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ABSTRACT

We find a class of twisted and differentially rotating neutron star magnetospheres that do not have a light cylinder, generate no
wind, and thus do not spin-down. The magnetosphere is composed of embedded differentially rotating flux surfaces, with the
angular velocity decreasing as €2 o< 1/r (equivalently, becoming smaller at the foot-points closer to the axis of rotation). For each
given North—South self-similar twist profile there is a set of self-similar angular velocity profiles (limited from above) with a
‘smooth’, dipolar-like magnetic field structure extending to infinity. For spin parameters larger than some critical value, the light
cylinder appears, magnetosphere opens up, and the wind is generated.
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1 INTRODUCTION

Magnetospheres of pulsars are highly magnetized and relativistically rotating (Goldreich & Julian 1969). Though the initial set-up is very
simple — rotating magnetized sphere with dipolar magnetic field — the non-linear effects of charges and currents on the open field lines modify
the field and make the problem highly non-linear (Beskin, Gurevich & Istomin 1988; Contopoulos, Kazanas & Fendt 1999; Gruzinov 2005;
Spitkovsky 2006).

Another complication comes from possible non-dipolar, current-carrying magnetospheric fields in the closed zone (Thompson, Lyutikov &
Kulkarni 2002; Lyutikov 2013; Parfrey, Beloborodov & Hui 2013). Current-loaded magnetospheres, e.g. slightly twisted dipole (so that the
northern foot-point is at different azimuthal angle ¢ than the southern foot-point) are not the same as vacuum multipoles (though they can be
expanded as a sum of). Qualitatively, a given twist of a field line concentrates at the point of lowest guiding field. Hence at the furthest point
(along closed field lines) in a (nearly) dipolar magnetosphere. This is especially important for magnetar phenomena (Thompson et al. 2002;
Lyutikov 2013; Parfrey et al. 2013).

Yet another complication comes from possible differential rotation of the foot points. This is induced by the electron Hall dynamics in the
neutron star crust (Goldreich & Reisenegger 1992; Wood, Hollerbach & Lyutikov 2014; Gourgouliatos et al. 2015). In a ‘Solar flare’ model
of magnetar activity Lyutikov (2006, 2015) slow, plastic twisting of footprints leads to kink instabilities, generation of flares and coronal mass
ejections.

Overall the system becomes very complicated/non-linear. This puts special emphasis on possible (semi)-analytical solutions, that solve
the complicated mathematics problem, and yet can be easily traced to the first principles. In this paper, we discuss a class of (quasi)-analytical
solutions of pulsar magnetospheres with a highly unusual properties: rotating and twisted pulsar magnetospheres without light cylinders.

2 SELF-SIMILAR ROTATING AND TWISTED MAGNETOSPHERES

The workhorse of analytical investigation of pulsar magnetospheres is the relativistic generalization of the Grad-Shafranov equation (Shafranov
1966; Grad 1967; Michel 1973; Scharlemann & Wagoner 1973; Beskin 2009) which expresses the force balance in an axially symmetric
magnetosphere. The conditions of zero-divergence of the magnetic field, the ideal condition and axial symmetry allow the force balance to be
expressed as a single scalar equation for the shape of the magnetic flux function W(r, 8). There is a mathematical problem, though: the source
terms (the poloidal current and in the case of differentially rotating magnetosphere the spin) enter as terms that are functions of the solution
itself, not as independent quantities. This leads to mathematical complication: the equation to be solved and the solution need to be found
self-consistently.

Few analytical roads remain. First, one can prescribe /(W) and solve for W. For example, linear relations / = oWV lead to simple, linear, and
hence highly useful analytical solutions, spheromaks in spherical geometry. Alternatively, Lynden-Bell & Boily (1994) suggested a self-similar
approach, where the structure has a power-law scaling with the spherical radius. (They were adopted to cylindrical coordinates by Lyutikov
2020b). Twisted configurations of Lynden-Bell & Boily (1994) are especially useful for astrophysical magnetars (Thompson et al. 2002).
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In what follows we generalize the non-linear self-similar solutions of twisted magnetospheres of Lynden-Bell & Boily (1994) to twisted
and differentially rotating configurations.

