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Stability of Time-Invariant Extremum Seeking
Control for Limit Cycle Minimization

Saurav Kumar1, Oleg Makarenkov2, Robert D. Gregg3, and Nicholas Gans4

Abstract—This paper presents a time-invariant extremum
seeking controller (ESC) for nonlinear autonomous systems with
limit cycles. For this time-invariant ESC, we propose a method
to prove the closed loop system has an asymptotically stable limit
cycle. The method is based on a perturbation theorem for maps,
and, unlike existing techniques that use averaging and singular
perturbation tools, it is not limited to weakly nonlinear systems.
We use a typical example system to show that our method
does indeed establish asymptotic stability of the limit cycle with
minimal amplitude. Utilizing the example, we provide a general
guide for analytic computations that are required to apply our
method. The corresponding Mathematica code is available as
supplementary material.

Index Terms—Extremum Seeking Control, Adaptive Control,
Autonomous Systems, Limit Cycles, Perturbation Theory

I. INTRODUCTION

Limit cycles occur in numerous engineering applications,
e.g., tracking error response in rehabilitation robots [1], self-
excited vibrations in automotive braking systems [2], oscil-
latory wing response in aircraft [3], which can limit the
performance and safety of the system. Feedback control can
reduce the size of the limit cycle but cannot completely
eliminate it. To improve performance, the control requirement
is often to enforce a “smallest”, stable limit cycle.

Model-free approaches such as extremum seeking control
(ESC) can be deployed to optimize the performance of the
system. A conventional perturbation-based ESC [4], [5] was
used to minimize the size of the limit cycles of such systems
in real-time [1], [6]–[9]. Conventional perturbation-based ESC
schemes use a slow, exogenous time-dependent periodic signal
such as d(t) = a sinωt, known as the dither signal, to estimate
the local gradient and optimize the steady-state objective of
a plant with unknown dynamics [1], [4], [5], [10]. From
hereon, we refer to such schemes as time-based ESC. The
stability analysis of time-based ESC requires sufficient time-
scale separation between the plant and the ESC dynamics
and assumes that the plant operates at a fixed time-scale.
Accordingly, the dither frequency, ω, is judiciously chosen
such that the ESC dynamics are at least an order of magnitude
slower than the plant dynamics. In particular, for periodic
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systems, the dither frequency is chosen to be smaller than
the oscillation frequency of the plant states [6].

However, there are applications where the plant does not
operate at a fixed time-scale. Human locomotion is one
example, which exhibits varying time-scales based on the
walking speed) [11]. In a transfemoral powered prosthetic leg,
the evolution of the knee and the ankle joints are typically
synchronized to an external signal, e.g., the human’s hip signal
[12], [13]. In the application of time-based ESC with such
periodic systems with varying time-scales, if the desired task
results in slow operation speed, then the use of fixed time-
based ESC parameters would violate the time-scale separation
thus, the ESC adaptation can no longer be guaranteed to
be stable [14]. Although newer forms of ESC using high-
frequency dither signals can handle varying time-scales [15]–
[17], the introduction of fast oscillations in the system might
be undesirable for precise trajectory tracking applications.

To address the above problem, we proposed in [18] to re-
place the external time-dependent dither signal in conventional
ESC structure with a function of the periodic states of the
system. We call this ESC scheme, using a state-based dither,
time-invariant ESC. A mathematically rigorous stability proof
of such an ESC scheme has not appeared in the literature yet.

The majority of the theoretical work on proving the stability
of time-based ESC [4], [6], [10], [19] use averaging and
singular perturbation theory to prove the stability, where the
dither frequency ω was used as a small singular perturbation
parameter. In time-invariant ESC, due to the use of state-based
dither signal, we lose access to the dither frequency ω, and
thus, the use of averaging and singular perturbation tools is not
trivial. Recently, we demonstrated the stability of limit cycles
when using time-invariant ESC for weakly nonlinear Van der
Pol oscillators [18]. By exploiting the structure of the Van
der Pol oscillator, we performed a change of coordinates that
transformed the overall system to a form suitable to perform
averaging and singular perturbation. However, the limitation
of that approach was that stability could only be established
for weakly nonlinear oscillators. The proof presented in [18]
is heuristic in the sense that the higher order terms of the
expansion of the solution of the Van der Pol oscillator,
corresponding to the nonlinearity, were truncated.

In this paper, we propose a method to prove asymptotic
stability of a time-invariant ESC for nonlinear autonomous
systems with limit cycles. Unlike existing techniques utilizing
averaging and singular perturbation tools that handle small
nonlinearities in the system, our method based on perturbation
theorem for maps does not impose this restriction. As an
example to illustrate the strength of this method, we choose a
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so-called normal form of a nonlinear system with a limit cycle,
which is commonly used when an explicit formula for the limit
cycle is required. The method is based on the perturbation
theorem for discrete dynamical systems [20], which allows us
to investigate bifurcation of asymptotically stable fixed points
from a 1-parameter family of fixed points. As the results
of [20] are rather abstract, we prove an applicable corollary
of the theory of [20], which generalizes the corresponding
perturbation result of [21] to arbitrary dimension. The main
requirement of our theorem is the knowledge of the parameter-
dependent limit cycle of the plant, which is a standard re-
quirement for analytic proofs regarding control of nonlinear
systems with a limit cycle; see related results on classical
Pyragas control [22]–[24] or transverse linearization [25].

