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Quantum orders in the frustrated Ising model on the bathroom tile lattice
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We determine the zero- and finite temperature phase diagram of the fully frustrated quantum Ising model
on the bathroom tile (4-8) lattice. The phase diagram exhibits a wealth of 2+4-1d physics, including (1) classical
Coulomb dimer liquids of both square and triangular lattice types; (2) quantum order-by-disorder induced phases
breaking Z4, Zs, and Zg symmetries; (3) finite temperature Kosterlitz-Thouless phases floating over the Z¢
and Zg orders; and (4) staircases of (in)-commensurate symmetry-breaking phases at intermediate coupling.
We establish this elaborate phase diagram using a combination of dimer model mapping, perturbation theory,
Landau analysis and Stochastic Series Expansion Quantum Monte Carlo. Our results provide a baseline for
studying frustrated magnetism with D-Wave architecture annealers, where the 4-8 lattice can be embedded
naturally without “cloning,” reducing the number of competing energy scales. Simulations with the D-Wave
2000Q demonstrate qualitative agreement with the high-temperature portion of the phase diagram, but are unable

to access the low-temperature phases.
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I. INTRODUCTION

Programmable quantum annealers have developed sig-
nificantly in the past decade and now host thousands of
interacting qubits realizing an effective transverse field
Hamiltonian [1-3]. While these developments are primar-
ily motivated by the hope that such quantum annealers will
efficiently solve classical optimization problems, there is ac-
cumulating evidence that they may be used to probe the
statistical physics of frustrated magnets [4-7]. Decades of
work in magnetism have revealed the richness and complex-
ity that frustration imparts on the resulting magnetic phases
and also the limitations of classical methods for studying
them. This raises the question of whether current or near-term
quantum annealers can provide new insights into frustrated
magnetic models.

This is a delicate undertaking. Typically, the large degen-
eracy of the low-energy manifold in frustrated models leads
to an extreme sensitivity to perturbations. The complexity
of embedding such a model into the available architec-
ture thus introduces additional opportunities for systematic
errors to creep into the analysis. Motivated by the underly-
ing architecture of the D-Wave devices—both the original
Chimera and the more recent Pegasus architectures—we iden-
tify the geometrically frustrated transverse field Ising model
on the square-octagonal (“4-8”) lattice as a natural choice
for study as it embeds directly without additional energy
scales being introduced by “cloning,” where multiple phys-
ical qubits are tied together with strong couplings in order
to represent a single lattice site (see Fig. 1). Prior work on
frustrated magnets with the D-Wave device can in fact be
interpreted as studying particular regimes of the 4-8 model
where certain bonds have become especially strong [4-7].
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We show, using a variety of theoretical and numerical tech-
niques, that the larger phase diagram (see Fig. 2) exhibits
a cornucopia of classical and quantum phases, capturing a
large swathe of statistical physics over the past few decades.
These include two varieties of zero-temperature classical
Coulomb spin liquid [8,9], adjacent quantum ordered-by-
disorder symmetry-breaking phases [10-12], intermediate
coupling incommensurate symmetry-breaking phases [13],
and several associated Kosterlitz-Thouless (KT) phases at fi-
nite temperature [14—16].

The results of our case study of the model using the D-
Wave 2000Q are qualitatively consistent with our classical
analysis in the high-temperature regime. However, the region
of coupling space accessible in the device lies outside the
interesting finite transverse field phases; certainly the low-
temperature ordered phases are entirely inaccessible, while
the finite temperature KT phase is at the margin of accessibil-
ity and we see at best qualitative agreement with our computed
phase diagram. While this is a disappointing result for the
current device, the parametric improvements necessary to get
into the low-temperature phase seem entirely plausible for
next generation devices. We note that the Stochastic Series
Expansion Quantum Monte Carlo (QMC-SSE) techniques
which we used in our classical study were also inefficient in
the low-temperature regime. This suggests that the D-Wave
devices could reliably surpass existing classical techniques in
a few generations if these parameters can indeed be improved.

In the following, we introduce the model more precisely
and analyze its symmetries (Sec. II) and then turn to a tour
of its phase diagram using a variety of analytic and numerical
techniques, beginning with the classical model at zero trans-
verse field (Sec. III), then the finite transverse field model
in the isotropic (Sec. IV A) model and the large (Sec. IV B)

©2022 American Physical Society
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FIG. 1. The direct 4-8 lattice (solid) and the dual Union Jack
lattice (dashed). Spins live on circles. In our ‘gauge’ choice, red/thin
edges are antiferromagnetic and black/thick are ferromagnetic. In
the anisotropic deformation of the model, the thick edges carry
coupling J' and the thin have coupling J.

and small (Sec. IV C) anisotropy limits. We connect these
with a study of the incommensurate phases at intermediate
anisotropy (Sec. IV D). We briefly sketch the details of our
QMC-SSE implementation and semiclassical updates we in-
troduced to better equilibrate the model in Sec. V. We turn to
the results from the D-Wave annealer in Sec. VI and finally
briefly conclude.

