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Incoherent excitation of coherent Higgs oscillations in superconductors
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We investigate theoretically the excitation of Higgs oscillations of the order parameter in superconductors
by incoherent short pulses of light with frequency much larger than the superconducting gap. The excitation
amplitude of the Higgs mode is controlled by a single parameter which is determined by the total number of
quasiparticles excited by the pulse. This fact can be traced back to the universality of the shape of the light-
induced quasiparticle cascade at energy below the Debye frequency and above the gap.
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The dynamics of the superconducting state, described by
BCS theory, has been a subject of research for a long time
[1–9]. There are two important timescales characterizing the
dynamics of the system: the quasiparticle inelastic relaxation
time τin(ε) and 1/#, where ε is the quasiparticle energy and #
is the value of the order parameter. If the temperature T is not
too close to the transition, the quasiparticle inelastic relaxation
rate is much smaller than the superconducting energy gap:

1
τin(T )

! #. (1)

In this case, for processes with frequency ω ! #, the density
of states is a local function of time and the low-frequency
dynamics of the superconductor is described by a Boltzmann
kinetic equation for the quasiparticle distribution function
n(ε, t ) and a self-consistent equation for #(t ) (see, e.g., [10]).

At frequency ω ∼ #, the Boltzmann approach fails.
Rather, for time t ! τin, the dynamics are governed by
nondissipative equations which conserve both the entropy and
the total energy. As a result, the system exhibits coherent
oscillations of the order parameter [1], which in the linearized
regime decay slowly,

δ#(t ) = B
cos(ωHt + φ)√

#0t
. (2)

Here ωH = 2#0 is the Higgs frequency, #0 is the equilib-
rium gap, and the parameters B and φ depend on the initial
conditions.

Since the Higgs mode is scalar, it cannot couple linearly
to electromagnetic fields directly. Rather, several excitation
mechanisms have been studied: via combined dynamics of the
Higgs mode with charge density wave oscillations [11–14],
linear excitation by coherent THz electromagnetic waves in
the presence of DC supercurrent [15–17], and nonlinear co-
herent excitation [5,7,18,19] using high-intensity THz light
with frequency just above the superconducting gap.

In this work we discuss excitation of the Higgs mode by
incoherent short light pulses with duration τp ! 1/#0 and
high frequency '0 $ #0 (i.e., infrared, optical, or higher).

The physical picture of the mechanism is the following (see
Fig. 1): the pulse creates nonequilibrium quasiparticles with
characteristic energy ε $ #0. Initially, these quasiparticles
are not effective at exciting the Higgs mode because they have
high energy and the relaxation rate 1/τin of their distribution
is much faster than #0. As their energy decreases due to
various inelastic processes, the relaxation rate decreases as
well. When the typical energy ε is smaller than the Debye
energy 'D but still much larger than #0, the relaxation is
controlled by acoustic phonon emission with rate [20]

τ−1
in (ε) = γ ε3, (3)

where γ = α/'2
D, and α is a coefficient of order 1, just as in

a normal metal.
The optimal coupling between the quasiparticle cascade

and the Higgs mode is achieved when the rate of change of
the quasiparticle distribution function is of order ωH . This
provides an estimate of the characteristic energy at this stage
of the relaxation process,

ε* ≡
(
2#0'

2
D/α

)1/3
. (4)

It is important that ε* $ #0. At such high energy, supercon-
ducting correlations are negligible, and we may approximate
n(ε, t ) with the solution of the Boltzmann equation for a
normal metal with acoustic phonons [20]:

∂n(ε, t )
∂t

= γ

( ∫ ∞

ε

dε′(ε − ε′)2n(ε′, t ) − 1
3
ε3n(ε, t )

)
. (5)

Here we assume the intensity of the exciting pulse is small and
neglect terms nonlinear in n as well as stimulated emission
of phonons. Moreover, we assume that, due to rapid elastic
relaxation, the quasiparticle distribution function is isotropic
in momentum and thus depends only on energy.