The rest of the paper is organized as follows. In Section II,
we present the structure of time-invariant ESC and our prob-
lem statement. In Section III, we prove a concise perturbation
theorem on bifurcation of fixed points from families of fixed
points for general n-dimensional systems. Next, in Section
IV, we apply this theorem on a normal form of a nonlinear
autonomous system with a limit cycle to prove asymptotic
stability of the limit cycle for the closed-loop system. The
simulation results are presented next in Section V. Finally,
Section VI concludes the paper with discussions.

II. TIME-INVARIANT ESC —PROBLEM STATEMENT

Consider a single-input single output dynamical system

ẋ = f(x, θ, v), (1)
yo = h(x),

where the state x ∈ Rn, tunable parameter θ ∈ R, input v ∈ R,
output yo ∈ R, f : Rn × R → Rn, and h : Rn → R. Assume
that we know a smooth control law, v = α(x, θ), such that
the closed-loop system

ẋ = f(x, θ, α(x, θ)) (2)

has a stable limit cycle for all θ ∈ R. The objective of
ESC is to tune the controller parameter θ to minimize the
“amplitude” of the limit cycle, without the knowledge of the
system dynamics (1).

Fig. 1 shows the block diagram of time-invariant ESC,
which, as suggested in [18], uses a state-dependent dither
signal in contrast to a time-dependent dither d(t) = a sin(ωt)
in time-based ESC. In order to reduce the amplitude of the
state-based dither, d(x, θ), the approach in [18] suggests to
multiply it with a constant M ∈ R+, which is added to the
current best estimate of θ. The closed-loop system (2) can then
be rewritten as

ẋ = f(x, θ, α(x, θ +Md(x, θ))) (3)
yo = h(x),

which will generically have stable limit cycles, close to those
of (2), for an interval of the values of θ provided that M ≥ 0
is small, see [26, Ch. 14, Theorems 2.1 and 2.2].

For limit cycle minimization, an amplitude detector was
incorporated in the feedback scheme of conventional ESC [6].
The detector consists of a high-pass filter (HPF), squaring
function, low-pass filter (LPF), and a gain block, all connected
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Fig. 1: Block diagram of a time-invariant ESC using a state-dependent dither
signal d(x, θ). In order to minimize the size of the limit cycle, we use x21 as
the objective function as in [6], [18].

in cascade. Assume that the output yo of the system in a
limit cycle is sinusoidal, yo(t) = y0 + r sin(ωt + φ), where
y0, r, ω are constants. The DC component, y0, is eliminated
by the HPF. The output of the HPF is then squared to get
(r2/2)(1− cos 2ωt), which is then passed through the LPF to
give r2/2. To extract the amplitude of the limit cycle r, the
output of the LPF is then doubled and its square root is taken.
This approach can also be used to estimate the amplitude of
non-sinusoidal limit cycles. The output measurements is fed to
the limit cycle detector block to compute the objective function
J(x). The objective function is then multiplied with the same
state-dependent dither signal d(x, θ) to get an estimate of its
gradient with respect to θ, ∂J/∂θ. The resulting signal is
then integrated and multiplied with gain −δ to tune θ in the
direction of the estimate of ∂J/∂θ. The dynamics of time-
invariant ESC are then given by

θ̇ = −δJ(x)d(x, θ). (4)

In Section III, we prove a general theorem (Theorem 1) that
for all δ > 0 sufficiently small, the solutions of system (3)-(4)
converge asymptotically to a cycle that is δ-close to a so-called
generating cycle of (3) (see Remark 1 for the definition). The
value of θ that corresponds to the generating cycle is denoted
in Theorem 1 by θ0. In Section IV, we use a normal form
example (from [27, §2.4]) to prove that such a generating limit
cycle is indeed a limit cycle of minimal amplitude in the 2D
case. In other words, the normal form example allows us to
compute the optimal value of θ directly (which we denote by
θ∗), and we then prove that conditions of Theorem 1 hold
specifically for θ0 = θ∗.

III. THE GENERAL RESULT

In order to study limit cycles of system (3)-(4), we consider an
n-dimensional Poincaré map u 7→ P(u, δ) of (3)-(4) induced
by a cross-section S = {x ∈ Rn+1 : x1 = c}, where c is a
constant (see [27, §1.5.2]). In particular, the variable u in our
analysis is given by u = (x2, ..., xn, θ)

T . Stable fixed points of
the Poincaré map correspond to the initial conditions of stable
limit cycles of (3)-(4). Since system (3) admits a limit cycle
xθ for each θ, the full system (3)-(4) admits a C1-smooth
family of cycles (xθ, θ) parameterized by θ when δ is set
to 0. Therefore, the map u 7→ P(u, 0) admits a family of
fixed points (ξ(θ), θ)T , where θ 7→ ξ(θ) is C1-smooth. The
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Fig. 2: The family of fixed points for the Poincaré map (x2, θ) 7→ P(x2, θ, δ)
of (10)-(12) at δ = 0 with different initial conditions. The black solid dot
represents the fixed point (x∗2, θ

∗). The black cycle corresponding to θ =
θ∗ = 3 is the limit cycle of (10)-(11) with minimum amplitude, and the blue
and red cycles correspond to θ = 2, 4, and θ = 1, 5, respectively. All other
parameters of the system (10)-(12) are same as mentioned in Section V.

analysis in this section will determine when a particular fixed
point (ξ(θ0), θ0) of this family persists and gains asymptotic
stability (or disappears) upon varying δ from δ = 0 to δ > 0.

