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Shape Analysis of Functional Data with Elastic
Partial Matching

Darshan Bryner and Anuj Srivastava, Fellow, IEEE

Abstract—Elastic Riemannian metrics have been used successfully for statistical treatments of functional and curve shape data.
However, this usage suffers from a significant restriction: the function boundaries are assumed to be fixed and matched. In practice,
functional data often comes with unmatched boundaries. It happens, for example, in dynamical systems with variable evolution rates,
such as COVID-19 infection rate curves associated with different geographical regions. Here, we develop a Riemannian framework that
allows for partial matching, comparing, and clustering of functions with phase variability and uncertain boundaries. We extend past
work by (1) Defining a new diffeomorphism group G over the positive reals that is the semidirect product of a time-warping group and a
time-scaling group; (2) Introducing a metric that is invariant to the action of G; (3) Imposing a Riemannian Lie group structure on G to
allow for an efficient gradient-based optimization for elastic partial matching; and (4) Presenting a modification that, while losing the
metric property, allows one to control the amount of boundary disparity in the registration. We illustrate this framework by registering
and clustering shapes of COVID-19 rate curves, identifying basic patterns, minimizing mismatch errors, and reducing variability within
clusters compared to previous methods.

Index Terms—Functional data analysis, elastic partial matching, phase variability, COVID-19 rates, elastic Riemannian metric.
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1 INTRODUCTION

The field of functional data analysis (FDA) has seen a
tremendous growth and activity over the last few years
[10], [12], [16], [23], [27]. This phenomenal interest in
FDA stems in part from our growing ability to record,
store, and transmit data streams that are indexed over
near-continuous times. A number of books and papers,
including the ones mentioned above, have highlighted
clear benefits of analyzing these data streams as continuous
functions rather than as discrete time-series. In FDA,
one treats observed functions as elements of a function
space, endows a metric structure on this space, and uses
the geometry of this metric space to perform statistical
analyses. The main challenges in the analysis of functional
data come from the infinite dimensionality of function
spaces, the contamination of data due to noise, and the
presence of phase variability within the data. We highlight
the last, and arguably most important, of these issues next.

Data with Phase Variability: Functional data displays an
interesting phenomenon that makes it unique from the
perspective of statistical analysis. Real life functional data
often comes with phase variability, i.e., functions are often
observed with perturbations or warpings of the time axis,
resulting in the horizontal movements of peaks and valleys.
In other words, noise in real data manifests itself as not only
vertical (or additive) but also horizontal (or compositional),
reflecting an inherent lack of temporal synchronization
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across functions. For example, in the case of COVID-19
infection-rate curves, the high and low points for different
regions occur at different times, implying different evolution
rates of the virus cycle. Several papers [18], [19], [22], [29],
[30] and a book [27] have documented and formally devel-
oped the concept of phase variability in functional data with
the guidance that ignoring this phase variability leads to
inflated variance in the data, loss of structures, and reduced
power in hypothesis testing. Indeed these papers provide
ways of separating phase and amplitude components (also
termed alignment or registration of functions) and then per-
forming either individualized or joint statistical analyses
[15], [17], [22], [27], [31]. The proposed methods (for phase-
amplitude separation) differ in their choices of metrics, tools
for optimizations, and their definitions of phase; however,
most of this work has a fundamental shortcoming. It as-
sumes that the functions are fully observed over a common
interval and moreover that the endpoints match perfectly
across observations.

In more mathematical terms, let {fi : [0, T ] →
R, i = 1, 2, . . . , n} be the set of observed functions on an
interval [0, T ]. Isolating phase variability implies finding
time-warping functions {γi} such that the time-warped
functions {fi ◦ γi} are matched (or aligned, or registered)
where, in this context, a good matching generally refers
to having functions with peaks and valleys co-located
across observations. Here, the warping functions {γi} are
constrained to be diffeopmorphsisms of [0, T ] to itself such
that γi(0) = 0 and γi(T ) = T . This last property implies
that the endpoints of the data, {fi(0)} and {fi(T )}, are
assumed to be already matched across all functions.

Data with Sliding Right Boundary: In many situations
where the phase variability is present not just in the interior
of [0, T ] but also on the boundaries, the boundary-matching
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assumption breaks down and presents a major challenge.
Sometimes one can assume that the left boundaries {fi(0)}
are either synchronized or can be synchronized perhaps
through a simple shift. However, the right boundaries
are still variable, i.e., γi(T ) 6= T . This situation arises,
for example, in COVID-19 data where at the end of any
observed interval, the infection rate curves for different
regions are at different states of evolution. Another
example of uncertain boundaries arises in censored
data. Censoring is a process of randomly truncating the
observation interval before the scheduled end is reached.
In mathematical terms, such censored observations are
denoted by {fi : [0, Ti] → R, i = 1, 2, . . . , n}, with the
end times Ti ∈ R+ being arbitrary. There is a significant
literature for analyzing right-censored functional data [5],
[8], especially in survival analysis [7], [14], where the aim
is to model censoring times as random variables and use
the distribution of min(T, Ti) explicitly in the likelihood
functions. However, this literature does not account for
phase variability and assumes that the functional data is
fully registered. Thus, the analysis naturally deteriorates
when phase variability is present in the actual data. A
commonly used, albeit naive, solution is to simply time
scale (linearly) each observation so that they all have the
same domain [0, T ]. However, this fails to address some
deeper issues.

Data with Both Phase Variability and Sliding Right
Boundary: In this paper, we are concerned with functional
data with: (1) Random phase variability; and (2) Variable
right endpoints Tis. The challenge is to separate the phase
from the amplitude when the right endpoints are no longer
synchronized. In other words, we wish to align or register
functions, essentially by matching their peaks and valleys
inside the domain while simultaneously placing their float-
ing right boundaries correctly. Some researchers refer to this
problem as that of elastic partial matching [9], [21], [25]. An
example of this situation arises in the analysis of Berkeley
growth curves [24], where the natural start time of growth
is birth. However, the end of the fixed 20-year observation
period may not match across subjects due to different bio-
logical clocks. Another example mentioned earlier involves
incidence rates of the COVID-19 virus for different geo-
graphical locations where different cities/states/countries
exhibit different rates of evolution in the infections. The
incidence’s start time can be defined as the first positive
case, but due to epidemiological and demographic factors,
the pandemic evolution is undoubtedly not well synchro-
nized across regions. Different regions experience different
growths and decline rates, and one needs to perform regis-
tration to understand these patterns.

How can we analyze such data while preserving salient
structures in the data? We illustrate this problem with a
simple example. Figure 1(a) shows a pair of functions, f1

and f2, where the left boundaries are matched well but the
right boundaries are different, with the observed endpoints
being T1 = 2 and T2 = 1. Furthermore, the two functions
have similar shapes except that f1 is missing a piece relative
to f2; thus, f1 can only be well matched with a part of f2,
despite T2 < T1. If we linearly stretch f2 to match their
boundaries by a simple time scaling (t 7→ 2t), we obtain the

result in (b). If, in addition to a linear scaling, we also time-
warp f2 to match with f1, we get (c). Finally, if we stretch
f2 in such a way that f1 is matched to a part of f2 (t 7→ 3t)
and then apply time warping, we get (d). Amongst these
solutions, panel (d) provides the most satisfactory result.

In order to reach this solution, we need to infer two
items: (1) which parts of the two functions match, i.e. how
much time-scaling is needed, and (2) which time-warping
aligns the two matched parts? If we have a set of functions,
each with an uncertain right boundary, then the joint reg-
istration, modeling, and analysis of this data become even
more challenging.
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Fig. 1. Illustration of different potential solutions for matching curves with
different shapes and flexible right boundaries.

The following items summarize the main challenges in
developing mathematical solutions:

1) Mathematical Representations & Metrics: One
needs mathematical representations that can ac-
count for uncertain boundaries and time-warpings
of data. Specifically, we need metrics and objective
functions such that partial matching of functions can
be posed as binary optimization problems. Similar
to past works on elastic shape analysis of func-
tions [27], we need metrics that are invariant to
actions of nuisance groups applicable here – time-
warping and time-scaling.

