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Abstract

We consider topological configurations of the magnetically coupled spinning stellar binaries (e.g., merging neutron
stars or interacting star—planet systems). We discuss conditions when the stellar spins and the orbital motion nearly
“compensate” each other, leading to very slow overall winding of the coupled magnetic fields; slowly winding
configurations allow gradual accumulation of magnetic energy, which is eventually released in a flare when the
instability threshold is reached. We find that this slow winding can be global and/or local. We describe the
topology of the relevant space F = T'S? as the unit tangent bundle of the two-sphere and find conditions for slowly
winding configurations in terms of magnetic moments, spins, and orbital momentum. These conditions become
ambiguous near the topological bifurcation points; in certain cases, they also depend on the relative phases of the
spin and orbital motions. In the case of merging magnetized neutron stars, if one of the stars is a millisecond pulsar,
spinning at ~10 ms, the global resonance w; + w, = 22 (spin-plus beat is two times the orbital period) occurs
approximately one second before the merger; the total energy of the flare can be as large as 10% of the total
magnetic energy, producing bursts of luminosity ~10* erg s~'. Higher order local resonances may have similar
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powers, since the amount of involved magnetic flux tubes may be comparable to the total connected flux.

Unified Astronomy Thesaurus concepts: Interacting binary stars (801); Neutron stars (1108)

1. Introduction

Direct magnetospheric interaction occurs in binary main-
sequence stars (e.g., epsilon Lupi system, Shultz et al. 2015),
white dwarf binaries (Warner 1983; Buckley et al. 2017),
planetary systems (Rubenstein & Schaefer 2000; Antoine 2021),
and has been suggested to occur between merging neutron stars
(Hansen & Lyutikov 2001; Lyutikov 2011; Palenzuela et al. 2013;
Radice et al. 2018; Lyutikov 2019; Most & Philippov 2020). In
the latter case, it may lead to the precursor emission: production of
an electromagnetic signal before the merger.

In the case of merging neutron stars, it is expected that the
persistent power of the EM precursor is not very high, and not
likely to be detected by all-sky high-energy monitors (Hansen
& Lyutikov 2001; Lyutikov 2019; Most & Philippov 2020, and
Section 5). Can the merging neutron stars produce flares that
temporarily result in higher fluxes? Stellar flares that release up
to 107 times more energy than the largest solar flare have been
detected from main-sequence stars that host large planets
(e.g., Schaefer et al. 2000). Rubenstein & Schaefer (2000)
proposed that super-flares are caused by magnetic reconnection
between the primary star and close-in Jovian planets. Follow-
ing this ideas, we will investigate possible appearance of flares
in magnetically interacting stars, and neutron stars in particular.

A magnetosphere of magnetically interacting stars is
expected to have three types of regions (Figure 1), formed by
magnetic field lines that (i) start and end on the same star, (ii)
provide magnetic coupling, and (iii) connect to infinity (such
regions appear both due to the spin of each star and orbital
motion (Goldreich & Julian 1969); we ignore them here). The
common part of the magnetosphere (magnetically coupled
region ii) is twisted both by the relative spins of each
companion, and by the orbital motion of the companions. Of
particular interest are quasi-stationary configurations of the
interacting magnetospheres, when the twisting produced by the
orbital rotation is (partially) compensated by the spin(s) of the

binary. In such cases, we expect that the common magneto-
sphere is slowly wound/twisted by the combined effects of the
components’ spin and orbital motion; as a result, a fraction of
the rotational energy is slowly stored in the magnetic field.
After a system reaches some instability threshold, the stored
magnetic energy can be released in (possibly) observable flares.
In contrast, in highly time-dependent configurations, the energy
release is expected to be nearly continuous. This results in
smaller instantaneous luminosities and, in addition, quasi-
steady sources are harder to detect observationally.

In this paper, we discuss the topology of magnetically
interacting stars and identify (quasi-) steady configurations,
both global (when the whole magnetosphere returns to an
initial state), and local (when only tubular neighborhoods of
special magnetic field lines are untwisting).

The plan of the paper is as follows. In Section 2, we discuss
qualitatively magnetic tube winding rate using the principle of
braiding of present and future field lines. In Section 3, we
discuss globally untwisting configurations. In Section 4, we
develop a mathematical description of field line windings and
use it to identify various possible resonances. In Section 5, we
discuss astrophysical applications of the model.

2. The Concept of Magnetic Tube Winding

Consider two stars orbiting each other with orbital frequency
Q. Consider distances much smaller than the (effective) light
cylinder radius, so that, in the frame of the rotating stars, the
effects of line sweep-back are not important. It is expected that,
in all astrophysically important applications, the surrounding
can be described as plasma: even in the case of merging
neutron stars, when there is little external plasma, the
magnetospheres are filled with self-generated electron-positron
plasma (Goldreich & Julian 1969).

We are facing a complicated, time-dependent, three-dimen-
sional, MHD problem (relativistic MHD in the case of merging
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Figure 1. Example of magnetically coupled stars. The stars are located at x = £0.5 and have oppositely directed magnetic moments. The green field lines end on the
same star from which they originate and form region (i). The red and magenta lines form region (ii), with red lines connecting the right star to the left one and the

magenta lines connecting the left star to the right one.

neutron stars). To get a physical insight, let us think in terms of
magnetic flux tubes; in nearly ideal plasma a magnetic flux tube
has a clear physical interpretation due to the frozen-in
condition. Let us next construct a physical model of the
magnetic fields frozen in plasma, representing them as material
objects: flux tubes. Each flux tube consists of nearby magnetic
lines bundled together, forming a tubular neighborhood of its
central line.