Differentiating

P((ξ(θ), θ)T , 0) = (ξ(θ), θ)T (5)

with respect to θ we observe that Pu((ξ(θ), θ)T , 0) always
admits an eigenvalue ρ1 = 1. In what follows, we will write
P(ξ(θ), θ, δ) to denote P((ξ(θ), θ)T , δ) to shorten the text.
Also, Pu denotes the derivative of P with respect to u. Let
us fix some θ0 ∈ R and denote by σ(Pu(ξ(θ0), θ0, 0)) the
set of eigenvalues of Pu(ξ(θ0), θ0, 0) counting the algebraic
multiplicity. Assume that

σ(Pu(ξ(θ0), θ0, 0)) = (1, ρ2, ..., ρn), |ρi|6= 1, i ∈ 2, n. (6)

Let y ∈ Rn denote the eigenvector of Pu(ξ(θ0), θ0, 0) that
corresponds to the eigenvalue ρ1 = 1. Let ỹ be the n×(n−1)
matrix of n−1 eigenvectors of Pu(ξ(θ0), θ0, 0) corresponding
to the eigenvalues ρ2, ..., ρn. Analogously, let z ∈ Rn be
the eigenvector of Pu(ξ(θ0), θ0, 0)T that corresponds to the
eigenvalue 1 and let z̃ be the n×(n−1) matrix of eigenvectors
of Pu(ξ(θ0), θ0, 0)T that corresponds to the eigenvalues not
equal to 1.

Theorem 1. Assume that the following conditions hold for the
unperturbed system, i.e., δ = 0 in (3)-(4) in addition to (6):

|ρ2|< 1, ..., |ρn|< 1, (7)

zTPδ(ξ(θ0), θ0, 0) = 0, (8)

zTPδu(ξ(θ0), θ0, 0)y < 0. (9)

Then, for all δ > 0 sufficiently small, the dynamics of the
full system (3)-(4) admit an asymptotically stable limit cycle
(xδ(t), θδ(t)) such that (xδ(0), θδ(0))→ (ξ(θ0), θ0) as δ → 0.

Proof. The proof is given in the appendix.

Remark 1. By analogy with [28], the limit cycle of (3)
corresponding to some θ = θ0 is termed a “generating limit
cycle” if it satisfies (8) and zTPδu(ξ(θ0), θ0, 0)y 6= 0.

Remark 2. Condition (8) is also a necessary condition of
Theorem 1 for the limit cycle (xδ(t), θδ(t)) to exist (see
Theorem 2).

Remark 3. The convergence guaranteed by Theorem 1 is of
order δ by Theorem 2, see formula (48).

IV. A STEP-BY-STEP GUIDE AND EXAMPLE

The following example of time-invariant ESC (3)-(4) will
be used to illustrate the general guidelines

ẋ1 = γ

(
− 1

r
x2 + x1

{
(θ+Mx1−θ∗)2−x21−x22+R2

})
, (10)

ẋ2 = γ

(
r(x1 − a(θ))+x2

{
(θ+Mx1−θ∗)2−x21−x22+R2

})
(11)

yo = x1

θ̇ = −δx31 (12)

where a(θ) = − M
M2−1 (θ − θ

∗) , r =
√
1−M2, M < 1 is a

positive constant, δ ∈ R+ is a small parameter, and γ ∈ R+

determines the speed of the system. For this analysis, we set
γ = 1; other values of γ will be considered in Section V. The
system of differential equations (10)-(11) is typically used as a
benchmark in problems where the closed form of a limit cycle
is required, see e.g., [27, §2.4]. For simplifying the analysis,
we follow the procedure in [6], where we neglect the filters
in the detector and consider only J(x) = x21 as our objective
function1. Also, we consider a state-dependent dither signal
d(x, θ) = x1 in this example. The multiplication of the cost
function J(x) with the dither signal d(x, θ) as in (4) results
in x31 in equation (12).

We first show that at δ = 0, the Poincaré map (x2, θ) 7→
P(x2, θ, δ) of (10)-(12) induced by the cross-section S = {x ∈
R : x1 = 0, x2 > 0}, exhibits a family of fixed points.

A. Families of Fixed Points at δ = 0

Let X0(t) = [X1(t), X2(t), X3(t)]
> denote one solution

of (10)-(12) at δ = 0, which is given by

X1(t) =
1

r

√
R2 − (θ − θ∗)2

M2 − 1
sin(t) + a(θ), (13)

X2(t) = −

√
R2 − (θ − θ∗)2

M2 − 1
cos(t), (14)

X3(t) = θ0, (15)

where θ0 is a constant. It can be easily noticed from (13)-
(14) that for different initial conditions, i.e., different values
of θ, the Poincaré map (x2, θ) 7→ P(x2, θ, 0) has different
fixed points x2 = ξ(θ) on the cross-section x1 = 0, x2 >
0, as shown in Fig. 2. The “size” of the limit cycle of the
system (10)-(11) is minimum at θ = θ∗, and we will now
use Theorem 1 to show that the closed-loop system (10)-(12)
converges in a neighborhood of this specific limit cycle for all
δ > 0 sufficiently close to zero.

