
Biometrika (2022), 00, 0, pp. 1–16 https://doi.org/10.1093/biomet/asac007

Functional hybrid factor regression model for handling
heterogeneity in imaging studies

By C. HUANG

Department of Statistics, Florida State University,
117 N. Woodward Ave., Tallahassee, Florida 32304, U.S.A.

chaohuang@stat.fsu.edu

AND H. ZHU

Department of Biostatistics, The University of North Carolina at Chapel Hill,
135 Dauer Drive, Chapel Hill, North Carolina 27599, U.S.A.

htzhu@email.unc.edu

Summary

This paper develops a functional hybrid factor regression modelling framework to handle the
heterogeneity of many large-scale imaging studies, such as theAlzheimer’s disease neuroimaging
initiative study. Despite the numerous successes of those imaging studies, such heterogeneity may
be caused by the differences in study environment, population, design, protocols or other hidden
factors, and it has posed major challenges in integrative analysis of imaging data collected from
multicentres or multistudies. We propose both estimation and inference procedures for estimat-
ing unknown parameters and detecting unknown factors under our new model. The asymptotic
properties of both estimation and inference procedures are systematically investigated. The finite-
sample performance of our proposed procedures is assessed by using Monte Carlo simulations
and a real data example on hippocampal surface data from the Alzheimer’s disease study.

Some key words: Alzheimer’s disease; Functional hybrid factor regression model; Hippocampal surface; Imaging
heterogeneity; Surrogate variable analysis.

1. Introduction

With the rapid growth of modern technology, many large-scale imaging studies, such as the
Alzheimer’s disease neuroimaging initiative, ADNI, study (Mueller et al., 2005), the Human
Connectome Project (Van Essen et al., 2013) and the UK Biobank study (Sudlow et al., 2015),
have been conducted to collect massive datasets with large volumes of complex information from
increasingly large cohorts for unravelling the etiology of different diseases, such as Alzheimer’s
disease. For example, the ADNI study is a multi-phase study that aims to discover the progression
of Alzheimer’s disease and improve clinical trials for the prevention and treatment of Alzheimer’s
disease. However, such integrative data analysis is challenging largely due to the heterogeneity
in those imaging studies, since the datasets are often collected from different centres and/or
phases and need to be rigorously integrated (Lock et al., 2013; Yu et al., 2017). The potential
heterogeneity may be caused by the differences in study environment, population (e.g., race),
design, protocols (e.g., imaging acquisition protocol) and some other (unknown) hidden factors
in multiple centres and/or phases (Leek & Storey, 2007; Mirzaalian et al., 2016; Fortin et al.,
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Fig. 1. Heterogeneity in the ADNI hippocampal surface dataset: (a) three quantiles of the logged radial distances
across all the vertices on the left hippocampal surface and (b) those on the right hippocampal surface for all subjects

obtained from ADNI-1 (blue), ADNI-GO (orange) and ADNI-2 (green).

2017). As an illustration, we consider a hippocampal surface dataset obtained from the three
different phases, ADNI-1, ADNI-GO and ADNI-2, of the ADNI study. Fig. 1 presents the three
quantiles of loged radial distances across all the vertices on the left and right hippocampal
surfaces. More details on the calculation of radial distances will be discussed in § 5. We observe
different patterns in the quantile plots across the three phases, especially betweenADNI-1 and the
other two phases, indicating that the imaging heterogeneity does exist in the ADNI hippocampal
surface data. Thus, appropriately handling the imaging heterogeneity can be critically important
for understanding the role of imaging biomarkers in the etiological mechanism of Alzheimer’s
disease.Another example on diffusion tensor imaging also illustrates the heterogeneity in different
imaging datasets and can be found in the Supplementary Material.

Currently, there are two approaches to tackling heterogeneity in imaging studies. The first one
is image-based meta analysis, in which study-specific statistical analyses are performed first,
e.g., Fisher’s combined probability test and Stouffer’s z-transformation test, and the results are
combined afterwards (Salimi-Khorshidi et al., 2009). Although it has shown great promise for
some studies with a large number of participants at each phase, or site (Kochunov et al., 2014), this
technique still suffers from at least two major limitations: (i) the study-specific population might
not be large enough to estimate the true biological variability in the entire population (Mirzaalian
et al., 2016); and (ii) computing study-specific summary statistics can be affected by unbalanced
data. For instance, the variance in the z-score is highly dependent on the ratio of cases over
controls in each individual study, and can lead to inaccurate statistical inferences (Fortin et al.,
2017). The second approach is to apply either fixed-effect or mixed-effect models to capture the
heterogeneity. These methods estimate primary effects, while adjusting for study related known
covariates and unknown hidden factors. To identify those unknown factors, surrogate variable
analysis has been developed in various genomic studies (Johnson et al., 2007; Leek & Storey,
2007, 2008; Sun et al., 2012; Lee et al., 2017; Wang et al., 2017), and recently adapted to imaging
data analysis (Guillaume et al., 2018). Since surrogate variable analysis assumes that massive
univariate regression models share a common set of unknown factors, imaging measures are
usually treated as multivariate phenotypes. However, image measures across different voxels, or
grid points, are more likely to be treated as functional responses, so it is natural to use functional
data analysis tools, which can explicitly account for the three key features of imaging data:
spatial smoothness, spatial correlation and low-dimensional representation (Zhu et al., 2012).
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Furthermore, by applying some smoothing techniques, the noise component of image measures
can be reduced and the estimates of primary effects outperform those under mass-univariate
analysis in terms of estimation precision (Ramsay & Silverman, 2002). Therefore, it is greatly
important to address the hidden factor issue in functional regression models by borrowing some
ideas from surrogate variable analysis.