2.1 Self-similar twisted and rotating magnetospheres

For a stationary axially symmetric configuration, Fig. 1, the Grad-Shafranov prescription involves field parametrization

B = (V¥) x (V) + I(¥)(Ve)

E=-Vo(V)

Q=-9 €))
The force balance

EdivE+(VxB)xB=0 2)

gives then the Grad-Shafranov equation (Shafranov 1966; Grad 1967; Scharlemann & Wagoner 1973; Beskin 2009)
ro, W + cot 6oy W
( -ot03 ) n

re

(1 —r*sin*0Q%) AW —2 II' = (VU)’rsin’ 0QQ =0, )

(factors of 47t omitted). (€2 is not the rate of shearing of foot-points, it’s an angular velocity of rotation of a give flux surface.)
Let’s look for self-similar solutions to (3) in a form of

U =r"PF(@)
I = Cl\pa
Q= C,v# 4)

By dimensional analysis

B=1/p 5)
so that the radial scaling of all the components of the magnetic field is oc 7> ~7: The electric part has the same power-law scaling as the

magnetic. (We also comment that for p = 0 one recovers Michel’s solution ¥ = 1 — cos#, but with arbitrary ©(8), I = (1/2)sin?6(8);
Blandford & Znajek 1977; Lyutikov 2011).
The angular part of the Grad-Shafranov equation (3) then obeys

(p(l + p)F + C1F1+2/p —+ (l _MZ) F//) _

(1+py

2C?
2 p3

(1 _ MZ) F2/p—l (p3F2 + (1 _Mz) F/‘Z + pF ((1 _ HZ) F/ — Z/LF/)) — 0, (6)

where 1 = cos 8 and we redefined ¢; = +/C,/(24/T + 1/p) to match the notations in Lynden-Bell & Boily (1994). The first part in parenthesis
is the Lynden-Bell & Boily (1994) term. The coefficient C; describes the twist of each field line: the northern and southern foot prints have
different azimuthal coordinates. The last line is the contribution from self-similar rotations of the magnetosphere. Note that the direction
rotation, the C, term, does not influence the structure, which depends on C2. (A particular divergent dipolar solution of (6) found by Petrova &
Flanchik 2018, in our notations corresponds top =1, F =1 — wha=-1,C, = +/C/8)

For given F the fields are given by

1 /C 2
B=<{F, pF, - AP iy r 2 Psing !,
2\ p+1

F/
E = {F, -, 0} Cy(1+ pyr27PFl/r )
p

Solutions to equation (6) are of the eigenvalue problem: there are three conditions:

F'(0) = 0, zero radial magnetic field at § = /2

F(1) =0, zeroBgatr0 =0

F'(1) = —2, radial magnetic field at the pole, normalized to the dipole field ®)

The three boundary conditions (8) impose an eigenvalue constraint on the triad of radial index p, twist C;, and rotation C,: given the two,
the eigenvalue constraint fixes the third. We also note that relations (8), the condition that the flux function is equal to zero is automatically
satisfied for @ = . This condition provides a zero flux of the magnetic field through the surface of any sphere.
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Figure 1. Rotating and twisted magnetosphere without light cylinder. Pictured are magnetic field lines for two flux surfaces. On each flux surface the magnetic
field is twisted; in addition flux surfaces are rotating with spin frequency 2 decreasing as a function of maximal radius (equivalently, becoming smaller for
smaller polar angles of the foot-points. The magnetosphere is thus composed of onion-like set of nested flux surfaces that rotate each as a solid body, while
different surfaces are sheared with respect to each other.
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Figure 2. Radial power-law index p as function of the twist parameter C for different spins parameters. The dashed line, non-rotating is C; = 0. Other lines
correspond to C; = 0.01, 0.1, 0.2, 0.3 (top to bottom). Note that for cases when there are no self-similar solutions (e.g. for p smaller than some critical value
for each C> # 0) one may still a have no-light cylinder magnetosphere, but its structure is not self-similar.
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Figure 3. Radial power-law index p as function of the rotation parameter C; for untwisted configuration C; = 0.

For quasi-static solution without rotation, C, = 0, the current decays slowly due to resistivity (e.g. section 5.2 of Thompson et al. 2002).
That decay is slow. In a fully stationary case the decay is compensated by the EMF. If the small resistivity is neglected, exactly stationary case,
there is no EMF.

Corresponding solutions for p(C;, C,) are plotted in Figs 2—4. Rotation first strongly modifies highly twisted solutions p — 0, Fig. 2.
As the spin parameter C; increase, the range of allowed values of C; — p decreases. Solutions become more dipolar-like (in terms of radial
profile, p =~ 1).

Note that in the cases when the eigen-problem cannot be satisfied, there may still be solutions with no light cylinder, but those solutions
will be non-self-similar. Eventually, for large enough spin the light cylinder will be formed.

In the case of untwisted magnetospheres, C; = 0, the maximal spin parameter is C, = 0.34, Fig. 3. We note that finite twists C; # 0 allow
for larger spins, Fig. 4.
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Figure 4. Radial power-law index p as function of the spin parameter C, for different twist parameters. Beyond the plotted values the index p falls down
precipitously.

