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Condensed-matter systems provide alternative “vacua” exhibiting emergent low-energy properties
drastically different from those of the standard model. A case in point is the emergent quantum
electrodynamics (QED) in the fractionalized topological magnet known as quantum spin ice, whose
magnetic monopoles set it apart from the familiar QED of the world we live in. Here, we show that the two
greatly differ in their fine structure constant α, which parametrizes how strongly matter couples to light:
αQSI is more than an order of magnitude greater than αQED ≈ 1=137. Furthermore, αQSI, the emergent speed
of light, and all other parameters of the emergent QED, are tunable by engineering the microscopic
Hamiltonian. We find that αQSI can be tuned all the way from zero up to what is believed to be the strongest
possible coupling beyond which QED confines. In view of the small size of its constrained Hilbert space,
this marks out quantum spin ice as an ideal platform for studying exotic quantum field theories and a target
for quantum simulation. The large αQSI implies that experiments probing candidate condensed-matter
realizations of quantum spin ice should expect to observe phenomena arising due to strong interactions.
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The fine structure constant of QED, αQED ≈ 1=137, is
famously measurable in a semiconductor device [1],
oblivious to any imperfections of the crystal, and perfectly
immutable compared to measurements in vacuo [2]. By
contrast, a fine structure constant is also known to emerge
entirely independently in quantum condensed-matter
phases whose emergent excitations mimic QED [3,4].
This emergent fine structure constant has no reason to
be as constrained as that in QED and this allows emergent
QEDs (eQED) to probe physical regimes which are usually
difficult to access either theoretically or experimentally.
Among the various microscopic models which host an

eQED [3,5–8], the ones which have received the most
attention recently in experiments go under the name of
quantum spin ice [9–13]. The term quantum spin ice (QSI)
simultaneously refers to a family of models, as well as a
class of rare-earth magnetic materials which approximately
realize the theoretical models. Similar to the prototypical
gauge theory of QED which has matter excitations such as
electrons and a gauge boson corresponding to the photon,
the eQED in QSI is a 3þ 1D compact Uð1Þ gauge theory
and has “matter” excitations [14]—electric charges [which
are the spinons shown in Fig. 1(a)] and magnetic monop-
oles—and an (emergent) photon [8,15]. These emergent
photons and spinons have been established by various
theoretical and numerical studies [16–19], with the mag-
netic monopoles being the focus of recent studies [20,21].
Understanding the properties of the eQED necessitates not
just identification of the low-energy emergent excitations,

but also measuring the various couplings of the eQED such
as the speed of light cQSI. These can be drastically different
from those of usual QED, giving access to unusual regimes
and phenomenology typically inaccessible in our world.
For example, estimates of cQSI are quite small [8,11,18].
This means that experiments can probe phenomena ranging
from the nonrelativistic to the ultrarelativistic, where the
electric charges move faster than the speed of light and emit
Cerenkov radiation.
However, there is currently no estimate of the electric

charge eQSI and hence fine structure constant αQSI ≡
e2QSI=ℏcQSI (in fact, in any microscopic model with an
eQED). This dimensionless quantity characterizes how
strongly the spinons (which are the electric charges of
the theory) interact with the emergent photon [see
Fig. 1(b)]. In usual QED, the small value of αQED justifies
a perturbative treatment, while also making some processes
like photon-photon scattering very difficult to observe.
Determining the value of αQSI would allow us to guide
theoretical treatments of its eQED and also potentially
place the eQED in a different regime to QED.
Here, we determine the fine structure constant αQSI in the

eQED of QSI. Besides being an order of magnitude larger
than αQED, it is tunable over the complete theoretical range
by adding local interactions to themicroscopicHamiltonian.
This also constitutes a clear example where modifying the
microscopic details of a theory changes the emergent
couplings of the low-energy theory in a straightforward
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manner. Our main results are displayed in Fig. 1(c) and in
Table I. From a methodological perspective, the framework
we have developed using large-scale exact diagonalization
(ED) techniques in constrained spaces may be of additional
interest in determining the low-energy properties of other
microscopic models with exotic emergent theories.
Microscopics.—Spin ice is modeled by spin-1=2 par-