The aim of this paper is to develop a functional hybrid factor regression modelling framework to
investigate the relationship between functional responses and primary covariates, while adjusting
for hidden factors. Compared to existing surrogate variable analysis methods, our proposed
method is the first designed for functional data. In contrast, although some functional models
also consider recovering hidden factors via functional principal component analysis (Zhu et al.,
2012), they are inefficient for handling the imaging heterogeneity, since the hidden factors and
observed covariates are assumed to be uncorrelated. We develop a three-step estimation procedure
to estimate unknown quantities in our proposed model. In addition to the estimation procedure,
a global Wald-type test and a simultaneous confidence band are also constructed for coefficient
functions. We also systematically investigate the asymptotic properties of estimated coefficient
functions, detected hidden factors and test statistics. Furthermore, both simulation studies and
real data analysis show that our proposed method outperforms competing methods in terms of
both estimation accuracy and robustness.

2. Methods

2.1. Functional hybrid factor regression model

Suppose that we observe both imaging data and some covariates from n unrelated subjects.
Assume that all the images have been registered to a common template, denoted as S ⊂ R

d .
The template S includes nv grid points, denoted as s1, . . . , snv , which have a common density
p(s) with bounded support supp(p) ⊂ S. For each registered image, it is assumed that J imaging
measurements, or features, are derived at each point such that y(sk) = {y.1(sk), . . . , y.J (sk)}
is an n × J matrix of J features at sk across n subjects. Let X be an n × p full column
rank matrix of observed covariates including the intercept, and let Z be an n × q full column
rank matrix of hidden factors, where the number of latent factors, q, is unknown. Let C

2(S)

denote a class of functions whose second-order partial derivatives exist and are continuous
everywhere in S.

In this paper, to build up the relationship between imaging responses and both observed
covariates and hidden factors, a functional hybrid factor regression model is described as

y.j(s) = X βj(s) + Zγj(s) + η.j(s) + ε.j(s) (j = 1, . . . , J ) (1)

where βj(s) is a p × 1 vector with entries {βtj(s) ∈ C
2(S)}p

t=1 representing the primary effect
related to X on y, j(s), and γj(s) is a q × 1 vector with entries {γlj(s) ∈ C

2(S)}q
l=1 representing

the effect on y. j(s) caused by the hidden factors Z . Moreover, let η(s) = {η.1(s), . . . , η.J (s)} be
an n × J matrix that characterizes both subject-specific and location-specific spatial variability,
and let ε(s) = {ε.1(s), . . . , ε.J (s)} be measurement errors. It is also assumed that each row in
η(s) and that in ε(s) are mutually independent and identical copies of SP(0, �η) and SP(0, �ε),
respectively, where SP(μ, �) denotes a stochastic process vector with mean function μ(s) and
covariance function �(s, s′). Moreover, �ε(s, s′) takes the form of �ε(s)1(s = s′), where �ε(s) is
a diagonal matrix and1(·) is the indicator function.As a comparison, we also consider multivariate
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varying coefficient models (Zhu et al., 2012) given by

y.j(s) = X βj(s) + η.j(s) + ε.j(s), (j = 1, . . . , J ). (2)

Here models (1) and (2) share several common features. First, both models account for the spatial
smoothness, spatial correlation and the low-dimensional representation of functional responses
(Zhu et al., 2012). Second, both models are feasible to investigate the relationship between
multivariate functional responses and some observed covariates of interest. Third, the individual
function variations are considered through η(s) in both models (Zhu et al., 2012). Fourth, the
detection and adjustment of hidden factors are possible in both models.

However, models (1) and (2) use different strategies to handle the hidden factors. In Zhu
et al. (2012), the hidden factors can be captured by the individual functions η(s) based on the
functional principal component analysis (Wang et al., 2016), where all the principal component
scores can be used to recover the structure of hidden factors. A major issue associated with
this strategy is that it cannot appropriately handle the case that observed covariates and hidden
factors are correlated to each other. Specifically, in Zhu et al. (2012), the observed covariates X
are assumed to be uncorrelated with the hidden factors in individual functions η(s). However,
such an assumption may be questionable in some applications (Helmer et al., 1999; Sundström
et al., 2016; Sommerlad et al., 2018) and, thus, model (2) can be problematic for appropriately
detecting and adjusting the hidden factors. In contrast, in model (1), the individual functions η(s)
are assumed to be uncorrelated with both observed covariates X and hidden factors Z , while no
assumptions are made for the correlation between X and Z . Therefore, model (1) can handle
hidden factors even when they are correlated with the observed covariates.

2.2. Estimation procedure

We present the estimation procedure for coefficient functions and hidden factors in three steps.