For small twists the electromagnetic velocity is

ExB _ 22 /C,C,sin® 0 cos®  /2/C;C,sin’ 0
B2 5 4+ 3cos(26) © 54 3cos(26)

,2C, sin39}. )

It is independent of the radius and changes sign at the equator. The Pointing flux oc ¥~2@* P is zero at infinity: the pulsar does not spin-down.
For each solution the angular velocity decreases with radius and increases with polar angle

1\ F)'’? R

Q=0C, <1 + ,) L — LSF(/L)””QO, (10)
p r r

where typical value at the surface is

1
Q=G <1+7>L 1)
P/ Rns

(each flux surface rotates as a solid body.)
Azimuthal velocity is

vy = Qrsind = (Rys) sin@F!/» (12)

The locations of the light cylinder is determined by vy = c. For the exemplary case of C; = 0.1, C; = 0.66, p = 0.79 we have Qy = 0.227;
the maximal value of Qrsin6 equals 0.241 < 1. There is no light cylinder.

Generally, rotation leads to further (in addition to twisting) ‘inflation’ of field lines, Fig. 5. (We stress that inflation here occurs due to the
rotation of a flux surface as a whole, not due to the shearing of the foot-points of a given field line).

The electric potential

. 40
SlIl2 (13)

O = Cyr HPIFHP &
-
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Figure 5. Example that both twist and rotation rotation leads to ‘inflation’ of field lines. The dashed line is for dipole F = 1 — u?; dot-dashed is for twisted
non-rotating case C; =0, C; = 0.66, p = 0.867, solid line is rotating case C; = 0.1, C; = 0.66, p = 0.79 (same C| as non-rotating).

leads to distributed charge

—@3+p)
o = AD o -0t n, 20Bus (Rys (14)
¢ 4rre r

electric field,

E=-V®or @ (15)
Near the neutron star the radial component of the electric field integrated over the surface gives the central charge Q.

QyBysR;
Q. ~ (16)

C

Since for r — oo E, — 0 faster than 1/, the total distributed charge equals the central charge.

3 SIMULATION

3.1 PHAEDRA code

PHAEDRA code (Parfrey, Beloborodov & Hui 2012) is a pseudo-spectral code developed specifically to study highly magnetized plasma
regime, force-free electrodynamics, the vanishing-inertia limit of magnetohydrodynamics (Gruzinov 1999; Komissarov 2006)
The code solves Maxwell’s equations

1
~3B=-VxE
C

1 4
-E=VxB—-——] 17)
c c

supplemented by the force-free expression.

pPE+JxB=0 (18)
The force free Ohm’s law is then
4nJsg B-VxB—-E-V xE ExB
= B+V-.E 19
c B2 + B2 19
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Figure 6. Time slice of toroidal magnetic field By near the equator for C; = 0.10, C; = 0.005, p = 0.9989. The solid line is our simulation results, dashed line
is the theoretical expectation r— ),

Condition E.B = 0 is satisfied by construction, while B2 — E? > 0 is assumed (and checked at each step). The code uses a thin frictional
absorbing layer next to the outer boundary. The code applies two spectral filters of 8th and 36th order, to maintain stability (Parfrey et al. 2012).
Our results further indicate that the code is very stable and efficient, and has low numerical dissipation. The full numerical grid is defined
in axisymmetric spherical coordinates and composed of N, x Ny cells along the radial and 6 directions, respectively. The simulation zone in
our work extends from the stellar surface 7yin = Rys Up t0 iy = 100Rys.
The inner boundary is set as the radius of the star (r = Ryg) and the following conditions are strongly enforced at every Runge—Kutta
substep.

B, = B,(0)
Ey = —QB, sinf
Ey =0 20)

3.2 Initialization

Analytical self-similar solutions, Section 2.1, are approximations: the system is generally non-self-similar (there is a special scale — the light
cylinder). Thus, we do not expect the numerics to match exactly with analytics, just to follow the general trend. With this in mind, we initialize
the simulation setup with analytical approximation for the structure of non-rotating twisted magnetospheres for small/mild twist parameter
C, and the values of C, from the self-similar solution, Fig. 2. For small twists, we can find analytical relation for the structure of non-rotating
magnetosphere by expanding near p = 1, C; = 0 and the dipolar flux function (Lyutikov 2013):

p=1-8C/35

_ _ 2 L 42 _ 2

F=(1 M)<1+140(1 12 (17 S,L)q)

u = cosf 21
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Figure 7. Zoomed-in time slice of our force-free simulation depicting toroidal magnetic field rsin (6)By, radial momentum p,, and toroidal velocity vy for the
fiducial magnetosphere without light cylinder. In top panel we plot C; = 0.005, C; = 0.10, p = 0.9989 case, middle panel is for C; = 0.66, C> =0.10, p =0.79,
bottom panel is for C; = 0.05, C2 = 0.20, p = 0.9854. The radial momentum is the E x B o< C,+/C; drift, equation (7). Since © o 1/r, equation (10), azimuthal
velocity vg remains approximately constant with radius, equation (9), top right-hand panels. We do not observe light cylinder in top two rows. At higher spin
parameter C; = 0.2, C; = 0.05, p = 0.9854 (lower row) the light cylinder can be clearly identified by the location of the Y-point. The wind is generated (this is
especially clearly seen in radial momentum p,, central panel.