We are not interested in the twisting of each field line by
itself (which is curl B), but rather we are interested in the rate at
which a magnetic tube’s twist increases (its winding rate). That
means comparing how adjacent field lines and their images at a
later time intertwine/braid around each other. Each field line
can carry a current (can be twisted); this is not important. What
we are after is the change in winding as measured by braiding
of past and future magnetic lines. For example, each hair in a
braid can be twisted on its own, but the topology of a braid is
determined by how adjacent hairs interweave around it relative
to each other. Clearly, it takes three strands to define a braid

(indeed, the hair braid needs at least three strands of hair). In
our case, one of the strands will be the central line, another, the
nearby line from the past, and the third, that same nearby line
from the future. In more detail: since we are interested in the
change of twisting of the flux tubes, it suffices to track its
central line and one of the nearby lines (as a reference). This
pair of lines can be thought of as a ribbon, with differently
colored sides. Say, the central line is blue and its nearby line at
the initial moment is red. Whenever, at some later moment, the
central line happens to be sufficiently close to its original
shape, we have the nearby line at that moment provide the third
strand we need. Color the nearby line at that later moment
green. Thus the braid consists of the blue central line strand
(initial same as final), the red initial nearby line strand, and the
green final nearby line strand. Then, at that moment, we can
measure the winding of the final (green) nearby line around the
(blue) central line relative to the (red) initial nearby line. The
winding rate is that winding angle divided by the time
increment.
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Figure 2. Basic configuration for Case II magnetically couples neutron stars in the corotating frame, where w| = —w5. The two neutron stars are represented by two
disks connected by magnetic fields. Since we are not interested in the detailed dynamics here, but only in topological properties, we can approximate magnetic field
lines as semicircles attached to particular points on the disks. Arrows indicate the normal field. After a full rotation, the system comes to the original state. Dots on the
edges of the disks and differently colored flux lines help visually trace the evolution.

Of course, whenever the central line has no inflection points
and, therefore, has a Frenet triad (consisting of a unit tangent, a
principal normal, and their vector product), then there is a good
notion of twisting: in this case, the twisting of the magnetic tube is
the angle by which a nearby line winds relative to the principal
normal as we traverse the line. This is usually called twisting and
denoted by 7w (Moffatt & Dormy 2019). What we study is the
rate of change in twisting %Tw, which we call winding rate. This
rate is well defined even when Tw is not (when the curve develops
inflection points), as described above.

Intuitively, one might expect a relation of the above notion of
magnetic tube twisting and helicity, since helicity measures
average magnetic field self-linking (Arnold 1986, 1974). Indeed,
there is some relation, though not as direct as one would like;
namely, helicity is a sum of writhe and twist (Moffatt &
Dormy 2019, Section 2.10). Our focus is on twist of the magnetic
line, or, rather, on its rate of change. Thus our approach cannot be
reduced to the commonly discussed magnetic helicity.

3. Globally Non-winding Magnetic Configurations of
Orbiting Stars

3.1. The Basic 2:1 Resonance

As discussed above, the key point to production of observable
flares is the establishment of quasi-steady magnetic configuration,

whereby the magnetic energy is slowly stored in the magneto-
spheres and later released in a sudden flare.

There are several basic cases where we expect that the whole
interacting magnetospheres periodically return to their initial
state. Consider first the case of magnetic moments parallel to
the z-axis (one aligned, one counter-aligned, so that the two
stars are magnetically connected) and spins also (anti)/parallel
to z. Case I is a fully locked case: w; = w, = £2. In the rotating
frame, this corresponds to w] = w) = 0 (dashed quantities are
measured in the corotating frame). Neutron stars are not
expected to be tidally locked (Bildsten & Cutler 1992), so this
case is unlikely to be realized and, consequently, is of no
interest for us.

Case II is counter-aligned and spins in the corotating frame
w| = —w) (and arbitrary Q) (Figure 2). In this case, in the
rotating frame, the configuration returns to the initial state. In
the observer frame, this corresponds to the case when the
frequency of beat-plus frequency equals two times the orbital
frequency (Figures 3 and 4),

w1 + Wy = ZQ (1)

Importantly, the condition (1) applies to the beat-plus frequency
wy + wy, not each individual frequency separately. We call this
2:1 resonance: the sum of spins is two times the orbital frequency
(Figure 3). This is the Dirac belt configuration. In the case of
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Figure 3. A basic example of the 2:1 spin-orbital resonance. In this example, the blue disk is non-rotating.

merging neutron stars, the changing orbital frequency may, at
some point, become two times the sum of spins.

To the best of our knowledge, the 2:1 spin-orbital resonance
has not been applied to magnetic fields of interacting binaries.
In general physics, such a twisting arrangement is known under
the names of “Dirac’s belt” or “Feynman arrow” (also related
to a “Plate trick™).

3.2. Variants of the 2:1 Resonance, Phases, and Bifurcations

In addition to the basic scenarios considered above, there are
a number of more complicated cases. As we are about to
demonstrate, the 2:1 resonance is more generic than the aligned
case: it occurs for a wide variety of directions of spins and
orbital axes and orientations of the intrinsic magnetic dipole
moments. We shall now describe three indicative cases,

illustrating them in Figures 4-8 using table-top demonstrations.
In the next section, we give a more economical description of
the relevant geometry, and use it to revisit these illustrative
cases again with better insight.

We number the two stars, let the first star not rotate at all,
and, for definiteness, in all cases let the magnetic moments be
counter-aligned along the z-axis at the initial moment (so that
there is a strong magnetic coupling). Consider first when the
spin of the second star is along the x-axis. Curiously, if the
second star makes one spin rotation first, then half an orbit,
then another full-spin rotation, and then another half an orbit,
the configuration does not unwind (Figure 5). If, instead, the
second star first makes two spin rotations, and then a full orbital
rotation, the configuration does unwind (Figure 6). This
example illustrates that the significance of the relative phase
and angles.
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Figure 4. An example of the 2:1 spin-orbital resonance (Case II). The tennis balls represent two neutron stars. The black arrow indicates the direction of the magnetic
moment. Two hemispheres (east and west) are clearly identified: this helps keep track of the spin phase. The ribbon is the magnetic field connecting the stars; magnetic
moments are counter-aligned, so that there is a strong magnetic coupling between the stars. Star 1 is non-spinning. Star 2 first makes a full spin around the z-axis,
which is orthogonal to the orbital plane, (panel 2), then half a rotation around star 1 (panel 3), then another full spin (panel 4), and another half orbital rotation brings it
back to the initial configuration (panel 1). Such orbital untwisting of the common magnetosphere twisted by the spins occurs generically for many spins, orbital

angular momentum, and magnetic moments directions.

Next, consider the case of spin of the second star along the y-
axis. This case displays another property: topological bifurca-
tion. For example, in Figure 7, the configuration unwinds,
while in nearly equivalent case, Figure 8, it does not. Figure 9
illustrates this behavior.

4. Topology of Field Winding

In addition to three globally untwisting structures (fully
locked, same counter-aligned spins, and 2:1 beat-plus reso-
nance) there are other configurations that untwist locally. We
study conditions for such untwisting next. To this end, we first
set up the geometric framework facilitating our search for non-
winding configurations.

