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Abstract—Despite enormous structural variability exhibited in
3D chromosomal conformations at a global scale, there is a signif-
icant commonality of structures visible at smaller, local levels. We
hypothesize that chromosomal conformations are representable
as concatenations of a handful of prototypical shapelets, termed
shape letters. This is akin to expressing complicated sentences
in a language using only a small set of letters. Our goal is to
organize the vast variability of 3D chromosomal conformation
by constructing a set of predominant shape letters, termed a
shape alphabet, using statistical shape analysis of curvelets taken
from training conformations. This paper utilizes conformations
generated from Integrative Genome Modeling to develop a shape
alphabet as follows: it first segments 3D conformations into
curvelets according to their Topologically Associated Domains. It
then clusters these segments, estimates mean shapes, and refines
and reorders these shapes into a Chromosome Shape Alphabet.
The paper demonstrates effectiveness of this construction by suc-
cessfully representing independent test conformations taken from
IGM and other methods such as SIMBA3D, both symbolically
and structurally, using the constructed alphabet.

Index Terms—chromosome structure, shape analysis, shape
alphabet, sequential alignment, TAD segmentation

I. INTRODUCTION

Recent advances in genomics and microscopy, such as
chromosome conformation capture and imaging-based chro-
mosome tracing, have made it possible to investigate the
three-dimensional (3D) structure of chromosomes at an un-
precedented resolution [1]. This investigation has brought to
light the critical role of the genome’s 3D structure in regu-
lating fundamental biological processes such as DNA repli-
cation, gene expression, and cellular differentiation. Although
many features of chromosomes’ 3D organization have been
identified, such as the existence of Topologically Associated
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Domains (TADs) and genomic compartments, new tools are
needed to identify and characterize local patterns of 3D
organizations and their functional roles. There are currently
many methods available to infer chromosome structures from
Hi-C and imaging data. Naturally, conformations estimated
from these methods exhibit tremendous structural variability
across regions, chromosomes, and methodologies. While these
structures differ significantly at the full scale, there are also
significant similarities at a smaller, more local scale. This
research seeks to collect and organize these recurrent patterns
of local chromosome foldings into a set of shapes and use that
set to understand and represent individual global variability of
conformations.

In a previous study [2], we introduced the concept of a
Chromosome Shape Alphabet (CSA). This concept involves
constructing a set of recurrent local structures, called Chro-
mosome Shape Letters (CSL), that can potentially be used to
represent and reconstruct complete 3D conformations. This
representation is akin to expressing complex words, sentences,
and texts in a language using only a handful of letters that form
an alphabet. In our initial development [2], we used SIMBA3D
(Structural Inference via Multiscale Bayesian Approach), a
method originally designed for generating chromosomes struc-
tures from innately sparse single-cell Hi-C data by using bulk
Hi-C data [3]. However, SIMBA3D can also generate con-
sensus chromosome structures to describe bulk Hi-C matrices,
which we used for alphabet previously. To capture structural
heterogeneity, i.e., to reach variable genomic shape from cell
to cell [1], we used random initializations for estimation in
SIMBA3D.

However, there are better, more biologically plausible ways
to model structural heterogeneity. For example, a recent
method called Integrative Genome Modeling (IGM) [4] uses
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Fig. 1. Top row: Five conformations each from the first chromosome from cell
line GM12878 generated with IGM. Bottom row: Five conformations from a
portion of the first chromosome from cell line H9 generated with SIMBA3D.

structure-based deconvolution to optimize a population of
distinct full-genome chromosome structures from bulk Hi-
C data, as in [5]. IGM is thus very appropriate for use in
structural analysis. Furthermore, IGM increases model accu-
racy by including multimodal data integration from sources
such as DamID and SPRITE. Due to the paucity of ground
truth full-genome structures, these methods are regarded as
some of the best models for analyzing genomic shape. Using
conformations resulting from IGM is critical in establishing
the universality of CSA as a concept, and we pursue that goal
in this paper. We use 200 kb IGM models of the cell line
GM12878 (B-Lymphocytes) in this analysis. Fig. 1 displays
some sample conformations from IGM with the GM12878
cell line in the top row and from SIMBA3D with the H9 cell
line in the bottom row. Even in this small sample, we see
larger structural variability amongst the IGM conformations
when compared to the SIMBA3D samples.

