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ABSTRACT

Osteoarthritis (OA) is the most common disabling joint disease. Magnetic resonance (MR) imaging has
been commonly used to assess knee joint degeneration due to its distinct advantage in detecting mor-
phologic cartilage changes. Although several statistical methods over conventional radiography have been
developed to perform quantitative cartilage analyses, little work has been done capturing the develop-
ment and progression of cartilage lesions (or abnormal regions) and how they naturally progress. There
are two major challenges, including (i) the lack of building spatial-temporal correspondences and corre-
lations in cartilage thickness and (ii) the spatio-temporal heterogeneity in abnormal regions. The goal of
this work is to propose a dynamic abnormality detection and progression (DADP) framework for quan-
titative cartilage analysis, while addressing the two challenges. First, spatial correspondences are estab-
lished on flattened 2D cartilage thickness maps extracted from 3D knee MR images both across time
within each subject and across all subjects. Second, a dynamic functional mixed effects model (DFMEM)
is proposed to quantify abnormality progression across time points and subjects, while accounting for the
spatio-temporal heterogeneity. We systematically evaluate our DADP using simulations and real data from
the Osteoarthritis Initiative (OAI). Our results show that DADP not only effectively detects subject-specific
dynamic abnormal regions, but also provides population-level statistical disease mapping and subgroup
analysis.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

fort, locking, and other problems in mobility, which can be severe
(Felson et al., 2000). The disease of OA is also characterized by

Osteoarthritis (OA) is a common, chronic disease affecting all
joint tissues and characterized by cartilage loss. Over 50 million
people have doctor-diagnosed arthritis (Hootman et al., 2016), the
majority of which is OA, and even this is likely an underestimate
(Jafarzadeh and Felson, 2017), leading to health expenditures to-
taling over $27 billion annually (Gupta et al., 2005). OA is com-
monly associated with symptoms including swelling, pain, discom-
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the progressive loss of joint cartilage, which is believed to be the
main factor in OA. Different medical imaging modalities have been
employed to investigate and quantitatively measure the knee joint
cartilage, such as radiography, Magnetic resonance (MR) imaging,
ultrasound (US), Computed Tomography (CT), and optical coher-
ence tomography (OCT) (Braun and Gold, 2012; Kijowski et al.,
2020). Among all these available modalities, MR imaging is a non-
invasive modality with high spatial resolution. Although MR imag-
ing cannot capture the bone architecture as well as CT, it is useful
for capturing some characteristics of the joint, including cartilage
morphology and biochemical composition (Guermazi et al., 2003;
Roemer et al., 2020). Furthermore, MR imaging is very sensitive
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Fig. 1. MR images of the human knee illustrating cartilage loss. (left) A sagittal slice of a healthy knee. Bones are annotated in blue, femoral cartilage in green and tibial
cartilage in orange; (middle) A coronal slice of the same healthy knee; (right) A coronal slice of an OA knee with cartilage loss indicated by the red arrow. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

to full or partial-thickness changes of articular cartilage over time
(Huang et al., 2015; Karim et al., 2021). Therefore, MR imaging has
been commonly used to detect cartilage morphological changes
and understand OA progression (Raynauld, 2003; Cicuttini et al.,
2005; Conaghan et al., 2011). Fig. 1 shows MR images of the hu-
man knee illustrating cartilage loss.

Several large-scale longitudinal multicenter MR imaging
databases, such as the Multicenter Osteoarthritis STudy (MOST)
(Segal et al, 2013) and the Osteoarthritis Initiative (OAI)
(Eckstein et al., 2012), have been acquired to understand the
progression of cartilage change and associated risk factors
(Felson et al, 2013). Although quantitative MR image-based
biomarkers, such as the volume of the articular cartilage (Eckstein
et al, 2006; Schaefer et al.,, 2017), shape information (An et al.,
2016; Bowes et al., 2021), and T, relaxometry patterns (Pedoia
et al., 2017; 2019), show potential for OA diagnosis and treatment
planning, little work has been done in assessing the development
of cartilage lesions (or abnormal regions), such as soft tissue
swelling or small cartilage or bone fragments, and their natural
progression, due to several challenges, which will be detailed
below. From a clinical perspective, it is also of great interest
to delineate the location and progression of abnormal cartilage
regions for refining patient treatment.

There are at least two major challenges in existing abnormal re-
gion detection approaches. First, spatio-temporal correspondences
and correlations in cartilage thickness are required for statistical
localized analysis. It is difficult to establish such correspondences
due to the small cartilage volume in relation to the remainder
of the knee (Huang et al., 2015; Pedoia et al., 2017; 2019; Roach
et al., 2021). Second, abnormal regions across both subjects and
time points exhibit spatio-temporal heterogeneity. For the spatial
heterogeneity, the cartilage loss pattern is only consistent within
a small set of the entire population of subjects. For the temporal
heterogeneity, over time cartilage damage and cartilage loss have
been found from longitudinal OA studies (Crema et al., 2013; Glyn-
Jones et al.,, 2015; Chen et al., 2017). Thus, treating all the subjects
across different time points equally and applying standard statisti-
cal methods (e.g., voxel-based analysis and subregion-based analy-
sis (Wirth and Eckstein, 2008)) would be problematic.

To address the two challenges above, a Gaussian Hidden Markov
Model (GHMM) was proposed in Huang et al. (2015) to simulta-

neously model the progression and abnormality of cartilage thick-
ness. However, there are some drawbacks in GHMM. First, GHMM
ignores the temporal heterogeneity and assumes that the subject-
specific abnormal region pattern is time-invariant, which would be
sub-optimal in practice, especially in characterizing and predict-
ing individual OA progression. Second, for normal control subjects,
GHMM applies a voxel-wise linear mixed model and treats all vox-
els as independent units, which ignores two key functional features
of imaging data, including spatial smoothness and spatial corre-
lation. Third, GHMM does not provide the population level sta-
tistical disease mapping and the detection of some potential OA-
subgroups based on the cartilage thickness abnormality (Liu et al.,
2021).

The aim of this work is to propose a Dynamic Abnormality De-
tection and Progression (DADP) framework. First, longitudinal knee
MR images are processed to derive flattened 2D cartilage thick-
ness maps. Second, the subject-specific dynamic abnormal regions
are detected based on the thickness maps. Compared to GHMM
and other existing approaches, the main contributions of our DADP
framework are summarized as follows:

1. A deep learning based image analysis pipeline is proposed
in DADP to extract 2D cartilage thickness maps from 3D knee
MR images, in a common coordinate system, establishing cor-
respondences in space and time;

2. A dynamic functional mixed effects model is proposed in
DADP to (i) establish the relationship between the cartilage
thickness map and a set of covariates of interest, (ii) cap-
ture the spatial smoothness and spatio-temporal correlations
within the thickness map through functional data analysis tools
(Yuan et al., 2014), and (iii) detect the spatio-temporal hetero-
geneity in subject-specific dynamic abnormal regions through a
dynamic conditional random field model (Sutton et al., 2007);

3. A series of formal statistical inference procedures are es-
tablished in DADP to (i) test whether there is any significant
effect of some covariates of interest on the cartilage thick-
ness, (ii) detect population level OA risk on the thickness map
through the statistical disease mapping approach, and (iii) con-
duct subgroup analysis through a non-negative matrix factor-
ization method (Ding et al., 2005);

4. A powerful and user-friendly package is developed in DADP
for the entire OAl MR image dataset. Moreover, our package
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Fig. 2. The DADP framework includes (i) an image analysis module and (ii) a statistical modeling module. Image analysis module extracts 2D cartilage thickness maps in
a common coordinate system from the 3D knee MR images through a series of image analysis steps. Statistical modeling module includes (a) association analysis between
cartilage thickness and covariates of interest, (b) individual abnormal regions detection, and (c) multi-level statistical disease mapping.

can be straightforwardly applied for analyzing other knee MR
image data at scale. The package will be released to the public
through GitHub.