It is furthermore possible to neglect phonon reabsorption
during the cascade down to ε∗, indicating that the effect of
heating is negligible on the excitation process, although it may
matter at later times. This approximation is valid because the
phonon reabsorption rate is much smaller than the inelastic
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FIG. 1. Qualitative picture of the Higgs excitation mechanism. A
short incoherent pulse of high-frequency light (e.g., optical) excites
a cloud of quasiparticles which rapidly cascades back to lower en-
ergy by emitting phonons. The cascade efficiently launches a Higgs
oscillation when its relaxational rate of change matches the Higgs
frequency, which occurs at the characteristic energy ε∗ $ #0.

electron relaxation rate 1/τph ! 1/τin in the energy interval
[ε∗,'D]. Indeed, the phonon reabsorption rate is 1/τph ∼
ωc/vF at ql ! 1 and 1/τph ∼ ω2τ at ql $ 1. Here ω and q
are the frequency and the wave vector of phonons, c and vF
are the speed of sound and the Fermi velocity, l and τ are
the electron mean free path and mean free time. The desired
inequality follows from the fact that c ! vF .

At ε ! '0 < 'D the dynamics described by Eq. (5) has
no scales, and the distribution function approaches a scaling
form

n(ε, t ) = C'D(γ t )1/3N
([

t
τin(ε)

]1/3)
, (6)

where N (u) is a scaling function satisfying the equation

uN ′(u) + (1 + u3)N (u) = 3
∫ ∞

u
du′ (u − u′)2N (u′). (7)

In Eq. (6), C is a normalization constant fixing the total
number of quasiparticles, which is effectively conserved over
the timescale relevant for excitation of the Higgs mode. We
fix

∫
duN (u) = 1. Then C = N/('Dν(0)), where N is the

number of quasiparticles per unit volume created by the pulse,
and ν(0) is the density of states per unit volume at the Fermi
energy. The solution for N is shown in Fig. 2: starting with
a quasiparticle distribution sharply peaked at around 'D, we
numerically solve Eq. (5) and compare to the scaling form
predicted by Eq. (7). After a time of a few '−1

D has passed,
the initial condition is forgotten, and the dynamics is in its
scaling regime.

Let us now turn to the description of the superconduct-
ing dynamics induced by the quasiparticle cascade. In the
absence of magnetic field and in the mean-field approx-
imation, the nonequilibrium superconducting dynamics at
frequencies of order # is described by four equations of mo-
tions for Green functions (normal Keldysh, normal retarded,
anomalous Keldysh, anomalous retarded), together with one
self-consistent equation for the order parameter #(t ). It has
been shown [1], however, that in the uniform, isotropic case

FIG. 2. Scaling collapse of the quasiparticle distribution function
under the Boltzmann dynamics of Eq. (5). In this simulation we
started with the quasiparticle population narrowly peaked at 'D: the
small peak at around ε(γ t )1/3 = 2.5 is a signature of the initial con-
ditions. As time progresses the distribution approaches the smooth
scaling form of Eq. (6) [dashed black curve, solution of Eq. (7)] and
the peak disappears.

and in the absence of inelastic scattering, the four equations
for the Green functions can be reduced to just two for the
equal-time Keldysh functions,

g(ξ , t ) ≡
∫

dω

2π
GK

11(t ; ξ ,ω), (8a)

f (ξ , t ) ≡
∫

dω

2π
GK

12(t ; ξ ,ω), (8b)

where ξ = p2/2m − εF parameterizes the momentum depen-
dence. Here the integrands are

GK
αβ (t ; p,ω) = −i

∫ ∞

−∞
dτ eiωτ

〈[
ψα

(
p, t + τ

2

)

×ψ†
β

(
p, t − τ

2

)]〉
, (9)

with α,β Nambu indices. We have assumed that the elastic
relaxation time is the shortest time in the problem so that the
Green functions are independent of the direction of p and can
be parametrized by ξ alone, GK

αβ (t ; p,ω) = GK
αβ (t ; ξ ,ω).

We generalize the equations obtained in Ref. [1] for g and
f , taking into account inelastic electron-phonon processes in
the first order of perturbation theory:

i∂tδg + 2#0Re[δf ] = I11, (10a)

(i∂t − 2ξ )δf + 2geq δ# + 2#0δg = I12, (10b)

δ# = −λBCS

2

∫
dξ Im[δf ], (10c)
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where λBCS is the dimensionless BCS coupling, and

I11 = 2γ sgn(ξ )
(

1
3
ε3n(ε, t )

−
∫ ∞

ε

dε′ (ε − ε′)2n(ε′, t )
)

, (11a)

I12 = 2γ#0

(
n(ε, t )

∫ ε

0
dε′ (ε − ε′)2

(
1
ε

− 1
ε′

)

−
∫ ∞

ε

dε′ (ε − ε′)2
(

1
ε

− 1
ε′

)
n(ε′, t )

)
. (11b)

Equations (10) and (11) describe the linearized dynamics of
small deviations around the equilibrium solution [1],

feq = −i
#0

ε
[1 − 2nF (T )] geq = −i

ξ

ε
[1 − 2nF (T )], (12)

where nF (T ) = [1 + exp(ε/T )]−1 is the equilibrium Fermi

distribution and ε =
√

ξ 2 + #2
0. Equation (11) is valid for en-

ergies ε $ #, where we need not distinguish the quasiparticle
energy ε from |ξ |. We also take into consideration that, for
optical excitation, the quasiparticle distribution n is even in ξ
and follows the metallic cascade governed by Eq. (6).