1We have performed similar analysis to prove the minimization of J(x) =
x21 + x22, but computations are too long to present in a manuscript.
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X1δt

X2δt

X3δt

=

−r2(X1 − a)2 +R2 − (θ−θ∗)2
M2−1 −X

2
2 − 2r2X1(X1 − a) − 1

r − 2X1X2 2(X1 − a)MX1 − 2 (θ−θ∗)
M2−1X1

r − 2r2X2(X1 − a) −r2(X1 − a)2 +R2 − (θ−θ∗)2
M2−1 − 3X2

2 r M
M2−1 + 2X2(X1 − a)M − 2(θ−θ∗)

M2−1 X2

0 0 0


︸ ︷︷ ︸

f(x1,x2,θ)(X0(t, θ))

X1δ

X2δ

X3δ

+

 0
0
−X3

1


︸ ︷︷ ︸

fδ(X0(t, θ))

(16)

B. Analytic Stability Proof

In this section, we first compute the terms in Theorem 1
and then use them to prove the closed-loop system (10)-(12)
has an asymptotically stable limit cycle. Let X(t, x1, x2, θ, δ)
denote the general solution of (10)-(12). Then P(x2, θ, δ) will
be given by the last two components of X(2π, 0, x2, θ, δ), i.e.

P(x2, θ, δ) =
(
X2(2π, 0, x2, θ, δ)
X3(2π, 0, x2, θ, δ)

)
.

The entire analytic stability proof involves the computation
of 1) Pδ(ξ(θ), θ, 0)); 2) Eigenvectors of P(x2,θ)(ξ(θ

∗), θ∗, 0);
3) (Pδ)(x2,θ)(ξ(θ

∗), θ∗, 0) and, 4) Verification of conditions in
Theorem 1.

1) Computation of Pδ(ξ(θ), θ, 0): We have

Pδ(x2, θ, δ) =
(

(X2)δ(2π, 0, x2, θ, δ)
(X3)δ(2π, 0, x2, θ, δ)

)
. (17)

In order to compute Xδ(t, 0, ξ(θ), θ, δ), we substitute
X(t, x1, x2, θ, δ) for (x1, x2, θ)

> in (10)-(12), differentiate
(10)-(12) with respect to δ, and then substitute δ = 0 to get

Xδt(t, 0, x2, θ, 0)
= f(x1,x2,θ)(X(t, 0, x2, θ, 0)Xδ(t, 0, x2, θ, 0)
+fδ(X(t, 0, x2, θ, 0)),

(18)

For the example (10)-(12), (18) computes as (16). Plugging
(x1, x2, θ) = (0, ξ(θ), θ) in X(t, x1, x2, θ, δ) and denoting

X0(t, θ) = X(t, 0, ξ(θ), θ, 0),

equation (18) can be compactly written as

η̇ = f(x1,x2,θ)(X0(t, θ))η + fδ(X0(t, θ)), (19)

where η(t) = Xδ(t, 0, ξ(θ), θ, 0). To solve (19) for η, we will
use the variations of constants formula, which says that

η(t)=Y (t, θ)η(0)+Y (t, θ)

∫ t

0

Y (−s, θ)fδ(X0(s, θ))ds, (20)

where Y (t, θ) is the fundamental matrix solution of the
homogeneous equation

η̇ = f(x1,x2,θ)(X0(t, θ))η (21)

with the initial condition Y (0, θ) = I3 = Y −1(0, θ). Since we
need to solve (19) in the neighborhood of θ = θ∗ only, we
split f(x1,x2,θ)(·) to rewrite (21) as

η̇ = {A(t) + (θ − θ∗)B(t, θ − θ∗)︸ ︷︷ ︸
f(x1,x2,θ)(·)

}η. (22)

For the example (10)-(12), by combining (13)-(15), we obtain

A(t)=

 −2R2 sin2(t) R2 sin(2t)−1√
1−M2

2MR2 sin2(t)
1−M2√

1−M2(1 +R2 sin(2t) −2R2 cos2(t) −M−MR2 sin(2t)√
1−M2

0 0 0

 (23)

and B(t, (θ − θ∗)) is given by (55). Expanding Y (t, θ) in
Taylor series about θ = θ∗ up to first order, we get

Y (t, θ) = Y (t, θ∗) + (θ − θ∗)Yθ(t, θ∗)︸ ︷︷ ︸
Ỹ (t,θ)

+o(θ − θ∗), (24)

where Y (t, θ∗) is the matrix solution of

η̇ = A(t)η (25)

with the initial condition Y (0, θ∗) = I3. The matrix-solution
Y (t, θ∗) of the reduced linear system (25) computes as

Y (t, θ∗)=

 cos(t) - e
-2R2t sin(t)√

1-M2
- M
M2-1+M cos(t)

M2-1√
1-M2 sin(t) e-2R

2t cos(t) M
√
1-M2 sin(t)
M2-1

0 0 1

 . (26)

To find Yθ(t, θ∗), we plug the matrix solution Y (t, θ) into (22)
for η and differentiate (22) with respect to θ at θ = θ∗ to get

Ytθ = A(t)Yθ +B(t, 0)Y,

where Y stands for Y (t, θ∗). Since Y (0, θ) = I3 for all θ, we
have Yθ(0, θ∗) = 03, so we can use the variations of constants
formula to get

Yθ(t, θ
∗) = Y (t, θ∗)

∫ t

0

Y (−s, θ∗)B(s, 0)Y (s, θ∗)ds, (27)

which was computed using Wolfram Mathematica. The ex-
pression for Yθ(t, θ∗) is very lengthy, and therefore we refer
the readers to the supplementary Mathematica notebook file,
which is available for download. Using the closed form
expressions for Y (t, θ∗) and Yθ(t, θ

∗) from (26) and (27),
we can compute Ỹ (t, θ) in (24). Therefore, we can use the
variation of constants formula (20) with the initial condition
Xδ(0, 0, ξ(θ), 0) = 03 to compute Xδ(t, 0, ξ(θ), 0) as