2. DADP

Our DADP includes two main components: (i) an image anal-
ysis module and (ii) a statistical modeling module. Specifically,
in the image analysis module, the 3D knee MR images are pre-
processed through a series of image analysis steps to derive flat-
tened 2D cartilage thickness maps in a common coordinate system.
Through this common coordinate system, we obtain spatial corre-
spondence across subjects and/or time points. Then, in the statis-
tical modeling module, a dynamic functional mixed effects model
is established based on the 2D cartilage thickness maps to charac-
terize the spatio-temporal correlations within the cartilage thick-
ness map, address the spatio-temporal heterogeneity of abnormal
regions, and quantify local OA risk at both population-level and
subgroup-level. The workflow of our DADP is summarized in Fig. 2.
Next, we introduce the detailed steps in the image analysis mod-
ule and the estimation and inference procedures in the statistical
modeling module.

2.1. Image analysis module

The aim of this image analysis module is to extract spatially
aligned 2D thickness maps of femoral/tibial cartilage from the 3D
MR images. The whole pipeline consists of four image preprocess-
ing & analysis steps, including (D segmentation & meshing, @ 3D
thickness map computation, 3) registration, and @ thickness map
projection. Fig. 3 shows the overall preprocessing pipeline.

First, the femoral cartilage (FC) and tibial cartilage (TC) are
segmented from 3D MR images with a U-Net-like network
(Ronneberger et al., 2015; Xu et al, 2018), where the model
is trained with two parallel output layers. Each layer predicts

a binary segmentation for FC or TC, respectively. Compared to
some existing methods for knee cartilage segmentation (e.g.,
graph model based approach (Yin et al, 2010), 2D U-Net net-
work (Norman et al., 2018), volumetric convolution neural network
(Raj et al., 2018), and multi-agent learning (Tan et al., 2019)), our
proposed cascaded model of simple U-Nets can match the per-
formance of a complex U-Net, while providing better efficiency
in terms of using fewer parameters and requiring less mem-
ory (Xu et al, 2018). Based on the resulting (soft) segmenta-
tions, we build triangle meshes for each cartilage using marching
cubes (Lorensen and Cline, 1987). Second, we compute the carti-
lage thickness for every vertex on the triangle meshes. The thick-
ness value at a vertex on the cartilage surface mesh is approxi-
mated by the distance between the vertex’s position and its closest
point on the opposite side of the surface. Therefore, we divide the
cartilage surface mesh into two opposite parts. Some local smooth-
ing is applied to improve incorrect divisions caused by mesh ar-
tifacts and imperfect segmentations. Third, we align the cartilage
meshes to an atlas space using a deep registration network in or-
der to align each MR image to an atlas image. Here the atlas is
built via an unbiased atlas-building approach. Specifically, we con-
sider 60 affine-aligned images with segmentations. The initial at-
las is simply the average image of these aligned affine images. We
then iterate B-Spline registrations (using NiftyReg and NMI as sim-
ilarity measures) to the current atlas image 10 times. After each
round of registrations, the atlas image is updated as the average of
the set of deformed images given the current registration trans-
formations. In this way, the atlas gets successively sharper. Af-
ter the 10 registration rounds, we warp the segmentations given
the current transformations from image space to the atlas im-
age and obtain the constructed atlas and a probabilistic segmen-
tation. Compared to some widely-used public registration meth-
ods (e.g., SyN (Avants et al, 2008; 2014), Demons (Vercauteren
et al., 2008; 2009), NiftyReg (Modat et al., 2010; 2014), and Vox-
elMorph variant (Dalca et al., 2018)), our proposed registration ap-
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Fig. 3. Image analysis module in DADP: () segmentation & meshing; @ 3D thickness map computation; 3 registration; and @ thickness map projection.

proach can achieve comparable and sometimes better performance
for longitudinal registration with a dramatically reduced computa-
tion time and with excellent deformation regularity and symme-
try (Shen et al., 2019). Specifically, the registration involves two
phases: an affine registration as pre-alignment followed by a non-
parametric registration to capture local deformations. For the non-
parametric registration, we use a vector momentum-parameterized
stationary velocity field (vSVF) approach (Niethammer et al., 2019).
In particular, we use its deep learning version (Shen et al., 2019).
We then transfer the cartilage thicknesses to the atlas cartilage
mesh. Fourth, we project the 3D atlas points onto the 2D plane
and interpolate thickness values to obtain spatially aligned flat-
tened 2D cartilage thickness maps for the FC and TC respectively.

2.2. Statistical modeling module

2.2.1. Notations & assumptions

Suppose that we obtain longitudinal imaging data and clini-
cal variables for n unrelated subjects. Let n; be the total num-
ber of observations for the i-th subject for i=1,...,n. Our im-
ages consist of preprocessed 2D cartilage thickness maps calcu-
lated from the OAI study, which are registered to a common tem-
plate S ¢ R? with n, grid points {sq,...,sn,}. For the i-th subject
at the j-th time point, we observe (i) 2D imaging data, denoted
by y; j(s), indicating the cartilage thickness at pixel s; (ii) a px-
dimensional covariate vector of interest, denoted by ¥; ;, including
the intercept, time-independent covariates (e.g., gender), and time-
dependent ones (e.g., age and body mass index (BMI)); and (iii) the
Kellgren-Lawrence grade (KLG) (Kellgren and Lawrence, 1957) de-
noted as g; ;. The KLG score corresponds to 5 diagnostic outcomes,
starting from normal stage (g; ; = 0), early stage (g; ; = 1), mild OA
(gi,j = 2), moderate OA (g;; = 3), to severe OA (g;; = 4). Without
loss of generality, we assume that the first n* subjects are OA pa-
tients with at least one observation being at OA stage, whereas the
rest n — n* subjects are normal controls with all observations be-
ing at normal stage. In addition, for the i-th subject at the j-th
time point, we assume that S can be decomposed into the union

of normal regions Rl? i and abnormal regions R} i that is
§=R};UR}; and R);NR};=0. (1)

Here we also assume that: (i) observations at the normal stage
are perfectly healthy and do not exhibit any abnormal regions,
ie., R}] = ¢; (ii) for OA patients, the shape, size, and location of
abnormal regions Rll j May vary across subjects and time points;
and (iii) the abnormal regions satisfy an inclusion property such
that R}J C R}_jﬂ for j=1,...,n; — 1. To further illustrate these as-
sumptions, Fig. 4 shows three different abnormal region patterns.
In this example, patients at the normal stage do not have any ab-
normal regions, while the shape, size, and location of abnormal
regions are different across subjects and time points. In particu-
lar, once an abnormal region is present it does not disappear and
cannot shrinkage at later time points.