We sketch details of the derivation of Eqs. (10) and (11)
in the Appendix. As we are interested in the case T ! #0,
we approximate 1 − 2nF (T ) + 1. Furthermore, for optical
excitation, Re[δf ] is odd in ξ , while Im[δf ] and δg are even
in ξ at all times.

As the excitation of #(t ) is controlled by energies ε ∼
ε∗ $ #, we can substitute the solution for the quasiparticle
cascade in the normal metal [Eq. (6)] into the right-hand side
of Eq. (11).

Taking the Fourier transform of Eq. (10), solving for δf in
Eqs. (10a) and (10b), and substituting the result into Eq. (10c),
we obtain

δ#(ω) = 1
iωF (ω)

(
4#0

ω2 − 4#2
0

〈
ξ I11(ξ ,ω)
ω2 − 4ε2

〉

−
〈

I12(ξ ,ω)
ω2 − 4ε2

〉)
, (13)

where the angle brackets are shorthand for

〈. . .〉 ≡ λBCS

2

∫ 'D

−'D

dξ . . . , (14)

and following Ref. [1], we define the auxiliary function

F (ω) ≡
〈

1
ε

1
ω2 − 4ε2

〉
. (15)

For a discussion of the analytic properties of this function,
see Ref. [1]. The most important feature is the pair of branch
points on the real axis at ω = ±2#0, which is the origin of the
1/

√
t decay of the δ#(t ) oscillation amplitude at long times

[21] in Eq. (2).
To obtain the amplitude of oscillations, we take the inverse

Fourier transform

δ#(t ) =
∫ ∞

−∞

dω

2π
e−iωtδ#(ω), (16)

FIG. 3. Contour in the complex ω plane for the solution of
Eq. (17). The semicircle R has a radius approaching infinity, while
the semicircles surrounding the branch points at ±2#0 have vanish-
ing radius.

which is equivalent to the integral along the contour L in
Fig. 3. Using the Cauchy residue theorem we have

δ#(t ) = iRes[δ#(ω), 0] +
∫

∪iγi

dω

2π
e−iωtδ#(ω). (17)

We focus on the second term in Eq. (17), which describes
the oscillating part of #(t ). The first term describes the mean
value of #(t ) at late time, which is determined physically by
quasiparticle processes at energies of order the gap # where
our perturbative expressions for I11 and I12 are no longer valid.

Close to the branch points of F (ω), we have
〈

4#0ξ I11(ξ ,ω)
ω2 − 4ε2

〉
+ iπ

γ

4
C
ε*

N (0)a(ω), (18)

where C is the normalization constant in Eq. (6) and

a(ω) = − π

2(−1/3)
+ i

2(1/3)
6

sign(Re ω). (19)

The dependence on the sign of ω is due to I11 being the Fourier
transform of a real function.

It turns out that the term including I12 gives a sublead-
ing contribution at long times—the amplitude decays as 1/t ,
which is negligible compared to 1/

√
t as t → ∞. Taking the

inverse Fourier transform of Eq. (13), we arrive at Eq. (2)
where the values of the parameters B,φ are

B =
(

2
π

)3/2
π |a|NN (0)

ν(0)'D

'D

ε*
φ = π/4 + arg(a), (20)

where a = −π/2(−1/3) + i2(1/3)/6 so that |a| + 0.893.
With our choice of normalization, N (0) + 1.44.