II. MODEL AND SYMMETRIES

The isotropic frustrated quantum Ising model (FQIM) is
governed by the transverse field Ising Hamiltonian

H=-]) sjojoi =T o, 1)

(i) i
where (ij) runs over the nearest neighbors of the 4-8 lattice,
o} /* are the Pauli x and z matrices at site i, and s; ==l
determines whether the bond ij is ferro- (s;; = +1) or anti-
ferromagnetic (s;; = —1). The couplings J and I" are positive.
We use indices i, j to indicate general sites on the 4-8 lattice.
Where needed, we also label sites i = (R, ) where R runs
over the sites of a square Bravais lattice (with lattice con-
stant 1) and p runs over the four sites in the unit cell at the
north, east, south, and west corners of the elementary square
plaquette.

An elementary plaquette p (which can be either a square
or an octagon) is classically frustrated if there are an odd
number of antiferromagnet bonds around its boundary; math-
ematically, p is frustrated if £, = [];;,c,, 5 = —1. The fully
frustrated model has F, = —1 for every plaquette. Without
loss of generality, we choose a ‘gauge’ s;; where the antifer-
romagnet bonds are arranged on the thick bonds of Fig. 1, i.e.,
the horizontal and vertical bonds between the squares and the
northeast edge of each square. It is useful to define a ‘gauge’
transformation by x; € {1} to flip the z component of each

J')J
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FIG. 2. The zero-temperature phase diagram of the 4-8 fully
frustrated Ising model. The blue dot at J' =J, =0 is a square
lattice classical Coulomb liquid. Between the Z, and the Z,
symmetry-breaking phases there is a staircase of ordered phases with
incommensurate spatial periods. A similar region may exist between
Z,4 and Zg.

spin i for which x; = —1; that is,

G =[] = @)

i

Except for the global Ising flip,

G, =G({xi=—1) =[]0, 3)

such transformations are manifestly not symmetries of the
Ising Hamiltonian H as they send H({s;;}) to the distinct
Hamiltonian, H ({ x;s;; x,})- On the other hand, the frustrations
F, are ‘gauge’-invariant in that the ‘gauge’-related Hamil-
tonians have the same frustrated plaquettes. We use quotes
around the term ‘gauge’ to remind the reader that the FQIM
Hamiltonian does not have true local symmetries.

The ‘gauge’ transforms play a useful role in understanding
the global symmetry group of the FQIM Hamiltonian. The
space group of the 4-8 lattice is that of the underlying square
Bravais lattice with 7 /2 rotation centers at the center of each
of the elementary (diagonal) squares. This group is generated
by lattice translations 7, T, and the reflections M, : (x,y) —
(v,x) and M, : (x,y) = (—x,y). In our ‘gauge’, the Hamil-
tonian H is clearly invariant under the lattice translations
and M,, (see Fig. 1), but, the antiferromagnetic bond on the
northeast edge of the elementary square is mapped to the
northwest edge by M,. This can be corrected by an appropri-
ate ‘gauge’-transformation G, = G({e/®™"K(—1)%1}) which
maps the antiferromagnetic bonds back to the northeast edges
(Fig. 3). Putting this together with the global Ising flip, the
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FIG. 3. The ‘gauge’ transform G, flips the spins marked in solid
blue, mapping the Hamiltonian to another with the same frustrated
plaquettes, but the choice of frustrated bonds mirrored across the y
axis.

global symmetry group G of H is generated by the operators
g = (GZ’ 7;(7 7}17 Mxys GxMx>~ (4’)

Physically, the isotropic FQIM has the full symmetry of the 4-
8 lattice, but the action of the symmetry transformations mixes
space and spin degrees of freedom. This will play an important
role in the Landau analysis of the symmetry-breaking orders
induced by the transverse field.

We further consider an anisotropic deformation of the
FQIM in which the ferromagnetic bonds (thick bonds in
Fig. 1) come with magnitude J' while the antiferromagnetic
bonds comes with J.

sijoio; —J' E sijoio; =T E . (5)
) (i) i
A‘;j:-i—l

H=-J
(ij

sij=—1

This model has manifestly reduced symmetry—if a space
group transformation moves the northeast bond, it can no
longer be fixed by a ‘gauge’ transformation which only moves
the signs s;; around. Thus the global symmetry group is re-
duced to

G = (G, T1, Ty, Myy). (©)

Classically, the dual representation of the Ising model [17]
is expressed in terms of the “broken bond” variables,

Ifj = s,-jafo;, 7

which are subject to the constraint

[T == (< [ si,) (H (05)2> =F.  ®

(ijyedp ijyedp icap

If ¢ = —1, the corresponding bond in H is broken, i.e., it
carries positive energy. The full quantum Hamiltonian H can
be recast as an Ising gauge theory in the t variables,

DM L ©)
)

i jedi

H=-J
(ij

FIG. 4. AtT =T =0andJ' > J, the classical ground states are
in 2-1 correspondence with a dimer liquid on the dual brick lattice
(shown dashed). This is a deformed honeycomb lattice, dual to the
triangular lattice.

where j € di runs over the sites neighboring i on the lattice.
Here 7} is the Pauli x matrix conjugate to rfj associated to
bond (i j). For simplicity, we have written H for the isotropic
case; the anisotropic extension is straightforward. As usual,
the gauge representation, Eq. (9) with constraint Eq. (8), is an
exact rewriting of the FQIM, Eq. (1), up to the global Ising
symmetry; every valid broken bond configuration t° fixes a
o* configuration up to a global choice of 1 or |.

