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Abstract

Registering functions (curves) using time warpings (re-
parameterizations) is central to many computer vision and
shape analysis solutions. While traditional registration
methods minimize penalized-1.> norm, the elastic Rieman-
nian metric and square-root velocity functions (SRVFs)
have resulted in significant improvements in terms of the-
ory and practical performance. This solution uses the dy-
namic programming algorithm to minimize the 1.2 norm be-
tween SRVFs of given functions. However, the computa-
tional cost of this elastic dynamic programming framework
— O(nT?k) — where T is the number of time samples along
curves, n is the number of curves, and k < T is a param-
eter — limits its use in applications involving big data. This
paper introduces a deep-learning approach, named SRVF
Registration Net or SrvfRegNet to overcome these limita-
tions. SrvfRegNet architecture trains by optimizing the elas-
tic metric-based objective function on the training data and
then applies this trained network to the test data to perform
fast registration. In case the training and the test data are
from different classes, it generalizes to the test data using
transfer learning, i.e., retraining of only the last few layers
of the network. It achieves the state-of-the-art alignment
performance albeit at much reduced computational cost.
We demonstrate the efficiency and efficacy of this framework
using several standard curve datasets.

1. Introduction

The registration or temporal alignment of functional,
curve, shape, or activity data has been central to many
computer vision problems, including shape analysis, ac-
tivity recognition, and computational anatomy. Observa-
tions of multiple objects or actions, or multiple observa-
tions of the same object or action, may differ in the exe-
cution rates, causing a misalignment between observations.
When comparing such observations for clustering, classi-
fication, or modeling, one needs to temporally register or
align these curves to isolate this mis-registration variability
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and reach more natural solutions. In functional data anal-
ysis, this problem is often referred to as phase-amplitude
separation [20].

While the importance and challenges of registration have
been recognized well in the past, with several theoreti-
cal and practical ideas proposed, a satisfactory solution re-
mains elusive, especially for massive datasets. Historically,
the main issue was theoretical — the most commonly-used
framework for registration relied on minimizing the classi-
cal Euclidean objective function (the L? norm between the
functions plus a regularization term) and that had funda-
mental theoretical flaws. The actual optimization is per-
formed using the dynamic programming algorithm (DPA)
or its adaptations. In recent years, the researchers have over-
come the theoretical limitations using elastic Riemannian
metrics and their excellent invariance properties. However,
the optimization tool continues to be DPA, which can be
computationally expensive for massive datasets. This paper
explores deep neural networks to reach an architecture that
can learn registration solutions from training data and then
efficiently transfer the solutions to the test datasets.

1.1. Relevant Past Literature

We start by summarizing the past salient literature on
function or curve registration, pointing out their strengths,
limitations, and bottlenecks.

Dynamic Time Warping (DTW) Solutions: The most
common approach for aligning functions, time-series, or
curves is based on minimizing the .2 norm between ob-
servations. It is referred to by various names, including dy-
namic time warping or simply DTW [2, 28]. Given two
scalar functions fi, fo : [0,T] — R, this approach solves
for a time-warping function v : [0,T] — [0,T], often a
boundary-preserving diffeomorphism, that minimizes the
objective function || f; — fa o ¥||%, where || - || denotes the
L2 norm. This optimization problem is degenerate in that
one can make the difference arbitrarily small using drastic
warpings. One handles that issue by imposing a roughness
penalty on - and limiting the search space of -, accord-
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ing to min, (|| f1 — f2 ][> + AR(v)). The optimization
problem is commonly solved using the dynamic program-
ming algorithm or DPA [3]. However, this solution has sev-
eral flaws, including a lack of inverse consistency of the
solution and low registration performance. Despite these
flaws, this framework continues to be popular in the lit-
erature. Although several extensions of DTW have been
proposed to improve alignment quality or applicability, the
main limitations persist. Variations of DTW include Canon-
ical time warping to align multi-modal data [43, 37, 38] and
Soft-DTW to solve a simpler surrogate optimization prob-
lem [29].