Xδ(t, 0, ξ(θ), 0) = Ỹ (t, θ)

∫ t

0

Ỹ (-s, θ)fδ(X0(s, θ))ds

+o(θ − θ∗). (28)

Substituting t = 2π in (28) and using Wolfram Mathematica
to compute the integral (28), we finally obtain an expression
for Pδ(ξ(θ), θ) as

Pδ(ξ(θ), θ)=

[
∗

Mπ{−3(−1+M2)R2+(3+2M2)(θ−θ∗)2}(θ−θ∗)
(−1+M2)3

]
+ o(θ − θ∗). (29)

2) Computation of Eigenvectors of P(x2,θ)(ξ(θ
∗), θ∗, 0):

In order to verify conditions (8), (9) of Theorem 1, we
need to find the eigenvectors z, y of P(x2,θ)(ξ(θ

∗), θ∗, 0)>,
P(x2,θ)(ξ(θ

∗), θ∗, 0), respectively, that correspond to eigen-
value 1. We have
P(x2,θ)(ξ(θ

∗), θ∗, 0) =[
(X2)x2

(X2)θ
(X3)x2 (X3)θ

](
2π, 0, ξ(θ∗), θ∗, 0

)
.

(30)

To compute the first column terms of P(x2,θ)(ξ(θ
∗), θ∗, 0) in

(30), we substitute X(t, x1, x2, θ, δ) for (x1, x2, θ)
> in (10)-

(12), set δ = 0, and then differentiate (10)-(12) with respect
to x2 to obtain

Xx2t(t, 0, ξ(θ), θ, 0)=f(x1,x2,θ)(X0(t, θ))Xx2(t, 0, ξ(θ), θ, 0),

where f(x1,x2,θ)(x0(t, θ)) is the same matrix as in (16). Since
f(x1,x2,θ)(X0(t, θ

∗)) = A(t) from (22), we can use the
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fundamental matrix solution Y (t, θ∗) that we found for (21) in
(26) along with the initial condition Xx2(0, 0, ξ(θ

∗), θ∗, 0) =
(0, 1, 0)> to obtain
Xx2

(2π, 0, ξ(θ∗), θ∗, 0) = Y (2π, θ∗)Xx2
(0, 0, ξ(θ∗), θ∗, 0)

= Y (2π, θ∗)

01
0

 for (10)−(12)
==========

 0

e−4πR
2

0

 . (31)

Next, to compute the second column terms of
P(x2,θ)(ξ(θ

∗), θ∗, 0) in (30), we follow the same procedure,
where we differentiate (10)-(12) with respect to θ and set
δ = 0 to get

Xθt(t, 0, ξ(θ), θ, 0) =

f(x1,x2,θ)(X0(t, θ))Xθ(t, 0, ξ(θ), θ, 0). (32)
Similar to (31), we can compute the solution of (32) using the
initial condition Xθ(0, 0, ξ(θ), θ, 0) = (0, 0, 1)> to get
Xθ(2π, 0, ξ(θ

∗), θ∗, 0) = Y (2π, θ∗)Xθ(0, 0, ξ(θ
∗), θ∗, 0)

= Y (2π, θ∗)

00
1

 for (10)−(12)
==========

00
1

 . (33)

Plugging in (31) and (33) to (30), we get the following
expression for P(x2,θ)(ξ(θ

∗), θ∗, 0) of example (10)-(12):

P(x2,θ)(ξ(θ
∗), θ∗, 0) =

[
e−4πR

2

0
0 1

]
. (34)

From (34), it can be seen that P(x2,θ)(·) = P>(x2,θ)
(·), which

implies that the eigenvectors z and y are equal and given by

z = y =

[
0
1

]
. (35)

Note that (35) holds for all values of θ. Furthermore, the
eigenvalue ρ2 of P(x2,θ)(ξ(θ

∗), θ∗, 0) is in the interval (−1, 1)
because, from (34), ρ2 computes as

ρ2 = e−4πR
2

. (36)

3) Computation of (Pδ)(x2,θ)(ξ(θ
∗), θ∗, 0): In order

to verify (9) of Theorem 1, we need to compute
(Pδ)(x2,θ)(ξ(θ

∗), θ∗, 0), which is
(Pδ)(x2,θ)(ξ(θ

∗), θ∗, 0) =[
(X2)δx2 (X2)δθ
(X3)δx2 (X3)δθ

](
2π, 0, ξ(θ∗), θ∗, 0

)
.

(37)

To compute the first column terms of (37), we differentiate
(18) with respect to x2 to get

Xx2δt(t, 0, ξ(θ
∗), θ∗, 0) =

A(t)Xx2δ(t, 0, ξ(θ
∗), θ∗, 0) +H1(t), (38)

where A(t) is the same matrix as in (22). The computation
of H1(t) at θ = θ∗ for the example (10)-(12) is executed in
(56). In order to obtain the general solution of (38), we use
the variations of constants formula with the initial condition
Xx2δ(0, 0, ξ(θ

∗), θ∗, 0) = (0, 0, 0)> to get

Xx2δ(2π, 0, ξ(θ
∗), θ∗, 0) = Y (2π, θ∗)

∫ 2π

0

Y (−s, θ∗)H1(s)ds

for (10)−(12)
==========

 ∗
∗

3(6−6e−4πR2
)R2

(1−M2)3/2(9+40R4+16R8)

 (39)

Similarly, to compute the second column terms of (37), we
differentiate (18) with respect to θ and get