ticles residing on the corners of the tetrahedra of the
pyrochlore lattice, shown in Fig. 1(a) [9]. Each spin is
restricted to point either toward or away from the centers of
the two adjacent tetrahedra. With this restriction, the
classical ground state follows a simple rule [25]: each
tetrahedron has two spins pointing in and two pointing out.
This “2-in 2-out” local constraint is called the ice rule,
named after a similar constraint in water ice [26]. Classical
spin ice is well understood in terms of fractionalized spins
forming an emergent classical electromagnetism, with the
ice rule playing the role of Gauss’s law. Local violations of
the ice rule then correspond to spinons and antispinons
[27], which we refer to as electric charges and anticharges.
At low temperatures, quantum fluctuations allow tunneling
between classical configurations satisfying the ice rule,

giving rise to an eQED [8,16–19,28–31]. In addition to the
electric charges, there are now magnetic monopoles as well
as photons corresponding to coherent ring-exchange proc-
esses within the ice manifold.
The microscopic Hamiltonian to describe QSI materials

was derived, and studied in considerable detail, in the
context of the rare-earth pyrochlore materials [9,29,32]. For
the present purposes, it is sufficient to consider a simplified
model given by the canonical QSI Hamiltonian which
consists of two parts [8]: a “classical” term enforcing the ice
rules, which determines the cost of an electric charge;
and a “quantum” resonance term, also known as a loop flip
or ring exchange term, W ⬡ , which coherently flips a
sequence of six spins arranged head to tail around a
hexagon ,

Heff ¼ Jzz
X

hi;ji
SziS

z
j − g

X
⬡

ðW ⬡ þW†

⬡

Þ: ð1Þ

The first sum runs over all bonds of the pyrochlore lattice
and the second over all of its hexagonal plaquettes.
A hexagonal plaquette on which W ⬡ acts is shaded in
Fig. 1(a). This Hamiltonian describes the standard low-
energy dynamics of geometrically frustrated systems
capturing phenomena ranging from high-temperature
superconductivity to frustrated magnetism [33], and can
be obtained as a low-energy effective theory of the general
microscopic quantum spin ice model [8,30] Furthermore,
it can be formally rewritten as a compact Uð1Þ lattice
gauge theory [8,17], with W ⬡ the smallest possible
Wilson loop.
To effect the above-mentioned tuning, we additionally

consider a pair of simple perturbations to Heff :

Hp ¼ ζ
X

hhhi;jiii
Szi S

z
j þ μ

X

⬡

ðW†

⬡

W ⬡ þW ⬡W
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⬡

Þ: ð2Þ

FIG. 1. (a) The pyrochlore lattice of quantum spin ice (QSI) is
formed from corner sharing tetrahedra with spin 1=2 s residing at
corners. The spins shown give an example of ice-rule violating
tetrahedra that correspond to an electric charge-anticharge pair.
(b) The emergent electric charges and photons can interact, just as
electrons and photons do in QED, and their interaction strength is
given by the emergent fine structure constant αQSI. (c) The value
of αQSI in the eQED phase of the microscopic QSI Hamiltonian
[see Eq. (2)] shown as a function of μ (with ζ ¼ 0) and ζ (with
μ ¼ 0). Error bars represent the standard deviation of αQSI among
its shape-dependent variations at a fixed ðμ; ζÞ. By varying the
3NN potential, α is tunable up to the maximum value αc (dotted
line) beyond which it is conjectured that any compact QED in
3þ 1D confines [22–24].

TABLE I. Numerical values of the fine structure constant
α ¼ e2=ℏc, the speed of light c, the elementary electric charge
e, and the elementary magnetic charge from Dirac quantization
m ¼ e=2α. In our units, the electric (magnetic) charge squared
corresponds to the energy between two electric charges (magnetic
monopoles) held one nanometer apart. The second column uses
characteristic scales obtained from the pyrochlore oxides, corre-
sponding to μ ¼ ζ ¼ 0, a ¼ 10 Å, and g ∼ 1 μeV. We stress that
the dimensionful values of a and g do not affect αQSI. The
corresponding values in the vacuum QED of our Universe are
shown in the third column.