In the fully frustrated model F, = —1, so physical config-
urations must have an odd number of broken bonds around
any plaquette. The classical ground states thus have one bro-
ken bond per plaquette and can be profitably reinterpreted as
hard-core dimer configurations on the dual Union Jack lattice
(dashed lines, Fig. 1) by drawing each broken bond as a dimer
bisecting the direct lattice bond. Unlike the essentially exact
gauge representation, the hard-core dimer representation is
only useful at low temperature and transverse field where the
relevant states are close to the classical ground-state manifold.
In this case, however, as much is known about both classical
[18] and quantum dimer models [19,20], it provides a wealth
of guidance.

III. CLASSICAL LIMIT (T = 0)

We start by considering the low-temperature phases of
the I' = 0 classical mode; see Fig. 5. These can best be
understood in the dimer representation on the dual Union
Jack lattice. This lattice may be viewed as a square lattice
oriented at 45° to the horizontal with additional horizontal
and vertical bonds. All valid dimer coverings of the square
lattice are coverings of the Union Jack lattice; any dimer
coverings using the additional horizontal and vertical bonds
require additional dimers and are therefore not ground states
[21]. Since the ground-state dimer coverings are in 1-to-1 cor-
respondence with the square lattice coverings, we recover the
well-known residual entropy [10] of the well-studied square
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FIG. 5. The classical I' = 0 phase diagram. At T = 0 there are
two regimes: For J' > 0, the ground states are identical to those of
the ZZD square lattice [11] model including a square lattice dimer
liquid at J/ = J and a honeycomb lattice dimer liquid at J' > J; for
J' = 0, the system decouples into disconnected length 4 Ising chains.

J') ]
e /

lattice Coulomb dimer liquid,
S(T =0)=0.583. (10)

The anisotropic deformation strengthening the ferromag-
netic bonds by a factor of J'/J bind the spins together and
prohibit broken bonds between them at zero temperature (see
bold bonds in Fig. 1). Removing the appropriate edges from
the Union Jack dimer model produces a brick lattice (Fig. 4)—
a simple deformation of the honeycomb lattice. In the classical
zero-temperature limit we, therefore, find a honeycomb lattice
dimer liquid with the residual entropy [11,22,23],

S'(T =0) =0.323. an

Weakening the same bonds (J'/J < 1) prefers a particular
dimer position on each unit cell, leading to a unique staggered
dimer ground state. In the spin language this state breaks
the global Z, symmetry, since dimer states are in a 2-to-1
correspondence with spin configurations.

The T,J’ <« J model, after a gauge transformation, locks
spins together within each unit cell and can be mapped to
the 2D square lattice ferromagnetic Ising model with bond
strength J'. With J’ the only accessible energy scale we expect
a thermal phase transition to disorder with critical temperature
following 7, o< J'.

For J'/J > 0 the model has identical zero-temperature
ground states to those of the square lattice ZZD (zig-zag
domino) model studied by André et al. [11]. They predict no
direct finite temperature transition and no classical (thermal)
order by disorder for J' > J. We expect the same for the
analogous 4-8 model.

IV. QUANTUM MODEL (T > 0)
A. Isotropic model

To study the ordering effects of a transverse field on the
lattice we return to the isotropic case. A small transverse field
lifts the ground-state degeneracy of the square lattice dimer
liquid, breaking lattice symmetries through quantum order by
disorder [20,24]. Motivated by the 7 = 0 classical mapping
to the fully frustrated square lattice we consider symmetry-
breaking phases which correspond to columnar (Fig. 6) and
plaquette orders of the quantum dimer model. It is still

FIG. 6. An example of a columnar state found at J” > J. Dimers,
which live on the dual lattice, are shown as red rectangles. A flippable
plaquette, such as the one marked with a blue square, lives between
each pair of parallel adjacent dimers.

controversial whether the columnar, plaquette, and a mixed
phase is realized on the square lattice.

As in that model, the relevant orders can be organized into
a complex order-parameter ¢ with Zg clock symmetry. For
the 4-8 lattice, we construct ¢ explicitly by considering the
a single mode approximation (SMA) [23,25,26] for magnon
excitation in the large I paramagnetic phase.

In the infinite " limit, the ground state is | —>— ...).
Delocalized magnon excitations are created by the operator
Y are™™*Rog . For the isotropic model they have minimum
energy at k = (3, —%) with

E=2I—(1++2)J (12)
at = L T T ). (13)
Equation (12) predicts a phase transition at ', = #J

as the gap closes and magnons condense. The condensa-
tion occurs at finite momentum, breaking lattice symmetries.
Motivated by this pattern, we consider the complex order-
parameter ¢ with momentum k = (%, —%),

¢ = Zaje’moﬁ”. (14)
R,

The lattice symmetry group acts on the 2D operator space
spanned by ¢ and ¢'. The most salient feature is that
G:MM,, acts as a generator of Zg symmetry, G.M,M,, :
¢ — e‘3‘7”¢. Furthermore, T,G M, : ¢ — ¢ acts as complex
conjugation on the ¢ plane.