2) Interaction of Warping & Sliding Boundaries:
While the solutions for the individual problems –
time-warping to match extrema and time-scaling to
match the boundaries – are well known, the combi-
nation makes the problem more difficult. The com-
bination requires diffeomorphic transformations of
domains but without a fixed right boundary. This,
in turn, demands searching over all combinations
of linear stretches and nonlinear warpings to match
any two functions. One needs to impose additional
structure to help efficiently optimize over the joint
space.
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This formulation resembles the problem of partial
matching of shapes, and there are several papers in the
literature on this topic, see [1], [2], [6], [11], [20], [33] for
example. However, our focus is on Riemannian approaches
as they provide a comprehensive toolbox for the statistical
analysis of shapes, including geodesics, proper metrics, sta-
tistical summaries, and probabilistic modeling. This paper
develops a Riemannian framework for elastic analysis of
functional data with right floating boundaries. Similar to the
past works, we develop a framework where we represent
both time-warping and time-scaling as group actions on a
set of functions. A fully automated optimization procedure
compares any two functions by optimally time-warping
their domains and varying the right boundaries. The essen-
tial contribution here is a parametrization of the joint action
of these groups, which facilitates the partial matching of
curves. Additionally, we develop an extension that allows
us to choose a scalar weight λ > 0 for balancing the dual
goals of matching the interiors and the right boundaries;
however, some metric properties are lost when λ 6= 1.

The rest of this paper is organized as follows. We
develop a mathematical framework for partially aligning
functions using an elastic Riemannian metric and a square-
root representation in Section 2. Section 3 develops the
optimization of an objective function for pairwise matching
of functions. Section 4 presents a set of experimental results
involving both simulated and real data (COVID-19 infection
rate curves) to demonstrate the success of the proposed
framework. The paper ends with a summary and some
conclusions in Section 5.

2 PROPOSED MATHEMATICAL FRAMEWORK

In this section, we develop an elastic Riemannian frame-
work for representing, partially matching, and comparing
functional data with phase variability and sliding right
boundaries. Before we develop our approach, we sum-
marize the past ideas for phase-amplitude separation, or
registration of functions, with matched boundaries. We will
follow the approach presented in [27], [28], [29].

2.1 Past Work in the Alignment of Functions with Fixed
Boundaries
Let F = {f : [0, T ] → R|f is absolutely continuous} be
the set of functions of interest. Let ΓT be the group of all
positive diffeomorphisms from [0, T ] to itself that preserve
the boundaries. For any f ∈ F and γ ∈ ΓT , the composition
f ◦ γ denotes a time warping of f while keeping the
boundaries fixed (γ(0) = 0, γ(T ) = T ). In order to register
functions, one represents them by their square-root velocity
functions (SRVFs). For any f ∈ F , its SRVF is given by

q(t) = sign(ḟ(t))
√
|ḟ(t)|. In fact, this mapping f 7→ q forms

a bijection between F and L2([0, T ],R), up to a constant.
One can reconstruct a function f from its SRVF q and f(0)
using f(t) = f(0) +

∫ t
0 q(s)|q(s)| ds, t ∈ [0, T ].

For any γ ∈ ΓT , the SRVF of the time-warped function
f ◦ γ is given by (q ∗ γ)

∆
= (q ◦ γ)

√
γ̇. A very important

property of SRVFs is that for any two functions f1, f2 ∈ F ,
and their SRVFs q1, q2, we have ‖q1 − q2‖ = ‖(q1 ∗ γ) −
(q2 ∗ γ)‖ for all γ ∈ ΓT . (The norm here is the standard
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Fig. 2. Phase-amplitude separation of uncensored functional data using
SRVF representation.

L2 norm: ‖q‖ =
√∫ T

0 q(t)2 dt.) Due to this property, the
L2 norm between SRVFs is called the elastic metric. With the
elastic metric, the problem of registration between functions
can be solved as the following optimization:

γ̂ = argmin
γ∈ΓT

‖q1 − (q2 ∗ γ)‖ . (1)

This optimization is solved either using the dynamic pro-
gramming algorithm or a gradient-based approach, as
needed, and the resulting registration is called dense elastic
registration. For any t ∈ [0, T ], the point f1(t) is said to be
matched to the point f2(γ̂(t)).

For alignment of multiple functions, one exploits the fact
that the minimum in Eqn. 1 is actually a proper distance
on the quotient space L2/ΓT . Using this distance, one can
define a mean function under this metric and then align
the given functions to this mean using Eqn. 1. For a given
set of functions {f1, f2, . . . , fn}, this framework results in a
set of time-warping functions (also called phases) {γi} and
the corresponding aligned functions {fi ◦ γi} (also called
amplitudes). The full procedure for this Phase-Amplitude
separation has been outlined in Chapter 8 of the text-
book [27]. Figure 2 shows an example of this approach –
the left panel shows the original functions {fi}, the middle
panel shows the time-warped aligned functions {fi ◦ γi},
and the right panels shows the optimal warping functions
{γi}.

This approach has been remarkably successful in the
alignment of functional data in a variety of applications.
However, as mentioned earlier, this framework assumes that
both the endpoints t = 0 and t = T are preregistered in all
observations. In Fig. 2, the endpoints are kept fixed while the
interior is time-warped. Next, we consider the problem of
aligning functional data with a sliding right boundary. Note
that one of the boundaries, say the left one, can be matched
by translation, and that leaves only the other boundary to
be matched.

2.2 Joint Time-Warping and Time Scaling

Re-define the set of functions to be F = {f : [0,∞) →
R | f is absolutely continuous}. Define the space F0 ⊂ F
as the space of all absolutely continuous, right-censored
functions on [0,∞) as

F0 = {f ∈ F | ∃ c ≥ 0 s.t. f(t) = const. for all t > c}.

Let L2
0 ⊂ L2([0,∞),R) be the set of SRVFs of the elements

of F0. That is, any q ∈ L2
0 is a square-integrable function

such that q(t) = 0 for all t > c and some c > 0. Define
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the preshape distance between censored functions as the L2

distance on their corresponding SRVFs.
Definition 1. The preshape distance on F0 is given by the

L2 distance

dp(f1, f2)2 =

∫ ∞
0

(q1(t)− q2(t))2dt,

where q1, q2 are SRVFs of f1, f2, respectively.

Next, we re-define the diffeomorphism group Γ to be on
the domain [0,∞) :

Γ = {γ : [0,∞)→ [0,∞) | γ(0) = 0,

γ is a positive diffeomorphism}.

One can show that Γ has properties similar to ΓT in the
previous section. Namely, Γ is a group under composition
as the binary operation, and Γ forms a right group action
on the function space F0 also by function composition.
In particular, for a function f ∈ F0 with censoring point
c, the group action is f 7→ f ◦ γ, which sends the cen-
soring point c to γ−1(c). Also similar to that of ΓT , the
corresponding right group action of Γ on L2

0 is given by
q ∗ γ = (q ◦ γ)

√
γ̇. Furthermore, the group Γ also acts by

isometries with respect to the preshape distance dp. That
is, for any γ ∈ Γ and f1, f2 ∈ F0, the distance preserving
property dp(f1, f2) = dp(f1 ◦ γ, f2 ◦ γ) holds.

At this stage, one can use the past formulation to register
functions according to infγ∈Γ dp(f1, f2 ◦ γ). However, since
the functions q1 and q2 are zero on the right sides, i.e., they
contain no information to help guide function registration,
the use of the full Γ is excessive. Instead, we will seek a
proper subgroup of Γ that makes the optimization com-
putationally efficient and the result more interpretable. We
construct this new group G ⊂ Γ from a combination of the
time-scaling H ⊂ Γ and time-warping N ⊂ Γ, which have
the following definitions.
Definition 2. The time-scaling set H is given by

H = {h ∈ Γ | h(t) = at for any a > 0},

the set of all positive, linear functions on [0,∞).