Candidate QSI material Vacuum QED

α 1=10 1=137
c 1 ms−1 3.0 × 108 ms−1

e 10−4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eV nm

p
1.2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
eV nm

p

m 10−3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eV nm

p
82.2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
eV nm

p
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The first summation over hhhi; jiii runs over the third-
nearest neighbors (3NN), which are pairs of spins across
from each other on a hexagonal plaquette. This two-body
Ising term generically exists in material realizations [29]
and can be engineered in many current quantum simulators
[34–36]. It prefers spins across from each other to be (anti)
parallel (depending on the sign of ζ), hence affecting the
number of flippable hexagons ( ). The second term is a
Rokhsar-Kivelson (RK) potential, which directly counts the
number of flippable hexagons and, as a six body term, is
less easy to control experimentally. However, the ground
state is exactly solvable at the RK point [37] (ζ ¼ 0 and
μ ¼ 1) which allows us to validate our numerics by
comparing to previous analytic and numerical studies
[7,17,18]. We note that tuning either of these perturbations
to be sufficiently strong causes the system to transition out
of the deconfined QED phase, which we find persists for
−0.5≲ μ ≤ 1 at ζ ¼ 0 [17], and for −0.2≲ ζ ≲ 1 at μ ¼ 0
(see Supplemental Material [38]).
Macroscopic eQED.—The low-energy theory of eQED

is the familiar Maxwell Hamiltonian

HMaxwell ¼
1

8π

Z
d3xðjEj2 þ c2QSIjBj2Þ; ð3Þ

where B ¼ curlA, and E and A are the canonically con-
jugate electric field and vector potential operators, respec-
tively. Throughout this manuscript, we use units such that
the emergent Coulomb energy between two electric charges
(magnetic monopoles) is e2QSI=r (m2

QSI=r). We fit the low-
energy spectra of Eq. (1) in the constrained Hilbert space
obeying the classical ice rules, using results from Eq. (3) to
extract eQSI and cQSI. See Supplemental Material [38] for a
detailed account of the ED techniques used to access the
spectra of systems with up to 96 spins.
Since electric charges cannot be excited in the con-

strained Hilbert space, it may appear that eQSI cannot be
probed. However, it is possible to have electric field lines
looping through the periodic boundaries without violating
the ice rules [8,17]. As a gedanken experiment, an
elementary unit of the electric field can be created by first
exciting an electric charge-anticharge pair, moving the
electric charge around the lattice through a periodic
boundary, and then annihilating it with the electric anti-
charge. This leaves behind an elementary unit of electric
flux passing through the boundary. As the dynamics of the
QSI Hamiltonian preserve the ice rule locally, the Hilbert
space decomposes into electric topological sectors
ϕ ¼ ðϕ1;ϕ2;ϕ3Þ ∈ Z3, where ϕi gives the number of
elementary units of electric flux through the ith direction.
The electric field created by this procedure is uniform

when the lattice is coarse grained. By computing the
ground state energy in each electric topological sector,
we can thus extract the value of eQSI. As shown in
Supplemental Material [38], E can be found using

Gauss’s law which then gives an expression for the electric
field energy density

u ¼ e2QSI
2πjQϕj2

a4
; ð4Þ

where a is the lattice constant of the face-centered cubic
lattice underlying the pyrochlore lattice and Q is a
dimensionless 3 × 3 matrix characterizing the shape of
the periodic volume. The inset of Fig. 2(a) shows the fit
of Eq. (4) to the u ED data at μ ¼ ζ ¼ 0, yielding
eQSI ¼ 0.20ð1Þ ffiffiffiffiffi

ag
p

. The ED data are obtained across a

FIG. 2. (a) The emergent electric charge eQSI as a function of
RK (μ,ζ ¼ 0) and 3NN (μ ¼ 0, ζ) potential. A representative
scatter plot of these data is shown in the inset (data corresponding
to μ ¼ ζ ¼ 0) with associated fit (red line). The dashed lines
are fits giving eQSI ¼ 0.20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
agð1 − μÞ

p
at ζ ¼ 0 and eQSI ¼

0.38
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
agð0.28þ ζÞ

p
at μ ¼ 0. We note that the former depend-

ence is predicted near the RK point at μ ¼ 1 [7,17], while the
latter is a guide to the eye. (b) The emergent speed of light cQSI as
a function of RK and 3NN potential. Representative scatter plot
of this dispersion is shown in the inset (at μ ¼ ζ ¼ 0) with
associated fit (red line). Dashed lines are fits giving cQSI ¼
0.51ag

ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
=ℏ and cQSI ¼ 0.78ag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.41þ ζ

p
=ℏ along the

ζ ¼ 0 and μ ¼ 0 axes, respectively. Again, we note that the
dependence of c on μ near the RK point is consistent with
previous results [7,18]. The error bars in both panels represent the
standard deviation of eQSI and cQSI among its shape-dependent
variations at a fixed ðμ; ζÞ. Furthermore, in both insets, scatter
points are brighter the denser their neighboring data points are.
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range of finite-size samples (up N ¼ 96 spins and 180
different shapes). The spread of the data about the fit, and
the corresponding variation in eQSI, comes from the
variations in the measurement for different lattice shapes
occurring due to the limited sizes accessible with ED.
Figure 2(a) shows eQSI measured at different values of ζ

and μ in Eq. (2) along the μ ¼ 0 and ζ ¼ 0 axes,
respectively. As ζ becomes increasingly positive and μ
increasingly negative, eQSI increases. This has a simple
interpretation. Both of these perturbations increase the
microscopic energy for spins across hexagonal plaquettes
to be parallel, which in terms of the eQED correspond to
states with local electric flux in the direction of the parallel
spins. This increases the energy of the sectors with global
electric flux, producing a larger eQSI.
We measure cQSI using the ground state dispersion of

Eq. (1) translated into the first Brillouin zone. At small
momenta, one of the photon’s key characteristics is its
relativistic dispersion ωðkÞ ¼ cQSIjkj. The ED data used to
extract the fit are obtained across the same range of samples
as in the measurement for eQSI. We obtain the value of cQSI
by using the Gaussian approximation to the photon
dispersion on the pyrochlore (see Supplemental Material
[38] for derivation): [18]

ωðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2QSI
a2

λðkÞ þMλ2ðkÞ

s

; ð5Þ

where cQSI and M are fitting parameters and λðkÞ ¼
12 − 4

P
i>j cos ðkia=2Þ cos ðkja=2Þ. The inset of

Fig. 2(b) shows the momentum dependence of the ground
state energy at μ ¼ ζ ¼ 0, which upon fitting Eq. (5) gives
cQSI ¼ 0.51ð6Þag=ℏ. In addition to variation of cQSI
coming from lattice shape dependence, there may be spread
from the fit due to magnetic monopole states at higher
momenta that the Gaussian photon dispersion does not
capture [28]; in particular, we exclude jkja > π from the fit,
where clear irregularities are visible. We note that the fit
value is similar to a previous numerical measurement
cQSI ¼ 0.6ð1Þag=ℏ [17] and analytical estimate c ¼
0.41ag=ℏ [39] using semiclassical techniques.
Using the ED spectra along the μ and ζ axes, Fig. 2(b)

shows that like eQSI, cQSI is indeed also tunable. We see a
similar trend as previously: cQSI increases as states with a
greater number of flippable hexagons become energetically
favored. This can be understood qualitatively by noting that
the photons are collective motions of fluctuating electric
field loops [3]. Since a hexagon has to be flippable to
support local electric field loop fluctuations, the photon can
propagate to flippable hexagons more rapidly than unflip-
pable ones. At long wavelengths, this corresponds to an
increase of the speed of light with increased density of
flippable hexagons.

Fine structure constant.—In our units, the fine structure
constant is given by α ¼ e2=ℏc. From our measurements of
eQSI and cQSI, upon taking their quotient to find αQSI the
dimensionful constants a and g crucially cancel. Figure 1(c)
shows αQSI as a function of ζ and μ along the μ ¼ 0 and
ζ ¼ 0 axes. Varying μ, we see that αQSI is tunable ranging
from exactly zero at the RK point all the way to 0.1 at
μ ¼ −0.5, beyond which the system undergoes a first order
transition into an ordered state [17]. Along the μ ¼ 0 axis,
αQSI is 0.06 at ζ ¼ −0.15 and increases to 0.2 at ζ ¼ 1. At
ζ ≈ 1, the Hamiltonian undergoes a phase transition into a
finite momentum phase, suggesting the development of
long-range magnetic order and confinement of the eQED
(see Supplemental Material [38]). It is remarkable to note
that the value αQSI takes at ζ ¼ 1 corresponds to αc ≈ 0.2 at
which pure lattice QED on the cubic lattice is known to
confine [40]. Indeed, αc ≈ 0.2 has been argued to be the
limit of stability of the deconfined phase in general
[22–24]. Thus, we find that we can tune αQSI over the
entire range of fine structure constants allowed by a
deconfined QED: 0 ≤ α ≤ 0.2.
The dimensionful quantities eQSI and cQSI we have