Xθδt(t, 0, ξ(θ
∗), θ∗, 0)

= A(t)Xθδ(t, 0, ξ(θ
∗), θ∗, 0) +H2(t). (40)

For the example (10)-(12), the computation of H2 at θ = θ∗

is mentioned in (57). In order to obtain the general solution
of (40) with the initial condition Xθδ(0, 0, ξ(θ

∗), θ∗, 0) =
(0, 0, 0)>, we use variations of constants formula, giving

Xθδ(2π, 0, ξ(θ
∗), θ∗, 0) = Y (2π, θ∗)

∫ 2π

0

Y (−s, θ∗)H2(s)ds

for (10)−(12)
==========

 ∗
∗

− 3MπR2

(M2−1)2

 . (41)

Plugging in the last two rows of (39) and (41) in (37), the
derivative (Pδ)(x2,θ)(ξ(θ

∗), θ∗, 0) computes for (10)-(12) as

(Pδ)(x2,θ)(ξ(θ
∗), θ∗, 0)=

[
∗ ∗

3(6-6e-4πR2
)R2

(1-M2)3/2(9+40R4+16R8)
− (3MπR2)

(M2-1)2

]
. (42)

4) Verification of Conditions in Theorem 1 for the Example
(10)-(12): In order to verify (8) of Theorem 1, we use (29)
and (35) to get

z>Pδ(ξ(θ), θ, 0)=
Mπ{−3(−1+M2)R2+(3+2M2)(θ−θ∗)2}(θ−θ∗)

(−1+M2)3 ,

which is zero only at θ = θ∗. Next, we use (35) and (42) in
(9) to get

z>(Pδ)(x2,θ)(ξ(θ
∗), θ∗, 0)y = − 3MπR2

(M2 − 1)2
, (43)

which is less than zero. This verifies (9) of Theorem 1. Next,
(7) of Theorem 1 holds by (36).

V. SIMULATION RESULTS

First, the system (10)-(11), along with time-invariant
ESC dynamics (12), was simulated with two different ini-
tial conditions: (i) [x1(0), x2(0), θ(0)] = [2, 0, 1] and (ii)
[x1(0), x2(0), θ(0)] = [2, 0, 5]. We chose γ = 1, R = 1 in
(10)-(11). The time-invariant ESC parameters were selected
as δ = 0.12,M = 0.015. The optimum in this simulation
was θ∗ = 3.0. From Fig. 3, it can be seen that our time-
invariant ESC tunes θ to θ∗ = 3, starting from two different
initial conditions of θ. Also, it can be seen from Fig. 4 that the
time-invariant ESC reduces the amplitude of the states x1, x2,
which have a peak-to-peak amplitude that tends to R = 1.

Next, we compare the performance of time-invariant ESC
with time-based ESC for different speeds of the system
determined by γ in (10)-(11). For time-based ESC, we tuned
its parameters for a particular γ, which resulted in stable
adaptation of θ. In particular, the parameters a = 0.015,
ω = 0.1 rad/s, δ = 0.03 were selected for the time-based ESC.
Similarly, for time-invariant ESC, the parameters δ = 0.03,
M = 0.015 were selected. As evident from Fig. 5, the time-
invariant ESC is less sensitive to changes in time-scale of the
plant compared to the time-based ESC. However, we remark
here that if a plant slows down sufficiently, δ needs to be re-
tuned in order to maintain time-scale separation between the
plant and the ESC dynamics.
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Fig. 3: Time-invariant ESC adaptation of θ from different initial conditions
of θ. The horizontal dashed line represents the value of θ∗.
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Fig. 4: Plot of states x1, x2 of the system (10)-(11) starting from initial
conditions [x1(0), x2(0)] = [2, 0] during time-invariant ESC adaptation.
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(a) Time-invariant ESC adaptation of θ for different values of γ.
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(b) Time-based ESC adaptation of θ for different values of γ.

Fig. 5: Performance comparison between time-invariant and time-based ESC
for different speeds of the system. Figs. 5a, 5b shows the time-invariant and
time-based ESC adaptation of θ to θ∗ = 3 for different values of γ without
changing the ESC parameters. It can be seen that for slower plant speeds, the
time-based ESC adaptation of θ becomes unstable for γ = 0.1π.

VI. DISCUSSION AND CONCLUSION

We presented time-invariant ESC for nonlinear autonomous
systems with limit cycles. The general formulation of our
ESC scheme uses a measurement of the state vector x of the
system (3)-(4). However, the knowledge of a single compo-
nent of x can be sufficient, as shown in our example. No
other information or knowledge of the system is needed for
our approach. This can be contrasted with [29], where the
authors assume explicit relation between the plant dynamics
and the unknown parameters and consequently use estimation
techniques to achieve extremum seeking.

For this time-invariant ESC, we present a method for
proving asymptotic stability of the limit cycle for the closed
loop system, which is based on perturbation theory for maps.
In particular, we stated the necessary and sufficient conditions
concerning the convergence of the solutions of (3)-(4) to a
limit cycle of (3) for any specified value of θ = θ0. Condition
(7) assumes asymptotic stability of each individual limit cycle
of the 1-parameter family of cycles of the plant system. This
condition is natural, because our approach is non-invasive and
cannot reverse the stability of limit cycles. Our control rule
only tunes the parameter to ensure that the limit cycle of
minimal amplitude is attained. Every example that we have
considered suggests that condition (8) is always satisfied only
at θ = θ∗ and not for any other values of θ. However, we do
not have a mathematical proof yet for this fact. Therefore, at
present, our result requires verifying condition (8) for a given
plant. Whether this requirement can be dropped, or there exist
a counter-example showing that it cannot be dropped, is an
interesting mathematical question that we will address in the
future. Finally, the stability condition (7) in Theorem 1 alone
is not sufficient to establish asymptotic stability of the full
system (3)-(4), because (7) does not consider the dynamics of
the time-invariant ESC (4). Therefore, an additional condition
(9) is required to ensure asymptotic stability of the full system.