With this symmetry action in hand, we construct a Landau
free-energy functional for the condensation transition,

¢ = |gple” (15)

4
[ 2" caldl™ + gslpl*cos(86). (16)

n=1

The first allowed anisotropy for ¢ is at eighth order and
describes an eightfold degenerate symmetry-breaking ground
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FIG. 7. Temperature-transverse field phase diagram of isotropic
model (J' = J). An example quantum annealing path is shown (see
Fig. 19).

state. A value of gg > 0 favors four columnar states and
their global spin flips, whereas gs < 0 favors plaquette states.
We expect to find columnar states based on the surrounding
phases in parameter space; however, the analogous region
of the phase diagram on the square lattice is controversial
[27,28].

As a discrete symmetry-breaking order, the Zg phase
should persist to finite T. The eightfold anisotropy is irrele-
vant; however, at the quantum critical point (T =0, =T)
where we expect a 3D XY phase transition to the quan-
tum paramagnet. Around this point the phase boundaries are
controlled by the universal critical exponents of the 3D XY
transition, producing a quantum critical fan. The thermal tran-
sition is not direct, however, and the thermal critical point
splits into a KT critical phase [14-16] with an upper (7.)
and lower (7) finite temperature transition. We expect that
the KT phase terminates at I' =0 and 7 = 0 in the dimer
liquid. This can be seen by the André ez al. analysis [11] of the
ZZD model in which thermal fluctuations simply disorder the
square lattice dimer liquid at 7 = 0. The upper critical tem-
perature for the transition from KT to a thermal paramagnet
scales with the energy contribution from flippable plaquettes
(Fig. 6), predicting a phase boundary which initially scales as
T oc I'%. The phase diagram for the isotropic model is shown
in Fig. 7.

We confirm the qualitative I" > 0 phase diagram using
QMC-SSE (see Sec. V). First we confirm the presence of a
KT phase below 7" by analyzing sampled spin configurations
at ' =J/2 < T', and varying § = 1/T and lattice sizes. The
susceptibility of ¢ collapses with a universal scaling function
[4]. This data collapse indicates 7.t ~ 0.166J for I' = %; see
Fig. 8.

The lower temperature phases and boundaries are more
challenging to simulate. By taking line cuts varying ' at
T =J/10 < T;* we map the paramagnetic transition out of
the KT phase; see Fig. 9. This finite temperature transition is
expected to occur below the I'. predicted by the SMA, and
indeed we find a transition around I' & 1.1J. Detailed scaling
is inaccessible due to the slowing of the simulation at low
temperatures.

The transition to the ordered Zg phase lies at a temperature
well below the upper critical temperature. Actually observing
the Zg order phase at low temperature is numerically challeng-

a=3.00 8=040 T, = 0.166

012 17 x  L=4 - S B
+ L=8 7%
0.10 L=12 _:&"
L=16 X
0.08 4 * L= *
» L=24 "
o L3
5006 A .
=
“+
X
0.04 - p
»
0.02 - ‘;’45(’*
0.00 1 += A.-()J:(H’"“
107! 10° 10*
c“rl/z/L

FIG. 8. Data collapse for susceptibility of ¢ near the thermal
phase boundary between the KT phase and the paramagnet. 2I" =
J=J, witht = T;F. Note T decreases from left to right toward
T which lies at ++00 on these axes. See Sec. V for simulation details.

ing as we expect [15] 7.~ ~ T.* /8. Furthermore, competition
between columnar and plaquette ordering patterns makes this
phase transition particularly difficult to study, as has been
observed with analogous states on the square lattice [28].

B. Strongly anisotropic model

There are two anisotropic limits to consider: J' <« J and
J' > J. For both we start our analysis from the classical
ground state. The J’ < J region is comparatively simple be-
cause the ordered staggered phase persists until a critical T'.
or T, after which the model transitions to a paramagnet. In
the J' >> J limit we find a story similar to the isotropic case; a
classical 7 = 0 dimer liquid, now on a honeycomb lattice, has
its ground-state degeneracy lifted by a transverse field. Prior
work on the triangular fully frustrated Ising model and SMA
analysis on the effective brick lattice (Fig. 4) both suggest a Z¢
symmetry-breaking ordering pattern which can be captured by

—+ L=4
0.25 1 L=8
—— L=12
—— L=16
0.20 H+
<015 Paramagnet
0.10 A1
0.05 1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r/J

FIG. 9. Average magnitude |¢| at fJ = 10 for various L x L
isotropic lattice sizes showing crossover into a paramagnet near
I'. ~ 1.1J. Error bars are obscured by trend lines.
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the complex order parameter,

v =Y bRl (17)
R,p
1 2in 2 _2in

bzz(e-*,e-*,e 3, 1). (18)

By analyzing the action of G’ on (v, ¥ 1), we find that a
sixfold clock symmetry is generated by GoT, :  — e~ 5 y;
T>M,, : y — ¥ acts as conjugation. The corresponding
Landau free energy admits anisotropy at sixth order,

3
£ el + gelvr[Ccos(60). (19)

n=1

Again, the anisotropy is irrelevant at the 3D XY quantum
critical point. At finite temperature we expect a KT phase
between upper and lower critical temperatures. The phase
diagram is very similar to that of the isotropic model (Fig. 7),
albeit with a critical temperature which initially scales as I'*.
This regime has been studied before [4] for a specific value of
J =1.8J.