Our goal of studying the rate at which magnetic tubes are
twisting is intimately related to topology. With this in mind, we
discuss two convenient ways of thinking about magnetic tubes
and then describe the topology of the relevant space, which can
be viewed either as the rotation group F = SO(3) = RP3
(Section 4.2) or as the unit tangent bundle of a two-sphere
F = T'S? (Section 4.3).

4.1. A Magnetic Tube

Let us start with a convenient mathematical description of
a magnetic tube, it is a sufficiently small tubular neighbor-
hood of some central magnetic line. It is formed by a smooth
family of nearby magnetic lines parameterized by any

transverse disk. (Mathematically, following the lines gives a
diffeomorphism between any two transverse disks).

Consider a pair of disks® D; and D, (on the respective star
surfaces) each oriented by a unit normal £, and fi, directed
along the magnetic field as in Figure 10. Their centers are
connected by a length-parameterized path (representing a
magnetic field line), the central line,

B3: [0, ] — R3
s — B(s), ()

with unit tangent B= % A nearby magnetic field line (dashed
green) intersects a normal disk centered at ((s) at some point 3
(s) + n(s) and thus the shape of the nearby line is determined by
a normal vector field n(s). Since we are only concerned with
twisting, we keep track of the direction unit normal vector field
n(s) = n(s)/|n(s)|. We shall be concerned with how much one
line twists around the other, or, rather, how this twisting is
changing with time, as the two discs orbit each other while also
spinning at the same time.

For now, let us focus on the static situation and describe the
topology and geometry of a single magnetic tube, represented
by a framed path (3, /i) with given initial and final frames

For global considerations, D is the magnetic north cap of star 1 and D, is
the magnetic south cap of star 2. For local considerations, these are small star
surface disks centered on the beginning and end of some central magnetic line.
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Figure 5. Second spin along the x-axis, with the second star undergoing two rotations during one orbital period. In this case the second star make one spin, then half an
orbit, then another full spin, and then another half an orbit, the configuration does not unwind, see Figure 6.

specified by fixed B(0) = fi,, B(¢) = ji,, and fixed /(0) = 7
and A(¢) = A,.

4.2. Paths in SO(3)

The frame along a path (3 is specified by a single normal field
7i(s). Of course, the complete frame is formed by the triplet of
vectors f = (}§, nl, B x 7). Written as a 3 X 3 matrix, with
each column representing a vector in this frame, we have an
orthogonal matrix, thus a framed path gives a corresponding
path in SO(3) with

f:10,¢] — SO@3) 3)

s = f(s) = (B(s), Ai(s), B(s) x i(s)). “)

Thus, thinking of a small magnetic tube as a framed path, we
arrive at a path f in SO(3). Clearly, the first column of f(s)
is B(s), thus, the path ( can be recovered from f via
integration 3(s) = 3(0) + fos £()(1,0,0)7ds.

Given two such framed paths (3, 4) and (5’, ') with the
same initial and final frames, one might ask whether it is
possible to deform one of them into another, while holding the
initial and final frames fixed. If it is indeed possible, then the
corresponding paths f and f/ in SO(3) are called homotopic.
Thus it is worth understanding the space of paths in the group
of orientation preserving rotations SO(3). Any rotation of R?
can be specified by a single vector: its direction specified by the
(oriented) axis of rotation and its length is the angle of the
rotation around this axis. In particular, the length of this vector
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Figure 6. Second spin along the x-axis, with the second star undergoing two rotations during one orbital period. In this case, the second star makes two spin, then a full

orbit, and the configuration does unwind, see Figure 8.

does not exceed 7. At this stage, all rotations appear to be in
one-to-one correspondence with a radius 7 ball in R3, except
for one caveat. A rotation by angle 7 around 7t produces the
same result as a rotation by 7 around —m, therefore the
antipodal points on the surface of this ball correspond to the
same rotation. One concludes that the group of rotations SO(3)
is a three-ball with antipodal points of its surface identified.

One can view this three-ball as a northern hemisphere of
some three-sphere s3, making clear the identification of SO(3)
with the three-dimensional projective space RP3 = §3/ + 1},
which is a three-sphere with its antipodal points identified (or,
equivalently, the space of lines in R passing through the
origin): RP3 = SO(3).

While a three-sphere is simply connected, i.e., any two paths
between two given points can be deformed into each other, the
projective space has exactly two classes of paths. The
difference between the two paths is a closed path obtained by
traversing the first path and then returning backward along the
second path. This difference between the two paths in different
classes is homotopic to (i.e., can be deformed to) the path in S*
connecting two of its antipodal points.

Note: the above is often illustrated with a belt, with its two
ends held fixed at a distance, so that one can move the belt
around these ends increasing or decreasing its twisting in the
process. However, if one breaks the rules and twists one of the
ends once, the resulting belt configuration differs from all prior
ones, in that those cannot be reached by manipulating the belt,
while its ends are held fixed.

The above correspondence is often interpreted in terms of
spin. Namely, identifying SU(2) as a three-sphere (for example,

as a sphere of unit quaternions), and thinking of the three space
R3 as imaginary quaternions, the rotation R(M) of R is a
conjugation of the imaginary quaternions by a unit quaternion:
SUQ2)> M: x+— M~ 'xM. Then, clearly, M and —M have
exactly the same effect on R* and the group of all orientation
preserving rotations SO(3) = SU(2)/ £ 1}. A framed path gives
a path in SO(3) (for example starting at identity and arriving at
some fixed frame M € SO(3)) and lifts unambiguously to a path
in SU(2) (also beginning at identity). It will arrive at some
element of M € SU (2). As we deform the path in SO(3), its lift
to SU(2) will still be beginning at identity and ending at M.
However, there is a whole other class of paths in SO(3) to M,
they lift to paths in SU(2) from identity to —M. Thus what
governs the framed path (up to its deformations) is the spin
group Spin(3) = SU(2), rather than SO(3). This is the reason a
belt is sometimes used to illustrating fermion statistics.