The step-by-step guide of Section IV can be applied to any
general system (3)-(4) once the limit cycle of (3) is com-
putable explicitly. If the limit cycle of (3) cannot be computed
explicitly, applying the guide with an approximation of this
limit cycle will produce the correct conclusions as long as the
derivative (9) converges to a non-zero value (non-degeneracy
condition) as the approximation error decreases. The fact that
it is sufficient to verify the conditions of Theorem 1 for
an approximation of the limit cycle of (3) when the non-
degeneracy condition holds can be rigorously justified over
the methods of the Implicit Function Theorem. Verification of
the non-degeneracy condition can be done numerically.

We discovered that having a 6= 0 (that follows from (43)
because M 6= 0) plays a crucial role in our example, as it
dismantles the symmetry of the limit cycle of (10)-(11), which
is required for the validity of condition (9) in Theorem 1. This
is due to the fact that the main ingredients z>Pδ(ξ(θ∗), θ∗, 0)
and z>Pδu(ξ(θ∗), θ∗, 0) of this theorem represent an analogue
of averaging functions and its derivative (see [20, Section 4]),
so it is natural to expect that the averaging of a symmetric
function returns zero, violating condition (49). In particular,
we expect that the non-degeneracy condition of the previous
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paragraph will hold when the limit cycle of (3) is non-
symmetric in a proper way.

Though it is not obvious how generalizing equations (10)-
(11) can lead to explicitly computable terms of Theorem 1,
generalizing the cost function (12) is a reasonable task that
will be based on an analysis of abstract integrals (obtained
along the lines of Section IV). Moreover, our preliminary anal-
ysis indicates that replacing (12) with a polynomial function
would lead to explicitly computable integrals and a closed
form (though long) of condition (43). Analysis of the above-
mentioned integrals is an interesting mathematical task, but it
is outside of the focused scope of this Technical Note.

APPENDIX

In what follows, we present a proof of Theorem 1, which is
a combination of Theorems 2 and 3 stated in this section. We
first state a lemma with its proof, which will be used in the
proof of Theorem 2. We then present several long expressions
from our analysis in Section IV.

Lemma 1. If

zT y = 1, and z̃T ỹ = In−1, (44)

then any ζ ∈ Rn can be decomposed as

ζ = yzT ζ + ỹz̃T ζ. (45)

Furthermore, (44) ensures that y and the (n−1)-dimensional
hyperplane lin(ỹ) formed by vectors ỹ are linearly indepen-
dent and

πζ = yzT ζ, (46)

where πζ is the projection of ζ on y along lin(ỹ).

Proof. First, observe that since (y, z) and (ỹ, z̃) are the
eigenvectors that correspond to eigenvalues ρ1 = 1 and ρ2 6= 1
of some matrices A and AT , then

z̃T y = zT ỹ = 0. (47)

Indeed, from AT z̃ = z̃ρ2 we have z̃TA = ρT2 z̃
T . Therefore,

z̃TAy = ρT2 z̃
T y, which implies z̃T y = ρT2 z̃

T y, and so z̃T y =
0. The second equality follows by a similar argument.

Formulas (44) and (47) imply that y and lin(ỹ) are linearly
independent and so πζ is defined. By the definition of πζ, we
have ζ − πζ ∈ lin(ỹ) and so, by (47), zT (ζ − πζ) = 0. Let
πζ = yλ, where λ ∈ R. Using (44),

zT ζ = zTπζ = zT yλ = λ,

which implies (46).
Similarly, let π̃ζ be the projection of ζ on the hyperplane

formed by vector ỹ along y. Then, z̃T (ζ − π̃ζ) = 0. Since
π̃ζ ∈ lin(ỹ), there exists λ̃ ∈ Rn−1 such that π̃ζ = ỹλ̃.
Arguing as above, we get

π̃ζ = ỹz̃T ζ.

Therefore, (45) coincides with the rule of the sum of vectors,
i.e., ζ = πζ + π̃ζ.

Theorem 2. (Necessary and Sufficient Condition for Exis-
tence of Limit Cycles) — Necessity Part: Let the Poincaré
map P be a C3 function, and assume that z>y 6= 0. If, for

each δ ∈ R, u 7→ P(u, δ) admits a fixed point uδ ∈ Rn such
that

‖uδ − u0‖≤ Nδ, u0 = ξ(s0), (48)

for some N > 0, s0 ∈ R, and for all |δ| sufficiently small,
then (8) holds.
Sufficiency Part: In addition to (8), assume that

z>Pδu(u0, v0, 0)y 6= 0 (49)

and (6) hold. Assume further that the eigenvector z does not
depend on s0, i.e.

zT (Pu(ξ(s), 0)− I) = 0, for all s ∈ R. (50)

Then, for all |δ| sufficiently small, the Poincaré map u 7→
P(u, δ) does indeed have a fixed point uδ that satisfies (48)
for some N > 0 and for all |δ| sufficiently small.

Proof. Necessity part: We expand P(u, δ) up to first order as

P(u, δ) = P(u, 0) + δPδ(u, δ).