calculated depend on the lattice parameters a and g.
There are a large variety of rare-earth pyrochlore oxides
that are QSI candidates, such as Tb2Ti2O7, Yb2Ti2O7,
Pr2Sn2O7, and Pr2Zr2O7 [9,32,41]. The lattice constant in
these materials is approximately a ≈ 10 Å [41] and typical
energy values of a candidate QSI material correspond to
g ≈ 1 μeV [29,30]. Using these values, we can estimate
eQSI and cQSI, which are shown in Table I along with the
corresponding values in vacuum QED. This highlights the
exotic nature of the eQED in QSI: the emergent photon
travels 100 × 106 times slower than the speed of light and
the emergent fine structure constant is ten times larger
than its vacuum QED counterpart. The largeness of αQSI
implies substantial interactions between spinons and emer-
gent photons in QSI, consistent with deviations from
noninteracting theory expectations for the dynamic struc-
ture factor observed in quantum Monte Carlo at finite
temperature [28].
The experimental effort to establish that these candidate

materials realize the deconfined eQED phase at low
temperature have largely been focused on finding evidence
for the existence of a linearly dispersing transverse photon
and fractionalized gapped spinons—the noninteracting
structure of the emergent particles. However, the size of
αQSI suggest that distinctive experimental signatures may
actually follow from the interaction effects between the
particles. For example, due to αQSI, we expect the dynamic
structure factor observed in neutron scattering to exhibit the
presence of well-defined spinon-antispinon “Rydberg”
bound states, a strong Sommerfeld enhancement of the
pair-production continuum at small momenta, and a strong
diffusive suppression of the continuum at large momenta
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due to emergent Cerenkov radiation within the sample [42].
Observation of such effects would thus constitute strong
evidence for the eQED phase in these materials. The values
of the constants determined here are inputs for quantitative
comparison between theory and such experiments.
Finally, we note that our results make QSI a particularly

attractive target for noisy intermediate-scale quantum
simulations [43] of strongly coupled, deconfined QED in
other experimental platforms. The microscopic construc-
tion requires only one two-level qubit per lattice link
coupled by two-body local interactions; there have accord-
ingly been detailed engineering proposals in, for example,
ultracold Rydberg atoms [44], and demonstrations of
closely related 2D ice in superconducting annealers [34].
The Schwinger model of (1þ 1) D QED has in fact been
realized in multiple quantum simulators recently [45,46];
however, it only exists in the confined phase. Our results
show that the simple 3NN term (ζ) provides a direct tuning
parameter for the emergent fine structure constant over a
broad range to the strongest available coupling, allowing
the controlled experimental investigation of strong cou-
pling QED phenomena in ð3þ 1ÞD. By varying ζ in space
or time, this also gives a natural setting for studying the
consequences of a space-time dependent fine structure
constant—which contrasts with the usual QED where a
large amount of effort concludes no such variation exists
[47]. By varying the temperature and the corresponding
density of emergent matter excitations, this further provides
a platform for studying the behavior of strongly coupled
plasma containing both electric charges and magnetic
monopoles.
Originally introduced by Sommerfeld [48] to describe

the fine structure of the spectral lines in hydrogen, the
smallness of the fine structure constant α ∼ 1=137 has
evolved into one of the great mysteries of our Universe. Its
smallness enables the description of physical law in terms
of weakly coupled matter and light, even as the largeness of
1=α ∼ 137 determines the maximum stable atomic numbers
of the periodic table and thus the richness of chemistry.
However, despite almost a century of effort, there is no
microscopic grand unified theory which predicts this
fundamental parameter of our Universe. By studying the
emergent phenomena provided by the strongly coupled
eQED of spin ice, perhaps new light can be shed on this
fundamental enigma.
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