In this approximation, the flux magnetic field components and twist angle are given by

B 2 1+3(13—18u2+5u4)

= c
Bys 2P 140 !
By \1-p? - (17 — 222 + 5u%) €y
Bys D e 140

3/2
By _ [ (1=w?)!
Bys  \[1+p 7
jr 2\ ~—3—
— I =2V2u(1- r\/C
Bovs/dm w(l—u?)F 1
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where C; is a twist parameter, (44, is the cosine of the polar angle of the northern foot point, and By is the equatorial magnetic field.

3.3 Results

In order to demonstrate that the simulated magnetic field follows the radial scaling predicted by analytics, we plot a time slice of toroidal
magnetic field B, at & = 7 in Fig. 6 and try to fit it to =@+ We see that the our radial scaling is in agreement with the analytics.

MNRAS 513, 1947-1957 (2022)

220z AInp |1 uo Josn NINQY Seuelqi Aisioniun anpind Aq 202€959/.¥6L/Z/€ L G/o1o1ME/SeIu/WOd dNo"dlWapEdE//:Sd)y Wolj papeojumoq



1956 M. Lyutikov and P. Sharma

In Fig. 7, we plot the scaled azimuthal magnetic field, radial momentum, and the azimuthal velocity for three sets of C;, C,. For C; =
0.005 ~ 0 as evident in the top panel, the structure of the rotating magnetosphere clearly matches the analytical result: there are no open field
lines, not radial Poynting flux, no energy losses. We see similar structure for the case of C; = 0.1, C; = 0.66, p = 0.79 (twisted sheared
configuration) in bottom panel.

For small C; all twisted configuration do not have a light cylinder (first two panels in Fig. 7 and also bottom row in Fig. 8). When we
increase the spin parameter C,, the picture changed qualitatively, bottom panel in Fig. 7 (Also see middle row in Fig. 8).

To further verify the observations made in previous paragraphs, we plot scaled toroidal magnetic field for various permutations of C;, C»
in Fig. 8.

From the figures, it is clear that the presence of the light cylinder and wind depends strongly on C,. For slow rotation C; = 0.1 (bottom
row) there is no light cylinder. The light cylinder appears near C; > C; o =~ 0.15. (To guide an eye, formation of the wind requires light
cylinder and the corresponding formation of a Y-point. Images with no Y-point imply no wind and no light cylinder.) A more precise critical
value of C; ¢ could not be determined: at the transition the light cylinder appears at large distances, reaching the absorbing layer next to the
outer boundary). For larger C; > G, it the light cylinder is located closer to the star. We restrict our simulations to C, < 0.3. At this moment
the light cylinder is located nearly at the star’s surface, but the relaxation time becomes very long (if compared with small C; cases).

4 DISCUSSION

‘We discuss an analytical model of a differentially rotating neutron stars with twisted magnetospheres. We find a new type of solutions without
light cylinders. Such configuration could still be a pulsar, a rotating neutron star: it will be more like magnetar producing periodically modulated
radio emission driven by magnetic reconnection (Lyutikov 2002, 2020a), not by the rotational energy.

The present model is mostly mathematical. It requires that the twisting motion of the foot-points be comparable to the spin; and the spin
shear must be of the particular shape, related to twist. It is a bit surprising that rotating magnetospheres can still be self-similar, since there
is a special distance, the light cylinder. Our results indicate that there is a special set of parameters without light cylinder, thus allowing for
self-similar solution.

‘We see the value of the model in that, first, that it provides a clear analytical example of a new types of solutions of the pulsar equation:
rotating yet non-spinning down configurations. Secondly, the model might have implication for numerical modelling of twisted, sheared, and
rotating magnetospheres of magnetars. Those types of models usually start with stationary neutron star, and then twist, shear, and rotate it.
Necessarily, in those simulations the twisting, shearing, and the rotation rate must be similar, as the simulations are limited in their dynamic
range: they have to deal with twisting rates similar, just somewhat smaller, to the rotation rate.
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