Therefore,
1

δ
zT
[
P(uδ, 0) + δPδ(uδ, δ)− uδ

]
= 0. (51)

Expanding P(u, 0) in Taylor Series up to first order about
u = u0, we can rewrite the latter equality as

zT

δ

[
P(u0, 0)+Pu(u0, 0)(uδ-u0)+δPδ(uδ, δ)-uδ+o(uδ-u0)

]
=0.

By the definition of z, we have Pu(u0, 0)T z = z, whose
transpose gives

zTPu(u0, 0) = zT . (52)

Using (52) and the fact that P(u0, 0) = u0, we conclude

zTPδ(uδ, δ) +
1

δ
o(uδ − u0) = 0,

which implies (8) due to (48).
Sufficiency part: Introduce

F (u, δ) = P(u, δ)− u. (53)

To obtain the required statement from [20, Theorem 1] we
need to prove that
(i) πFu(u0, 0)Rn = Fu(u0, 0)πRn,

(ii) matrix Fu(u0, 0) is invertible on (I − π)Rn,
(iii) πFδ(u0, 0) = 0,
(iv) matrix πFuu(u0, 0)h vanishes on πRn for any h ∈ Rn,
(v) matrix πFδu(u0, 0) is invertible on πRn.

Indeed, (i) holds because Fu(u0, 0)y = zTFu(u0, 0) = 0
by the definition of y and z. By Lemma 1,

(I − π)ζ = ỹz̃T ζ.

Therefore, (ii) holds by (6). Property (iii) coincides with (8).
By differentiating (50) at s = s0, we get

zTPuu(u0, 0)y = 0,

which implies (iv). Finally, (v) follows from (49). The con-
clusion now follows from Theorem 1 and Remark 2 of [20].
The value N can be taken as e.g. N = 2‖w0‖, where w0 is
that given by [20, Theorem 1].
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B(t, θ − θ∗)=


2 sin(t){M

√
1-M2

√
R2- (θ-θ∗)2

M2-1 +(θ-θ∗) sin(t)}
M2-1

2 cos(t){M
√
1-M2

√
R2- (θ-θ∗)2

M2-1 +(θ-θ∗) sin(t)}
(1-M2)3/2

3M(θ-θ∗)-M(θ-θ∗) cos(2t)+2
√
1-M2(1+M2)

√
R2- (θ-θ∗)2

M2-1 sin(t)

(M2-1)2

(θ−θ∗) sin(2t)√
1-M2

2(θ-θ∗) cos2(t)
M2-1 -

2 cos(t){
√
1-M2

√
R2- (θ-θ∗)2

M2-1 +M(θ-θ∗) sin(t)}
(1-M2)3/2

0 0 0

 (55)

H1(t)=


x1δ{-2r2(x1-a)(x1x2 + M

M2-1θx2
)-2x2x2x2 }+x1x2 {-2r

2(x1-a)(x1δ+ M
M2-1θδ)-2x2x2δ} − 2r2x1(x1x2 + M

M2-1θx2
)(x1δ+ M

M2-1θδ)-2θx2
θδx1-2x2x2x2δx1

x2δ{-2r2(x1-a)(x1x2 + M
M2-1θx2

)-2x2x2x2 }+x2x2 {-2r
2(x1-a)(x1δ+ M

M2-1θδ)-2x2x2δ}+ x2{-2r2(x1x2 + M
M2-1θx2

)(x1δ+ M
M2-1θδ)-

2θx2θδ
M2-1 -2x2x2x2δ

−3x21x1x2

 (56)

H2(t)=

x1δ{-2r
2(x1-a)(x1θ+ M

M2-1θθ)-2x2x2θ}+x1θ{-2r
2(x1-a)(x1δ+ M

M2-1θδ)-2x2x2δ} − 2r2x1(x1θ+ M
M2-1θθ)(x1δ+ M

M2-1θδ)-2θθθδx1-2x2θx2δx1

x2δ{-2r2(x1-a)(x1θ+ M
M2-1θθ)-2x2x2θ}+x2θ{-2r

2(x1-a)(x1δ+ M
M2-1θδ)-2x2x2δ}+ x2{-2r2(x1θ+ M

M2-1θθ)(x1δ+
M

M2-1θδ)-
2θθθδ
M2-1 -2x2θx2δ

−3x21x1θ

 (57)

Theorem 3. (Sufficient Condition for Stability of Limit
Cycles) — Assume that sufficient conditions of Theorem 1
hold with

z>y > 0, (54)

and let uδ be the fixed points satisfying (48). The fixed point
uδ is asymptotically stable, for all δ > 0 sufficiently small, if
(7) is satisfied, and if (49) holds in the stronger sense (9).

Proof. Let ρδ be the eigenvalue of Pu(uδ, δ) satisfying

ρδ → 1 as δ → 0.

Observe that λδ = ρδ − 1 is the eigenvalue of Fu(uδ, δ) for
F given by (53). Thanks to (iv) of the proof of Theorem 2,
the negativity of λδ for all δ > 0 sufficiently small will
follow from [20, Theorem 2], if the eigenvalue λ∗ of the one-
dimensional map πFδu(u0, 0) : πRn → πRn is negative. By
(46), we have λ∗ = zTFδu(u0, 0)y and so λ∗ < 0 by (9).

Long Expressions — The equations for B(t, θ− θ∗) in (22),
H1(t) in (38) and H2(t) in (40) are given by (55), (56) and
(57), respectively.
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