Definition 3. The time-warping set N is given by

N = ∪b>0{n ∈ Γ | n(t) = t for t ≥ b},

the set of fixed-interval diffeomorphisms on [0, b] com-
pleted with identity from b to infinity, unioned over
all b > 0. The point b is termed the pivot point of the
diffeomorphism n.

Now, any group element g ∈ G is constructed such that
g = n ◦ h, and since G ⊂ Γ, the group actions of G on
F0 and L2

0 remain the same as that of Γ. That is, for any
g = n ◦ h ∈ G and f ∈ F , the action of g on f is given by
f ◦ n ◦ h. Also, the action of G on F is by isometries under
the metric dp simply because the larger group Γ does the
same.

Later on, we establish that G is a proper subgroup of Γ,
thus forming the quotient space L2

0/G and defining a shape
distance on the quotient space. However, first, we provide
intuition and motivation for this specific construction. This
formulation allows us to restrict the search from a pro-
hibitively large space Γ to only the pair a ∈ R+ and γ ∈ Γb,

where b is the pivot mentioned above. Further, if the pivot
point is known, we can simply perform the time-warping on
the fixed space Γ1 instead of Γb. We can thus leverage ex-
isting computational tools to optimize over this joint space
(a, γ) ∈ R+ × Γ1. The resulting optimal registration is also
highly interpretable – it is a global stretching/compression
of the function combined with a nonlinear warping.

However, the question remains: What should the value
of the pivot point b be? Suppose we are registering the
function f2 to f1 in F0, with the respective censoring points
being c2 and c1. That is, we solve for infg∈G dp(f1, f2 ◦ g)
with g = n ◦ h and h = at. Since the SRVFs q1 and q2

are zero after their respective censoring points, there is no
need to perform any time-warping beyond the minimum of
the two censoring points. Moreover, since after time-scaling,
the censoring point c2 becomes h−1(c2) = c2/a, we can set
the pivot point b to be b = min(c1, c2/a). Thus, the pivot
b only depends on the free parameter a, simplifying the
subsequent optimization.

Now, we can write the functional form of g ∈ G in a
parameterized form as follows. First, note that for h ∈ H
with slope a and for n ∈ N with pivot point b, the operation
h◦n◦h−1 sends n to another element ñ ∈ N with pivot point
b/a. Furthermore, this operation does not change the shape
of n and simply scales the time-warping function along the
diagonal. We can thus write any n ∈ N as n = h ◦ n0 ◦ h−1,
where n0 ∈ N has a pivot of b = 1. That is, if we let h(t) = bt
with the desired pivot point b, then n(t) can be written as
n(t) = bn0(t/b). By letting n0(t) = γ(t) on 0 ≤ t ≤ 1 for
γ ∈ Γ1, we can identify any g ∈ G with the triplet (a, b, γ)
with

g(t) =

{
abγ(t/b) t ≤ b
at t > b.

(2)

However, as explained in the previous paragraph, since
we know the censoring points c1 and c2, we simplify
this parameter space by setting the pivot value to b =
min(c1, c2/a). Now, any g ∈ G can be identified with the
pair (a, γ) ∈ R+ × Γ1.

2.3 G is a Proper Subgroup of Γ

In order to show that G is a proper subgroup of Γ, we
first show that the time-scaling set H and the time-warping
set N are both subgroups of Γ, with N being a normal
subgroup. Then we show that G can be constructed as an
outer semidirect product of H and N ; hence, it is a proper
subgroup of Γ.

Lemma 1. The time-scaling set H is a subgroup of Γ.

Proof:H ⊂ Γ by definition. The closure property is achieved
due to linearity: h1 ◦ h2 = h1(a2t) = a2h1(t) = a2a1t ∈ H .
Any h ∈ H has an inverse h−1(t) = t/a, and thus h−1 ∈ H .
The identity element e(t) = t is also in H . �

Lemma 2. The time-warping set N is a normal subgroup of
Γ.

Proof: N ⊂ Γ by definition. To establish the closure
property, note that for any n1, n2 ∈ N , the composition
ñ = n1 ◦ n2 is also a member of N , with b̃ = max(b1, b2)
such that ñ(t) = t for t ≥ b̃.
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To prove that N is a normal subgroup of Γ, we need
to show that γ ◦ n ◦ γ−1 ∈ N for all γ ∈ Γ and n ∈ N .
Evaluating the composition, we get

γ(n(γ−1(t))) =

{
γ(n(γ−1(t))) 0 ≤ t ≤ γ(a)
γ(γ−1(t)) t > γ(a)

=

{
(γ ◦ n ◦ γ−1)(t) 0 ≤ t ≤ γ(a)
t t > γ(a),

which is a member of N . �
We need to form a product of N and H to reach the

desired subgroup G. However, since N and H do not com-
mute, we cannot simply construct a direct product group
N × H . Instead, using the fact that N and H are both
groups, and that N ∩ H = {e}, the identity element, we
can construct a new subgroup G ⊂ Γ as an outer semidirect
product of both N and H . As a first step, we define the
following homomorphism.

Definition 4. Let φ : H → Aut(N) be the group homomor-
phism defined by φ(h)(n) = h◦n◦h−1 for all h ∈ H and
n ∈ N . We write this homomorphism as φh : N → N
for brevity.

Before we proceed, we establish that this mapping is indeed
a homomorphism.

Lemma 3. The map h 7→ φh is a homomorphism φ : H →
Aut(N), i.e. φh1

◦ φh2
= φh1◦h2

.

Proof: For simplicity, we suppress the symbol ◦ for func-
tion composition in this proof. Since N is a normal sub-
group of Γ, and H ⊂ Γ, it holds that φh1

φh2
and φh1h2

are both functions from N → N . For any n ∈ N , we
have that φh1

φh2
(n) = φh1

(h2nh
−1
2 ) = h1h2nh

−1
2 h−1

1 =
(h1h2)n(h1h2)−1 = φh1h2

(n). �
Now we have all the pieces to form the subgroup re-

quired for registration of functions.

Definition 5. Using the time-warping subgroup N , the time-
scaling subgroup H , and the homomorphism φ : H →
Aut(N), define the outer semidirect product G = N oφ
H , denoted by G ⊂ Γ, to be the pairing (N,H) with the
following properties:

1) Group operation: (n1, h1) · (n2, h2) = (n1 ◦
φh1(n2), h1 ◦ h2)

2) Inverse element: (n, h)−1 = (φh−1(n−1), h−1).

Using Lemmas 1, 2, and 3 and the definition of the homo-
morphism φ, by definition of an outer semidirect product,
we can show that G is a proper subgroup of Γ.

Remarks: By definition, any element in G can be ex-
pressed uniquely as g = n ◦ h. (Therefore, G also contains
functions g ∈ Γ that take the form g(t) = at for all t > b.)
Henceforth, we will use this shorthand notation of g to
indicate the time-warping and time-scaling pair (n, h).

Since the subgroupG acts onF0 (correspondingly on L2
0)

by isometries, the distance dp descends to the quotient space
F0/G (correspondingly L2

0/G) and provides a distance on
this quotient space.

Definition 6. The shape distance on F0 is given by

ds(f1, f2) = inf
g∈G

dp(f1, f2 ◦ g) (3)

Similar to the theory developed in [27], [28], [29], this
distance ds is a proper distance on the quotient space F/G.

We illustrate this idea using a simple example in Fig. 3.
Here, we first compute the shape distance between a pair
of censored functions f1 and f2 (with respective censoring
points c1 and c2) by aligning f2 to f1 according to Eq. 3. In
the first row, the left plot shows the original function pair,
the center plot shows the optimally aligned f2 with respect
to f1, and the right plot shows the optimal g ∈ G needed to
perform the time-warping of f2. The second row shows the
same progression of events but for when the index labeling
of the two functions has been reversed. Here, since the shape
distance is a proper distance and is hence symmetric, the
shape distance is the same in both cases, and the optimal
diffeomorphisms in G are inverses of each other.