Step 1. By applying the orthogonal decomposition of the matrix Z onto the column space of
X , we reparameterize model (1) as

y.j(s) = X β∗
j (s) + Z∗γj(s) + η.j(s) + ε.j(s) (j = 1, . . . , J ), (3)

where β∗
j (s) = βj(s)+(X TX )−1X TZγj(s), Z∗ = (In−PX )Z and PX = X (X TX )−1X T. Obviously,

the columns of X are orthogonal to those of Z∗. Then, given that {y.j(s)}J
j=1 and X are observed,

the multivariate local linear kernel smoothing technique (Ruppert & Wand, 1994; Fan & Gijbels,
1996) is then used to derive the weighted least squares estimator of β∗

j (s) in (3). Let e⊗2 = eeT

for any vector e, and let C ⊗ D be the Kronecker product of two matrices C and D. In addition,
define KHβ (s) = |Hβ |−1K(H−1

β s) and zHβ (sk − s) = {1, (sk − s)TH−1
β }T, where K(·) is the kernel

function, and Hβ is the positive definite bandwidth matrix and |Hβ | is its determinant. For each
j and fixed Hβ , the estimator of β∗

j (s) is derived as

β̂∗
j (s) = (X TX )−1X T

nv∑
k=1

�k(Hβ , s)y, j(sk), (4)

where �k(Hβ , s) = (1, 01×d){∑nv
k=1 KHβ (sk − s)z⊗2

Hβ
(sk − s)}−1KHβ (sk − s)zHβ (sk − s). Since

there is no linearity assumption on the coefficient function β∗
j (s), the local linear smoother

in (4) is a biased estimator (Fan & Gijbels, 1996). To overcome this issue, a standard tech-
nique considered here is bias correction. Following the pre-asymptotic substitution method in
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Functional hybrid factor regression model 5

Fan & Gijbels (1996), the bias term can be obtained by using local cubic fit with a pilot bandwidth
selected in (4). Furthermore, according to the definition of β∗

j (s), the aim of the following two
steps is to seek an estimate of Zγj(s). Then the estimate of βj(s) can be derived by subtracting
the term (X TX )−1X TẐγj(s) from β̂∗

j (s).

Step 2. The residual term from the previous step is first defined as R.j(s) = y.j(s) − X β̃∗
j (s),

where β̃∗
j (s) is the refined version of β̂∗

j (s) after correcting the bias using the local linear
kernel smoothing technique. Next, we construct an n × Jnv extended residual matrix written
as R̄ = {R.1(s1), . . . , R.1(snv), . . . , R.J (s1), . . . , R.J (snv)}. Then, given S, X and Z , the conditional
expectation of the extended residual matrix can be derived as (Ruppert & Wand, 1994)

E(R̄ | S, X , Z) = Z∗	̄ + op{tr(H 2
β)}, (5)

where 	̄ = {γ.1(s1), . . . , γ.1(snv), . . . , γ.J (s1), . . . , γ.J (snv)} and tr(·) is the trace of a given matrix.
To estimate the primary term Z∗ in (5), the singular value decomposition technique is first per-
formed on R̄, i.e., R̄ = U
V T, where the columns of U and V consist of the left and right singular
vectors, respectively, and 
 is a diagonal matrix whose diagonal entries are the ordered singular
values of R̄. Specifically, the first q columns in U , denoted as U1:q, can be treated as an estimator
of linear combinations of the columns of Z∗; see the Supplementary Material. Then, there exists
a q × q orthonormal matrix Q such that U1:q = Z∗Q + op(1) and Z∗γj(s) = U1:qαj(s), where
αj(s) = QTγj(s) (j = 1, . . . , J ).

Step 3. To derive the estimate of αj(s), the residual terms in the previous steps are treated as
functional responses. Then, a new varying coefficient model is constructed via substituting the
singular value decomposition results:

R.j(s) = U1:qαj(s) + η̃.j(s) + ε̃.j(s) (j = 1, . . . , J )

with η̃. j(s) and ε̃, j(s) similarly defined as η, j(s) and ε, j(s), respectively. For the fixed Hα , the
estimator of αj(s) can be derived as U T

1:q
∑nv

k=1 �k(Hα , s)R. j(sk), and α̂j(s) is denoted as the
corresponding bias corrected version. Then, an estimation equation can be constructed as

X B̃∗(s) + U1:qÂ(s) = X B(s) + GÂ(s),

where B̃∗(s) = {β̃∗
1 (s), . . . , β̃∗

J (s)}, G = ZQ and Â(s) = {α̂1(s), . . . , α̂J (s)}. With an additional
assumption that the row vectors of B(s) = {β1(s), . . . , βj(s)} and the row vectors of 	(s) =
{γ1(s), . . . , γJ (s)} are orthogonal with respect to p(s) on S after mean centring, we can derive
the estimator of G as

Ĝ = U1:q + X
∫

S
B̃∗(s)(IJ − PJ )ÂT(s)p(s) ds�−1,

where � = ∫
S Â(s)(IJ −PJ )ÂT(s)p(s) ds and PJ = 1J (1T1J )−11T

J , in which 1J is a J ×1 vector
of 1s. Since Zγj(s) = Gαj(s) for j = 1, . . . , J , the estimator of B(s) is given by

B̂(s) = B̃∗(s) − (X TX )−1X TĜÂ(s).

2.3. Other issues in the estimation procedure

First, according to the definitions of G and {αj(s)}, they are not identifiable due to the scaling
issue. To address this issue, we impose the constraint (nq)−1 ∑n

i=1
∑q

j=1 G2
i,j = 1, where Gi,j is
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6 C. Huang AND H. Zhu

the (i, j)th element of G and the estimated Ĝ is adjusted to satisfy this constraint. Thus, G and
{αj(s)} are identifiable up to an orthonormal transformation only.