4.3. Paths in the Unit Tangent Bundle of a Two-sphere

Perhaps, a more economical view of a framed path is in
terms of the tangent bundle TS of a two-sphere of directions
§%.This bundle consists of disjoint tangent planes to S7.
Namely, for any length-parameterized path 3 in R?, its normal
tangents B: [0, £] — S2, s — B(s) = %ﬁ(s) form a path in
the unit sphere S? of directions, as in Figure 11, while 7i(s),
orthogonal unit vector to B(s), is a tangent vector to S% at B(s),
as in Figure 12. Since it is normalized, it lies in the unit circle in
the tangent plane Tg(s)S2 to % at point B(s).
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Figure 7. Second spin along the y-axis. First the second star makes a full spin, with the spin direction mostly along y-axis, but slightly misaligned in positive x
direction. After half an orbital turn, the second star makes a full spin, with the spin direction mostly along y-axis, but slightly misaligned in negative x direction. The

configuration unwinds.

Thus we arrive at a slightly different picture of the space F of
all unit circles in the tangent spaces of the unit two-sphere:
F = T'S? C TS2. An element of this space is specified by a pair
(a, b) of orthogonal unit vectors, the first vector a specifies the
point in §? and the second vector b specifies a point in the
tangent plane to S at a. Of course, given a point (a, b) € T the
forgetful map (a, b) — a gives the corresponding element of
the sphere; in other words, we have a natural projection F—
§2, (a, b) — a (it projects a circle fiber of normals to its
corresponding point on the sphere of directions).

A framed path (3, /1) gives a path 3 in F by

B: [0, 0] — F
s (B(s), A(s)). ®)

The path in the sphere traced by B(s) simply traces out the
directions of the path 3, while the unit tangent field 7 (s) along
this path lifts it to F. The path in the sphere begins at ji, and

ends in [i,. It is constrained by R = fo ‘ B(s)ds. Thus, this path
is bound to spend some time near R/|R| € §°, as illustrated in
Figure 11. Needless to say, our description is equivalent to that
of Section 4.2, as the space F can be identified with SO(3) via
(a, b)— (a, b, a x b).

Let us comment on the topology of the unit circle bundle
T'S? of the two-sphere S°. In particular, we would like to make
it transparent that it is a degree 2 Hopf bundle. This degree 2 is
at the heart of the effect discussed in this paper; it is responsible

for the persistence of the 2:1 resonance. Perhaps the most
common way to demonstrate that the degree is 2 is to consider
the polar projection F: S\ {N} — R? from the north pole N to
the plane tangent at the south pole S. Taking a constant vector
field on the plane and pulling it back to S\ {N} one obtains a
vector field that winds twice as one circumnavigates the north
pole traversing a small meridian near it.

For our purposes, however, we use a different picture,
illustrated in Figure 13. We trivialize the bundle over the
northern hemisphere Uy, the southern hemisphere Us, and over
the tropical region Ut = Sz\{N, S} containing the equator, as
follows. Let us mark a point E on the equator and call it the east
pole. We also call its antipodal point the west pole. A unit
tangent vector field u directed toward E is then well defined
everywhere on the sphere except at E and at W. We use it to
define coordinates in the tangent circle fiber over Uy and
Us. For any point p € Uy and for any tangent unit vector w,, at
D, let ¢n(w),) be the angle between u, and w,. Now, any real
number determines a unique unit tangent vector at p, whose
angle with u, is that number. In other words, we defined a
coordinate along the circle fiber. Similarly, if p € Ug, we define
¢s(w,,) to be the angle between u, and w,,.

Next, consider the northward unit tangent field v. It is well
defined everywhere in the tropical region Ur. For any p € Ut
let ¢r(w),) be the angle between v, and w,,.

Consider some parallel in the Northern hemisphere and a
point p on it. Clearly, ¢r= ¢n+ ¢1(vp), i.e., the difference
between the two angles ¢(w,) and ¢n(w,,) is the angle between
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Figure 8. Second spin along the y-axis. First the second star makes a full spin, with the spin direction mostly along y-axis, but slightly misaligned in the positive x
direction. After half an orbital turn, the second star makes a full spin, with the spin direction mostly along y-axis, but slightly misaligned also in positive x direction.

The configuration does not unwind.

v, and u,. Whenever the point p circumnavigates the parallel
eastward, this angle between v, and u, changes by 27, ie.,
A(¢r(wp) — ¢n(wp)) = 2. Similarly, circumnavigating any
parallel in the southern hemisphere eastward, the change in
the difference between ¢r and ¢s is —2m, ie., A(Pr(w,) —
¢S(WI))) = —2m.

For example, if we have a path in F passing over the equator,
then, if we move it all the way around the equator holding the
limiting value of, say, ¢y at the equator fixed, then the value of
¢g will change by 27, while the value of ¢g will change by
4. It is this factor of 2 in 2 x 27, that is the degree or the Hopf
number of this bundle. (It is exactly because this degree is not
zero that the sphere “cannot be combed,” i.e., it has no nowhere
vanishing continuous tangent fields. It is also the reason there is
no global coordinate along the fiber of F.)

4.4. Relative Twisting

For some paths, one might be able to introduce the notion of
twisting, for example, using the (unit) tangent B and curvature
dB/ds of the path to form a frame along it. Such a Frenet frame
could be used to define the twisting of a magnetic tube centered
around that path. However, as we consider the evolution of the
path, as it changes its shape, we might (and even are likely to)
loose this frame. For example, the curvature might vanish at
some point. This would prevent continuous tracking of this
path twisting angle. In other words, there are two issues
preventing us from discussing twisting of an arbitrary tube:

1. there cannot be a coordinate on the fiber circle that is
valid over the whole sphere of directions and
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Figure 9. Topological bifurcation. The star on the right spins approximately along the y-axis (which is into the board). Small variations of the spin direction would
result in different topological behaviors: one not resulting in winding, another resulting in winding.

Figure 10. The central magnetic line in black connects the two disks on the stars’ respective surfaces. A nearby magnetic line is the dashed green line with separation

vector n(s) and separation direction 7i(s).

2. there is no guarantee that the path of directions B is
differentiable, even though the original path in R? was.

However, if we have one path 4, and another path 4, in T's?,
and both happen to project to the same path ~y in %, then there
is a good notion of how much 4, winds around #,. To do this, as
we traverse 7, we continuously track the change in the angle
between 4, (s) and 4, (s). Importantly, this does not involve any
charts, fiber coordinates, or auxiliary vector fields. Thus, for
such a pair of paths, the relative twisting angle is well defined.