An important theoretical advance in the field came from
a Riemannian perspective — the introduction of elastic Rie-
mannian metric and the Square-Root Velocity Function
(SRVF) representation. Developed over several papers, in-
cluding [42, 31, 32], this framework changed the objective
function from L2 to an elastic distance. While this distance
had excellent invariance properties, which helped avoid de-
generacy and improve registration, its original form was still
too complex to be of practical use. This issue was resolved
by using SRVFs of functions rather than the functions them-
selves. The classical .2 norm between SRVFs of functions
equaled the elastic distance between the functions, allowing
for the dynamic programming solution to be readily applied.

Despite the superior theoretical properties and excellent
registration performance, the DPA-based methods suffer
from two significant issues. First, the computation cost
becomes prohibitive if the length of time series data or
the sample size increases dramatically [39]. Second, the
DTW-based solutions do not transfer easily to unseen data
— one has to apply the entire procedure to any data, old or
new, to obtain registration.

Deep learning based methods: In recent years, there has
been an exponential rise in the use of deep neural net-
works in various settings, including optimizations. Focus-
ing on the registration and alignments, Jaderberg et al. [9]
proposed the Spatial Transformer Network (STN), which
aims to learn spatial warps from the training data and ap-
ply these warps to image data to enhance classification.
Similarly, several papers proposed learning solutions to 2D
(or even 3D) registration [4, 21, 41, 5, 1] using deep net-
works. For instance, Lohit et al. [19] introduced a Tem-
poral Transformer Network (TTN) to learn time warpings
to help improve the classification. TTN generates warp-
ing functions in a non-parametric way but is a supervised
learning framework that requires labels for both training and
test data. To overcome the limited training data, Terefeet
et al. [35] introduced the semi-supervised multitasking au-
toencoder that requires class labels only during training.
Another approach, termed Diffeomorphic Temporal Align-
ment Net (DTAN) [40], seeks unsupervised registration and
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estimates parametric warps using convolutional neural net-
works (CNNs). Although DTAN provides good results in
unsupervised learning, it requires large training data. Sim-
ilar to our goal here, Nunez and Joshi [24] used a deep-
learning approach to curve registration. However, their su-
pervised approach requires DTW to first generate training
data for the network. The network is first trained on this
data and then applied to the future data to reproduce DTW-
type registration.

1.2. Proposed Approach

This paper combines the strengths of the elastic Rie-
mannian framework and the deep neural networks, result-
ing in a fast and effective registration of massive functional
or curve data. Our approach, named Square Root Veloc-
ity Function Registration Net (SrvfRegNet), is an unsuper-
vised, learning-based registration approach that enjoys in-
variance properties and provides registration of unseen test
data. Another feature of SrvfRegNet is that registration is
“transferable”, in the sense of [6, 25, 26], and one does not

require large training data to train it.

2. Background: Elastic Function Registration

In this section, we summarize the main ideas from elastic
Riemannian framework for functional or curve registration.

Let JF be the set of all smooth scalar functions on an in-
terval [0,T]. (One can develop frameworks for vector- or
manifold-valued functions similarly.) Let I" be the group of
boundary-preserving diffemoprhisms from [0, 7] to itself,
with the group operation being composition and the iden-
tity element being ~;4(t) = t. The right action of T on F is
given by the F x I' — F with (f,~) = f o+, the composi-
tion of f by . Let the L2 norm of a function f be denoted

by [I£ll =/ Jy £(8)2 dz.

Given two functions fi, fo € F, one seeks a warping
function -y such that the composition f> o « is aligned as
well as possible to f;. The question is: What should be
the objective function to define the optimality of 4? A con-
venient option is inf,er || fi — f2 o v||, but this leads to
degenerate solutions (this phenomenon is called the pinch-
ing effect) resulting in extreme time warpings. In other
words, one can squeeze or pinch a large part of f> and
make this cost function arbitrarily small. To avoid this situ-
ation, one frequently adds a penalty [18, 34, 16, 27, 13]:
inf cr (I fy — f2o 7> + AR()). where R is a rough-
ness penalty and A is a positive number. However this so-
lution is also not satisfactory. Firstly, the choice of A is
an important issue. Secondly, and more importantly, this
solution is not symmetric. That is, if the roles of f; and
fo are reversed then the resulting registration is not con-
sistent with the previous registration. The shortcomings of
the L2 norm, or its penalized versions, as an objective func-
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Figure 1. SrvfRegNet’s architecture: The input data simultaneously passes through time-warping and SRVF-mapping blocks. The SRVF
mapping computes SRVFs of input functions, and the Diffeomorphism block generates warping functions. These two are combined in the