As mentioned earlier, the past work on CSA focused entirely
on one method, namely SIMBA3D, and one small dataset
due to computational bottlenecks. Here we demonstrate and
validate this concept using multiple methods. We learn a shape
alphabet using one method — IGM — and use it to represent
conformations from another method — SIMBA3D, thus high-
lighting the universality of these concepts and constructions.
Furthermore, we utilize advanced numerical techniques from
shape clustering and shape analysis to facilitate the processing
of many conformations. The main contributions of this paper
are:

1) Develop a chromosome shape alphabet for 3D confor-
mations obtained from IGM.

Utilize advanced techniques from shape clustering and
shape averaging to handle extensive training data.
Specifically, we (1) use a novel iterative approach to
estimate shape means; and (2) perform a two-step hi-
erarchical clustering method to effectively cluster and
represent large sets of shapes with a post-refinement
step.

Demonstrate representations of test conformations using
generated shape letters, when the test and training con-
formations may come from different methods altogether.

2)

3)

II. GENERATING CHROMOSOMAL ALPHABETS

In this section, we lay out the pipeline that constructs a
Chromosome Shape Alphabet (CSA) with elements referred
to as Chromosome Shape Letters (CSLs).
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Fig. 2. TAD segmentation created using TopDom (GM12878 chromosome
2, 55 - 75 Mb).

A. TAD Segmentation

The hierarchical nature of the 3D genome gives us many
options for segmenting a genome into its basic structural units.
For our analysis, we chose to segment chromosome structures
using Topologically Associating Domains (TADs). TADs are
approximately 1 Mb self-interacting regions that are believed
to influence the regulatory landscape since promoters and
enhancers function within them [1].

To select from the many available tools to define TADs, we
consider a recent study that compares different TAD callers
according to consistency across resolutions and other criteria,
such as alignment with biological features enriched at TAD
boundaries (e.g., CTCF binding) [6]. A high-performing TAD
caller is TopDom that finds TAD boundaries by identifying
local minima in contact frequencies in a window of a specified
size around each bin across the genome [7]. Further, to avoid
size bias in our results (e.g., smaller TADs correlating with
simple shapes), we restrict TADs sizes between 800 kb and
3 Mb. For the IGM conformations, we use TopDom for
segmentation, while for the H9 dataset, we use an insulation
score (IS) method [8].

Fig. 2 displays the TopDom TAD segmentation for a section
of GM 12878 chromosome 2.Note that TopDom and the TAD
filtering can produce TADs with gaps along a chromosome
and that requires careful processing.

While TADs segment a contact matrix, we can also use
them to segment the corresponding 3D conformations. Given
an m X m contact matrix C, let f be a corresponding
conformation with m 3D points. The TADs divide C' into
diagonal sub-matrices C7,C5,...Ck and we can similarly
segment the conformation f into f(), ) . f(5) using the
same TAD cutoff points. Thus, each 3D chromosome provides
several segments or curvelets, and pooling all these segments
from all training conformations generates a large set. Our goal
is to extract frequently occurring shapes from them for use as
shape letters.

B. Shape Metric and Clustering

The next step is to compare and cluster these chromosomal
segments or curvelets in terms of their shapes. The shape of a
curve is an intrinsic attribute that is invariant to transformations
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such as rotation, reflection, scale, location, and parameteriza-
tion. To analyze shapes of these curves, we utilize elastic shape
analysis [9]. This approach is summarized next.