2.2.2. DEMEM: Dynamic functional mixed effects model

We propose a dynamic functional mixed effects model
(DFMEM) to simultaneously detect individual abnormal regions
and capture the relationship between cartilage thickness and co-
variates of interest. The path diagram of DFMEM is presented in
Fig. 5. Specifically, DFMEM is defined as

Yij(s) =& ;B(s) + b j(S )W/ ;0 + 2/ ,y,(5) + 11 j(s) + €5(5)  (2)

forj=1,...,n;andi=1,...,n. Here B(s) is a py-dimensional vec-
tor representing the fixed effect at pixel s, w; ; is a py-dimensional
vector of covariates (commonly a subset of x; ;) associated with the
effect o occurring within the abnormal regions (i.e., {b; ;(s),s € S},
bij(s)=0if se Rl?j and b; j(s) =1 otherwise), and z;; is a p,-
dimensional vector of covariates (commonly a subset of x; ;) as-
sociated with the random effect p;(s). In addition, n;;(s) is a
stochastic individual function and ¢; ;(s) is a measurement er-
ror. Furthermore, we assume that y;(s), {n;;(s)}, and {e;;(s)}
are independent copies of GP(0, Xy (s,s)), GP(0, a,?(s, s’)), and
N(0, 62(s)), respectively, where GP(u(s), = (s, s’)) denotes a Gaus-
sian process with mean function w(s) and covariance function
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abnormal region (red) occurs at the third time point and becomes larger at the fourth time point; P2: Early stage at baseline and transition to late stage for the follow-up
three time points. The abnormal regions (red) grow in size and number; P3: Early stage at the first three time points and transition to late stage at the fourth time point.
One abnormal region (red) grows over time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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dynamic abnormal regions (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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X (s, ). Therefore, given b;(s) = (b;1(s), ...,bi,ni (s))T, the covari-
ance structure for y;(s) = (y,»J(s),...,y,-,ni (s))" can be written as

2y, (5.5) =22y (5.8)Z + (07(5.5) + 02()V(s =5y, (3)

where Z; = (z; 1. ..., 2;,), 1(-) is an indicator function, and I, is an
n; x n; identity matrix. Detailed derivations of (3) can be found in
Appendix A. Model (2) consists of four key components: (i) a fixed
effect component xzjﬁ(s) to characterize the fixed effect between
cartilage thickness and covariates of interest; (ii) a subject-specific
random effect component including zzjyi(s) to characterize the
within-subject spatio-temporal correlation structure and 7; j(s) to
capture the spatial correlation structure within S; (iii) measure-
ment errors €; ;(s); and (iv) a disease related random effect com-
ponent b; j(s)wﬁja to characterize the disease related dynamic ef-
fect within abnormal regions.

Next, we propose a dynamic conditional random field model
(DCRFM) (Wang and Ji, 2005; Wang et al., 2006; Sutton et al.,
2007; Yin et al., 2009; Deufemia et al., 2014) to describe the
subject-specific latent variables {b;(s),s € S}. Some assumptions
are introduced here. First, it is assumed that b;(s), ;(s), {n; j(s)},
and {¢; j(s)} are mutually independent. Second, it is assumed that
the pattern of b; ;(s) at pixel s for the i-th OA patient at the j-
th time point is affected by three possible factors: (i) population
factor by(Ds) = {by(s),s € Ds}: patterns of pixels in Ds, including
both pixel s and pixels in its neighborhood, at the population level,
(ii) spatial factor b; ;(Ns) = {b; j(s),s € Ns}: patterns of pixels in
Ns, the neighborhood of pixel s, for the i-th OA patient at the j-
th time point, and (iii) temporal factor b; ;_;(Ms) = {b; j_1(s).s €
M;}: patterns of pixels in Ms, including both pixel s and pixels
in its neighborhood, for the i-th OA patient at the previous time
point. Specifically, the pattern of b; ;(s) at baseline is assumed to
be affected by the population and spatial factors, whereas that at
follow-up visits is assumed to be affected by all the three factors.
Further illustration of the three factors is presented in Fig. 6.

In order to model the population level pattern of by(s), a Potts
model (Green and Richardson, 2002) is considered here:

Po(bo(s)[7) oc exp{—U (bo(s). bo(N5))}, (4)
where U(bo(s), bo(Ns)) = Y gen; 1(bo(s) # bo(s")) and the turning
parameter 7 is introduced to encourages spatial smoothness in
homogeneous regions. Then, given by(Ds) and b;(Ns), b;(s) is as-
sumed to follow a DCRFM with the conditional probability mass
function, p(b;(s)|b;(Ns), bg(Ds), T, k, p) given by

p1(bi1(8)bi1(Ns), bo(Ds), T, k) x

i
HPZ(bi.j(5)|bi,j—1 (Ms), bi j(N5), bo(Ds), Tk, p), (5)
j=2
where pq(b;1(s)|bj1(Ns), bo(Ds), T, k) is the conditional probabil-
ity mass function of b; ;(s) at baseline and proportional to

exp{—tU (b;1(s). bj1 (N5)) — kU (i1 (), bo(Ds))}, (6)

in which « is introduced to control the population factor affect-
ing the subject-specific abnormal region pattern at pixel s. In
addition, p;(b; j(s)|b; j_1(Ms), b; j(N5), bo(Ds), T, K, p) is the con-
ditional probability mass function of b; j(s) at follow-up visits.
Specifically, in order to make sure that the inclusion property of
abnormal region is satisfied, b; j(s) =1 with probability 1 when
b; j_1(s) = 1. Otherwise, the conditional probability mass function
is proportional to

exp{—tU(b; ;(s), b; j(Ns)) — kU (b; j(s), bo(Ds))
—pU(b;j(s), b j_1(Ms))}. (7)

where p influences the strength of temporal dependencies. It
should be noted that, Ds, Ns, and M may have different sizes. For
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simplicity, throughout this work we consider A; is the set of the
closest 8 neighbors of pixel s, and Ds = Ms = Ns [ {s}.

2.2.3. Estimation procedure

Our next task is to detect the individual abnormal regions
{bi(s),s € S}! ;, and estimate all unknown parameters decomposed
into three parts: (i) @ including B(s), £ (s.5). 62(s.s'), and 62 (s),
(ii) e, and (iii) 7,k, p. The whole estimation procedure can be
treated as an iterative approach, in which either the detected ab-
normal regions or estimated parameters in one of the three parts
are updated with others fixed. Specifically, at the (t + 1)-th itera-

. . ~(t
tion, the detected abnormal regions {bf )(s), s € S} and current es-

. A A(t) L. . . “ . .
timates ®® = {§ ),a(t),r(f),/(“),p“)} are updated until certain

criterion is satisfied. The overall estimation procedure is summa-
rized in Algorithm 1 . More detailed updating procedure and ini-

Algorithm 1: Estimation procedure in statistical modeling
module.
Data: cartilage thickness map {y; j(s).s € S}, covariate
vector ¥; j, and KLG g; ;. j=1,...,n;,i=1,..., n
Result: detected individual dynamic abnormal regions
{b;(s),s e S}, and estimated parameters ¢)

~(0 ~
Initialization: {B;" (s),s S}, ©©, and t = 0;
while stopping criterion not satisfied do

A(t
Update 0( ) via functional data analysis tools;
Update & via a weighted least squares approach;
Update {i;f” (s),s € S}, via the MRF-MAP approach;
Update {£© g® p®} via a pseudo-likelihood

approach;
Sett=t+1;

end
Output: b;(s) = Bft)(s),s €S,i=1,....,n, and © = OO,

tialization procedure can be found in Appendix B and Appendix D,
respectively.

2.2.4. Inference procedure

After obtaining all the estimated parameters and detected ab-
normal regions, we carry out a series of formal statistical inference
procedures consisting of three different statistical tools: (i) hypoth-
esis testing on parameters of interest including B(s) and «; (ii) sta-
tistical disease mapping; and (iii) subgroup analysis.

Hypothesis testing. In practice, we are interested in investigat-
ing (i) whether there is any significant effect associated with some
covariates of interest on the cartilage thickness, and (ii) whether
there is any significant effect associated with covariates of inter-
est on the cartilage thickness within the abnormal regions. Both of
these two scientific questions can be written as hypothesis testing
problems in the following general forms respectively:

Ho(s) : CgB(s) =0 v.s. Hi(s) : CgB(s) #0, (8)
Hp: Coot =0 v.s. Hy: Chor #0, (9)

where Cgz is a 1 x px vector and Cy is a 1 x py vector. For test-
ing problem (8), a sequence of Wald tests can be constructed as
follows:

~ ~ -1+
Tﬁ(s):cﬂﬁ(s)[cﬁzﬁ(s)cg] B (s5)Ch, ses, (10)

where £4(s) = [0 X{ZT ) (5.9)Z; + 62 (s, )y} X" is the
estimated covariance matrix of B(s). Given the estimate & and the
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to the web version of this article.)

detected abnormal regions {ﬁ,-(s),s € S}t ,, the corresponding p-
values can be derived based on the asymptotic properties of the
test statistics under Hy. In particular, the false discovery rate (FDR)
adjustment method (Yekutieli and Benjamini, 1999) can be em-
ployed to calculate the adjusted p-values for addressing the multi-
ple comparison issue in (8). In addition to the local test statistics,
an integral version of Wald test statistic is established to investi-
gate the global effect on the whole thickness map:

where the wild bootstrap method is considered in calculating the
p-values (Zhu et al,, 2010; 2011; 2012; 2019). The details of wild
bootstrap procedure can be found in Appendix E. For the testing
problem in (9), a typical Wald test is also considered here:

-1
T, = ca&[caiacg] a'cl, (12)

where f:a is the estimated covariance matrix of &, which can be
calculated via the bootstrap method as well (detailed procedure
can be found in Appendix F).