Fig. 3. Alignment of two functions using elastic partial matching. Each
row shows an example with the same two functions except that the
labels f1 and f2 have been reversed in the second row. The first column
shows the original functions, the second column shows the aligned
functions, and the third column shows the optimal diffeomorphism ĝ ∈ G
used in the alignment. The red circle on each diffeomorphism repre-
sents its pivot point, which in this case is the minimum censoring point
b = min{c1, ĉ2}.

3 OPTIMIZATION DETAILS FOR PAIRWISE SHAPE
DISTANCE

Next, we develop techniques for optimally aligning cen-
sored functions f1 and f2 (with known censoring points c1
and c2) in order to compute their shape distance as defined
in Eq. 3. That is, we develop numerical recipes to find and
apply a group element ĝ ∈ G to f2 in order to optimally
match a fixed f1 to minimize dp. Towards this end, we define
an energy:

E(g) =

∫ ∞
0

(q1(t)− (q2 ∗ g)(t))2dt.

We have shown in Section 2.2 that any g ∈ G can be iden-
tified by the pair (a, γ) ∈ R+ × Γ1 with b = min(c1, c2/a).
Thus,

E(a, γ) =

∫ b

0
(q1(t)− q2(abγ(t/b))

√
aγ̇(t/b))2dt

+

∫ ∞
b

(q1(t)− q2(at)
√
a)2dt. (4)

Then, we solve for (â, γ̂) = arginf
(a,γ)∈R+×Γ1

E(a, γ), form ĝ(t)

using Eqn. 2, set b̂ = min(c1, c2/â), and apply f̂2 = f2 ◦ ĝ.
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3.1 Grid-Search Algorithm

As a simpler first idea, we present a grid-search approach
for this optimization in the following manner. We start by
defining a finite sampling, or “grid,” on the time-scaling pa-
rameter a ∈ R+ given by {ai, i = 1, . . . , J}. Then, for each
grid point i = 1, . . . , J , we fix the time-scaling parameter
ai and pivot point bi = min(c1, c2/ai) and solve for the
optimal time-warping γi ∈ Γ1. One can solve for γi by first
truncating the two functions to the common overlapping
domain [0, bi], rescaling both functions to have domain
[0, 1], and then performing dense elastic registration over
this interval as described in Subsection 2.1. One can perform
this function registration using one of several approaches
present in the literature. The most commonly used tool is
the dynamic programming algorithm [27], but one can also
exploit the geometry of the space Γ1 to develop a BFGS-
based gradient search [13]. The pair (ai, γi) that yields the
lowest value of the energy function E in Eqn. 4 defines the
optimal diffeomorphism ĝ ∈ G that best matches f2 to f1.

Given: Censored function pair f1, f2 ∈ F0 with
censoring times c1, c2 ≥ 0, and
time-scaling parameter grid
{ai, i = 1, . . . , J} ∈ R+.

Result: Optimally aligned censored functions with
associated group element and shape
distance.

1 Compute SRVFs q1, q2 ∈ L2
0;

2 for i = 1 to J do
3 Time-scale q2 via q̃2 =

√
aiq2(ait);

4 Compute pivot point bi = min{c1, c2/ai};
5 Truncate both functions via q̃1 = q11[0,bi] and

q̃2 = q̃21[0,bi];
6 Time-scale both q̃1, q̃2 to have domain [0, 1] via

q̃j =
√

1/biq̃j(t/bi) for j = 1, 2;
7 Solve γi = argmin

γ∈Γ1

‖q̃1 − (q̃2 ◦ γ)
√
γ̇‖2 via

Dynamic Programming, gradient descent, or
BFGS;

8 Compute Ei = E(ai, γi) via Eqn. 4;
9 end

10 Let î = argmini{Ei, i = 1, . . . , J};
11 Form gî via Eqn. 2 using aî, bî, γî;
12 return ĝ = gî, f̂2 = f2 ◦ gî, ĉ2 = c2/aî, and

ds =
√
Eî

Algorithm 1: Shape Distance Via Grid Search Over
Time-Scaling Parameter

Algorithm 1 describes the grid-search algorithm for
elastic partial matching of right-censored functions. The
advantages of this algorithm are that: (1) It is relatively
straightforward and uses mostly existing tools from the
literature, and (2) It provides global solutions depending
on the grid resolution. The disadvantage is that it is compu-
tationally expensive to solve for an optimal diffeomorphism
γi ∈ Γ1 for each candidate time-scaling parameter ai. A
more computationally efficient solution is to perform a
gradient search over the joint domains. However, due to the
high-dimensionality of the state space and complex nature
of the objective function, any gradient-based optimization

will be highly dependent on initialization. Therefore, in
practice we use Algorithm 1, with a limited number of grid
points, for obtaining a coarse initialization for a gradient-
descent algorithm. The gradient descent is then used as a
local refinement of the coarse initialization.

3.2 Gradient-Based Joint Optimization

In order to derive a gradient-based optimization of E, we
change to a more convenient mathematical representation
for elements of the groupG. For an element g ∈ G identified
by parameters (a, γ) ∈ R+ × Γ1, consider the map M given
by M(a, γ) = (log(a),

√
γ̇), the log-transformation of a and

the SRVF of γ. Let ξ ∈ R be such that a = eξ and let the
space of SRVFs of Γ1 be Ψ. It is easy to see that for any
γ ∈ Γ1, its SRVF ψ =

√
γ̇ is non-negative and has unit L2

norm (please refer to [27]).

Definition 7. Define the space of SRVFs of Γ1 as the positive
orthant of the unit Hilbert sphere

Ψ = {ψ ∈ L2([0, 1],R) | ‖ψ‖ = 1, ψ > 0 a.e.}.

Define the parameter space P = R × Ψ as the set of
all the transformed variables (ξ, ψ). Now, in the context
of censored function registration, we can form the group
element g ∈ G from the parameters (ξ, ψ). Since (a, γ) =
M−1(ξ, ψ) = (eξ,

∫ t
0 ψ(s)2ds) and b = min(c1, c2e

−ξ), we
can rewrite Eqn. 2 as

g(t) =

{
eξb
∫ t/b
0 ψ(s)2ds t ≤ b

eξt t > b.
(5)

Moreover, the group action of G on q2 ∈ L2
0 can be written

in terms of the parameters (ξ, ψ) ∈ P as such:

q ∗ g = (q ◦ g)
√
ġ

=

{
q(eξb(

∫ t/b
0 ψ(s)2ds))eξ/2ψ(t/b) t ≤ b

q(eξt)eξ/2 t > b.
(6)

Thus, the energy function in Eqn. 4 can be re-written as

E(ξ, ψ) =

∫ b

0
(q1(t)− q2(eξb(

∫ t/b

0
ψ(s)2ds))eξ/2ψ(t/b))2dt

+

∫ ∞
b

(q1(t)− q2(eξt)eξ/2)2dt,

where b = min(c1, c2e
−ξ).

What is the reason for changing the representation of
elements of G from R+ × Γ1 to P? The reason is that the
Riemannian geometry of P is less complex, relatively, in that
we know the expressions for tangent spaces, exponential
maps and geodesics in P . Similar toG, P is also a Lie group.
Note that the group operation is (ξ1, ψ1) · (ξ2, ψ2) = (ξ1 +
ξ2, (ψ1 ◦

∫ t
0 ψ2(s)2ds)ψ2), the inverse element is given by

(−ξ, 1/ψ) ∈ P , and the identity element of P is given by
pid ≡ (ξid, ψid) ∈ P , where ξid = 0 and ψid(t) = 1 for all
t ∈ [0, 1]. This Lie group structure allows us to formulate
gradient vectors at each iteration in the tangent space of
the identity element and apply these updates to the current
estimate in a sequential manner.
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Definition 8. Define the tangent space of P at the identity
element pid = (ξid, ψid) = (0, 1) as

Tpid(P) =

{
v = (y, z) ∈ R× L2([0, 1],R) |

∫ 1

0
z(t) = 0

}
.