C. Small anisotropy phase competition

For small anisotropy, where |17/ — 1| <« 1, energy cor-
rections explicitly favor a subset of the Zg ground states:
Columnar phases aligned with one diagonal or the other. This
results in two distinct Z4 symmetry-breaking columnar phases
on either side of the isotropy line. At larger anisotropy, where
J'/J is far from 1, the columnar phases should give way to Z,
or Z phases as discussed previously.

Let us estimate the boundary separating these phases by
comparing the variational energy calculated for each. First
consider the phase boundaries in the small I" limit, near the
classical line. Small J" and T’ perturbations about the isotropic
classical point, written € = JJ;J and y = g, modify H by a
small term V:

H=1J) sjoio;+V (20)
(i)

Vii=e Y oioi+yy ol Q21
(ij) i

sij=—1

We find in the € > 0 region, the competition is between Z4
states and Z states. First, we consider the variational energy
of the columnar state, like the one in Fig. 6, labeled as ||:>z).
Nearby low-energy states can be reached by flipping two spins
in any of the flippable plaquettes. We label the state made by
flipping the plaquette at unit cell R as |‘I I>) r- There are as
many of these states as there are unit cells, so the Hamilto-
nian in the dimer language [19] restricted to these states is
written as

H/T=3 el Dp il =72 (1 D (2l +hec).
R (22)

For the general Hamiltonian there are also terms linear in
y from flipping single spins, such as y||7I>) R(|:>z|; however,
they make identical contributions to all classical ground states
and can be omitted when comparing the states. At € =0

T/J
g kS Paramagnet
| Nz
0
0 TexVJ —1J L/

FIG. 10. Temperature-transverse field phase diagram for weak
anisotropy J/%j & 1. The ¢ order parameter with Z4 anisotropy per-
mits an intermediate temperature KT phase. No such phase exists for
¢ with Z4. Double lines indicate first-order transitions between these
symmetry incommensurate phases; alternatively, it is possible that
the phase transition splits into a region of incommensurate phases.

and y > O the state is independent of y; the energy per unit
cell is simply (H) —y2J. For € > 0, with finite y, we
find (H) o eJ as resonant plaquettes break the strengthened
bonds. To leading order in each expansion parameter we find
the variational energy per unit cell to be (H) = (¢ — y?)J.

Repeating a similar procedure for the Z¢ phase we need to
use flippable plaquettes on the brick lattice made by rotating
three dimers along the alternating walls of the bricks,

H)J ==Y 7" (43 (7] + hc)
R (23)

Since the bricks do not include dimers which break J’
bonds we end up with an energy per unit cell simply modified
by —y*J. Competition between these two energies determines
the shape of the boundary between the Z4 and Zg phases at
low € and low y. To leading order this is given by €, o y2. In
the J' < J region the staggered phase competes with a colum-
nar phase (rotated 90° from that shown in Fig. 6 so as to break
a single J’ bond per unit cell). The same treatment predicts
a similar phase boundary below the J' = J line: €, ox —y2.
These estimates also motivate the 7. boundaries shown in
Fig. 7 and Fig. 10.

Notably, KT phases are not supported by clock models
with g < 4 states [15]. Despite the isotropic and strongly
anisotropic models having KT phases, some of the phases
of the weakly anisotropic models, such as the Z4 phase, do
not support KT phases and instead transition directly into the
thermal paramagnet above a critical temperature.

D. Incommensurate phases

Between the weakly anisotropic and the strongly
anisotropic limits previously described, we find a collec-
tion of additional ground-state ordering patterns with distinct
momenta. SMA in the large I" limit predicts a smoothly vary-
ing magnon condensation momentum lzmin = F(kmin, —Kmin)
as a function of J'; see Fig. 11. We can trace kp;, as we
increase J'. As seen previously, J' = J predicts ky, = 2%.
Increasing to J' &~ 2J moves ky,;, toward 2r Between these

3
values, however, SMA predicts ordering patterns which are
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—0.50
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J' )T

FIG. 11. Evolution of energy of lowest magnon with momentum
k = (k, —k) with anisotropy J'/J. Minimum momentum configura-
tions for each value of J'/J are traced.

incommensurate with the underlying lattice [13]. We expect
the model to lock into ground states with smaller unit cells,
in other words, smaller denominators g in ky;, = %. In the

J' > J limit, SMA predicts ki, ~ 4?”. This disagrees with the
SMA prediction on the large J’ effective brick lattice (Fig. 4)
as well as the perturbative expansion around the classical
I' = 0 line, so we expect no kpyj, = 4?” phase to appear in the
phase diagram.

We can predict the approximate phase boundaries by nu-
merically comparing the eigenenergies of magnon excitations.