Statistical disease mapping. In addition to the subject-specific ab-
normal region pattern, we can also derive the statistical disease
mapping at the population level. Specifically, the posterior proba-
bility that the pixel site belongs to the abnormal region is calcu-
lated as below:

exp {~#n°U (1. Bo (V) ~ £ oU (1. By (D2))]
S exp {—fn*U(l, Bo(N:) = & Yy o UL, Bi,j(Ds))} .

Therefore, the statistical disease mapping is able to locate OA re-
lated regions of interest (ROIs) at the population level and helpful
in imaging biomarker development and OA early prevention.
Subgroup analysis. Besides the abnormal region pattern at both
the individual and the population levels, one is also interested

(13)
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in utilizing the abnormal region based imaging markers to iden-
tify subgroups with spatially distinct cartilage changes over time.
Specifically, standard subgroup outcomes for OA progression (e.g.,
KLG) have low reliability, are difficult to interpret, and respond
poorly to change (Schiphof et al., 2011; Felson et al., 2011; Guer-
mazi et al,, 2012). In comparison, our detected individual dynamic
abnormal regions are localized cartilage thickness based features
and highly sensitive to the OA progression (Balamoody et al., 2010;
Wirth et al., 2013). Therefore, the abnormal region based subgroup
analysis has advantages in providing improved subgroup measures,
which is important in specific OA prevention and clinical treatment
management. In order to conduct this clustering analysis, we con-
sider the non-negative matrix factorization (NMF) method which
has an inherent clustering property (Ding et al., 2005). Specifi-
cally, we first construct a n, x n* matrix €2, whose i-th column is
defined as Q; = Z'}"Zl w; j1(g;; > 0)/27":1 1(g;; > 0). Here w; is
a ny x 1 vector, whose [-th element is the estimated probability
P(b; j(s;) = 1). By adopting the NMF method, the approximation of
matrix €2 is achieved by minimizing the following loss function:

|2 — MC||, subjectto 0 <M <1,0<C, (14)

where || - || is the Frobenius matrix norm, M is an n, x k matrix,
C is a k x n* matrix, and k is the number of clusters. The com-
puted matrix C gives the cluster membership, i.e., the i-th patient
belongs to the I[-th cluster if the element Cj; > Cy; for all I #1,
while the computed matrix M gives the subgroup level statisti-
cal disease mapping, i.e., the [-th column in M represents the dis-
ease mapping of the I-th cluster. In addition, the consensus matrix
(Brunet et al., 2004; Kim and Park, 2007) is adopted here to deter-
mine the number of clusters for both simulation studies and real
data analysis. The consensus matrix A is defined as the average
connectivity matrix whose entry A;; reflects the probability that
subjects i and i’ belong to the same cluster. To measure the disper-
sion of a consensus matrix, the dispersion coefficient is defined as
o =", Z;};] 4(A;y —0.5)2. After obtaining p, values for vari-
ous k, we can determine the number of clusters from the maximal
PA-

3. Experiments and results
3.1. OAI Data description

OAI Data and/or research tools used in the preparation of this
manuscript were obtained and analyzed from the controlled ac-
cess datasets distributed from the Osteoarthritis Initiative (OAI).
OAI is a collaborative informatics system created by the National
Institute of Mental Health and the National Institute of Arthritis,
Musculoskeletal and Skin Diseases (NIAMS) to provide a worldwide
resource to quicken the pace of biomarker identification, scien-
tific investigation and OA drug development. Dataset identifier(s):
[NIMH Data Archive Collection ID(s) or NIMH Data Archive Digital
Object Identifier (DOI)]. If the Research Project involves collabora-
tion with Submitters or NIH staff (as indicated in the DUC), then
Recipient will acknowledge Submitters or NIH staff as co-authors,
if appropriate, on any presentation, disclosure, or publication.

We consider the longitudinal MR image data from the OAI
study, which comprises normal controls and individuals with, or
at high risk of, knee OA incidence or progression. The OAI study
contains a total of 4796 men and women at ages 45-79 en-
rolled between 2004 and 2006 (Eckstein et al., 2012). Those sub-
jects consist of a progression sub-cohort (1,389), an incidence sub-
cohort (3,285), and a normal control unexposed reference sub-
cohort (122) (Peterfy et al., 2008; Nevitt et al., 2006). Further de-
tails about OAI can be found on http://www.oai.ucsf.edu/.

For the MR images, four 3.0 Tesla Siemens Trio MRI scanners
were dedicated to imaging the OAI participants at baseline, 12, 24,
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Table 1
Demographic (gender, BMI, and age) and KLG information of patients at base-
line and overall visits.

Left knee Right knee

Baseline Overall Baseline Overall
Gender (F/M)  2,517/1,826 - 2,522/1,817 -
BMI (kg/m?) 28.6 £4.8 283+48 286+48 28.3+48
Age (years) 61.1+9.2 63.2+92 611492 63.3+9.2
KLG=0 1729 8339 1627 8223
KLG=1 759 3640 762 3914
KLG=2 1111 4697 1214 5404
KLG=3 603 2491 587 2889
KLG=4 141 748 149 799
Total 4343 19,915 4339 21,229

36, 48, 72 and 96 months. All images have uniform dimension of
384 x 384 x 160 and resolution of 0.36 x 0.36 x 0.7mm?> per voxel.
After preprocessing, we have 19,915 left knee FC/TC thickness maps
from 4,343 subjects and 21,229 right knee FC/TC thickness maps
from 4,339 subjects. The demographic and KLG information of the
OAI dataset used here is presented in Table 1.

3.2. Simulation studies

We examine the finite sample performance of our DADP frame-
work. Here the simulation data was generated based on the pre-
processed 2D thickness maps of normal controls in the OAI study.
First, we fitted the following model to the left knee FC thickness
maps from normal controls,

Yij(s) = B1(s) + B2(s) x gender + B3(s) x BMI
+ Ba(s) x log(Age) + y1(s) + y2(s) x BMI
+y3(s) x log(Age) + n; j(s) + € ;(s), (15)

where the assumptions on random effects {y,(s)}le, individ-
ual stochastic term n;;(s), and measurement error ¢; ;(s) are
the same as those in model (2). Here both BMI and loga-
rithm transformed age information are normalized through the
Z-transformation. Then, the obtained parameter estimators of
{B(s). ) (5.5").02(s.5). 02(s)} were used as the true values in
model (2). In addition, the true values of elements in o were in-
dependently generated from U(-0.3,0) and w;; =(1, normalized
BMI, normalized log(Age))".