Second, by using the smoothing method in Ruppert & Wand (1994), we smooth the individual
functions of η(s) based on the updated residual matrix as

η̂(s) =
nv∑

k=1

�k(Hη, s){y(s) − X B̂(s) − ĜÂ(s)},

where Hη is the fixed bandwidth matrix. Furthermore, we use the empirical covariance �̂η(s, s′) =
(n − p − q)−1 ∑n

i=1 η̂i.(s)η̂T
i.(s

′) to estimate �η(s, s′).
Third, to select the optimal bandwidth in B̂(s) and Â(s), we use leave-one-curve-out cross-

validation, whereas for the optimal bandwidth in η̂(s), we use the generalized cross-validation
score method (Zhang & Chen, 2007; Zhu et al., 2012). Moreover, we standardize all covariates
to have mean zero and standard deviation one, as well as all functional features. Finally, we
choose a common bandwidth for all covariates and features. More details can be found in the
Supplementary Material.

Fourth, since the number of latent factors, q, is unknown, we consider four different methods:
a permutation version of the analytical-asymptotic approach (Johnstone, 2001), parallel analysis
(Buja & Eyuboglu, 1992), the eigenvalue difference method (Onatski, 2010) and the bicross-
validation method (Owen & Wang, 2016). We compare the four different methods in terms of
high detection accuracy and computation time in the simulation studies, and select the one with
the best performance in the rest of our data analyses.

2.4. Inference procedure

We consider the following linear hypotheses on B(s):

H0 : Cvec{B(s)} = b0(s) for all s ∈ S
versus H1 : Cvec{B(s)} |= b0(s) for some s ∈ S.

(6)

Here C is an r × Jp matrix with rank r, vec(·) denotes the vectorization of a given matrix and
b0(s) is an r × 1 vector of functions. The global test statistic Tn for (6) is defined as

Tn =
∫

S
Tn(s)p(s)ds with Tn(s) = ζ T(s)[C{�̂η(s, s) ⊗ (M̂M̂ T)}CT]−1ζ(s), (7)

where ζ(s) = Cvec{B̂(s)} − b0(s), M̂ = (Ip, 0q×q)(Ŵ TŴ )−1Ŵ T and Ŵ = (X , Ĝ).
As the asymptotic distribution of Tn under H0 is quite complicated, it is difficult to derive the

percentiles of Tn directly from the corresponding asymptotic results. To address this issue, the
wild bootstrap method is developed (Zhu et al., 2012) consisting of the following four steps.

Step 1. Fit model (1) under H0 on X and {y(sk)}nv
k=1, yielding Ĝ, Â(s), B̂(s), η̂(s), ε̂(s) and the

global test statistic Tn.
Step 2. Generate random vectors τ

(m)
i and τ

(m)
i (sk) independently from the standard normal

distribution N (0, In) for k = 1, . . . , nv, and then construct

y(m)(sk) = X B̂(sk) + ĜÂ(sk) + diag(τ
(m)
i )η̂(sk) + diag{τ (m)

i (sk)}ε̂(sk),

where diag(τ ) denotes a diagonal matrix with the elements of τ lying along the diagonal.
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Functional hybrid factor regression model 7

Step 3. Based on X and {y(m)(sk)}nv
k=1, recalculate B̂(m)(s) and the global test statistic T (m)

n .

Step 4. Repeat the previous two steps M times to obtain {T (1)
n , . . . , T (M )

n }, which yields the
empirical p-value as p = ∑M

m=1 1(T (m)
n > Tn)/M .

Construction of simultaneous confidence bands for coefficient functions is also of great interest
in statistical inference for our proposed model. For a given confidence level ϑ , we construct the
1 − ϑ simultaneous confidence band for βtj(s),

{β̂tj(s) − n−1/2Ctj(ϑ), β̂tj(s) + n−1/2Ctj(ϑ)}, 1 � t � p, 1 � j � J ,

where Ctj(ϑ) is a scalar, which is to be determined. Here an efficient resampling method (Kosorok,
2003; Zhu et al., 2007, 2012) is developed to approximate Ctj(ϑ) as follows.

Step 1. Fit model (1) on X and {y(sk)}nv
k=1, yielding the residuals ν.j(s) = y(s)−X β̂(s)+Ĝα̂(s).

Step 2.Generate the random vector τ
(m)
i from the standard normal distribution N (0, In), and

then construct ω
(m)
tj (s) = n1/2eT

t M̂diag(τ
(m)
i )

∑nv
k=1 �k(H , s)ν.j(sk), where et is a p × 1 vector

with the tth element being 1 and 0 otherwise.
Step 3.Repeat the second step M times to obtain {sups |ω(1)

tj (s)|, . . . , sups |ω(M )
tj (s)|}, and use

their 1 − ϑ empirical percentile to estimate Ctj(ϑ).

3. Asymptotic properties

We systematically investigate the asymptotic properties of all estimators proposed in § 2.2 and
inference procedures in § 2.4. Assumptions used to facilitate the technical details can be found
in the Supplementary Material.

The following theorem tackles the theoretical properties of B̂(s) and Ĝ. The detailed proof can
be found in the Supplementary Material.

Theorem 1. Under Assumptions A1–A7 in the Supplementary Material, we have the following
results.

(i) The columns of Ĝ span the same column space as the columns of Z in probability.
(ii) It holds that n1/2[{IJ ⊗ (M̂M̂ T)−1/2}vec(B̂(s) − E[B̂(s)]) | s ∈ S] weakly converges to a

centred Gaussian process with covariance matrix �η(s, s) ⊗ Ip.