Definition 9. Define the exponential mapping of v = (y, z) ∈
Tpid(P) as exppid(v) ∈ P via the formula

exppid(v) = (y, cos(‖z‖) + sin(‖z‖) z

‖z‖
).

In an iterative line-search, at iteration k, let the current
estimate be pk = (ξk, ψk) ∈ P , a search direction vector
vk be in the tangent bundle of P , and a step size be αk >
0. If P were a vector space, the updated estimate would
be given simply by pk+1 = pk + αkvk. Since P is instead
a non-linear manifold, one can compute the update using
the exponential mapping pk+1 = exppk(αkvk). However,
since P is also a Lie group with an identity element and a
group action, there is no need to compute search directions
in any tangent space except at identity. For any k, we can
compute vk ∈ Tpid(P) and then apply a sequential update
to pk via pk+1 = pk ·exppid(αkvk), where · denotes the group
operation of P .

Most often, the search direction vk is based on the gradi-
ent of the objective function, or energy function, evaluated
at the current estimate. Therefore, we need to define the
energy Ek : P → R at step k and show how to compute its
gradient as an element of Tpid(P). First, define the current
censored function as q2,k , (q2 ∗ gk), where gk is identified
by (ξk, ψk) ∈ P and bk = min(c1, c2e

−ξk).
Definition 10. For an update (ξ, ψ) ∈ P at iteration k, define

the energy of updating the current censored function q2,k

with censoring point c2,k by (ξ, ψ) as Ek(ξ, ψ)

=

∫ b

0
(q1(t)− q2,k(eξb(

∫ t/b

0
ψ(s)2ds))eξ/2ψ(t/b))2dt

+

∫ ∞
b

(
q1(t)− q2,k(eξt)eξ/2

)2
dt, (7)

where b = min(c1, c2,ke
−ξ).

Derivation of Gradient of E:
Next, we compute the gradient ∇Ek at identity and define
a line-search update direction vector vk ∈ Tpid(P) based on
this gradient. Before writing the full analytical expression
for the gradient, we develop a series of useful results.
Lemma 4. For q1, q2 ∈ L2

0 with censoring points c1, c2 ≥ 0
and g ∈ G identified by (ξ, ψ) ∈ P with pivot point b =
min(c1, c2e

−ξ), let q̃2 , q2 ∗ g according to Eqn. 6. The
derivative of q̃2 with respect to ξ evaluated at the identity
element (ξid, ψid) ∈ P is given by ∂q̃2

∂ξ (ξid, ψid) = tq̇2 +
1
2q2 for all t ≥ 0.

Proof: See Appendix A.
Lemma 5. Let q1, q2 ∈ L2

0 with censoring points c1, c2 ≥
0, let b = min(c1, c2) and let F (ψ) =

∫ b
0 (q1(t) −

(q2(b
∫ t/b
0 ψ(s)2ds)ψ(t/b))2dt. Then, if x = t/b, the Rie-

mannian gradient at identity ∇F ∈ Tψid
(Ψ) is given by

∇F = w(x) −
∫ 1
0 w(x)dx, with w(x) = 4b2

∫ x
0 (q1(bs) −

q2(bs))q̇2(bs)ds− 2b(q1(bx)− q2(bx))q2(bx).

Proof: See Appendix B.

Having obtained these useful results, we now derive the
expression for gradient of Ek with respect to an incremental
element of P .
Theorem 1. At iteration k and for q1, q2,k ∈ L2

0 with cen-
soring points c1, c2,k ≥ 0, the gradient of Ek at identity
(ξid, ψid) ∈ P is written as the pair ∇Ek(ξid, ψid) =
(∂Ek

∂ξ (ξid, ψid),
∂Ek

∂ψ (ξid, ψid)) ∈ Tpid(P). The two terms
that comprise the gradient vector are defined as follows.

1) The partial derivative of Ek with respect to ξ ∈ R
evaluated at identity is given by ∂Ek

∂ξ (ξid, ψid)

= −2

∫ ∞
0

(q1 − q2,k)(tq̇2,k +
1

2
q2,k)dt ∈ R. (8)

2) Let b = min(c1, c2,k), x = t/b, and define the
function wk ∈ Tψid

(Ψ) as

wk(x) = 4b2
∫ x

0
(q1(bs)− q2,k(bs))q̇2,k(bs)ds

− 2b(q1(bx)− q2,k(bx))q2,k(bx) .

Then, the partial derivative of Ek with respect to
ψ ∈ Ψ evaluated at identity is given by

∂Ek
∂ψ

(ξid, ψid) = wk(x)−
∫ 1

0
wk(x)dx. (9)

Proof: For part (1), define the function q̃2,k = q2,k ∗ g, where
g ∈ G is identified by (ξ, ψ) ∈ P and b = min(c1, c2,ke

−ξ).
Now, we compute the partial derivative as

∂Ek
∂ξ

= −2

∫ ∞
0

(q1 − q̃2,k)
∂q̃2,k

∂ξ
dt.

Using Lemma 4, the above expression evaluated at identity
becomes the expression given in Eqn. 8.

For part (2), define Fk(ψ) = Ek(ξid, ψ) −
∫∞
b (q1(t) −

q2,k(t))2dt. Notice that Fk(ψ) takes the form of F as defined
in Lemma 5 with q2 replaced with q2,k, and by construction
∇Fk(ψid) = ∂Ek

∂ψ (ξid, ψid). Thus, according to Lemma 5, the
partial derivative is equal to the expression given in Eqn. 9.
�

In order to implement a backtracking line-search method
based on the Armijo-Goldstein condition, we must first
define an inner product on Tpid(P).
Definition 11. For v1, v2 ∈ Tpid(P) with v1 = (y1, z1) and

v2 = (y2, z2), the chosen inner product on P is given by
〈〈v1, v2〉〉 = y1y2 + 〈z1, z2〉, where 〈·, ·〉 is the standard
L2 inner product, and the corresponding norm is given
by ‖v‖P =

√
〈〈v, v〉〉.

With this inner product and norm for elements of the
tangent space, we can define the Armijo-Goldstein condition
for the backtracking line-search method.
Definition 12. (Armijo-Goldstein Condition) For a candi-

date update p = (ξ, ψ) ∈ P , a scalar β ∈ (0, 1), a
search direction vk ∈ Tpid(P), and a stepsize δ > 0,
the Armijo-Goldstein condition is given by Ek(p) ≤
Ek(pid) + βδ

‖vk‖P 〈〈∇Ek(pid), vk〉〉.

One can see that in the special case of gradient descent
where vk = −∇Ek(pid), the above condition simplifies
to Ek(p) ≤ Ek(pid) − βδ‖∇Ek(pid)‖P . In addition to the
Armijo-Goldstein condition, we also need the condition that
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(ψk ∗ ψ)(t) ≥ 0 for all t ∈ [0, 1] in order to ensure that
the incremental update of ψk remains in Ψ. If either of the
two conditions are not satisfied, then one must reduce the
stepsize by a factor of τ ∈ (0, 1) by updating δ 7→ τδ until
both are satisfied or until δ becomes too small.

Algorithm 2 outlines the gradient descent method for
elastic partial matching of functions.

Given: A pair of censored functions q1, q2 ∈ L2
0

with censoring points c1, c2 ≥ 0, tolerance
ε > 0, maximum number of iterations
maxit, scalar parameters β, τ ∈ (0, 1), and
stepsize δ > 0.

Result: Optimally aligned censored functions.
1 Initialize variables k = 0, p0 = pid, and q2,0 = q2;
2 Compute E0(pid) via Eq. 7 and ∇E0(pid) via Eqs.