On the other hand, the individual abnormal regions were pre-
specified according to three types of abnormal region patterns
based on the statistical disease mapping learned from the real data
(see Fig. 7). Specifically, we first selected two seed points with high
probability in the population level statistical disease mapping. For
each observation with abnormal region pattern 1, one abnormal
region is randomly generated with its center around seed point
1; for each observation with abnormal region pattern 2, one ab-
normal region is randomly generated with its center around seed
point 2; and for each observation with abnormal region pattern 3,
two abnormal regions are randomly generated with their centers
around two seed points respectively. In addition, the sizes of the
abnormal region at baseline and follow-up visits vary across sub-
jects. Finally, we generated 624 thickness maps from 160 subjects
with 100 normal controls and 60 diseased patients equally divided
into 3 groups according to their abnormal region patterns with 3
or 4 observations for each subject, and the average signal-to-noise
ratio (SNR) is 11.44.

First, we fit DFMEM in our DADP with the simulated data and
investigate the estimation accuracy of all the functional coeffi-
cients f;(s),l =1, 2,3, 4. The mean absolute error (MAE), defined
as v, 18,(sk) — Bi(si)|/nw, is calculated and reported in Table 2.
For comparison, we consider the spatial random effects model
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Population statistical disease mapping
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® Seed point 1

A Seed point 2

Example with disease region pattern 3

time

baseline

>

Fig. 7. Illustrations of three predefined abnormal region patterns (background is annotated in dark blue; normal region in light blue; abnormal region in yellow). Two seed
points are pre-selected according to the population level statistical disease mapping learned from the left knee FC 2D thickness maps. Pattern 1: one abnormal region
is randomly generated around seed point 1; Pattern 2: one abnormal region is randomly generated around seed point 2; Pattern 3: two abnormal regions are randomly
generated from two seed points respectively. Examples are presented for the three predefined abnormal region patterns. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Table 2
Estimation accuracy of functional coefficients
{Bi(s)}, for DADP and SREM in terms of MAE,

defined as Y3, By (si) — By (si) /o
Method B, (s) B2(s) B3(s) Ba(s)

SREM 0.0452  0.0682  0.0323  0.0322
DADP 0.0134 0.0079  0.0048  0.0051

(SREM, Zhu et al. (2007); Huang et al. (2015)) integrated with
DCRFM, and the corresponding MAEs are reported in Table 2 as
well. The key difference between SREM and our DFMEM is that
the smoothness of both the thickness maps and functional coeffi-
cients are considered in DFMEM rather than SREM. According to
Table 2, the estimation accuracy based on our DADP outperforms
that based on SREM in terms of MAE, showing the power of func-
tional data analysis tools used in our DADP.

Second, we apply our DADP to detect the abnormal regions for
each subject at each time point. For three randomly selected ab-
normal subjects, the detection results are presented in Fig. 8. It can
be seen that the abnormal regions for subjects at each time point
can be successfully detected, while the detection performance at
follow-up visits is better than that at baseline. The possible rea-
son is that the abnormal regions for subjects at baseline are small
and the additional effect in the abnormal region is relatively weak.
We also apply the K-means clustering method, SREM+K (SREM in-
tegrated with the K-means), and GHMM Huang et al. (2015) to the
simulated data. Specifically, the K-means clustering method is the
initialization procedure in the statistical modeling module of DADP,
and GHMM is an integration of SREM with a Potts model. Com-
pared to the alternative approaches, our DADP has three unique
features including (i) the smoothness property of thickness maps,

Patient with Abnormal
Region Pattern 3

Patient with Abnormal
Region Pattern 2

Patient with Abnormal
Region Pattern 1

Baseline  Ground truth Detected regions Ground truth Detected regions Ground truth Detected regions

VIVIVIV
VIVIVIY
VIVIVIY
1 Y ] )
VIVIVIY
VIVIVIV

Fig. 8. Detected abnormal regions for four randomly selected subjects including
three patients with different abnormal region patterns (background in dark blue;
normal region in light blue; abnormal region in yellow). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

(ii) the dynamic pattern of individual abnormal regions, and (iii)
the connection between the individual abnormal region pattern
and population level one. For comparison, some metrics, including
adjusted Rand index (Hubert and Arabie, 1985), Dice similarity co-
efficient (Carass et al., 2020), Sensitivity, and Specificity, are consid-
ered to evaluate the detection performance of all the four methods
for each thickness map, and the mean performance metrics across
all thickness maps are reported in Table 3.

It can be found that, our DADP outperforms the other three
methods in terms of all the performance metrics, indicating that
all three features in DADP enhance its performance in terms of dy-
namic abnormal region detection.
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Table 3

Detection performance for DADP and three other methods (K-means,
GHMM, and SREM+K) in terms of adjusted Rand index (ARI), Dice simi-
larity coefficient (DSC), Sensitivity (SEN), and Specificity (SPE). Their cor-
responding standard errors are presented in parentheses.

ARI DSC SEN SPE
K-means  0.46 (0.24)  0.47 (0.19) 0.69 (0.29) 0.70 (0.22)
SREM+K  0.61(0.19) 0.64 (0.14) 0.77 (0.16)  0.75 (0.15)
GHMM 0.75 (0.22)  0.77 (0.16)  0.88 (0.12)  0.86 (0.10)
DADP 0.80 (0.18)  0.81 (0.10) 0.98 (0.09) 0.95 (0.01)
Table 4

Detection performance for DADP with model misspecifi-
cation and three other methods (K-means, GHMM, and
SREM+K) in terms of adjusted Rand index (ARI). Their cor-
responding standard errors are presented in parentheses.

K-means SREM-+K GHMM DADP
0.45(0.28) 0.58 (0.18) 0.71 (0.24)  0.77 (0.20)
Statistical disease mapping
Population level Subgroup level
Subgroup 1 Subgroup 2 Subgroup 3
|
[} 0.2 0.4 0.6 0.8 1

Fig. 9. Statistical disease mapping at both population level and subgroup level.

Table 5
Subgroup analysis based on DADP: relationship between
clustering results and abnormal region patterns.

Subgroup 1 Subgroup 2 Subgroup 3
Pattern 1 11 0 6
Pattern 2 0 24 0
Pattern 3 7 3 9

Next, we investigate the influences of segmentation accuracy on
the performance of dynamic abnormal region detection. To mimic
the inaccurate segmentation results, we generated the thickness
maps from a misspecified model, where the disease related ran-
dom effect component was constructed as b,-yj(s)[nga-i—é,-yj(s)]
and &; ;(s) ll~dN(0, 0.01). Here §; ;(s) is introduced to capture the
potential voxel-wised perturbation caused by the inaccurate seg-
mentation results. The detection performance of all the four meth-
ods in terms of ARI is reported in Table 4.

It can be found that, although the ARI of our DADP decreases
compared to that in Table 3 (i.e., the “perfect segmentation” sce-
nario), our DADP still achieves reasonable detection performance
and outperforms the other three methods when the model is mis-
specified, which means that our DADP is not sensitive to the accu-
racy of cartilage segmentation results.

Finally, the statistical disease mapping at the population level is
presented in Fig. 9. It can be found that the regions around these
two selected seed points are much more likely to be affected by
the disease, which is in agreement with the simulation mechanism
of abnormal regions. In addition, based on the detected abnormal
regions, we conduct the subgroup analysis and present the cluster-
ing results in Table 5.

It can be found that subjects with abnormal region pattern 2
are successfully identified by subgroup 2, whereas all patients with
abnormal region pattern 1 are clustered into the other two sub-

10
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Gender BMI

log(Age)

0.2

B

adjusted
—~logyo p-value

Fig. 10. Left knee FC: estimates of functional coefficients associated to the covari-
ates including gender, normalized BMI, and normalized log(Age) (top); correspond-
ing FDR adjusted —log;, p-value maps (bottom).