In general, we shall consider a family of framed paths
4 (s, t), where s is the length parameter along a path at time ¢. In
particular, 4(s, 0) = 4,(s) is the initial path and 4(s, 27) =
4, (s) is the final path. Also, the projection of (s, ) € I is the
direction ~(s, ).

Let us begin with a very simple example, consider a path (s,
t) that is the meridian from N to S with longitude . Clearly, as ¢
changes from 0 to 2, this meridian sweeps the sphere and

10

returns to its original shape, i.e., y(s, 0) =~(s, 2m). Consider a
tangent vector field to each meridian that, away from a small
neighborhood of the equator is given by the east pole directed
field v. (Clearly, the field v does not give a good normal field
along the whole family (s, #), since it is not defined at E and
W. Thus, for each ¢, we interpolate the resulting tangent field
along the path 7(s, #) in the vicinity of the equator.) Let (s, 0)
be the path lifting the meridian ~(s, 0) using that field (outside
the neighborhood of the equator) and continuous along the
whole meridian. As we vary ¢ and the meridian ~(s, ) rotates
sweeping the sphere, we keep 4 (s, t) given by v away from the
equator and change continuously with s and 7. We would like to
learn about the resulting path 4(s, 27) relation to the original
path 4 (s, 0).

In terms of the local coordinates, these paths have ¢n=0
and ¢g = 0 away from the neighborhood of the equator. There
is a discontinuity between ¢y and ¢r, for example, and this
discontinuity changes by 27 as the meridian sweeps the sphere.
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0 4
Figure 11. A single magnetic line (with displacement R) is represented by a blue path in the sphere of directions (satisfying j; B(s)ds = R).

Figure 12. A magnetic tube is represented by the green dashed path in F, which is equivalent to a unit tangent vector field along the blue solid line.

Since we keep the north and south coordinates zero by
construction, and the gap between ¢y and ¢ changes by 2,
the interpolating path near the equator has to adjust, changing
its initial value of ¢t just north of the equator. Similarly,
since the gap between ¢t and ¢g changes by 2, the value
of ¢r just south of the equator changes. As a result, the
interpolating part of the path shown in dashed blue in

Figure 14 wraps twice around the fiber relative to the original
path shown in solid red.

In fact, nothing in this argument depends on our special
choice of path lifting, so long as we hold the initial and final
frames fixed. (The solid red and dashed blue graphs in
Figure 14 will be arbitrary, but the relation between their
discontinuities will remain the same, adding up to 47.) As the
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Figure 13. The vector field v is in blue is due north and the field « in red is directed toward the East pole. As one circles eastward along the gray parallel, v rotates once

counterclockwise relative to u.

path ~ sweeps the sphere once (moving eastward), the path
4 (s, 2m) will twist by 4 relative to (s, 0).

4.5. Case Redux

With our newly gained perspective, let us revisit the cases
discussed in Section 3 and account for the observed twisting.

Case T had &) = &0y = Q ~ 2. In terms of the sphere of
directions this can be visualized (Figure 15 left panel), as
points zi, and fi, presented as, respectively, red and blue dots
circling in the same (eastward) direction around, respectively,
north and south poles. The path of directions is the blue path on
the sphere connecting these two points and passing in the
vicinity of the black dot R. The latter rotates around the
equator. The twisting is captured by the sum of the angles x;
and x». For Case I, all three points (red, blue, and black) rotate
with the angular velocity, and the resulting angles x; and x,
can remain constant. Therefore, we observe no winding.

Case II, as illustrated in Figure 2, is very similar to the
picture above. As illustrated in the right panel of Figure 15, the
red and blue dots moving in the opposite directions (with equal
angular velocity), while the black bot is staying put. In this
case, one of the y angles increases, while another decreases,
with their sum remaining constant (on average). Therefore,
there cannot be twisting in this case.

Case II, as illustrated in Figure 3, is the picture we just
described, but rotated, so that now the blue dot is staying put,

12

the black dot rotates, and the red dot rotates twice as fast. This
modification has no bearing on the resulting evolution of the
angles y; and x», again resulting in no winding.

In the remaining cases, Figures 5-8, &; = 0 and the red dot
stays put at the north pole. Clearly, for actual continuous spin
and orbital motions, there is no difference between &, directed
along the x- or along the y-axis, due to the rotational symmetry.
In the table-top demonstrations, however, the motions are
consecutive and the result depends on their order. For example,
Figure 5 movements in terms of the direction the two-sphere
example on the left of Figure 16, amount to the blue point
circling along the vertical meridian (winding = —1), then the
original black dot R(D moving along the equator to R(3)
(winding = —1+-1), the blue point circles the meridian again
(with Ié) on the other side (winding = —1+1+1), and the blue
point completing its journey around the equator (winding = —1
+14+1+41).

The movements of Figure 6, on the other hand, consist of the
blue point circling the meridian twice (winding = —2) followed
by the black dot circling the equator (winding = —2+2).

The case of &, aligned with the y-axis presents a bifurcation,
since in this case, the blue point passes through the black point.
This is the moment of bifurcation. Movements of Figure 8
(with &y = wy¥ + €X£) from the two-sphere of directions point
of view are not so different from those of Figure 5 discussed
above. The only difference is that the vertical meridian is
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2T

Figure 14. Local fiber coordinate of the initial path in solid red and of the final path in dashed blue. North and South patch coordinates ¢n(s, £) and ¢s(s, 1) are held

fixed and equal to zero.

I

..\

fi2

I

..\
M2

Figure 15. Cases I and II in terms of the unit two-sphere of directions. Left corresponds to Case I and right corresponds to Case II illustrated in Figure 2 (rotation of

this right figure illustrates Figure 3). All have no winding of magnetic tubes.

rotated to the green meridian in Figure 16. The winding
calculation remains the same.

Movements of Figure 7 result in the blue point circling the
green meridian (winding = —1), the black point moving along
the equator from R(1) to R(2) (winding = —14-1), then the
blue point circling the orange meridian (winding = —1+1—1),
and the black point completing its trip around the equator
(winding = —1+1—1+1).

4.6. Twisting Rate of the Magnetic Tube

If we keep the central line fixed and rotate the first disk in
Figure 10 around its axis once, the new green path will wind by
2rrelative to the original green path. Similarly, rotating the
second disk once winds this path by — 2. All the action in

these cases is taking place in the cylinder in F = T'S? that is
the preimage of the blue direction path.