The following theorem derives the asymptotic distribution of global test statistic Tn in (7) under
the null hypothesis and its asymptotic power under local alternative hypotheses. The detailed proof
can be found in the Supplementary Material.

Theorem 2. Under Assumptions A1–A9 in the Supplementary Material, we have the following
results.

(i) It holds that Tn → ∫
S ξ(s)Tξ(s) ds as n → ∞, where ξ(s) is a centred Gaussian process.

(ii) It holds that P{Tn > Tn,ϑ | H1n} → 1 as n → ∞ for a sequence of local alternatives
H1n : Cvec(B(s)) − b0(s) = n−τ/2ζ(s), where τ is any scalar in [0, 1), Tn,ϑ is the upper
100ϑ percentile of Tn under H0 and 0 <

∫
S ‖ζ(s)‖2 ds < ∞.
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8 C. Huang AND H. Zhu

4. Simulation studies

To examine the proposed methods, we generated synthetic curves from the model

yij(sk) = xT
i βj(sk) + ziγj(sk) + ηij(sk) + εij(sk), j = 1, 2,

where s1 = 0 � s2 � · · · � snv = 1, in which we independently simulated s̃k ∼ U (0, 1) for
k = 2, . . . , nv −1 and sorted them to obtain {sk : k = 2, . . . , nv −1}. We set xi = (1, xi1, xi2, xi3)

T,
in which we independently simulated xi1 ∼ Ber(0.5), xi2 ∼ N (0, 1) and xi3 ∼ N (0, 1) for
i = 1, . . . , n. We simulated zi as

zi = xT
i ϕ + ωi, ωi ∼ N (0, 1) (i = 1, . . . , n),

whereϕ = {u1(2b1−1), u2(2b2−1), u3(2b3−1), u4(2b4−1)}T with bl being independently gener-
ated from Ber(0.5). We independently simulated ul for all l and consider four different simulation
scenarios on ul: (i) ul = 0; (ii) ul ∼ U (0, 0.2); (iii) ul ∼ U (0.2, 0.5) and (iv) ul ∼ U (0.5, 1).
Those scenarios correspond to hidden factors Z being (i) independent of X , (ii) weakly corre-
lated with X , (iii) moderately correlated with X and (iv) highly correlated with X , respectively.
The ηij(s) admits the Karhunen–Loeve expansion as ηij = ξij1ψj1(s) + ξij2ψj2(s), where the
ψjl(s) are the eigenfunctions and ξijl ∼ N (0, 0.5) for j = 1, 2 and l = 1, 2. We simulated
(εi,1, εi,2)

T ∼ N {(0, 0)T, 0.5 diag(σ 2
1 , σ 2

2 )}, where σ 2
l ∼ Inverse-Gamma(10, 9) for l = 1, 2.

Also, we set the following functions:

β1(s) = {3s2, 3(1 − s)2, 6
√

s(1 − s), −s2}T, γ1(s) = −√
2 sin(πs),

β2(s) = {12(s − 0.5)2, 1.5
√

s, 3s2, −2s/3}T, γ2(s) = √
2 cos(2πs),

ψ11(s) = 0.5, ψ12(s) = s − 0.5, ψ21(s) = 2s − 1 and ψ22(s) = 1.

Throughout the simulation studies, we set n = 50 and nv = 2000. Finally, we generated 200
datasets for each simulation scenario.

We compare our method with two other methods: the multivariate varying coefficient model
of Zhu et al. (2012) and the confounder adjustment method of Wang et al. (2017). For the
method in Wang et al. (2017), the curved data is treated as multivariate responses. To evaluate
the finite-sample performance of each method, we consider the integrated square error, i.e.,∑2

l=1

∫ 1
0 ||β̂l(s)−βl(s)||2 ds, where β̂j(s) is any estimator of βj(s). For both the method in Wang

et al. (2017) and our method, the eigenvalue difference method (Onatski, 2010) is used to estimate
the number of factors.

Fig. 2 presents the comparison results for the three methods in all four scenarios. Inspecting
Fig. 2 reveals the following results. First, compared with the method in Zhu et al. (2012), both
the method in Wang et al. (2017) and our method are very stable and robust to the correlation
between X and Z . Second, our method outperforms that in Wang et al. (2017) for all scenarios,
indicating that it is critically important to use the functional data analysis tools. Third, when
Z and X are independent, the difference between our method and that of Zhu et al. (2012) is
very small. Fourth, when the correlation between X and Z is high in scenario (iv), the integrated
square errors based on the method in Zhu et al. (2012) dramatically increase. In contrast, those
of our method are much smaller even though there are a few outliers, which are caused by the
uncertainty of estimating q, as detailed below.

We compare four estimation methods for the number of hidden factors, including the analytical-
asymptotic approach in Johnstone (2001), the permutation version of the parallel analysis in
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Fig. 2. Simulation results for comparisons of the proposed and competing methods on synthetic curve data in terms
of the integrated square error. Four scenarios were considered: the hidden factors Z are (i) independent of X ,
(ii) weakly correlated with X , (iii) moderately correlated with X and (iv) highly correlated with X . The methods

of Wang et al. (2017) (blue) and Zhu et al. (2012) (orange) are compared with our method (green).