Table 6
Inference on coefficient functions B(s): global test statistics and p-
values (in parentheses) of three covariates including gender, BMI, and

log(Age).
Cartilage Gender BMI (kg/m?) log(Age) (years)
Left knee FC 1.02 (045)  31.06 (2.3E-3)  11.43 (2.1E-2)
Left knee TC  2.13 (0.17)  20.01 (8.9E-3)  30.12 (9.8E-4)
Right knee FC  0.85 (0.66)  28.41 (3.6E-3)  13.07 (1.0E-2)
Right knee TC  1.69 (0.33)  20.59 (6.2E-3)  31.21 (1.0E-3)

groups. However, the subjects with abnormal region pattern 3 is
not well detected due to two reasons. First, pattern 3 has some
overlaps with other two patterns in terms of the design mecha-
nism as shown in Fig. 7. Second, although the mechanisms for the
generation of the three patterns are not exactly the same, the sim-
ulated abnormal region with pattern 3 may be similar to that with
other patterns at baseline or some early time points. For example,
the simulated disease region with pattern 3 is almost the same as
that with pattern 2 at baseline in Fig. 7. Moreover, the correspond-
ing statistical disease mapping at the subgroup level is also pre-
sented in Fig. 9, which successfully recovers the predefined abnor-
mal region patterns. Thus, our DADP provides reasonable subgroup
analysis in terms of the abnormal region patterns.

3.3. Real data analysis

First, we consider DFMEM (2) with x; ; =(1, gender, normalized
BMI, normalized log(Age))", z; j =(1, normalized BMI, normalized
log(Age))", and w; j = z; j. Then, we fit the proposed model on the
thickness maps extracted from the left knee FC/TC and the right
knee FC/TC, respectively. For the left knee FC, the estimates of coef-
ficient functions associated to the covariates including gender, nor-
malized BMI and normalized log(age) are presented in Fig. 10.

In order to test how different covariates locally affect the car-
tilage thickness, the pixel-wise Wald test statistics in (10) are
calculated, and the FDR adjusted —log,; p-values across all pix-
els are shown in Fig. 10. For the other three cartilages, the es-
timates of coefficient functions and corresponding FDR adjusted
—logyp (p)-values can be found in Fig. G.14, G.15 and G.16 from
Appendix G. According to the adjusted p-value maps, compared
to the gender effect, both BMI and age effects are more signifi-
cant on both medial and lateral regions in all four different car-
tilages, which is consistent with findings in the existing literature
(Cai et al., 2019). Meanwhile, the global effects of these covariates
on thickness maps are also investigated. The global test statistics in
(11) along with the p-values are calculated and reported in Table 6.

According to the global p-values, the overall BMI effect is found
to be more significant than the age effect on both left knee FC and
right knee FC, while the overall age effect is more significant than
the BMI effect on both left knee TC and right knee TC. In addition
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Table 7

Inference on coefficients o: estimates associated to
three covariates including gender, BMI, and log(Age);
and p-values (in parentheses).

Cartilage BMI (kg/m?) log(Age) (years)
Left knee FC -0.15 (0.044)  -0.24 (0.012)
Left knee TC -0.15 (0.046)  -0.26 (0.009)
Right knee FC  -0.18 (0.032)  -0.30 (0.004)
Right knee TC ~ -0.17 (0.038)  -0.27 (0.009)

Patient 1 (gender: female, baseline age: 57 years, baseline BMI: 38.6 kg/m?)

Fd Ed Ed =d

12 month
KLG=3

24 month
KLG=3

48 month
KLG=3

Baseline
KLG=2

Patient 2 (gender: male, baseline age: 74 years, baseline BMI: 31.1 kg/m?)
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Table 8

Subgroup analysis based on the detected individual abnormal re-
gions: clustering results are summarized according to the KLG
scores. Three subgroups are detected for left knee FC and right
knee FC, while two subgroups are detected for left knee TC and
right knee TC.

Cartilage Subgroup KLG
1 2 3 4
Left knee FC 1 484 3931 713 361
2 256 326 1449 286
3 2777 342 179 168
Left knee TC 1 2833 2351 514 405
2 766 2266 1879 401
Right knee FC 1 597 4594 1220 334
2 207 441 700 188
3 3387 415 692 181
Right knee TC 1 2981 2808 701 405
2 1003 2524 2109 354

Left Femoral Cartilage Left Tibial Cartilage Right Femoral Cartilage Right Tibial Cartilage

EEEE EEEE

12 month
KLG=3

24 month
KLG=3

48 month
KLG=3

Baseline
KLG=3

Fig. 11. Left knee FC: detected abnormal regions for two randomly selected patients
with observations at baseline, 12 months, 24 months, and 48 months: one female
(baseline age: 57 years, baseline BMI: 38.6 kg/m?, KLG score at baseline is 2, and 3
at follow-up visits) and one male (baseline age: 74 years, baseline BMI: 31.1 kg/m?,
KLG score is 2 at all four time points).

Left Femoral Cartilage Left Tibial Cartilage

ZI=1

Right Tibial Cartilage

Right Femoral Cartilage

Fig. 12. Population level statistical disease mapping for different cartilages: left
knee FC (top left), left knee TC (top right), right knee FC (bottom left), and right
knee TC (bottom right).

to the coefficient functions, the inference results of & are presented
in Table 7. Both BMI and age effects are found significant on the
abnormal regions for all the four cartilages.

Next, the detected abnormal regions on left knee FC for ran-
domly selected two patients are plotted in Fig. 11. Detection results
on other cartilages can be found in Fig. H.17, H.18 and H.19 from
Appendix H. The corresponding baseline age, baseline BMI, KLG
scores, and time points are also presented. It can be found that
the abnormal regions vary across subjects and time points and the
inclusion assumption is satisfied in the detection results. Besides
the detected individual abnormal regions, the population level sta-
tistical disease mapping for different cartilages are calculated and
reported in Fig. 12. It can be found that, regions with high prob-
ability affected by OA are similar between the left knee and the
right knee. This symmetry has also been discovered in the existing
studies (Metcalfe et al., 2012).

1

o u E u E

Subgroup 3

Fig. 13. Subgroup level statistical disease mapping for different cartilages: left knee
FC (top left), left knee TC (top right), right knee FC (bottom left), and right knee TC
(bottom right).

Finally, the subgroup analysis is conducted based on the de-
tected individual abnormal regions. The clustering results are re-
ported in Table 8, in which the KLG information is reported as
well to build up the relationship between clustering results and
clinical outcomes. According to the clustering results, 78.9% obser-
vations at early stage (KLG score 1) are clustered into subgroup 3,
85.5% observations at mild stage (KLG score 2) are clustered into
subgroup 1, and 89.0% observations at moderate and severe stages
(KLG score 3 or 4) are clustered into subgroups 1 and 2. Similar
clustering results can be found on the right knee FC. Specifically,
80.8% observations at early stage (KLG score 1) are clustered into
subgroup 3, 84.3% observations at mild stage (KLG score 2) are
clustered into subgroup 1, and 73.7% observations at moderate and
severe stages (KLG score 3 or 4) are clustered into subgroups 1 and
2. Therefore, the individual abnormal regions on both left knee FC
and right knee FC can be treated as useful biomarkers in identify-
ing OA patients at early stage.

Moreover, the statistical disease maps at the subgroup level are
presented in Fig. 13 memory. It can be found that, for all the dif-
ferent cartilages, each subgroup has its unique statistical disease
map, which may be treated as a new imaging biomarker for OA
early prevention and treatment development.

4. Conclusions & discussions

In this work, a dynamic abnormal region detection framework,
including an image analysis module and a statistical modeling
module, has been proposed for quantitative cartilage analysis. In
the image analysis module, the spatial correspondence has been
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well established on 2D cartilage thickness maps extracted from
3D knee MR images through a series of image analysis steps. In
the statistical modeling module, a dynamic functional mixed ef-
fects model has been proposed. Specifically, the relationship be-
tween cartilage thicknesses and covariates of interest has been
characterized through functional regression analysis tools, the spa-
tial smoothness and spatial-temporal correlation within the thick-
ness map has been established through functional data analysis
tools, and the spatial-temporal heterogeneity in abnormal regions
has been detected through dynamic conditional random field mod-
els. In addition to the subject-specific dynamic abnormal regions,
the population-level statistical disease mapping has been derived,
and subgroup analysis has also been conducted through the non-
negative matrix factorization method. The proposed framework has
been assessed through both simulation studies and real data anal-
ysis from the OAI study. It shows that our method outperforms
other existing approaches in detecting the subject-specific dynamic
abnormal regions and in providing population-level statistical dis-
ease mapping and subgroup analysis. All the results derived from
our method bring new insights in OA prediction and clinical prac-
tice.