Expanding H,, (Al) around kpi, = O (which corresponds to
the staggered phase) predicts a critical value of J. = (%)J
at which the zero mode is no longer the first to condense.
Magnons with momentum k = 2?” and those withk = %T” have
equal energy at J' ~ 0.89J. For large enough I we therefore
expect a first-order phase transition near J' ~ 0.89J out of a
phase with k = 2?” and another into a Z4 symmetry-breaking
phase with k = ZT” (Fig. 12). There may, however, be addi-
tional symmetry-breaking phases between these. Similarly we
predict a transition between the upper Z4 breaking phase and
the Zg breaking phase (with k = 2?”) to occur near J' ~ 1.27J

(Fig. 13). Note that these predictions are from SMA and

12
k=0m/12

k=1r/12
k=2r/12
k=3r/12
k= 4r/12
k=5m/12
k=6m/12

10 1

bt

Sk—k

e /)

FIG. 12. Structure factor at momentum (k, —k) at varying J'.
Samples at J = 10 and I = 0.9J. Results of QMC study on 24 x24
lattice. Vertical dashed lines indicate illustrative transitions predicted
by the SMA (left, bifurcation of minimum & in magnon dispersion,
cf. Fig. 11; right, crossing of energy at k = 27 /4 and k = 27 /5).

0.225
—+ (o)
0.200 1 — (i
0.175 A
0.150 A
0.125 A1
0.100 A
0.075 A

0.050 A

0.025 A

1.0 12 1.27 1.4 1.6 1.8 2.0

FIG. 13. Transition from Z4 phase to a quasi-long-range-ordered
Z¢ KT phase. QMC data from a 12 x 12 lattice at §J = 10 and
I' = J. Vertical dashed line indicates energy crossing of k = 27 /3
and k = 2w /4 in SMA dispersion. Error bars are obscured by trend
lines.

performed in the infinite I limit, far above the transition into
the paramagnet. Despite this, in both Fig. 12 and Fig. 13 the
predicted phase boundaries line up very well with observed
transitions from QMC samples.

V. QMC

We confirm many features of this complicated phase di-
agram using QMC-SSE [29-32] to sample z-aligned spin
configurations |¢) from the lattice according to their Boltz-
mann weights, (Y |e #|y). These samples can then be used
to compute observables. SSE requires all terms in the Hamil-
tonian to be positive; we use the transverse field Ising model
Hamiltonian plus a constant offset restricted to I > O:

H:ZJ,I(O'IZO'JZ‘FI)—ZF(O'IX"‘I) (24)
(i) i

We use typical diagonal and cluster updates, as well as a
custom semiclassical update for improving performance near
the I' = 0 limit (Sec. V A). This update exploits flippable pla-
quettes more readily than cluster updates by moving diagonal
terms between bonds. We also use Replica swapping/parallel
tempering [33] for sweeps across parameters 8, ', and J'.

To study phase transitions we take the sampled z-basis spin
configurations and act on them with the relevant complex
order-parameter operators [e.g., Eqs. (14) and (18)]. Within
the appropriate phase the order parameters acquire a nonzero
vacuum expectation value; the Monte Carlo sampling density
supports this; see Figs. 14(a)-14(c).

To find phase transitions we look at averages of the magne-
tization m = /@*@, or susceptibility x = m>. Each of these
averages is across four independent simulations and 1000
samples for each, samples are taken after 100 or 1000 QMC
sweeps (depending on parameters) beginning after a 100,000
sweep thermalization period. These sampling rates were de-
termined by measuring the autocorrelation time of the bond
variables in the KTy phase. A sweep consists of a diagonal
update, a cluster update, and a thermal spin-flip update on any
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(a) I'=J and BJ =10

3 0.3
-03 -02 -01 00 01 0.2 03 -03 -02 =01

(b) T = 0.87 and BJ = 256

0.0 01 0.2 03 "~03 -02 -01 00 01 0.2 03

(c) J'=1.1J,T =J, BJ =10

FIG. 14. Probability density of ¢ sampled in complex plane from QMC-SSE. Note that the bull’s-eye structure indicates that the amplitude
has developed an expectation value even if the phase continues to fluctuate as in the (a) KT phase. At lower T, (b) shows subtle evidence of
Zg symmetry breaking corresponding to a columnar phase. With anisotropy, (c) shows fourfold symmetry breaking corresponding to columnar

order.

variables unconstrained by imaginary time operators. At low
I" we additionally perform % semiclassical updates with N as
the total number of spins. These do not make a significant
difference to autocorrelation times for I' > 7" and can be

omitted for such simulations.

A. Semiclassical RVB update

Multibranch cluster updates [30,34] perform poorly as the
model approaches the classical low I' regime and the entire
SSE graph forms a single cluster connected by two-body inter-
actions. To improve autocorrelation times for the simulation
near the classical limit, we have developed an update which
flips smaller clusters of spins, motivated by the classical ring
exchange updates for dimer models.

Consider an Ising-symmetric model with diagonal two-
body operators (H;j = Jijoio;) and offdiagonal one-body
operators (H! = I'o;"). We can make H' constant across all
matrix elements, [Hit]ss/ = —TI" and ensure no diagonal matrix
elements are negative by adding a constant to the Hamiltonian

H = (Jijoiof +JI) — T(ox + ). 25)

The RVB update consists of flipping clusters spanning real
space and imaginary time, similarly to the multibranch cluster
update. This update differs in that we allow two-body diagonal
operators to be moved around on the surface of the cluster.
The multibranch update can then be viewed as the special case
where there are no operators on the surface, and therefore no
operators need to be moved.