Let F be the set of all absolutely continuous functions
from [0,1] to R3. Each element f € F is a parameterized
space curve. This framework utilizes the notion of a
square-root velocity function (SRVF) to compute shape
differences and shape summaries. For a curve f € F, its
SRVF is defined by a map ¢ : [0,1] — R3 according to

the formula q(t) = f(t)/1/|f(t)|. Let T be the set of all

re-parameterization functions and O be the set of all 3D
rotations. For any v € T" and O € O, the curve O(f o %)
represent a rotated and re-parameterized version of f while
retaining the same shape as f. The SRVF of this new curve
is given by O(q o y)/4. This sets up the definition of the
elastic shape metric

Elastic Shape Metric: Given any two curves f1, fo € F, and
their SRVFs ¢; and g9, the elastic shape distance between

them is

. —1 q1 .
utho ) = o gt eos” ({0 (g 0) VA
, where || - || represents the .2 norm of a curve. For more
details on this construction, we refer the reader to [9].

We will use the pairwise shape metric dg to cluster chromo-
some segments generated earlier. In any metric space, there are
several algorithms for clustering points in that space. We have
explored several approaches, including Bayesian clustering
outlined in [10]. However, it requires several tuning parameters
that significantly influence the final results. Another approach
is hierarchical clustering in MATLAB. We found both of these
methods to produce similar results, with hierarchical clustering
being 200 times faster, so we use it from now onwards. Under
hierarchical clustering, we compare the shortest distance, UP-
GMA, and Ward options and find that Ward provides the best
empirical results on our data. We perform the clustering using
built-in MATLAB functions 1inkage and dendrogram.
We set the number of clusters as approximately 70% of the
number of TADs per chromosome as determined in [2].

q2
— O
lgz|]

C. Cluster Mean Shape Estimation

For these clustered chromosome segments, the next step
is to define a representative shape for each cluster. For this,
we utilize the notion of a Fréchet mean of shapes. The
traditional approach for estimating these means defines an
objective function involving given shapes and uses a gradient-
based approach to minimize that function. This approach is
computationally expensive, as each iterative update requires
computing geodesic or optimal deformations between each
given shape and the current mean estimate. In the following,
we describe a novel, more efficient algorithm for estimating a
mean shape.

The main idea is to start with an initial guess and update
the estimate using one given curve at a time. The update uses
the notion of a geodesic, or the optimal deformation, between
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Fig. 3. Each row displays members of clusters from hierarchical clustering
with their respective mean rightmost.

Fig. 4. An example of the recursive Fréchet mean algorithm for n = 5. The
data itself are the leaves at the top. The superscript is for keeping track of the
weight for each new element. The algorithm recursively iterates top-down,
with the final estimate being the bottom-most element.

any two shapes. A geodesic is the manifold equivalent of a
straight line. For any two curves f and f5, with corresponding
SRVFs ¢; and g3, the geodesic path between them is defined
to be ar(q1,42) = gy (8in((1 — 7)0)g1 + sin(70)gz) where
0 = cos ' ({q1,q2)), T € [0,1], and G is the SRVF of the
second curve after optimal rotation and re-parameterization.
Here, 7 € [0,1] is a scalar parameter indexing the geodesic
path. In this setting, one can easily obtain a weighted mean
of the shapes of f; and f5, with the weights 1 — 7 and 7
respectively, as simply a.;.

Returning to the problem of finding a mean of n curves,
we start with an initial estimate and update it using one
given curve at a time. We compute a weighted mean of
the current mean estimate and the next given curve in each
step. Specifically, we start with the first two curves fi, fo,
and compute their mean shape with equal weights (1/2)
and (1/2). We call the result (?). Next, we compute the
weighted mean of 1.(2) with the next curve f3, with the weights
(2/3) and (1/3) respectively. Call the result u(®). Next, we
compute the weighted mean of 1(® with the curve f;, with
the weights (3/4) and (1/4) respectively. And so on. This
approach performs a single pass on the data and computes
n —1 geodesics in the process. One can modify this algorithm
to improve the efficiency further. As illustrated in Fig. 4, one
can use a hierarchical approach — group the curves in some
fashion, compute means of within the groups at one level, and
then further compute the mean of those at the next level. We
will call this approach the Recursive Fréchet Mean Estimator
or RecFME.
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Fig. 5. A set of candidate shapes and the refined CSL boxed in the bottom
right.