Several important issues need to be addressed in our future re-
search. First, the estimation procedure in our DADP can be treated
as an iterative approach, and the performance strongly depends
on the initialization of abnormal regions and parameter estima-
tion. “Bad” initial values could make the whole algorithm converge
to some local maxima or even collapse. To address this issue, a
Bayesian framework (Jin et al., 2016; Guo et al., 2020) can be con-
sidered here instead, where the estimated parameters can be de-
rived from the posterior distribution via introducing proper prior
information, and the latent abnormal regions can be detected via
the Monte Carlo Markov Chain (MCMC) sampling method.

Second, in order to detect the subject-specific dynamic abnor-
mal regions, a DCRFM is adopted in this manuscript. Although it
works well in our simulated dataset, the simple one-layer latent
structure in DCRFM would be inefficient once the spatio-temporal
heterogeneity is more complicated within the imaging dataset. To
address this issue, the idea of attention-based deep multiple in-
stance learning (Ilse et al., 2018) can be considered and extended
to longitudinal datasets. Specifically, both the individual abnormal
regions and statistical disease mapping at the subgroup level can
be learned through the estimated attention weights.

Third, our current subgroup analysis is conducted via applying
the NMF method on the average probability that each pixel belongs
to the abnormal region across time, where the dynamic abnormal-
ity pattern could not be perfectly characterized. It is of great inter-
est to develop some cartilage thickness progression based features
that can integrate the abnormality information to better capture
the dynamic abnormality pattern.
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Appendix A. Covariance function Xy, (s, s")

Define  7;(s) = (01 (... i) and  €(S) =
(€i1(5), .- €in, (s))T. Then the covariance function Xy (s.8")
given b;(s) can be derived as

Z/ Covly;(s), yi(s)1Zi + Cov[n;(s), n;(s")] + Cov[€;(s), € (s)].
(A1)

According to the assumptions on p;(s), 1;;(s), and ¢ ;(s), we
have Cov[y;(s),y;(s)] =%, (s,5'), Cov[y;(s), n;(s)]= a,% (s, )y,
and Covle;(s), €;(s)] = o2 (s)1(s = )y, Therefore, the covariance
structure of y;(s) given b;(s) in (3) holds.

Appendix B. Key steps in estimation procedure

A(t
Update 0( ). Given the current detected abnormal regions and
estimated parameters in part (ii), model (2) can be written as

Vijs) = X[ B(s) +2/;yi(s) + i j(s) + € (5), (B.1)

where J(s) :y,-_j(s)—Bg’tj) (s)ng&(t). Then, model (B.1) can be
treated as a spatiotemporal (or functional) linear mixed effects
model (Bernal-Rusiel et al., 2013; Yuan et al., 2014; Hyun et al.,
2016; Zhu et al., 2019). The updating procedure for # can be sum-
marized in three key steps: (i) derive an initial estimate of §(s) by
the local linear regression method (Fan and Gijbels, 1996), while
ignoring the temporal structure among repeated observations from
one single subject; (ii) derive the updated estimates, f]l(f”)(s, s'),

6,%([”)(5, '), and 6,?([”)(5, "), respectively, by the local constant

method (Ramsay and Silverman, 2006) given the updated estimate
A (t+1 (41
ﬁ( * )(s); and (iii) refine the estimated ,B< i )(s) by incorporating

the temporal-spatial structure obtained from the estimated covari-
ance functions. The detailed updating procedure can be found in
Appendix C.

Update & Xi= (Xi1,..., Xin,) Wi(sy) =

Widiag(B;’ (s;)), where W; = (Wi, ..., w; , ) and diag(B; (s;)) re-

©

Let and

. PN (; .
turns a diagonal matrix with bl-( )(sk)s‘ on the main diagonal. Then,
the estimate of a can be updated via minimizing the weighted
least squares function

.ty T T 2
Dy =XTB () - W, (Sk)a”gm/ ;

i=1 k=1

(B.2)

where f),-,sk :Zl.TfIJ(f”)(sk,sk)Zi + 6,%0“) (Sk, S¢) and the norm op-

erator ||al|« is defined as _/aTE'a.
Exlsk LSk

Update iv,-(t) (s). Here the detected abnormal region pattern at
both individual level and population level are updated based on
the MRF-MAP approach, which is an efficient method in latent
variable recovering and adopted in many practical applications
such as image segmentation (Zhang et al., 2001; Nie et al., 2009;
Ahmadvand et al., 2017). Specifically, the population level abnor-
mal region pattern Bg)(s) is updated via minimizing the following
loss function

KK 3" Ubo(s), b} (Ds)) +Tn*U (bo(s). B (NG)).

gi,]>0

(B.3)
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while the individual abnormal region pattern is updated via mini-
mizing the following objective function

= (1)

&(s) — Inp(by(s)|b; " (N:), BY (D5), 0, & ®, p®), (B.4)

where &(5) = $lyi(s) X B (5) - W, diag(bi(s)@* 13

and E, s = E, s+ 0_2(f+1) ($)Ip,. Furthermore, the iterated condltlonal
modes (ICM) algorlthm (BesaU 1986; Zhang et al., 2001), which
uses a greedy iterative strategy for optimization, is adopted to
obtain the optimal solutions to (B.3) and (B.4).

Update t®, ¢®, and p©. Since 7, «, and p are not the pri-
mary parameters of interest, we use an approximate but com-
putationally efficient method based on a pseudo-likelihood func-
tion (Huang et al,, 2015). A key advantage of using the pseudo-
likelihood function is that it does not involve the intractable parti-
tion function. The pseudo-likelihood at the (t + 1)-th iteration, de-
noted as PL(x, T, p), is a simple product of the conditional likeli-

hood

1“-[ ()b (\5), BTV (D). 7.k, )
~(t+1) ’

i=1 5e5-05 Zb o PBi(s)|b; (). DYV (Ds). Tk p)

where 0S denotes the set of points at the boundaries of S. Thus,

the estimates {1 gD 5+1D} can be obtained by maximiz-

ing the log-pseudo-likelihood function InPL(7, «, p) through cer-
tain numerical algorithm, e.g., Newton-Raphson method.

(t+1 ) ~(t+1)

(B.5)

Appendix C. Key steps in updating the estimate of 6

Step I. We first ignore the temporal structure among repeated ob-
servations from one single subject and then derive an ini-
tial estimate of B(s). Specifically, based on the local linear
regression method (Fan and Gijbels, 1996), the initial es-
timate is obtained via minimizing the following weighted
least squares function

> <y1 (k) —

ijk

,j(ﬁ(s) +Bs)(si - s)))21<H (s — ).

(C1)
where Ky(s) = |[H|"'K(H"1s), K(s) is the Gaussian kernel
function, and H is the positive definite bandwidth matrix.