Group action block to output registered data.

tion for registering functions are more fundamental. It lacks
the invariance property that is critical for use in registration
tasks [33, 32]. In mathematical terms, for f;, fo € F and
v €T, we have [|(f1 o) — (f2 0 V)|l # [l fr — foll in gen-
eral. This lack of isometry under the action of I is the root
cause of degeneracy and pinching during registration under
the L2 norm.

A fundamentally better choice in this situation is to use
an elastic metric. This metric, in conjunction with a math-
ematical representation called square-root velocity function
(SRVF), provides a much better solution, in both theoret-
ical properties and practical performance. As described
in [10, 32], the SRVF of a function f is defined to be:

q(t) = sign(£(¢))1/|f(t)]. We can easily map the SRVF
g back to the original function f, up to a constant, using
(@) f(0) + fg‘ |g(s)|g(s)ds. One can show that for
any f € F, its SRVF is square-integrable: ||g|]| < oo or
g € L%([0,T],R). The SRVF of a time-warped function
f(y(2)) is given by (g% v)(t) = q(+(£)) /7 (2)-

The main motivation for using SRVF in registration
comes from the following invariance property: For any
SRVFs g1,q2 € L2 and v € T, we have that ||g; — g2| =
[[(g2%~)—(g2x7)||- A corollary to that result is that for any
g € L2 and v € T, the norm ||g x| = ||g||. In other words,
pinching is not possible under this metric. There are several
other useful properties of this representation, including that
adding a constant to a function does not change its SRVE
We refer the reader to [32] for a detailed discussion.

This setup leads to the following registration solution.
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Given two functions f1, fo € JF, with corresponding SRVFs
q1,q2 € L2, solve the optimization:

£

7" =inf [lgg — gz x| 1)

Yer
One can show that if v* is the optimal warping to align f>
to fi, then v* 1 is the optimal warping to align f; to fa.
That is, this solution is inverse consistent. The infimum is
approximated on a discrete-time grid using DPA. If each of
the functions is sampled using T" time points, then the com-
putational cost is O(T2k), where k is typically a number
much smaller than T'.

To simultaneously register multiple functions
fi, fa,..., fn, one first computes their mean under
the elastic metric and then aligns them individually to that
mean using Eqn. 1. Define the mean of given functions as
the quantity:

n
p=argnin” (infla~ @xl?) . @
gel? 5\

The computation of p is an iterative process wherein each
iteration we: (1) Align the given functions to the current
mean estimate and (2) Update the mean estimate using
the arithmetic mean of the aligned functions (in the SRVF
space). On convergence, if {7/} denote the optimal time
warpings inside the summation on the right, then the func-
tions { f; o v} } are said to be registered.

If the n given functions are sampled at T' time points
each, then the computational cost of this registration process
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is O(nT?k). In case T is very large, this process becomes
computationally prohibitive.

3. SrvfRegNET:Elastic Registration Network

In this section, we introduce the architecture of the
SrvfRegNet network designed to find an approximate but
fast technique for alignment of large functional data. The
network is made of several blocks with each block con-
tributing a piece to the registration process.

3.1. Learnable Pre-warping Block

The first block takes in the input functional data (as dis-
crete vectors) and generates latent features that are even-
tually mapped into warping functions. For this block,
we adapt and utilize the model architecture introduced in
[14, 30, 9, 40]. This block is composed of three 1-D tem-
poral convolutional layers with 16-32-64 filters per layer
(1D-CNN) [12]. Each convolutional layer is followed by
one rectified linear activation function (ReLU) [23], max-
pooling [22], and 1 dimensional-batch normalization (1D-
BatchNorm) layer [8]. There is also one global averag-
ing layer and a fully connected layer at the end of the
block [17, 14, 30]. The dimensions of input to this block
are (n x T'), where n is the batch size and T is number of
time points for each function.