8 and 9;
3 while ‖∇Ek(pid)‖P > ε and k < maxit do
4 Let vk = −∇Ek(pid);
5 Let δk = δ;
6 Generate candidate update p = exppid(δkvk);
7 Compute Ek(p) via Eq. 7;
8 while Ek(p) > Ek(pid)− βδk‖∇Ek(pid)‖P or

(ψk ∗ ψ) < 0 anywhere do
9 Let δk = τδk;

10 Generate candidate update
p = exppid(δkvk);

11 Compute Ek(p) via Eq. 7;
12 end
13 Update q2,k+1 = q2,k ∗ g with g identified by

p = (ξ, ψ) and b = min(c1, c2,ke
−ξ), and

update pk+1 = pk · p;
14 Update k = k + 1;
15 end
16 Form gk from pk = (ξk, ψk) and

b = min(c1, c2e
−ξk) via Eq. 5. return q̂2 = q2,k

and ĝ = gk.
Algorithm 2: Gradient Descent for Alignment of
Right-Censored Functions.

3.3 Modification of Energy Function
The energy defined above (Definition 10) depends in part on
the L2 norm of the extra portion of the longer function (the
second term). Therefore, if that piece has a large L2 norm,
then it tends to dominate the total energy. In that case, an op-
timal alignment pushes the endpoints of the two functions
to be closer together, and the results look more similar to
the standard elastic registration with identical boundaries.
In order to control the influence of this unmatched part,
we modify the energy functional by multiplying the second
term in E by a constant λ > 0, which results in:

E(ξ, ψ) =

∫ b

0
(q1(t)− q2(eξb(

∫ t/b

0
ψ(s)2ds))eξ/2ψ(t/b))2dt

+ λ

∫ ∞
b

(q1(t)− q2(eξt)eξ/2)2dt, (10)

where b = min(c1, c2e
−ξ). The resulting gradient expres-

sions are altered in only a minor fashion and for the sake of
brevity are not repeated here.

We note that for λ 6= 1, the energy E is no longer the
square of a proper metric, and some of the nice mathemati-
cal properties of a quotient space metric are lost. The energy
minimization process results in a measure of “dissimilarity”
rather than a proper distance squared. One can still perform
a clustering analysis with these tools, as we demonstrate in
the next Section.

4 EXPERIMENTAL RESULTS

In this section we present some experiments demonstrating
the strengths of this framework. We first introduce the two
functional data sets – one simulated and one real – that we
use to demonstrate and compare methods.

Dataset 1: The simulated data set consists of 51 functions,
each with 100 sample points, and separated into three
classes of 17 functions each. The functions are all based
on a mixture of three Gaussians on the interval [0, 1]
with means at t = 0.3, t = 0.5, and t = 0.7 and with
equal variance. The functions within each class have the
same mixture coefficients, where, for class 1, 2 and 3, we
use the coefficient pairs (0.2, 0.5, 0.8), (0.5, 0.5, 0.5), and
(0.8, 0.5, 0.2), respectively. To generate a function f in the
simulated dataset, we start with the appropriate Gaussian
mixture on [0, 1] and alter it in the following manner:
(1) select b ∼ Uniform[0.625, 1] and truncate f to the
interval [0, b]; (2) select a ∼ Uniform[0.9, 1.1] and apply
the time-scaling function h(t) = at to f ; and (3) apply a
random time-warping diffeomorphism in Γb/a to f . Fig. 4
shows the resulting simulated data set, colored according
to class label with original uncensored functions plotted as
dashed black lines.

Fig. 4. Simulated data set with three classes. The left-most panel shows
all functions plotted in the same window and colored according to
class label. The remaining three panels plot each of the three classes
separately.

Dataset 2: The real data used here comes from daily COVID-
19 infection rates for each of the 50 United States plus the
District of Columbia and Puerto Rico plus 47 European
countries. The daily new case data is preprocessed via
the following procedure. We translate each curve so that
t = 0 represents the day of the first recorded infection.
Thus, t ∈ [0,∞) represents the number of days since a
state or country’s first case. Then, we apply a seven day
moving average to smooth the data, and then we re-sample
each curve via spline interpolation to have 100 uniformly
spaced time sample points. Finally, we normalize the rate
curve so that it has integral 1. We execute this process
three times, each on raw data truncated at different ending
dates – July 31, September 30, and November 30 of the year
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2020 – to create three datasets of normalized infection rate
curves. Fig. 5 shows a plot of all 99 normalized infection
rate curves for the United States and Europe. The first two
columns separate the US and European curves, respectively,
for visual purposes.

Fig. 5. United States and European COVID-19 normalized infection rate
curves truncated at three different right boundaries – July 31, September
30, and November 30 of the year 2020. For each panel, the time axis
indicates the number of days since the first recorded case. In the first
and second columns, the US and European data is plotted separately for
ease of visualization, and in the third column they are plotted together.

4.1 Pairwise Alignment Examples

Fig. 6 shows a few examples of pairwise alignments for
both the simulated and the real data sets. For each function
pair we compute both the standard elastic alignment with
fixed and matched endpoints and our novel elastic partial
matching with floating endpoints. For the partial matching,
we use the modified energy function in Eq. 10 with λ = 0.01
for the simulated data and λ = 0.25 for the COVID-19 data.
In each panel, we plot the original censored functions f1

and f2 in blue and red, respectively; the elastically regis-
tered version of f2 in yellow with matched right endpoint;
and the partially matched version via the methodology
developed in Sections 2 and 3 in purple. In each case,
the alignments are all noticeably different visually, with
our elastic partial matching methodology providing a more
natural registration than the standard elastic methodology.
For some examples, we see that the curve with standard
elastic registration is similar to our partially matched curve
on a portion of the domain. However, as it approaches the
endpoint of the fixed blue curve, the elastic registration
tends to unnaturally compress or stretch the yellow curve in
order to force the right endpoints to match. In other cases,
the freedom offered by our partial matching methodology
allows us to find a completely different matching across the
entire domain. In particular, the elastic partial matching of
North Dakota to Sweden’s infection rate curve allows for a
surprisingly similar shape matching that the standard elastic
registration was unable to uncover.

Below each pairwise matching result, we also show the
corresponding optimal diffeomorphisms for the two elastic

methods. Using the same color scheme and the same do-
main (time axis) scale, we plot the optimal γ̂ ∈ Γb̂ and ĝ ∈ G
associated with the two elastic registrations. The circle along
the purple colored diffeomorphism ĝ ∈ G represents the
point ĝ(b̂), where b̂ = min{c1, ĉ2} is the pivot point. Recall
that beyond this point the function ĝ is linear with slope
ĝ(b̂)/b̂ and extends to infinity. In cases where the optimally
matched second function (purple) is shorter than the first
(blue), we do not plot ĝ(t) beyond the pivot point t = b̂.

Fig. 6. Examples of pairwise elastic function registrations. The first row
shows three pairwise alignment examples for the simulated dataset. In
each panel, the blue and red curves are the original censored functions
f1 and f2, the yellow curve is the aligned version of f2 using standard
elastic registration with fixed and matched endpoints, and the purple
curve is the aligned version of f2 using our novel elastic partial matching
methodology with floating right endpoint. The second row provides the
associated optimal diffeomorphisms that achieve the alignments, plotted
in the same color scheme and time axis scale. The third and fourth rows
are the same as the first and second but instead using examples from
the COVID-19 data set. Here, we restrict example pairs to be from the
set of US states and European countries truncated at July 31.

4.2 Algorithm Performance and Parameter Selection
Performance Analysis:
Here, we present four numerical experiments to demon-
strate the numerical performance of the elastic partial
matching algorithm under various settings.

• Experiment (1): Using the COVID dataset, we com-
pute and plot the average computation time versus
the number of function sample points Nf for three
algorithm configurations: (i) Using only the grid-
search algorithm; (ii) Using the gradient descent
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algorithm initialized with the original f2, i.e. “no
init”; and (iii) Using the gradient descent algorithm
initialized with the grid-search result from (i).