Table 1. Comparison of four methods for estimating the number of hidden factors with q = 1. The
average computation time for each method is reported as well. In the four scenarios considered
Z is (i) independent of X , (ii) weakly correlated with X , (iii) moderately correlated with X and

(iv) highly correlated with X
Method Scenario Average computation time

(i) (ii) (iii) (iv) (seconds per dataset)

Johnstone (2001) 62/200 65/200 64/200 64/200 0.1
Buja & Eyuboglu (1992) 190/200 191/200 192/200 191/200 70.2
Onatski (2010) 200/200 200/200 198/200 198/200 0.8
Owen & Wang (2016) 200/200 196/200 196/200 196/200 9.7

Buja & Eyuboglu (1992), the eigenvalue difference method in Onatski (2010) and the bi-cross-
validation method in Owen & Wang (2016). Table 1 reports the estimation results for the four
methods. We observe that the last three methods can achieve almost 100% estimation accu-
racy, while outperforming the analytical-asymptotic approach with low estimation accuracy
around 30%. In addition, in terms of average computation time, the eigenvalue difference method
(Onatski, 2010) is much more efficient than the bi-cross-validation method (Owen & Wang, 2016)
and the parallel analysis approach (Buja & Eyuboglu, 1992). Thus, the eigenvalue difference
method is used in subsequent analyses.

We investigate the sensitivity of our method with respect to the misspecification of q under
the four scenarios since there are some outliers in Fig. 2 for our method when Z and X are
highly correlated. We also consider three choices of q including q = 0, 1 and 2, which represent
the underestimated, true and overestimated values, respectively. Fig. 3 presents the box plots of
integrated square errors for all q values under the four scenarios. There are three major findings.
First, when the hidden factor Z is independent of or weakly correlated with X , the integrated
square errors are relatively stable even when q is misspecified. Second, when Z is moderately
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Fig. 3. Simulation results for the sensitivity analysis of our method under the three choices of q, q = 0 (blue), q = 1
(orange) and q = 2 (green) in the four scenarios in which Z is (i) independent of X , (ii) weakly correlated with X ,

(iii) moderately correlated with X and (iv) highly correlated with X .

or highly correlated with X , the integrated square errors dramatically increase for misspecified q
values. Third, the underestimated q = 0 has much larger effects on integrated square errors than
the overestimated q = 2.

We examine the correlation between the space spanned by the columns of detected latent
factors with that spanned by the columns of true Z . Fig. 4 presents simulation results in the four
scenarios with the absolute values of Pearson correlation between Ĝ and Z being greater than
0.90, indicating their consistency with each other. Moreover, when the correlation between Z and
X gets higher, the absolute values of the Pearson correlation coefficient are closer to 1.

We examine the Type I and Type II error rates of Tn. For the sake of space, we only consider
the third scenario (iii), in which ϕ = (u1, −u2, u3, −u4)

T independently simulating ul from
U (0.2, 0.5) for all l = 1, 2, 3, 4. Moreover, we fix all other parameters at their values specified
above except that we set β14(s) = −cs2 and β24(s) = −2cs/3, where c is a scalar specified
below. We want to test the following hypotheses:

H0 : β14(s) = β24(s) = 0 for all s

versus H1 : β14(s) |= 0 or β24(s) |= 0 for at least one s.
(8)

We set c = 0 to assess the Type I error rates for Tn, and set c = 0.1, 0.2, 0.3, 0.4 and 0.5 to
examine the power of Tn. We set the sample size to n = 100 and 200. For each case, 500
bootstrap replications were generated to construct the empirical distribution of Tn under H0.
Fig. 5 presents the power curves at the significance levels α = 0.05 and 0.01. The rejection rates
for Tn based on the wild bootstrap method are accurate for moderate sample sizes with n = 100
and 200 at both significance levels α = 0.01 and 0.05. As expected, the power increases with the
sample size.

Finally, we investigate the coverage probabilities of simultaneous confidence bands for the
functional coefficients in B(s) based on the resampling method. We only consider the third sce-
nario (iii). We fix all parameters specified above except that we set n = 200 and the number of grid
points nv = 200 and 2000. We calculated the simultaneous confidence bands for each component
in B(s) based on 200 replications. Table 2 summarizes the empirical coverage probabilities at

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asac007/6519305 by Florida State U

niversity user on 09 July 2022



Functional hybrid factor regression model 11

i iii

Scenario

A
bs

ol
ut

e 
va

lu
e 

of
 p

ea
rs

on
 c

or
re

la
tio

n 
co

ef
fi

ci
en

t

ivii

1.00

0.98

0.96

0.92

0.94

Fig. 4. Simulation results for the absolute values of the Pearson correlation between Ĝ and Z in the four sce-
narios in which Z is (i) independent of X , (ii) weakly correlated with X , (iii) moderately correlated with X and

(iv) highly correlated with X .
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Fig. 5. Power curves for the hypothesis testing problem (8) based on our method with different choices of c and levels
of α: α = 0.05 (red) and α = 0.01 (blue). Two horizontal dashed lines are added to indicate the levels α = 0.05

(orange) and α = 0.01 (green).

Table 2. Empirical coverage probabilities of 1 − α simultaneous confidence bands
α nv β11 β12 β13 β14 β21 β22 β23 β24

0.05 200 0.935 0.920 0.925 0.920 0.915 0.915 0.930 0.940
2000 0.945 0.950 0.950 0.950 0.945 0.945 0.955 0.950

0.01 200 0.985 0.990 0.995 0.980 0.980 0.995 0.990 0.990
2000 0.990 0.995 0.990 0.995 0.995 0.995 0.990 0.995

α = 0.05 and 0.01. As expected, the coverage probabilities improve as the number of grid points
nv increases.

