−c′ − λ1ni1 − . . .− λk, Anik〉 = 0,

for the unknown λ1, ..., λk, or, equivalently, −N TAc′ −N TAN (λ1 . . . λk)T = 0.

Formula (7.19) follows by solving this equation for (λ1 . . . λk)T and by plugging the
result into projA (−c′, span {ni1 , ..., nik}) = N (λ1 . . . λk)T . �

Lemma B.10. If conditions (2.3), (2.4), and (2.8) hold, then all vertices of F are
contained in the set {y∗,1, ..., y∗,M}.
Proof. Assume that F has a vertex ỹ∗ 6∈ {y∗,1, ..., y∗,M}. We have

{ỹ∗} = {y : y ∈ L(α, j), (α, j) ∈ I0 ∪ {j1, ..., jd−|I0|}},
where |I0 ∪ {j1, ..., jd−|I0|}| = d. By (2.4), {j1, ..., jd−|I0|} = I0 ∪

⋂
i∈Jỹ∗

Ii. But |Ii| =
d − |I0| by (2.8). Therefore, there exists ĩ ∈ Jỹ∗ such that {j1, ..., jd−|I0|} = Iĩ, i.e.
ỹ∗ = y∗,̃i. The proof of the lemma is complete. �
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