The main strength of this algorithm is that it produces
estimates very similar to the gradient descent approach but
costs an order of magnitude less. We thus choose to use the
RecFME for computing means of the clusters and treat them
as candidates for CSLs.

D. Alphabet Refinement

Using hierarchical clustering and computation of cluster
means, we generate approximately 1200 candidates for shape
letters. This is too large to form an alphabet, so we need
further refinement into a smaller set of distinct shapes. We
accomplish this by performing one more round of clustering
and averaging. Fig. 5 displays an example of this refinement
showing 11 members a cluster and their weighted mean in the
bottom right. We denote the elements of this refined set as
A = {4;}; this set is called the CSA, and its elements are
called CSLs.

It is convenient to order the selected shape letters according
to their shape complexity, starting from the simplest shapes.
Similar to [2], we will/use tl/l/e total absolute curvature (TAC)
[11], defined as fol W#m”dt, to order these letters. To
develop a simple mnemonic system, we assign a letter symbol
to each of these 52 shapes, with some examples listed in the
bottom half of Fig. 6.

III. REPRESENTATION OF 3D CHROMOSOMES USING
SHAPE LETTERS

The main use of a shape alphabet is to help represent
and organize the vast structural variability present in 3D
chromosomal conformations. In this section we describe how
to represent a chromosome conformation, both symbolically
and structurally, using the shape alphabet CSA.

A. Representation by Letter Sequences

Suppose we have a test 3D conformation g € F with TAD
based segments ¢(*), ¢, ... ¢5). We first construct a se-
quence of CSLs which most closely resemble the segments in
terms of shape distance by &), = arg minge 5 ds(g™*, d). Fig.
6 displays some segments of a curve with their corresponding
most similar CSLs. We can use this sequence of representative
shapes to generate a string of letters that represent the original
conformation g symbolically.

In the case of the IGM dataset, and the chosen TAD
segmentation approach, the TADs do not fully cover the
chromosome. That is, between ¢(? and ¢(t1), before ¢V,
and after ¢(*) there may be additional data points. For
reconstruction we require a segment corresponding to each
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Fig. 6. Top: A TAD segment from a IGM conformation denoted g(*). Middle
row: The most similar CSL to the above segment measured with elastic
shape distance. Bottom: The elastic shape distance between the chromosome
segment and the CSL.

coordinate of the contact matrix, so we fill the gaps by using
the ground truth. Further, since our CSA has 52 elements we
can symbolically represent each element using the upper and
lower cases of the English alphabet. We set 01 — o6 =& A—Z
and d97 — d52 — a — z as shown in Fig. 6.

B. Full 3D Reconstruction

Given a sequence of segments and the corresponding CSLs,
as described in the previous section, we want to use these CSLs
to reconstruct a full 3D conformation that approximates the
original structure. This requires solving for optimal translation,
orientation (rotation and reflection), and scale for each shape
letter to best match the corresponding segments. We formulate
an objective function that is based on a penalized negative
log-likelihood as in [3] and devise an optimization scheme to
solve for the free parameters. Let p be a vector of scalars (the
lengths of the segments), let O be a set of J — 1 orthogonal
matrices (the orientation of segments), let y be a set of K — 1
translations, and let the full structure be M 0,0y = [p151, 92+
p202382, ...,y + pr O 8K]. We thus solve the optimization
problem

*_

arg min
pERf,Oe@Kfl,ye]R(K*U”

P, 0%y

NLL(M,.0,y) +AR(M,0.y),

M* =M o,0%,y=, Where NLL is the negative log-likelihood
function, R is the structure regularization function, and A > 0
is the scalar regularization weight.