Another important effect is due to the orbital motion, namely the
point R = R/|R| is rotating around the equator with frequency
. Let us first focus on the path of directions in the sphere $* while
holding its origin zi, and its end zi, fixed. Moreover, we presume
that fi, is in the northern hemisphere and [i, is in the southern
hemisphere. As discussed in Section 4.3, the path of directions
passes in the vicinity of R, as illustrated in Figure 11. As a result,
during one orbital rotation, the path of directions sweeps the whole
surface of the sphere, and the magnetic tube twisting angle will
increase by 47 with each such sweep.

Since the main phenomenon we are describing is topological
in nature, we can simplify our path of directions by deforming
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Figure 16. The left figure illustrates the sequence of moves of Figures 5 and 6, with consecutive moves of [i, around the vertical meridian and movements of R around
the equator. The right figure illustrates the moves of Figures 8 and 7, with Figure 8 involving /i, circling the green meridian both times and Figure 7 involving ji,

circling the green and then the orange meridian.

it to be the major arc from i, to R followed by the major arc

from R to Li,. (For example we can deform the blue path of
directions to the arc path just described, without passing
through the antipodal point —R.) During this deformation, the
covering path (dashed blue) will deform as well. In fact, we
deform it so that at R the tangent vector is pointing due north.
Any such choice does not change the twisting, since rotating
the tangent vector at R by some angle ¢ twists one part of the
tube by — ¢, while twisting the other by ¢, thus not changing
the total path twisting at all.

This deformation makes it very easy to track the tube
winding and its time evolution. In fact, now that the frame at R
is fixed, we have a separate notion of twisting of the first part of
the path and of its second part. In particular, if ji, € Uy and

iy € Us, then as R circumnavigates the equator, the northern
part winds by 2, and so does the southern part. Let us put this
more geometrically. When the point R rotates around Hy
counterclockwise, the [i, — R path segment is twisted by 2.
Similarly, whenever, R moves around L, clockwise the
segment R — fi, is twisted by 27. (Note, the difference is due
to the opposite orientation: ji — R versus R — [i).

Now, as the path of directions returns to itself after one
orbital rotation, what happens to the magnetic flux tube? It is
twisted by 4 if /i, is north of equator and fi, is south of it. It is
twisted by —4 if /i, is south of equator and i, is north of it.
And it is not twisted at all if fi, and /i, are on the same side of
the equator. This effect of the orbital motion is due to the fact
that the bundle F of circles over the sphere has Hopf number 2.

Of course in general the disks will spin and orbit each other
at the same time. Consider the first disk rotating with angular
velocity @y and the second with angular velocity &,. Then, the

points /i, and ji, will be in circular motions around &; = ~* and
Wi

&, = =2, respectively. Let o, be the angle between €2 and &,

and let-/)’l be the angle between @; and fi;, as in Figure 17.
Similarly, we define o, and (3, using @, and ji,. Now, as the first
disk undergoes one such rotation around wy, it rotates around its

axis once, therefore, as /i, undergoes one rotation around i =t T the
Wi

Figure 17. The blue spherical disk is centered at &; and bounded by the
trajectory of fi,. Its opening angle is 3;. The spherical triangle Aw;MO supports
one-half of the equatorial arch between the two points O and O’ where the orbit
of fi; crosses the equator. The angle ZOw;M is denoted by A, while the length
of its opposing side MO is a.

circle fiber of [F' above it rotates once (relative to the fiber at &y).
The resulting twisting, however, depends on whether R lies inside
or outside the smaller disk bounded by the circle traversed by w;
(or, respectively, w,; see Figures 18 and 19).

4.7. Effective Rate of Twisting
If the motion of /i, is happening entirely in one hemisphere
(either northern or southern) and the same holds for fi,, then
the twisting rate of the f; — R part is —w) sign & - Hy +
Q2 sign€ - 7i,, while the twisting rate of the R — fi, part is

—wy sign &y - i, + ) signﬁ - [i,. Assembling the two together,
we have the rate of twisting of the whole path:
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Figure 18. Example of twisting if/when the point A crosses the equator. The sphere represents a space of the directions of the magnetic field. The red dashed circle is
the trajectory of the direction of the magnetic field at point A (direction of magnetic moment of 1); it rotates with the angular frequency w, = w; around point O, the
direction of the spin of the first star. For both plots, w; = : one spin per one full orbital rotation. Left panel inclination 8, = 7/3, right panel 8, = 7/6 (these are the
angles between orbital momentum 0 and the spin &;. Radius of the circle 6, . = 7/4 (this is the angle between the spin &; and the magnetic field fi,). Notice how arcs
cross over in the lower part in the left panel, when point A is below the equator. To trace the twist, we follow the value x of the angle ZOAB in Figure 19.

1.0

0.5

e
o

cos x, sin x

1
o
3

-1.0

Qt

Figure 19. Counting the twist. Plotted is the angle y, spin of A, magnetic moment of A, direction to B, (cos x, solid line; sin y, dashed line). One rotation is added
when cos y = 1 and siny changes from positive to negative; one rotation is subtracted when sin y changes from negative to positive. In this example, wy = 5,

9,4 = Tl'/3 and GA,C = 7T/4

—w sign @y - [, + wy sign &y - fi,
+Q (signfl Sy — signﬁ - o). 6)

™

The above holds so long as «; + 3; < 5 or after o; — 3; > %

for i = 1, 2. Otherwise the circle on the direction sphere that ﬁi
traces out dips in the other hemisphere. What fraction of this

15

circle is in the other hemisphere? In other words, how long is
the arc between the two points O and O’ (see Figure 17) at
which i, passes the equator?

Let 6, = % — oy be the latitude of &;. Then from the
spherical triangle formed by @), O, and the equator midpoint M
between O and O’ we have

(N

cos 31 = cosa cos 4y,
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Figure 20. Rotations per unit time as a function of w, /€, 64 = 7/3 and 6, . = 7/4; the solid line is the running average. At large w, /€ > 1, a finite limit is reached.
Both the average curve and the variations carry information about parameters of the system.
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. Jsin?ay — cos? 3
Thus sinA = ¥— 21— 7

sin oy sin 3
that is in the opposite hemisphere is

, and the fraction of the i, circle

24 _ LarcsinYSme—co®dpoom B<a<ZI4+p
f(O(, ﬁ) = 2w T sinav sin 3 2 2
0 otherwise.