• Experiment (2): For both the COVID and the simu-
lated datasets, we compute the average shape dis-
tance ds obtained from using the “no init” gradient
descent method as well as using the grid-search
initialized gradient descent method.

• Experiment (3): For both the COVID and the simu-
lated datasets, we compute the average shape dis-
tance ds versus the number of grid points J in
the grid-search initialization to the gradient descent
method.

• Experiment (4): For both the COVID and the simu-
lated datasets, we test the effect of λ on the partial
matching result by computing the average “overlap
ratio,” i.e. the proportion of function domain overlap
after alignment, for several values of λ.

The parameters used for each experiment are the follow-
ing. For all implementations of the gradient descent method,
we use ε = 10−3, δ = 10−4, maxit = 300, β = 0.1, and
τ = 0.5. Also, for all implementations of the grid-search
method, for any value of J , we set the grid {ξi, i = 1, . . . , J}
to be J uniformly spaced values between ξ1 = − log(2) and
ξJ = log(2). Note that we form ai = eξi for use in Algorithm
1. In Experiments (1), (2), and (3) where λ is fixed, we use
λ = 0.01 for the simulated dataset and λ = 0.25 for the
COVID dataset. In Experiments (2), (3), and (4) where Nf
is fixed, we use Nf = 100. In Experiments (1), (2), and
(4) where J is fixed, we use J = 50. For Experiments
(1), (2), and (3), we average results over 25 uniquely and
randomly selected dataset pairs, and for Experiment (4), we
use 100 unique and random dataset pairs. For Experiment
(1) we use Nf = [25, 38, 56, 84, 127, 190, 285, 427, 641], for
Experiment (3), we use J = [3, 6, 12, 24, 48, 96, 192, 384],
and for Experiment (4) we use λ = [10−2, . . . , 101] where
the exponents are 10 uniformly spaced values between −2
and 1. Fig. 7 plots the results of Experiments (1) through (4)
from left to right.

Fig. 7. Four numerical experiments to test our elastic partial matching
algorithm performance. The results of Experiments (1) through (4) are
shown from left to right.

For Experiment (1), one can see from the left-most plot
of Fig. 7 that the gradient descent computation time scales
well in Nf compared to that of the grid-search algorithm.

The complexity of the grid-search algorithm is determined
almost entirely by Step 7 of Algorithm 1, the Dynamic
Programming algorithm. One can also see that the gradient
descent time is reduced for any value of Nf when provided
with a good initialization. In fact, Experiment (2) shows
that not only is the computation time reduced, but also
the solution quality improves with a good initialization.
Since the optimization is complex and over a high dimen-
sional space, the gradient descent method returns a highly
localized solution. However, the grid-search method using
the Dynamic Programming subroutine achieves a globally
optimal solution based on the selected time-scaling grid
points and function discretization. Thus, using the gradient
descent method as a local refinement to the grid-search
result can yield near globally optimal results with large
enough number of grid points and function samples. Exper-
iment (3) explores the trade-off between the number of grid
points J over a fixed range and the solution quality for each
dataset. In both cases, the average shape distance improves
only slightly after J = 24. Ultimately, since the computation
time is not overwhelmingly large for Nf = 100, we select a
larger value of J = 50 for the remainder of our results.

Remark: Another important setting for the grid-search
algorithm is the range of the grid points. Here, we use
a range that allows for proposed censoring points to lie
between c2/2 and 2c2, i.e. between half and twice the
original censoring point. Of course, since the optimal
solution of Algorithm 1 serves as the initialization for
the gradient descent algorithm, the final censoring point
ĉ2 could lie anywhere on R+. However, since there are
typically many local solutions to the energy functional, the
grid range tends to influence the range of ĉ2 greatly.

Selection of λ:
In addition to the range of the grid points, the parameter
λ in Eq. 10 is a free parameter that controls the amount of
time-scaling freedom, or endpoint disparity, allowed by the
elastic partial matching algorithms. A lower value of λ al-
lows for a potentially larger difference in right endpoints as
the optimal solution; whereas, a higher value of λ will tend
to force the endpoints to be closer together. The selection
of λ could be guided by the application at hand and any
prior knowledge of its physical limitations. For example, if
the dataset is of human growth rate curves measured up
to a particular age, as in the Berkeley growth curves [24],
it make senses to reduce endpoint disparity. Individuals’
biological clocks vary but not by a lot. However, with states’
virus infection rate curves, there are many more factors at
play that could accelerate or delay virus reproduction over
time, such as population density and local policies. For this
reason, it makes sense to allow for more endpoint disparity
for the COVID-19 application than for human growth rate
curves.

Experiment (4) helps to guide us to a data-driven
selection of λ for each dataset using the overlap ra-
tio, which is defined for a pairwise alignment as ρ =
min({c1, ĉ2})/max({c1, ĉ2}). As shown in the right-most
panel of Fig. 7, which plots the average overlap ratio ρ̄
versus λ, the curves resemble logistic-type S-curves with
an upper asymptote of 1 and lower asymptote of about 0.82
in both cases. With this plot, we select an appropriate λ for
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each dataset as follows. For the simulated data, we select a
relatively small value of λ = 0.01 according to the ρ̄ vs λ plot
to allow for more flexible endpoints. For the COVID dataset,
we anticipate smaller flexibility and select a λ = 0.25 that
yields an intermediary value of ρ̄, the inflection point of the
ρ̄ vs λ S-curve.

4.3 Bayesian Clustering of Functional Data
Next, we perform unsupervised clustering of the data using
three different pairwise distance (or dissimilarity) measures
and compare the results. The three methods are: (a) the
standard L2 metric with fixed and matched right endpoints,
(b) the standard elastic metric with fixed and matched right
endpoints, and (c) our novel elastic partial matching of
SRVFs with floating right endpoints. Note that method (a)
operates on the function values themselves while methods
(b) and (c) use SRVFs for comparison. For method (c), we
use the grid-search method (Algorithm 1) to initialize the
gradient descent method (Algorithm 2). For Algorithm 1,
we use the same grid that we used for Experiments (1),
(3), and (4) given in Subsection 4.2; additionally, we use the
same gradient descent input parameters for Algorithm 2 as
stated in that same Subsection. Finally, as stated earlier, for
method (c) we use a weighting coefficient of λ = 0.01 for
the simulated data and λ = 0.25 for the COVID data, and
thus the pairwise comparison in this method is not a proper
distance but rather a more general dissimilarity measure.

We use the clustering technique described in [34] to
cluster the data for each case. This clustering method is
Bayesian in nature and uses only a pairwise similarity
matrix S as input – not the functional data itself – to
determine the optimal number of clusters and the cluster
members in an MCMC approach. It assumes a Wishart
prior on the similarity matrix and uses a variant of the
Chinese Restaurant Process to help determine the number
of clusters. In the associated clustering software there are
several hyperparameters that must be set; however, we
simply use all default settings provided in the code, with
an initial number of clusters set to 3 for the simulated data
and 10 for the real data, to obtain clustering results. Here,
we use the conversion formula Sij = 1 − Dij/max{D},
where D is the pairwise distance (or dissimilarity) matrix.
For method (c), the entries Dij are equal to the square root
of the energy functional after alignment. This conversion
formula ensures that all entries of the similarity matrix S
are scaled similarly between 0 and 1.

Dataset 1: Fig. 8 shows the result of the Bayesian clustering
on the simulated dataset for each of the three methods: (a),
(b), and (c). From left to right, we show the pairwise similar-
ity matrices, the color-coded block diagonal class inclusion
matrices, the function clusters with consistent color scheme,
and the associated cluster means for each cluster. In order to
form block diagonal matrices, the data set indices have been
optimally permuted as a result of the clustering algorithm.
One can see that the number of clusters (3) is correct only
for the elastic partial matching method shown in row (c).
Furthermore, the cluster labeling is 100% correct for this
method.