This pre-warping block plays a role in the feature extrac-
tion mechanism using a hierarchical design. The 1D-CNN
layer extracts temporal information, the ReL U step imposes
a non-linear transformation on the latent features, the pool-
ing layer downsamples the inputs, and 1D-BatchNorm en-
hances the stability of the training process. The global av-
eraging layer further downsamples the features again and
smooths out the noise. The fully connected layer is used to
learn and form the warping functions from the latent fea-
tures. It ensures that the length of each output is equal to T'.
Let the output of this block be denoted by {g;}, where the
length of each feature vector g; is T'.

3.2. Diffeomorphism Block

The next block is the diffeomorphism block that takes
in the latent features extracted previously to form warping
functions for each function individually. In this sense, it is
simply a transformation block without any parameters to
tune. The diffeomorphism block ensures that the result-
ing warping functions satisfy the properties of boundary-
preserving diffemorphisms. There are two layers in this
block: the warping layer and the smoothing layer.

» Warping layer: The warping layer constructs predicted
warping functions using the formula

7 Zeadi(6)
S

r=09;

ﬁ’i(t): E :1,2,...,1’1. (3)
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and t = 1,2,...,T is the time index. This equation
guarantees that 4 is montomically increasing and sat-
isfies the boundary conditions (%(0) = 0 and 4(T) =
).

Smoothing layer: The warping functions generated
thus far ; can lack smoothness and may lead to rough-
ness in the output (warped) functions. Thus, we add a
smoothing layer to the previous output to help preserve
the geometric structure of the output. There are several
ways to smooth a function and we use integration here.
The smoothing layer reduces roughness of the warping
functions according to:

>0 %i(s)
Ym0 Hi(7)

vi(t) “4)

This layer results in smooth warping functions {~;} that can
now be applied to the input functional data, albeit in the
SRVF space. The dimensions of the output of this stage are

o xT).
3.3. Group Action Block

This block performs the time warping of input functions,
using the warping functions generated in the previous layer.
Once again, this is a transformation block and does not have
any parameters to optimize over in the learning stage. First
it computes the SRVF of the given functions and then ap-
plies time warping on them using the equation:

Qi(’}’ﬁ)

3.4. Objective Function and Back Propagation

(Q‘S*F}(i):(qiofﬁ)\p‘;}"hi:l:Q:"':n' (5)

Next, we specify the objective function for training the
complete network. We simplify the objective function given
in Eqn. 2 to result in:

E(ya;--s7m) = Y 1Qi(w) = QII%, (6)
i=1

where @ = 13" | Qi(viq). Note that this cost function
represents a single iteration of the cost function specified
in Eqn. 2, the solution of SRVF registration with DPA and
where the solution required multiple iterations. While we
use only one iteration in this paper, one can easily in-
crease iterations by using multiple replicates of this set of
blocks in the overall pipeline. The search for optimal net-
work parameters in the learning step is performed through
a gradient-descent on the objective function, i.e., backprop-
agation. The parameters inside the pre-warping block are
optimized to generate data-specific warping functions. In
the pre-warping block, three 1D-CNN layers imply 7840
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parameters, and the FC layer has (T * Ligtent + T') pa-
rameters, where the Ljgzen: iS the length of latent fea-
tures generated by 1D-CNN layers and T is the time index.
Thus, the total number of parameters in the SrvfRegNet is
7840 + (T * Ligtent + T)-

We focus on the gradient flow from the cost function to
the pre-warping block, denoted by &= 9E " and express it us-

ing the chain-rule: BE_ = ggmq— The term gE denotes

the gradient of the cost function with respect to 8)6 warped
SRVF and i is the gradient of the warped SRVF w1th re-

spect to the warpmg function. The expression for 2 JE s

Qi
simply B_C;k = 2@Q);, and the term % is given by:
9(gi 0 vi)VHi Blgiom), /=
O Ovi ] + Q"a 07(7)
= (giov)Vyit+(giov —=. (8)
(¢i o vi) Vi + (g 7)2\/% (

The downstream gradient of a—(‘)f is composed of gradient of
integral operation, a FC layer, and 1D-CNN blocks [15, 26].