5. Real data analysis

5.1. Data processing

In this data analysis, we consider 936 MRI scans from normal controls and individuals with
mild cognitive impairment or Alzheimer’s disease from the three phases ADNI-1, ADNI-GO and
ADNI-2. Table 3 summarizes the demographic information of all the subjects.
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Table 3. Hippocampal surface data: demographic information of 936 subjects
Phase ADNI-1 ADNI-GO ADNI-2 Total

Size 800 24 112 936
Gender (F/M) 465/335 13/11 61/51 539/397
Handedness (R/L) 738/62 20/4 9/103 861/75
Age range (years) [58, 95] [55, 84] [53, 87] [53, 95]
Education length range (years) [4, 20] [12, 20] [8, 20] [4, 20]
Disease (NC/MCI/AD) 224/389/187 0/24/0 29/58/25 253/471/212

NC, normal control; MCI, mild cognitive impairment; AD, Alzheimer’s disease.

We processed the MRI data by using standard steps and generated one-to-one hippocampal
surface registration in Shi et al. (2013). Then, we computed the various surface statistics on the
registered surface, such as multivariate tensor-based morphometry statistics, which retain the full
tensor information of the deformation Jacobian matrix, together with the radial distance, which
retains information on the deformation along the surface normal direction. More detailed image
data processing procedures can be found in the Supplementary Material.

5.2. Data analysis

The hippocampus is believed to be involved in memory, spatial navigation and memory, and
behavioural inhibition. In Alzheimer’s disease, the hippocampus is one of the first regions of the
brain to be affected, leading to the confusion and loss of memory so commonly seen in the early
stages of the disease (Kong et al., 2019). The objective of this data analysis is to integrate the
data from three different data phases, i.e., ADNI-1, ADNI-GO and ADNI-2, and examine the
effects of clinical variables and demographic variables on either the left or right hippocampus.
Moreover, the hidden factors are expected to be recovered and discussed. Before conducting this
analysis, we would like to check if there is any heterogeneity caused by phases. According to
Fig. 1 and the related discussion in § 1, this study-level heterogeneity does exist in the ADNI
hippocampal surface data. Therefore, the phase information should be included as predictors in
the data analysis.

We applied our new method with either the left or right hippocampal surface data as the func-
tional responses. The method in Zhu et al. (2012) was used for comparison. Specifically, we
consider four imaging measurements: the logged radial distance and three tensor-based mor-
phometry statistics measured over 7500 vertices on the hippocampal surface (3750 on each side).
In this case, we have J = 4. Moreover, we included an intercept, gender, handedness, education
length, age, diagnostic information and phase information as predictors in X . The corresponding
coefficients are considered as functions on the cerebral cortex, and the Gaussian kernel function is
adopted in the estimation procedure. Subsequently, we test the effects of all the primary variables
on the four functional responses on hippocampal surfaces. We calculated the global test statistic
for each predictor and used 500 replications in the wild bootstrap approach. Table 4 summarizes
the corresponding p-values, where p-values less than 5% are in red. Given the significant level
0.05, both disease, Alzheimer’s disease versus Normal control, and age are found to be signifi-
cant on the left hippocampal surface based on the method in Zhu et al. (2012). In contrast, more
predictors are found to be significant based on our method. For example, significant age effect
is found on the left hippocampal surface, while both education length effect and disease effect,
Alzheimer’s disease versus normal control, are significant on left and right hippocampal surfaces.
Among all these variables, education length is found to be significant in our method, but not in
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Table 4. Hippocampal surface data: comparison of p-values for primary variables
Variable p-value

Left hippocampus Right hippocampus
Zhu et al. (2012) Our method Zhu et al. (2012) Our method

Gender 0.212 0.092 0.234 0.116
Handedness 0.652 0.102 0.704 0.082
Education length 0.132 0.036 0.244 0.048
Age 0.048 0.048 0.096 0.052
MCI versus NC 0.156 0.066 0.082 0.064
AD versus NC 0.046 0.034 0.054 0.040
ADNI-GO versus ADNI-1 0.134 0.112 0.136 0.120
ADNI-2 versus ADNI-1 0.118 0.106 0.112 0.114

NC, normal control; MCI, mild cognitive impairment; AD, Alzheimer’s disease.

L

R

6

0

age edu. level AD vs. NC

Frisoni et al. (2008) Brain

0.048 0.036 0.043

Fig. 6. Hippocampal surface data: adjusted − log10(p)-value maps corresponding to three covariates of interest: age,
education level, and diagnosis status.

the competing method. Education length is an important factor for the changes of hippocampus
structure in the literature (Arenaza-Urquijo et al., 2013).

Furthermore, we are also interested in detecting significant subregions by using the local test
statistic and the false discovery rate (Benjamini & Yekutieli, 2001). Fig. 6 presents the false
discovery rate adjusted − log10(p)-value maps. To better understand the significant subregions,
we consider the cytoarchitectonic subregions mapped on blank MR-based models at 3 T of the
hippocampal formation (Frisoni et al., 2008, Fig. 2).All the significant subregions associated with
age and disease circled in red are found in the CA1 subfield. Similar hippocampal subregions
were found to be affected byAlzheimer’s disease (Frisoni et al., 2008), indicating that our findings
are in agreement with those in the literature.