An exhaustive search over all reflection combinations would
require executing 2"~ optimizations in R7(K=D+1 which
can quickly become computationally intractable as K in-
creases. Therefore, we devise and implement a computation-
ally efficient structure alignment algorithm that provides an
approximate optimal solution with minimal compromise on
solution quality. The algorithm first performs a gradient-based
sequential pairwise alignment of each K — 1 adjacent structure
pairs.After the sequential pairwise alignment, the solution is
refined using a gradient-based optimization over the entire
parameter space with a fixed reflection combination.

Fig. 7 shows the results of a proof-of-concept test of the
structure alignment algorithm. Here, we generate one solution
from SIMBA3D (which we then divide into 12 equally sized
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Fig. 7. Comparison of reconstruction algorithm performance to that of
SIMBA3D. The left panel shows a plot of computation time versus Hi-C
matrix size on a log-log scale. Red data points represent SIMBA3D runs, and
blue data points represent instances of the structure alignment algorithm. The
right panel shows the final energy of the SIMBA3D solutions (red) and the
structure alignment solutions (blue) for each chromosome 1-19 of the mESC
dataset. The data points on both the left and right plots result from the same
solution set.

substructures) for each chromosome 1 — 19 in the mouse
embryonic stem cell (mESC) dataset given in the paper. We
randomize each substructure’s relative scales, orientations, and
positions and run the structure alignment algorithm to recover
the original SIMBA3D structure approximately. We generate
ten such solutions from an initial randomized configuration
for each chromosome and record the objective function’s
computation time and final value (final energy). The left
panel shows the computation times of each solution on a
log-log scale — SIMBA3D in red and structure alignment in
blue — along with the fitted linear regression line for both
methods. The structural-alignment algorithm is about an order
of magnitude more efficient than SIMBA3D. Finally, as shown
in the right panel, the final energies of the structure alignment
algorithm are close to SIMBA3D, proving that the algorithm
is not only efficient but well recovers the underlying structure.

IV. EXPERIMENTAL RESULTS

This section presents some demonstrations of the proposed
approach on IGM and SIMBA3D generated conformations.
Specifically, we will demonstrate the use of CSA in represent-
ing full chromosomal conformations both as letter sequences
and 3D curves.

A. SIMBA3D Results

We first consider a dataset of the H9 human stem cells
with conformations generated using SIMBA3D. Using the
Insulation Score TADs described earlier, we segment these
conformations and represent these segments using the CSA
constructed from the IGM data. That is, this dataset did not
influence the construction of the CSA. We first associate the
closest shape letter to each of the segments, and then using
these letter sequences, we then reconstruct the 3D structure of
these test conformations.
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Ist seq: GiGGrriicgagTgQrBmBggigrggGmicXRBBggirnggrrgBmiiBiG

2nd seq:GiGGaGGigisBNDrmGrgircgiBggXmgrVEggBgGIGLD £BgiGeBgG
3rd seq: GiQAcggiiJazgiXrBIBGrgfVgLgtgggBGGBNXRnrgriLgigGBig
4th seq: GiGGrriGigacAGrgGrgGrQBgggrvbrivGGgfrGnfgcgvJdggBBPB
5th seq: BrigtiGicglrcgLxGlVVYgfgGgrvgriBcvGvNGhGgNrvirgiBiG
Fig. 8. Top row: Five conformations from the H9 database. Second row: A
corresponding reconstructions of the above conformation from the CSA and
the structure alignment algorithm. Third row: A reconstructions of the above
conformation with a random sequence of shape letters. Each conformation has
its corresponding energy below it. Bottom: The five CSL symbol sequences

corresponding to SIMBA3D conformations segmented using TADs of the first
row.

In the top row of Fig 8, we display five conformations
from a chromosome region of this dataset; in the second row,
we display the reconstructions of each of these conforma-
tions using the CSA. In addition to the conformations and
reconstructions, we display their reconstruction energies also.
Remarkably, even though this alphabet was constructed from
IGM data, these shape letters can reconstruct the SIMBDA3D
conformations reasonably well. One can see that the energies
of the reconstructed structures are pretty similar to the original
curves, despite being constrained to the shape letters only.