To visualize this update, first consider world lines for each
spin (represented in Fig. 15 as the white space between verti-
cal black lines), and boundaries (horizontal lines) defined by
the constant one-body operators. Since the one-body operators
have constant matrix elements across all indices, when flip-
ping a world line we may stop at any of the one-body operators
without changing the weight of the graph. Define a cluster by
selecting subsections of the world lines (highlighted in red).
Each subsection must begin and end at one of the one-body
operators, like the multibranch cluster update. A convenient
definition of the cluster is the set of spins within it at each
point in imaginary time: C(7).

To flip the spins in the cluster we will move the two-body
operators with one leg inside the cluster and one leg outside.
These are the operators whose weights may be changed by the
new spin configuration. To simplify the update, for each oper-
ator to be moved at imaginary time 7, we will only consider
new positions at the same 7. At each moment in imaginary
time we will calculate the acceptance probability of moving
a two-body operator on the border, p(t). We can group con-
tiguous regions of imaginary time with identical classical spin
configurations in or around the cluster into segments with the
same p(t). The total flip probability for segment « is then
po = p(t)" where n, is the number of operators needing to

T l T T
1-body op. R
2-body op. on
cluster border Wi n
P = (m)
' 1
) D2
!
p3
T R
P4
Cmmm——
i i T T

FIG. 15. An example cluster for the semiclassical RVB update.
The four relevant segments are separated by dashed lines. Spin world
lines are represented by the white space between vertical black lines.
The red shaded cluster will be flipped and the blue two-body operator
moved by the update if accepted.
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be moved in that segment. Segment delimiters are marked as
dashed lines in Fig. 15.

Let |, ) be the classical spin state in and around the cluster
in segment a. Let [,,) be the similarly defined spin state after
the cluster has been flipped. Define W, = > ) (1/fa|Hf§|1ﬁa>
the energy contribution from diagonal terms along the border
of the cluster and similarly W, for ...

(i/jy={i,je(ij)lieCr)djelC(r). (26)

The notation (i/j) indicates nearest-neighbors i and j
where exactly one of i or j is inside the cluster at a given
imaginary time slice.

For an update rule from state a to b, detailed balance re-
quires Pyccept gz—:‘: = % with W as the total Boltzmann weight
of the graph. A given segment, o, contains n, operators to
move, and each one represents a term in H¢; let

Wo =D (ValHAIWe) = Y wa 27)
) !

(i/j
Wy = w,,. (28)
l

where each w; represents one of the sites along the border
of the cluster and an entry in (i/j). The proposed state b is
made by flipping the spins in the cluster then moving all the
n, terms on the border to new positions I’ with probability %

Let P,_., be the probability of selecting a specific state b after
the cluster has flipped from state a,

P =[] ]J W (29)
P =[] ]J Bes, (30)

where a; and b; are used to indicate the new positions for
each of the n, operators to make state a and b.
We can now define the acceptance weight for segment « as

Wy \™
Pa = <W) (31)

and show that it satisfies detailed balance with a Metropolis-

style update rule. An operator in segment o which moves from
wa’nh[ . .
Toa? implying

position a; to b; has a relative weight change

that the net graph weight change is % =[], ]—[f“(w”—"’;:). We

W
can now solve for the probability of accepting the update:
w’ Pb—>a
Paccept =
w Pa%b
Wa,b;
_ (l—[ “’fx,bf) I W,
- Wy g w(/x,b,»
ai Ha,i w!

=11 (%) =[]re (32)

As is standard in Metropolis updates, Pyccep is taken as the
minimum of this calculated value and 1. By choosing clusters

to update based on the flippable plaquettes in the expected
ground state, we increase the likelihood of having segments
with classically flippable clusters, and thus p, = 1.

By randomly selecting small candidate clusters we were
able to improve the autocorrelation times in the small I'
regime (see Appendix B). This update move is limited by
the choice of cluster selection, and we have yet to investigate
applying other cluster-based update moves to the cluster selec-
tion stage, though some candidates exist such as the sweeping
cluster update [35]. Furthermore, although the RVB update
was motivated by classical ring exchange updates, there may
be room for improvement by adapting other algorithms devel-
oped for classical clock models [36] in a similar way.

VI. REALIZATION ON A QUANTUM ANNEALER

To experimentally test some of the predicted phases, we
use a programmable quantum device. Initially built to study
classical optimization problems, the D-Wave 2000Q is a su-
perconducting qubit-based quantum annealer which simulates
a TFIM Hamiltonian.

H=A(s)) of +B(s) <Z Jjoioi + h,-af> . (33
i (ij)

Here J;; and h; are programmable parameters, and s is
the annealing variable which tunes the relative strengths of
A(s) and B(s). The default annealing schedule takes s from
0 to 1, starting at B(0) = 0 and ending at A(1) =0, each
following a curve specific to the machine [37]. The set of
available couplings is given by the architecture; the Chimera
architecture of the D-Wave 2000Q provides up to 2048 qubits
and 4196 tunable couplings arranged in a 16 x 16 grid with
unit cells of 8 qubits each; a subsection is shown in Fig. 16.

To corroborate the evidence provided by QMC for the pre-
dicted phase diagram, we embedded the 4-8 lattice isotropic
Ising model in the Chimera architecture. Some defects
are introduced by missing spin variables or bonds. These
are machine-dependent defects and cannot be completely
avoided; see Fig. 17 for an example embedding and sampled
dimer state. Each unit cell in the Chimera graph contains
eight spin variables, allowing two separate sheets of the 4-8
lattice to be embedded together and then tied at their borders.
Both cylindrical [4] and open boundary conditions can be
embedded.