In both methods (b) and (c), the tiled cluster display
shows functions that have been jointly aligned according

to their respective alignment methods. For method (b), the
joint alignment is a standard one, but for method (c) we
use the following iterative approach. The idea is to find
a template with the most “information” and then align
each function to this template, in each iteration. How is
such a template found? For any two functions, we first
align them using our method and label the one with the
larger censoring point (after the registration) as the one with
more information. For a set of K functions, we select the
initial template to be the function with the largest censoring
point and then perform K − 1 pairwise alignments to that
function. If after the alignments the function with the largest
censoring point is the same function as the template, we
have found the function with the most information and
terminate the iterations; otherwise, we repeat the process
with the new template function set as the function with
the largest censoring point after the alignments. One can
see that the functions align well within the clusters for our
method, showcasing the three distinct classes. Since the data
is partially observed, the other two methods tend to mislabel
and/or divide the three classes unnecessarily into further
subclasses.

Fig. 8. Simulated data set classes resulting from the implementation of
the Bayesian clustering algorithm. The top row shows the results for
method (a), the L2 metric with fixed and identical endpoints; the middle
row shows the results for method (b), the standard elastic metric with
fixed and identical endpoints; and the bottom row shows results for
method (c), our novel elastic partial matching. The first two columns
show the pairwise similarity matrices and the corresponding block di-
agonal class inclusion matrices, colorized according to class label. The
remaining panels are the individual clusters plotted separately, with each
y-axis scaled so that the maximum value is equal to that of the maximum
y-value of the associated cluster. For methods (b) and (c), plots of indi-
vidual classes show function members that have been mutually aligned
within classes. The number in the bottom of each panel here represents
the average cross-sectional variance for that cluster (×10−4).

The right-most panels in Fig. 8 show the cluster
members as well as the cross-sectional pointwise mean
for each cluster. Additionally, we compute the average
cross-sectional variance and display that value in the
bottom of each panel. As is evident from these numbers,
the standard L2 analysis leads to artificially inflated
variances due to lack of alignment. The standard elastic
analysis helps to bring down the variance within clusters
by aligning peaks and valleys, but since the data is partially
observed, the restriction of identical right endpoints
still drives up the variance unnecessarily. The average
cross-sectional variances are 80.5 × 10−4 for method (a),
21.8×10−4 for method (b), and 0.342×10−4 for method (c).

Authorized licensed use limited to: Florida State University. Downloaded on July 11,2022 at 07:02:48 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3130535, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Dataset 2: Next, we apply the clustering algorithm on the
real COVID-19 datasets. Figs. 9, 10, and 11 show the results
of the Bayesian clustering using methods (a), (b), and (c),
respectively. The organization of each of the three figures is
the following. Groups of three rows show results for data
up to July 31, September 30, and November 30, respectively.
The first group of three rows shows the color-coded coun-
try/state maps, the permuted pairwise similarity matrices,
and the associated block-diagonal class inclusion matrices
with the same color scheme as their associated maps. The
second group of three rows shows the resulting function
clusters along with their cross-sectional mean functions in
black and average cross-sectional variance value. Similar
to Fig. 8 with methods (b) and (c), the cluster members
in Figs. 10 and 11 are mutually aligned within clusters in
the tiled cluster display. Also similarly, the vertical axis has
been scaled in each cluster tile so that the maximum value
is equal to the maximum function value in each cluster set.

Fig. 9. Clustering results on the COVID-19 data set for the L2 metric,
method (a). Rows 1 and 4 correspond to the July 31 dataset, rows 2
and 5 correspond to the September 30 dataset, and rows 3 and 6 to the
November 30 dataset. The first three rows show a US state & European
country map colorized according to class label, the pairwise similarity
matrix, and the pairwise class inclusion matrix. The next three rows
show the corresponding clusters and their cross-sectional mean curves
in black. The average cross-sectional variance (×10−6) is shown in the
upper left corner of each cluster panel.

One can draw the following inferences from the
COVID-19 results. Firstly, there is a high degree of geo-
graphical correlation of cluster members; i.e. neighboring
states/countries are typically more likely to be of the same

Fig. 10. Clustering results on the COVID-19 data set for the elastic
metric with fixed endpoints, method (b). The figure description is the
same as that of Fig. 9.

cluster member than not. This geographical correlation
is stronger for method (c) compared to others. Secondly,
method (c) yields fewer clusters than the other two methods
on average due to its relative invariance to partial obser-
vations. Since method (c) tends to eliminate clusters with
redundant shapes, it preserves true virus trajectory features,
and groups states/countries more accurately compared to
methods (a) and (b). Note that shape-based features that
discriminate between clusters present themselves as the
number and relative intensity of waves of virus transmis-
sion. Finally, we can see that method (c) yields the lowest
within-class cross-sectional variance on average per cluster,
suggesting that these clusters are the tightest overall of the
three methods. The mean value over all clusters for each
of the three methods are the following: (a) 6.03 × 10−6, (b)
7.38× 10−6, and (c) 5.82× 10−6.

Another important observation that we can make is that
the COVID-19 data clusters are more similar to each other
with respect to method (c) than with other methods. This
phenomenon is in stark contrast to that of the simulated
data, where clusters are very distinct and separable. Fig. 12
provides evidence of the above claim. Here, each panel
shows the kernel density estimated probability density func-
tions for within-class similarity values (blue) and across-
class similarity values (red) for each dataset and method.
The number shown in each panel is our measure of density
separability, which is computed as cos−1(〈

√
f in,
√
fout〉),

where fin is the estimated within-class similarity value
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Fig. 11. Clustering results on the COVID-19 data set for the elastic
metric with partial matching, method (c). The figure description is the
same as that of Fig. 9.

density and fout is the estimated across-class similarity
value density (see [27]). The separability measure for the
simulated data increases for methods (a), (b), and (c), re-
spectively, with values of 1.03, 1.33, and 1.57; contrarily,
for the COVID data the separability values decrease for
methods (a), (b), and (c), respectively, with values of 0.904,
0.684, and 0.634. This result provides evidence that states
and countries have overall more similar virus trajectories
with respect to method (c) than the other methods, and
since the opposite effect is observed in simulated data, this
phenomenon is due to the input data and not an artifact of
the methodology used.

5 SUMMARY & FUTURE WORK

This paper presents a novel approach to overcoming an
important limitation of the past works in elastic matching,
comparisons, and analysis of functional data, namely that
the boundaries are fixed and registered. In addition to
exhibiting phase variability within the observation interval,
real data often also exhibit boundary variability, and the
past methods fail to account for such boundary issues. The
proposed elastic partial matching method forms a joint ac-
tion of time-warping and time-scaling groups and searches
for an optimal nonlinear warping along with a sliding
right boundary to best match functions. As seen through
experiments on simulated and COVID-19 rate curves, this

Fig. 12. Estimated density functions of within-class and across-class
pairwise similarity values. The top row corresponds to the simulated
dataset, and the bottom row to the real COVID-19 datasets. The
columns from left to right correspond to methods (a), (b), and (c)
respectively. The number value in the top left of each panel indicates
the distance measure, or separability, of each pair.

additional freedom allows for more natural alignments and
tighter, more visually distinct clusters compared to past
methods.

Although the use of a Riemannian elastic framework
was motivated from a statistical perspective, the subsequent
statistical tools are not developed in this paper due to a lack
of space. The shape distance ds defined here is a proper
distance on the quotient space F0/G and can be used to
define sample means, sample covariance, and tangent PCA
based statistical models. These models can be used further
for testing and classification of functional data.

This framework can easily be applied to the problem of
partially matching shapes of curves in Euclidean spaces [1],
[11], [26], [33]. Very often, planar curves extracted from
image data suffer from partial obscuration and missing
parts. The proposed elastic partial framework naturally
extends to curves in Rn and can be very useful in matching
partially observed shapes in that context. Another important
application of our elastic partial matching framework is
human activity analysis [3], [4], [32]. As stated in these pa-
pers, classification of observed activities requires temporal
synchronization, modulo variable execution rates, and this
matching process can benefit from flexible boundaries.
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