4. Experimental Results

Next we present results for registration of scalar func-
tional data using SrvfRegNet, on both simulated and popu-
lar real-world data. The SrvfRegNet was trained with Adam
optimization algorithm [11] and the learning rate was set to
be 0.001. These programs are implemented using Pytorch.

4.1. Alignment of Synthetic dataset

In the first experiment, we generate functional data ac-
cording to the equation:

—(t4+1.5)2

2

—(z—1.5)2

fi(t) = zine” 2 9)
where 2; 1,252 ~ N(0,(0.25)2). Each function f; is a bi-
modal function with variable peak locations and heights. A
standard averaging of these functions is not a good repre-
sentative of the data, and one needs registration of peaks
and valleys (through time warpings) to improve statistical
summaries. This model is used frequently to test functional
registration algorithms in the statistics literature. We gener-
ate a training sample of size n = 8, 000 and test data of size
2000, both from the same model. The length of each time
series data is set to T = 150.

Figure 2 shows change in E during training. It shows
that the training loss reduced significantly in 10 iterations.
The time for training the network for the data of size
(8000, 150) is 23 seconds.

Figure 3 shows results of functional alignment obtained
using the SrvfRegNet. The top row shows the results for
the training data, while the bottom row is for the unseen test
data. In each row, we display: (1) the original functions,

+ 2 2€ = [—3, 3] s
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Training loss

4
Reration

Figure 2. The training loss drops significantly in 10 iterations.

(2) their cross-sectional means, along with one-standard-
deviation bands, (3) the aligned functions, and (4) the cross-
sectional means of the aligned functions with one-standard-
deviation bands. As these results show, the network is
quite successful in aligning both training and test data. The
within-class variance drops significantly from the original
data to the warped data. Also, the time taken for registering
the test data of size (2000, 150) is only 0.42 seconds.

This experiment was conducted using an Nvidia GeForce
GTX 1660 Ti graphic card. Even though this data is of mod-
est size, the DTW method of Duncan et al. [7] takes around
3.25 hours to register the training data and needs a separate
run to register the test data. Thus, the gain in time spent for
alignment of test and training functions using SrvfRegNet
is enormous.

As mentioned earlier, the past DPA-based techniques for
functional alignment are not generalizable in the sense that
they do not perform registration as training and test tasks.
The registration code has to be rerun whenever new data are
added. In contrast, the SrvfRegNet is trained on a training
data and performs alignment on unseen data (although from
the same underlying class) without a new training process.
Furthermore, one can combine the idea of transfer learn-
ing with the SrvfRegNet to register functional data from a
different model altogether. The use of transfer learning in
SrvrfRegNet is explained in more detail later.

4.2. Alignment of Real-Life data

This section utilizes data from a well-known pub-
lic repository — the UCR Time Series Classification
Archive — to evaluate SrvfRegNet. We choose four
datasets from different application domains, including
ECGFiveDays (ECG), GunPointOldVer-susYoung (Mo-
tion), StarLightCurves (Sensor), and Yoga (Image). The
computational environment and hyperparameter settings re-
main the same as synthetic data, but the epoch number in-
creases to 100.

Figure 4 displays registration results obtained using
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Figure 4. The figure shows the result of alignment using SrvfRegNet on the test data GunPointQldVersusYoung and Yoga.

SrvfRegNet on GunPointOldVersusYoung (top row) and
Yoga datasets (bottom row). Each data has its training
and test parts. The training parts of GunPointOldVersusY-
oung and Yoga are of sizes (137 x 426) and (71 x 150),
respectively, while the test sizes are (1393 x 426) and
(165 x 150), respectively. We trained SrvfRegNet with the
training datasets and applied the resulting networks to the
corresponding test sets. The first and third columns exhibit
the original and the registered test data. The second and
fourth columns show the mean functions along with a one-
standard-deviation band around the mean. We can easily see
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that the registration improves significantly, and the with-in-
class variances drop a lot due to registration.