©)

Assuming for a moment that the rotation frequencies are
much higher than the orbital frequency: w;, w,> 2, the
average twisting rate R is

R =—(1 = 2f)wy sign(@ - jiy)

+ Qsign( Q- @) sign(fi, - &)

+ (1 = 2f,)w, sign(@; - fiy)

— Qsign (€ - @) sign(fi, - @). (10)
Here f; = f(c;, ) given by Equation (9) with o being the angle
between (2 and &; and f3; angle between &; and /i;.

This provides the average rate of winding of the magneto-
sphere for the general relative orientation of spins and orbital
angular velocity. The averaging used applies whenever wy,
wo > Q). Figure 20 illustrates the time average converging to R.
Whenever the spins and angles are such that this rate R is low,
a slow winding of the magnetosphere is possible on average
over time. This does not imply, however, that these configura-
tions allow for gradual storage of energy in the magnetosphere,
since the critical winding might/is likely to be breached in the
interim. With this in mind, we focus on identifying other
possible resonances.

4.8. Importance of the Phase

We can have multiple non-winding resonances besides the 2:1
resonance; but their appearance depends on the phase. Thus, in a
given system, one can observe several different resonances. These
higher resonances, however, are much less stable.

Consider a snapshot with w;, R = M, and 1, aligned lying
on a spherical radius of the blue disk in Figure 17. If, in the
near future, R reaches point O before fi, does, then it also
implies that, in the recent past, /i, passed through point O’
before R did. In other words, the motion of fi, over the arch
0'0 canceled the effect of R traversing the equator (ie. [i
made one clockwise rotation around R). This is illustrated in
the left-hand panel of Figure 18.

The necessary condition for such occurrence is % < %,
which translates to

) 2
cos . 4/sin“« — cos
warccos.—ﬂ < Qarcsméﬁ. (11)
sin o sin e sin 3

If the above snapshot occurs and the ration of the two
frequencies is rational, the above snapshot will recur with
regularity. E.g., if % = %, then every two orbital periods &, R,
and [i, are aligned again and the orbital winding effect is
compensated by the above maneuver. Therefore, the effective
magnetic tube winding rate is w; — Q(1 — é), which vanishes.
In particular, if it so happens that /i, is engaged in a similar
resonant configuration, then the total winding rate is zero. To
summarize, we have another resonant configuration

W) = Wy = %Q,

4
W)+ wy = EQ (12)
In contrast to 2: 1 resonance, which was very stable with respect
to changes of angles, phases, and frequencies, this 4: 3 resonance
is sensitive not only to angles and frequencies, but even to the

phase, i.e., to the particular momentary (approximate) alignment.
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Figure 21. The magnetic cap, centered around /[ in cyan and the resonant
region in red for A\ = Z. A priori, the magnetic cap can be positioned anywhere

on the sphere of directions. It is the overlap of the magnetic sphere and the
resonant region that determines the part of the magnetosphere involved in the
4:3 resonance.

Nevertheless, during the binary evolution, such resonances can
occur. Moreover, there are many other possible resonances. If they
are observed, they can provide detailed information about the
individual spins, their orientations, and about the orbital
frequency.

Let us estimate the local region of magnetosphere that can
contribute to the 4:3 resonance. The R transit time (between O’
and O) is T = % The angular distance traveled by B during

this time is wTy = %Za. The remaining angular span of the 0’0
arc (on the boundary of the blue spherical disk in Figure 17) is
therefore 2A — 2. This is the arc of the B points involved in
the above described behavior leading to the 4:3 resonance. Le.,
a point B passes O’ before R does, and then B passes O after R
does. Thus, for each value of §, there is an arc of angular size

Jsin?a — cos? 3

sin o sin 8
w cos

— 2—arccos— ﬂ.
Q sin o

2A — 2—wa = 2arcsin
Q

13)

The relevant solid angle formed by the magnetic line star
surface directions involved in the resonance is

sina

f R in )24 — Z%a)dﬂ.

2

(14)

The upper limit is reached when the equatorial arc O’O spans one-
third of the equator, i.e., 2a < 2?", implying cos 8 < %sin Q.

17

Cherkis & Lyutikov

Now the fragility of this resonance can be illustrated in
Figure 21. The resonant region, indicated in red, involves only
those magnetic lines whose direction at the star surface lie in
both the interacting magnetic polar cap (shown in cyan) and in
the resonant (red) region. With our formulas above, one can
estimate how likely it is that these two regions intersect at all
and what the maximal overlap of these two regions can be.

5. What Astrophysical Observational Effects We Expect:
Precursor Flares in Merging Neutron Stars

Qualitatively, if only one star is magnetized, the corresp-
onding slowly evolving powers are (Hansen & Lyutikov 2001;
Lyutikov 2011)

GBZsMysREs
cr7

=3 x 104 (—t,)7/* ergs L.

Ly~
(15)

(Index 1M indicates here that the interaction is between a single
magnetized neutron star and an unmagnetized one). The time to
merger t,,

5 6 rt
256 G* MMy (M; + M)

(16)

I

is measured in seconds in Equation (15).

Magnetospheric interaction of two magnetized neutron stars
can generate larger luminosity: the interaction is between two
magnetospheres, with effectively larger radius (Lyutikov 2019)

BRsGMnsRis — c2/*BsRis
cr5 (—l)5/4(GMNs)“/4
=6 x 10*2(—1,,)7/* erg s~

Loy

A7)

(Index 2M indicates here that the interaction is between two
magnetized neutron stars.) Thus L, > L; dominates prior to
merger.

Both powers (15)-(17) are not very large: they will be
missed by high-energy observatories, but may be sufficiently
bright if a large fraction is emitted in radio, producing a signal
(Lyutikov 2019)

Fy ~ 2 ~0.17 —p)5/4, 18
R 77R47m,21/ Y g —s(—1) (18)

where 7y is a fraction of the energy going into radio.

Topological resonance, especially the global one (1), allows
two stars to establish a nearly permanent magnetic link. A slow
change of the parameters would allow storage of magnetic
energy within these configurations, and the subsequent release
of the stored energy when the magnetic fields become too
sheared/too twisted.