A (t+1
Given the updated estimate /3( " )(s) from (C.1), we first

calculate the residuals

. A (t+1)
bi(s) =y () -X'B  ( (C2)
Then, let 6 (s, s') = 02(s,5') + 02(s)1(s =), and the esti-

mates iy (s,s’) and 502 (s,s") can be derived by minimizing
the following least squares function:

Step 1L

), i=1,...,n

n
ST (8) = Z] By (5.8)Z — 0 (5. Sy |17 (C3)
i=1

Next, by adopting the local constant method (Ramsay and

Silverman, 2006), the updated estimates "V (s,s) and

521 (s, s') can be, respectively, derived by minimizing the

following weighted least squares functions,

ny
D IEy (ke si) = Zy (5.8 [[FKu (S — K (s — ),

(C4)
kK
ny
D 63 (ks sw) — 07 (5, S IFKn (51 — $)Ku (s — '), (C.5)
k.k'
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and the estimate (762(”” (s) can be consequently written as
a2""(s) = (65(5.5) = 67" (5,9))+. (C6)
where the operator (a), is defined as a-1(a > 0).

Step IIL Let y{(sy) = ~ﬁ1(sk), ... ,y;l_ni ()7 and X; = (%;1, ... ’Xi,n,-)~

13

Given the estimated covariance functions, we refine the es-

A (t+1
timate ﬂ( i )(s) by minimizing the updated weighted least
squares function:

335 ) = X IBGS) + BO) (s~ NI K= 9.
i=1 k=1 o
(C7)

where the norm operator [la|ls s defined as /anIi*g’ a,
I.Sk 2k

and ii,sk =z f))(,t“)(sk, SKZi + 6,?”” (Sk Sk)- In particular,
the bandwidth matrices in (C.1), (C.4), (C.5), and (C.7) can
be selected by using a leave-one-curve-out cross-validation
method (Zhang and Chen, 2007; Zhu et al., 2019).

Appendix D. Initialization procedure

The initialization of abnormal regions and parameter estimation
plays a critical role in our iterative estimation procedure. Here,
an initial estimation of @ is first derived based((()))n observations
at the normal stage. Then, given the estimated # °, an initial de-

tection of abnormal regions {B,@ (s),s € S}, is determined based
on the residual maps through a conditional clustering analysis ap-
proach. Specifically, the abnormal regions for the i-th OA patient
at the disease baseline are initialized via clustering analysis, such
as K-means, on the residual map, whereas the abnormal regions
at follow-up visits are initialized within the detected abnormal re-
gions at the previous time point. Furthermore, the initial estimate
of the population level abnormal region pattern is derived from
the specified abnormal regions at disease baseline according to the
majority rule. In addition to the initialization of abnormal regions,
the initial estimator of & can be derived via minimizing the loss
function in (B.2). Finally, for the three tuning parameters {7, «, p},
we set all of them to 0.5 as initial values, which have been found
reasonable according to existing studies (Ahmadvand et al., 2017).

Appendix E. Wild bootstrap procedure for approximating the
null distribution of Tg

1. Fit model (2) under the null hypothesis with the original
data and retain the fitted values ; ;(s) = xTAﬁ(s) + b,-j(s)wa
individual functions f,l (s) = zT iYi (s) +1; j(s), and residuals
& i(s) =yij(s) = 9ij(s) = fij(s);

2. Create  synthetic  response yl(l]) (s) =3 j(s) +
;“i(l)fi‘j (s) + 1/fif'].) (s)é;(s), where g“i(l) and {1/fif'].) (s),seS} are
random variables following standard normal distribution;

3. Given {b; ;(s),s € S}, refit the model using the synthetic re-
sponse variables and calculate the test statistic T,

4, Aggregate the results of Steps 2 and 3 over [=1,...,K (K=
500) to obtain {Tﬁgl)}{(: ; and calculate the approximated p-value

p=K1yK, 1(T[§” > Tp).

variables

Appendix F. Wild bootstrap method in estimating the
covariance of &

1. Fit model (2) under the null hypothesis with the original
data and retain the fitted values J; ;(s) = x7;8(s) + bi i (sw] &,
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individual functions f, i) _z yl(s)+n, j(s), and residuals
& () =y j(s) = Jij(s) — fij(s);

2. Create  synthetic  response yl(’J) (5) =9i;(s) +
;“i(l)f,-_j (s) + Ilfi(_lj) (s)é;(s), where ;“i(l) and {1//5? (s),s e S} are

random variables following standard normal distribution;

3. Given {b; ;(s).s € S}, refit the model using the synthetic re-
sponse variables and derive the estimate a;

4, Aggregate the results of Steps 2 and 3 over [=1,...,K (K=
500) to obtain {oc(’)}l 1» Where the empirical covariance is cal-
culated to represent the covariance matrix of @.

variables

Appendix G. Inference on coefficient functions for left knee TC
and right knee FC/TC

Gender

log(Age)
E E |
-1

Fig. G.14. Left knee TC: estimates of functional coefficients associated to the co-
variates including gender, normalized BMI, and normalized log(age) (top); and their
corresponding FDR adjusted —log;, p-value maps (bottom).

adjusted
—logyo p-value

Gender log(Age)

Fig. G.15. Right knee FC: estimates of functional coefficients associated to the co-
variates including gender, normalized BMI, and normalized log(age) (top); and their
corresponding FDR adjusted —log;, p-value maps (bottom).

B

10

adjusted
—logyg p-value

Gender log(Age)

EEE
BES
-

Fig. G.16. Right knee TC: estimates of functional coefficients associated to the co-
variates including gender, normalized BMI, and normalized log(age) (top); and their
corresponding FDR adjusted —log,, p-value maps (bottom).
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Appendix H. Detected abnormal regions for left knee TC nd
right knee FC/TC

Patient 1 (gender: male, baseline age: 57 years, baseline BMI: 23.4 kg/m?)

12 month
KLG=2

24 month
KLG=3

36 month
KLG=3

Baseline
KLG=2

48 month
KLG=3

Patient 2 (gender: female, baseline age: 52 years, baseline BMI: 29.5 kg/m?)

24 month
KLG=1

48 month
KLG=1

Baseline
KLG=1

72 month
KLG=1

96 month
KLG=1

Fig. H17. Left knee TC: detected abnormal regions for two randomly selected pa-
tients with observations at five time points: one male (baseline age: 57 years, base-
line BMI: 23.4 kg/m?, KLG score is 2 at baseline and 12 months, and 3 at 24 months,
36 months, and 48 months) and one female (baseline age: 52 years, baseline BMI:
29.5 kg/m?, KLG score is 1 at all five time points, i.e., baseline, 24 months, 48
months, 72 months, and 96 months).

Patient 1 (gender: male, baseline age: 64 years, baseline BMI: 25.1 kg/m?)

48 month
KLG=1

Baseline
KLG=1

72 month
KLG=1

96 month
KLG=1

Patient 2 (gender: female, baseline age: 66 years, baseline BMI: 32.5 kg/m?)

24 month
KLG=3

Baseline
KLG=2

36 month
KLG=3

48 month
KLG=3

Fig. H.18. Right knee FC: detected abnormal regions for two randomly selected pa-
tients with observations at four time points: one male (baseline age: 64 years, base-
line BMI: 25.1 kg/m?, KLG score is 1 at all the time points including baseline, 48
months, 72 months, and 96 months) and one female (baseline age: 66 years, base-
line BMI: 32.5 kg/m?, KLG score is 2 at baseline, and 3 at 24 months, 36 months,
and 48 months).

Patient 1 (gender: female, baseline age: 79 years, baseline BMI: 30.5 kg/m?)

24 month
KLG=2

Baseline
KLG=1

36 month
KLG=2

48 month
KLG=2

Patient 2 (gender: male, baseline age: 73 years, baseline BMI: 21.6 kg/m?)

24 month
KLG=2

Baseline
KLG=2

36 month
KLG=2

48 month
KLG=2

Fig. H.19. Right knee TC: detected abnormal regions for two randomly selected
patients with observations at four time points including baseline, 24 months,
36 months, and 48 months: one female (baseline age: 79 years, baseline BMI:
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30.5 kg/m?, KLG score is 1 at baseline, and 2 at follow-up visits) and one male
(baseline age: 73 years, baseline BMI: 21.6 kg/m?, KLG score is 2 at all four time
points).
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