To help visualize registration performance differently,
we plot the t-SNE projections of the StarLightCurves
dataset with three class labels in Fig. 5. The three classes
are shown in different colors. The first column shows the
original training (top) and test data (bottom), and the sec-
ond column shows the aligned training (top) and test data
(bottom). This figure shows that SrvfRegNet registration
increases the inter-class dissimilarity and decreases the
with-in-class variance. Note that the data was fed to the
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Figure 5. t-SNE visualization of the original and warped training
and test data of the 3-class StarLightCurves. The first row is un-
aligned training data and the second row is aligned test data. Class
1 and Class 3 mixed heavily in unaligned data. We can view that
how SrvfRegNet increases inter-class variance and decrease with-
in-class variance.

network class by class, and therefore we expect the classes
to separate further with the registration.

Transfer Learning (TL): Transfer learning is an approach
in which a network trained for one data domain is applied,
with some retraining, to data in a different domain. Specif-
ically, one only needs to retrain the last few layers of a pre-
trained model on the new data instead of training the whole
network from scratch. While the classic TL only retrains
the last few layers, it is sometimes beneficial to unfreeze
more layers and retrain additional parameters depending on
the training data’s size. The more data we have, the more
layers we can unfreeze and retrain.

The argument behind TL is that higher (or earlier) layers
usually learn more generic features, and later layers learn
specific task-related features. Thus, changing data domains
necessitates retraining only the later layers. TL has been
used widely for image labeling, natural language process-
ing, and object detection. We combine TL with SrvfRegNet
to improve performance in situations involving limited
data for functional or curve registration. We demonstrate
this approach using the ECGFiveDaysclass 1 data. The
reason for choosing this dataset is its limited sample size;
it has only five training samples. Fig. 6 shows how the
SrvfReg-Net TL model achieves improved registration
results despite small training data. Here one uses simulated
data (shown in the leftmost column) to train the network,
with the registration results shown in the second column.
Then, we retrain two CNN blocks and one fully connected
layer using the ECGFiveDaysclass 1 training data, as
shown in the third and fourth columns. Finally, we apply
this retrained network to the ECGFiveDaysclass 1 test data,
and the last column shows the results.
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SrvfRegNet SrvfRegNet with TL DPA
Time Time .
el I (Tr. v (Tr. ™V g
/Ela. ) /Ela.) i}
ECGel 9.21s/ 7.2
(0.4478) 0.2561 02575 0.2566 0.225. 0.0847 93.82s.
ECGc2 30.12s./ 24.53s./
0.2495 0.1995 0.0671 095.96s.
(0.4857) 0.193s. 0.22s. —_—
GPcl 47s7 39s./
0.1178 0.1337 0.1543  103.351s.
(0.2877) | —— 0.20s. 0.23s.
GPc2 4dsJ 39s./
0.0877 0.0027 0.0891 43.132s
(0.3713) | —— 0.22s. 0.23s.
SLCcl 8m.34s/ 3m.42s. /
(0.1847) 0.039 2545 0.0385 2.94s. 0.0285 4.33 hr
SLCc2 13m.13s/ 3m.36s./ .
02037 | 72 Tyngs | BT Tyg6s 18+ br
SLCc3 24m.10s/ 3m.50s./
0.0665 0.0701 b 18+ hr
(0.2685) | —— 9.42s 9.41s.
Ygcl 2m.7s/ 1m.39s./
0.2564 0.2603 0.2182 1.24hr
(0.7436) 1.15s. 1.14s.
Ygc2 2m.5s/ 1m.41s/
0.7362) 0.2165 1245, 0.2285 L2s. 01715 1.41hr

Table 1. The table compares TVs of original datasets(underneath
the name of data) with losses of aligned datasets. The Tr. and Ela.
are training time and elapsed time. We list three alignment models
: SrvfRegNet, SrvfRegNet with TL, and DPA, and examine their
performances by measuring their losses and computational time.
** means unavailable.

Quantitative Evaulation: Next we apply SrvfRegNet to a
number of public datasets and compare their results with
the DPA-based registration. We evaluate the alignment per-
formance of SrvfRegNet in three ways: visualization of the
alignment, compare computational costs, and use a quan-
tifiable registration metric. The metric that we use to mea-
sure alignment is the total variance (TV) under the .2 norm:
L5 l(Fi0) — 2 0, (£ o 7)I[% Table 1 lists TVs
obtained from SrvfRegNet, SrvfRegNet with TL, and the
traditional Dynamic Programming Algorithm (DPA). These
algorithms are applied to the training and the test data, and
we calculate the total variance in each case. As the table
shows, the SrvfRegNet (with and without TL) is able to pro-
vide total variance that is comparable to the DPA solution
but an order of magnitude faster in execution. This is a re-
markable accomplishment for a fully automatic, pre-trained
solution to provide large-scale registrations at such efficient
rates.