We can alter the default annealing schedule to allow the
system to equilibrate at nonzero transverse field. Rather than
scaling directly from s = 0 to 1, we scale s to chosen value
s, such that I'/|J| = A(s,)/B(s,) and allow the system to
thermalize. The machine has a low physical temperature, 7 ~
14mK, and relatively large coupling strengths BB(s = 1) ~
41 [and BA(s = 0) ~ 34]. However, the couplings vary as a
function of the annealing schedule s; therefore, a limitation of
this approach is that since both A and B change as a function of
s, we find a lower bound for 7'/|J| for a given choice of T'/|/]|,
producing an annealing path which varies in both I'/|J| and
T/|J| (Fig. 19). Furthermore, the D-Wave 2000Q must bring
the transverse field to I' = 0 before taking spin measurements.
The timescale of this quench is not negligible compared with
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FIG. 16. Subsection of D-Wave’s Chimera architecture. Spin
variables live on vertices with tunable Ising interactions shown
as edges. Highlighted edges (identical color scheme to Fig. 1)
correspond the embedding of the 4-8 lattice with open boundary
conditions. All other couplings are disabled.

the inverse energy scales and may be a source of noise. An
additional machine limitation is the precision of the J;; and A;
couplings, which may be shifted from their expected values.
These shifts may be addressed by shimming [4]—performing
random measurements and using average magnetization and
correlations to modify couplings. Previous work [4,5] has
additionally included more advanced noise reduction tech-
niques, such as adjusting bonds based on symmetries of the
model, altering annealing schedules, and performing reversed
or repeated annealings from seeded ordered states.

By sampling at the lowest allowed 7'/|J| for each choice
of I', or in other words using the largest allowed coupling
strengths, we find a significant increase in |¢| around the
expected transverse fields. Since larger I values must be
quenched and pass through phase boundaries, we expect the

16 A

14 1 X0

121 < >

10 A <\

0 2 4 6 8 10 12 14

FIG. 17. Samples from the D-Wave 2000Q can be profitably
visualized through the dimer mapping.

- Cylindrical
0.22 A1 Open

0.20 1

0.18 A1

]

0.16

0.14 1

0.12 A1

0.10 1

/7

FIG. 18. Evidence of Zg KT quasi-long-range ordering in D-
Wave. Data from 2048 samples for each point. Cylindrical b.c. used
1866 qubits on two sheets, Open b.c. used 996 qubits on a single
sheet.

response to be smeared toward larger I values. The results
are summarized in Figs. 18 and 19. Qualitatively, we find ¢ to
be consistent with the predictions and numerics in preceding
sections, although the data quality falls far below that which
QMC is able to offer.

VII. CONCLUSION

The fully frustrated 4-8 lattice contains a deceptively large
variety of 2D phases of matter. The phase diagram is devel-
oped in low and large I' limits for both the isotropic and
the anisotropic models, and numerical methods support our
theoretical arguments. The D-Wave 2000Q quantum annealer
is nominally able to realize the frustrated lattice, and by al-
tering the annealing schedule we could measure the ordering

0.35 A

0.30 A

0.25 A

2]

0.10 A

FIG. 19. Trajectory through the T'/T" plane. |¢| shown for cylin-
drical b.c. The phase boundary is drawn consistent with theory (at
small I') and QMC line cuts in Fig. 7; we have not systematically
mapped out the entire boundary.
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effects of a transverse field. However, the support offered
by the annealer was of lower quality than that provided by
QMC, especially as the D-Wave device was limited to rela-
tively high-temperature regions of the phase diagram at finite
transverse field. Accessible parameters are within an order of
magnitude of the couplings needed to observe the quantum
ordered or KT phases and thus may well be realizable in next
generation devices. Our study suggests that future generations
of the D-Wave annealer may actually contribute to a physical
understanding of frustrated models beyond those accessible
with current classical techniques.
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APPENDIX A: SMA

We can find the relevant order parameters by estimating
which delocalized magnon excitations in the paramagnetic
region are the first to condense. The Bloch Hamiltonian re-
stricted to the single magnon states with momentum k is
given by

0 —J —Jetk J'
—J 0 N

Hy = | _ 7 0 o | +2r @b
J —Je ik J' 0

—}— RVB+Cluster
Cluster

10° 4

Autocorrelation Time

102 4

02 03 04 05 06 07 08 09 1.0
r/J

FIG. 20. Autocorrelation time for bond variables with and with-
out the RVB update step. Data taken from 32 independent runs on a
4 x 4 isotropic 4-8 lattice at BJ = 5.

The minimum eigenenergy is given by

E, =2 — J\/ 3 +2,/1 —sin(k,) sin(k,) (A2)

Ex 2y =2T — (1++2)J. (A3)

APPENDIX B: RVB AUTOCORRELATION TIMES

To illustrate the benefit of the RVB update in the small
I' regime we measured the exponential fit to e~'/* of the
autocorrelation graphs for bond variables, sampled over a va-
riety of transverse field values (Fig. 20). We see convergence
around I' = J where the RVB does not significantly contribute
compared with the cluster update.
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