We investigate the potential hidden factors estimated by our method. Applying the eigenvalue
difference method yields three hidden factors. Table 5 presents the correlation between primary
variables and detected hidden factors, where p-values less than 5% are in red. Specifically, we
calculated the Pearson correlation between two continuous variables and the polyserial correlation
between a continuous variable and a discrete one. Inspecting Table 5 reveals that on both left
and right hippocampal surfaces, the detected factors are highly related to education length, age,
disease status and phase information. In contrast, for the method in Zhu et al. (2012), the key
assumption that the hidden factors and primary variables are uncorrelated is inappropriate.

Finally, we investigate whether there are any other variables not included in our current analysis
that may be strongly correlated with the latent factors. We consider seven new variables in the
three categories of ethnic group information (three dummy variables were introduced to represent
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Table 5. Hippocampal surface data: correlations between primary variables and detected
hidden factors and their associated p-values in parentheses

Primary variable Hidden factor
Left hippocampus Right hippocampus

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

Gender −0.038 0.015 −0.048 0.006 0.023 −0.045
(0.358) (0.724) (0.239) (0.883) (0.582) (0.278)

Handedness −0.013 −0.041 0.076 0.041 −0.055 0.047
(0.835) (0.517) (0.209) (0.494) (0.382) (0.435)

Education length −0.021 0.024 0.090 0.058 0.014 0.074
(0.531) (0.466) (0.006) (0.078) (0.665) (0.025)

Age 0.120 0.089 −0.079 −0.163 0.071 −0.131
(<0.001) (0.007) (0.015) (<0.001) (0.030) (<0.001)

MCI versus NC −0.045 0.061 0.020 0.064 0.003 0.062
(0.272) (0.144) (0.617) (0.119) (0.944) (0.131)

AD versus NC 0.087 −0.058 0.061 −0.094 −0.029 −0.008
(0.041) (0.228) (0.507) (0.039) (0.530) (0.853)

ADNI-GO versus ADNI-1 −0.305 0.392 0.215 0.440 −0.176 0.403
(<0.001) (<0.001) (0.011) (<0.001) (0.064) (<0.001)

ADNI-2 versus ADNI-1 −0.221 −0.318 0.213 0.271 −0.469 0.466
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

NC, normal control; MCI, mild cognitive impairment; AD, Alzheimer’s disease.

Asian, African American and White), marital status (three dummy variables were introduced to
represent widow, divorce and not married) and retirement status. There are several reasons that
we do not include the new regressors in the main model at the beginning. First, we only include
a standard set of covariates, which have been widely considered in the existing literature (Kong
et al., 2019), in the main model. Second, we apply our proposed method to detect some hidden
factors that cannot be explained by the existing covariates. Third, we correlate the hidden factors
with a set of new regressors and find that these regressors can partially explain these factors. This
process also illustrates the importance of our functional hybrid factor regression model. Another
reason is that there are many missing data in these new regressors. Specifically, the missing
data rates for the new regressors in the three categories are 9.8% for ethnic group information,
10.9% for marital status and 9.4% for retirement status. We observe that on the left hippocampal
surface, the detected hidden factors are strongly correlated with all of them, whereas on the right
hippocampal surface, the detected hidden factors are only correlated with the marital status. More
detailed results can be found in the Supplementary Material.

6. Discussion

The key assumption of our method is Assumption A6 in the Supplementary Material, which
requires that the row vectors of B(s) and the row vectors of 	(s) are orthogonal with respect
to the underlying density function p(s) after mean centring. Similar assumptions for model
identification can be found in some existing methods (Sun et al., 2012; Lee et al., 2017). This
assumption is reasonable in many imaging studies. For example, in neuroimage data analysis,
batch effects are usually caused by the heterogeneity in imaging acquisition protocols. Their effect
sizes would not be correlated with those of population differences or diagnostic status (Lee et al.,
2017). Also, our simulation studies show that our method is robust even when this assumption is
violated. Specifically, in our simulation settings, when ‖ ∫

s B(s)(IJ −PJ )	T(s)p(s) ds‖1 = 3.544,
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indicating that this assumption does not hold, our method still outperforms the two competing
methods.

Besides the assumption on functional coefficients, modelling of latent factors Z is also a key
term in our method. In this paper, we treat the latent factors as fixed. However, to account for
the imaging heterogeneity, it will be more flexible to assume that the latent factors are random.
For example, Wang et al. (2017) modelled the latent factors Z through a linear model on primary
variables X , i.e., Z = X αT + W and W is normally distributed. Therefore, it is important to
extend our model in this paper to handle the random setting of latent factors, which will be the
focus of future work.

Another interesting topic is to extend our method to some unsupervised or semisupervised
learning, whose goal is to recover the subgroup structure within the functional data when the sub-
group information is unknown or not completely observable. It is challenging because unwanted
variations may be correlated with the subgroup information. For example, it is of great inter-
est to conduct the clustering analysis in terms of brain atrophy variations among patients with
Alzheimer’s disease (Poulakis et al., 2018), and there is increasing evidence that the patients’clus-
ter information has strong association with some unknown factors like marital status (Sommerlad
et al., 2018). Thus, it would be interesting to extend our model to simultaneously investigate the
latent subgroup structure, while accounting for unknown latent factors. We leave these extensions
to future research.
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