To further investigate the utility of transfer learning in
function registration, we develop another model called the
adjusted-SrvrfRegNet. The adjusted-SrvfRegNet model is
composed of three additional CNN blocks and one FC layer
to the SrvfReg-Net. That is, the SrvfRegNet and SrvfReg-
Net with TL are made of three CNN blocks and one FC
layer, and the adjusted-SrvfRegNet TL model contains five
CNN blocks and two FC layers. Table 2 presents registra-
tion results for the StarLightCureves dataset for SrvfReg-
Net, SrvfRegNet with TL, and adjusted-SrvfRegNet with
TL. The SrvfRegNet is trained on the SLC training data
and performs the registration on the test data. SrvfRegNet
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Figure 6. The first column is simulated data used to train SrvfRegNet, the second is warped training data, the third is the original
ECGFiveDays retraining data, the fourth is registered retraining data and the fifth is registered test data.

SrviRegNet Adjusted
with TL SrviRegNet
Ifi:’::i':: SrvfRegNet |  (Unfreeze with TL
2 CNN blocks (Unfreeze
& 1 FC layer) | 2 FC layers)
SLCcl | 0.1847 0.0390 0.0387 0.0385
SLCc2 | 0.2237 0.1722 0.1719 0.1689
SLCc3 | 0.2687 0.0665 0.0701 0.0648

Table 2. The adjusted SrvfRegNet with TL. model outperforms the
SrvfRegNet and SrvfRegNet with TL. The result highlights that
we can obtain better alignment by only retrain two layers from the
pre-trained adjusted SrvfRegNet.

with TL is retrained in the last two CNN blocks and one
FC layer. The adjusted-SrvfRegNet wih TL is retrained in
only the last two FC layers. We can see that the adjusted-
SrvfRegNet with TL outperforms the other two models in
the registration performance across all SLC classes.

We summarize results from Tables 1 and 2 as follows:
Total Variance: In terms of the total variance of the
registered data, the DPA method performed better on
ECG (ECGFiveDays) and Yg (Yoga) while SrvfRegNet
did better on GP (GunPointOldVersusYoung) and SLC
(StarLightCurves). Both these methods reduce total vari-
ance by a lot when compared to the original data. Note that
the DPA could not handle SL.C c2 and SLC c3 datasets due
to their large sample size and lengths.

Computational Efficiency: The biggest advantage of
SrvfRegNet over DP is in computational efficiency. The
time difference between the two methods is less for smaller

datasets, such as ECG cl, ECG c¢2, GP cl and, GP c2 as
their sizes are (428 x 136), (433 x 136), (150 x 150),
and (165 x 150) respectively. However, the times differ-
ences are substantial in medium-size datasets, such as Yg
cl, Ygc2,SLCcl, SLCc2, and SLC c3, where the sizes are
(1393 x 426), (1607 x 426), (1177 x 1024), (2305 x 1024),
(4754 x 1024), respectively. The SrvfRegNet is around 42
times faster than DPA on Yg dataset. The DP could not
even be applied to the SLC c2 and c3 datasets due to their
length and sample size. Overall, SrvfRegNet runs much
faster than the DP model; and The SrvfRegNet model with
TL ran faster than the SrvfRegNet model.

Generalization and transfer learning: The SrvfRegNet
has the ability to train on one data and apply it on unseen
test data. The DPA method does not have this property. The
transfer learning with SrvfRegNet can be a key to the situa-
tion where the datasets are small and one needs registration
on large unseen future data.

5. Summary

This paper develops the SrvfRegNet — a deep learning-
based method — that combines the strengths of the elastic
Riemannian framework with the efficiency of neural net-
works. The SrvfRegNet performs fast, registration on large
test data and provides a good generalization to unseen fu-
ture data. Additionally, the paper introduces transfer learn-
ing that integrates domain transfer with the SrvfRegNet to
improve registration performances when the training data
are limited.
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