To examine the significance of choosing the closest shape
letter, we created “reconstructions” with randomly selected
shape letters and displayed them in the last row. We see that the
reconstructions using random CSLs have much higher energy
than those with optimally chosen CSLs. This implies that
appropriate CSLs indeed hold crucial structural information
about segment shapes. The ground truth conformations natu-
rally have the lowest energy as these are estimated as entirely
unconstrained curves in SIMBA3D. This also validates a vital
hypothesis that despite vast variability in the chromosomal
structures globally, due to differences in estimation techniques,
data resolutions, biological variability, etc., the local structures
show remarkable consistency and patterns.

Lastly, we display the symbolic CSA sequence represen-
tations for some SIMBA3D conformations in Fig 8. All the
five conformations result from the same contact matrix and
therefore share structural similarities.
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Fig. 9. Top row: Five conformations from the IGM database. Bottom row: A
corresponding reconstructions of the above conformation from the CSA and
the structure alignment algorithm.

1st sequence: 1il.m. jGVrWcWJ.LJMGN. . YbevCxAcJd

.jjve.

2nd sequence:arX.k.hFVazfvv.mVrsa. .BSTv. .MKmgcYpAH

3rd sequence: LBz .N.Rt ILXXAr.SWiAW. .1rIQ. . rBWvEcwNw

LZW.

QV.

4th sequence: baI.c.mrVnhbQH.gXjuL. .ecGa. HDaZbiNLe

T

5th sequence: XrC.u.1ixZx1WbB.VGlyO.H.JgG. JWAE.Q. TrtNCHrAp

Fig. 10. Five IGM conformations which are segmented using TADs and
represented by sequences of CSLs. Only the first few elements of the sequence
are shown and gaps in TADs are filled with a dot.

B. IGM Results

Next, we analyze the IGM data in the same way as the last
section. We remind the reader that IGM conformations are esti-
mated as an ensemble, using objective functions different from
what we use here for reconstruction. Therefore, a comparison
of the energies of the originals and the reconstructions is not
meaningful. Fig. 9 shows some IGM conformations in the top
row with corresponding reconstructions in the bottom row. We
generate several reconstructions (since it is a gradient descent
method) for each conformation and select one with minimal
reconstruction energy.

In this figure, one can see that the reconstructions differ sig-
nificantly in shape from the IGM conformations. Once again,
this can be attributed to having the reconstruction cost function
being different from the original criterion in the IGM method.
One can address this issue by choosing the IGM energy
function for reconstruction, although we have not done that. A
strength of shape-letter representation is that one can always
represent a TAD-segmented conformation with a sequence of
CSLs. In Fig 10 we display some IGM conformations, all
from the same chromosome, with their respective symbolic
CSA sequences. Since these conformations are all from the
same chromosome, they have the same TADs and thus have
gaps in the same locations denoted by dots in the sequences.
Because of the IGM data heterogeneity, these sequences show
more variability than the SIMBA3D sequences.

V. CONCLUSIONS

In this paper, we use tools from elastic shape analysis
to understand and organize local structural variability in 3D
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chromosomal conformations in the form of a shape alphabet.
We cluster TAD segmentations of training conformations (of
IGM) and compute cluster means to generate candidates for
shape letters. We prune this set to retain distinct shapes,
order them according to their complexity, and label them as
shape letters. We then demonstrate the use of these shape
letters in successfully representing, both symbolically and
structurally, independent test conformations taken the same
method (IGM) and another method (SIMBA3D). The success
of this representation underscores the universal nature of this
construction. It emphasizes that the conformations exhibit
common patterns at the local, segment level, and one can easily
represent them using a few shape letters. These representations
via shape letters can be further used to characterize and
analyze chromosome populations in a fully statistical manner.
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