Equating neutron star beat-plus spins with the orbital
frequency at separation r before the merger

G M, + M)

w=w+w, =2 3 R

(19)

r

and using time to merger (16), the 2:1 resonance occurs at time

)= 103 £ M)
- G5/3M,Msw8/3
=5 x 105P¥3 s,

ti—o = (—=tn

(20)
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where P;=27/w is the sum-beat (addition) period of the NS
spin’s, M| and M, are masses of neutron stars (assumed to be
equal to 1.4M,. Thus, the most interesting case is if one of the
neutron stars is a recycled millisecond pulsar. For example,
if P,=10 ms, then (—1,)=2s. At that moment stars are
separated by

r = (G(M + M2))'/30-2/3 ~ 107cm, @21

approximately 10 times the radius.

We can also estimate how flaring will evolve with time. At
exact resonance, there is no shear, no flaring. As the orbit
shrinks, the system gets out of the resonance, field lines are
becoming twisted. Assuming that flares occur after a fixed twist
angle ~1, time between flares can be expressed as

4P _ns

= - . 22
3mt— tH_o 22)

Iy
Next, we need to estimate the amount of connected magnetic
field lines. Vacuum dipoles provide a good first approximation
to the magnetospheric structure. A simple case is that of anti-
aligned magnetic moment, both orthogonal to the orbital plane.
Let the two stars be located at {x; , =+7/2,y,,=0, 21, =0}.
In the plane y = O (the plane that contains the vector connecting
the stars and their magnetic moments), the total magnetic flux
function is

_ (o — r/2)? (x + r/2)
(= /22 22 (x4 r/2) + 2232

where W is constant on each field line. The inner separatrix
between regions (i) and (ii) are given by W, = 4/r, while outer
by V¥, =0. At large distances the outer separatrix are at 45
degrees.

For two neutron stars of radius Rng separated by distance r,
the angular size of the patch of connected field lines can be

estimated as
RNs
Ope = 2, —.
r

Thus, the energy in the connected magnetic field can be
estimate as

(23)

\Ijtot

(24)

(25)

Therefore, about one-tenth of the total magnetic energy can be
released in a flare. For example, for merging neutron stars,

2 pd  2/3
ByrsRysw /

Ep . ~ 0.08
8 (GMys)' /3

= 10*'B},P;*}? erg, (26)
for a neutron star with a period P= 10_2PS,,2 s. If
reconnection occurs on light travel time over orbital separation,
the expected power is
BZcREqw*/3
= 10712 — 3 10MBRP Y ergs
(GMxs)*? ’

Ep .
LB,C = e
r/c

27)

This is a mild amount of energy/mild luminosity even for a fast-
spinning ms neutron star. It still can be detected from ~100 Mpc
distances with all-sky high-energy monitors, and also can be
seen in targeted observations (e.g.,due to preliminary LISA

Cherkis & Lyutikov

localization). Attempts to detect the precursor emission have been
discussed by Callister et al. (2019) and Sachdev et al. (2020).

6. Discussion

In this work, we consider the, topological structure of
magnetically interacting binaries. We are particularly interested
in configurations whose magnetospheres wind slowly—when
the effects of spins and orbital motion (periodically) compen-
sate each other. We point out that besides the very restricted
cases of fully locked rotation and equal antiparallel spin in the
orbital frame, there are other slow-winding configurations that
can unwind locally (in a sense that a special set of magnetic
tubes may wind slowly, while other magnetic tubes keep
winding at high rate). The most interesting case is when the
beat-plus frequency w;+ w, equals two times the orbital
frequency. This globally non-winding configuration is achieved
in a broad range of parameters (relative directions of spins,
magnetic moments, and orbital angular momentum) that we
identified.

There are no other globally unwinding configurations beside
the tree cases mentioned above. But there can be specific
magnetic tubes (with slow winding) connecting the two stars
that are slowly winding, while other fields are are getting
twisted. Whenever the fraction of such tubes is significant, one
might expect gradual energy transfer from rotational to
magnetic energy and its eventual release.

Our main mathematical perspective is viewing a magnetic
tube as a line in the space F of unit tangent circles to the two-
sphere of directions. This makes apparent that the bifurcation
point corresponds to one of the magnetic moments being
(nearly) aligned with the binary separation vector: fi, or fi,||R.
The tube winding is due to 1) the spins twisting its two ends
and 2) the orbital motion contributing one full twist to each half
as R orbits around [; in the sphere of directions. The latter
effect originates in the topology of F, which is a degree 2 Hopf
fibration. It is this fact that ensures persistence and relative
stability of the 2:1 resonance.

The main predicted phenomena for the case of merging
neutron stars are the precursor flares, which can occur just few
seconds before the main gravitational wave event (Hansen &
Lyutikov 2001; Lyutikov 2019). The flare luminosity can be
higher than the slowly varying persistent one; it is also easier to
detect flaring events.

Curiously, since magnetic unwinding for other (not 2:1)
resonances depends on phase, it may not occur every orbit, but
with some periodicity. Analyzing the periodicity may constrain
the absolute values of the spins. Generally, unwinding 2:1
resonance is very stable. Yet if higher order resonances are
observed, a lot of detailed information may be inferred. Higher
order resonances may have similar power to the basic one
(Figure 21).

A few further modifications are planned. Elliptical orbits will
add another complication: non-constant rotation of vector R/
point B, which would rotate with changing Keplerian angular
velocity. Our results, however, are essentially topological and
thus should not be sensitive to such modifications.

Our perspective also calls for refinements, one can use it to
obtain the rate of magnetic tube slow winding (without the
averaging) and the rate at which the resulting energy is released
(whenever the magnetic tube winding exceeds some critical
value). One can also estimate the dependence of the resulting
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energy release on the spin and orbital rotation parameters as
well as its time signatures. All this is left for future exploration.

In application to exoplanet—star magnetic interactions, few
comments are due. First, magnetic coupling between magneto-
spheres can occur only within the Alfvén radius of the parent
star ( ~ 10 R, for the Sun). Tidal effects are likely to bring the
system into corotation (Hut 1981, though more complicated
dynamics like tidal spin-ups is also been considered (Tejada
Arevalo et al. 2021)). For z-aligned spins this would make the
magnetospheric structure in the rotating frame been static. On
the other hand, there are evidence of cases of high obliquity,
when the orbit of the star is highly inclined with respect to
stellar spin (see Winn & Fabrycky 2015, for review). What is
still required is alignment of at least one spin with the orbital
angular momentum. Finally, there are indeed observations of
the magnetospheric interactions of planet-modulated chromo-
spheric and radio emission (Cauley et al. 2019; Vedantham
et al. 2020; Turner et al. 2021).
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