Thus we arrive at the conclusion that short pulses of
incoherent light at very high frequency efficiently produce
coherent oscillations of the Higgs mode in superconductors.
The amplitude of oscillation is controlled by a single param-
eter N—the total number of quasiparticles at 'D after the
initial rapid stages of quasiparticle relaxation. One might have
worried that the complicated high-energy dynamics of quasi-
particles would kick the Higgs mode in “random” ways and
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thus be ineffective at exciting it. Indeed, at very high energies
the quasiparticles are ineffective, but the simple scaling dy-
namics once they reach the characteristic energy scale ε∗ lead
to coherent excitation. Large energy excitation may eventually
lead to heating (although it need not in thin films well coupled
to substrates), but the timescale for phonon reabsorption is
much larger than the time on which oscillations should be
visible, and we expect our mechanism to lead to observable
Higgs oscillations.
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APPENDIX: DERIVATION OF EQ. (10)

In this Appendix we derive the equations of motion for
the normal and anomalous Keldysh Green functions using
the Keldysh technique [22] in the spatially uniform case for
an isotropic BCS superconductor coupled to Fröhlich (acous-
tic) phonons. These equations of motion were derived in
Ref. [1], ignoring the quasiparticle relaxation processes,
which we include to leading order in perturbation theory.

We work with the fermionic G and phononic D Green
functions in the uniform case,

Gi j
αβ (p; t1, t2) ≡ −i〈TCψα (p, t1i )ψ

†
β (p, t2 j )〉, (A1)

Di j (p; t1, t2) ≡ −i〈TCφ(p, t1i )φ(−p, t2 j )〉, (A2)

where TC is the contour ordering symbol, i, j are Keldysh
indices, and α,β are Nambu indices. Below, after the Keldysh
rotation, we denote the retarded, advanced, and Keldysh com-
ponents of the Green functions GR, GA, GK (and similarly for
D,3) explicitly.

The equations of motion follow from the matrix Dyson
equation. The Keldysh components yield

i∂t GK
11 + #GK∗

12 + GK
12#

∗ = I11, (A3a)

i∂t GK
12 − 2ξGK

12 − #GK∗
11 + GK

11# = I12, (A3b)

where ξ = p2/(2m) − εF and

# ≡ 1
2

(
3R

12 + 3A
12

)
(A4)

is the order parameter. Equation (A3) corresponds to Eq. (16)
of Ref. [1]. The right-hand sides, I11 and I12, are formally
given by

I11 ≡ 3K
11GA

11 − GR
113

K
11 + 3R

11GK
11 − GK

113
A
11 + 3K

12GA*

12 + GR
123

K*

12 + GK
12

3R*
12 − 3A*

12

2
− 3R

12 − 3A
12

2
GK*

12 , (A5a)

I12 ≡ 3K
11GA

12 − GR
123

K*
11 − 3K

12GA*

11 − GR
113

K
12 + 3R

11GK
12 + GK

123
A*

11 + 3R
12 − 3A

12

2
GK*

11 + GK
11

3R
12 − 3A

12

2
. (A5b)

These encode the effect of inelastic processes on the dynamics: I11 yields the Boltzmann collision integral in the metal when
# → 0 (I12 → 0 in this limit).

All operator products in Eqs. (A3) and (A5) are space-time contractions. Also, ∂t denotes the derivative with respect to average
time after changing time coordinates to t = (t1 + t2)/2 and τ = t1 − t2.

We compute the self-energy 3 to leading order in the self-consistent Born approximation [23], which gives us

3
i j
αβ (x, y) = i(−1)α+β+i+ jGi j

αβ (x, y)Di j (x, y), (A6)

where x and y are space-time points. To focus on the equal time dynamics t = t1 = t2, we take the Fourier transform over τ of
Eqs. (A3)–(A5) and then integrate over the relative frequency.

In order to evaluate I11 and I12, we take the Green functions in Eq. (A5) to be in quasiequilibrium form: the retarded and
advanced functions are assumed to always remain in equilibrium BCS form, while the Keldysh ones depend on the average time
t only through the quasiparticle distribution function n(ξ , t ):

GR
11(ξ ; ω) = (GA

11(ξ , ; ω))∗ =
u2

ξ

ω − ε + i0+ +
v2

ξ

ω + ε + i0+ , (A7a)

GK
11(ξ ; ω, t ) = −2π i(1 − 2n(ξ , t ))

[
u2

ξ δ(ω − ε) − v2
ξ δ(ω + ε)

]
, (A7b)

GR
12(ξ ; ω) = (GA

12(ξ ; ω))∗ = − uξvξ

ω + ε + i0+ + uξvξ

ω − ε + i0+ , (A7c)

GK
12(ξ ; ω, t ) = −2π iuξvξ (1 − 2n(ξ , t ))[δ(ω + ε) + δ(ω − ε)], (A7d)

DR(k; ω) = (DA(k; ω))∗ = |mk|2
ωk

(ω + i0)2 − ω2
k

, (A7e)

DK (k; ω, t ) = −iπ |mk|2(δ(ω + ωk ) + δ(ω − ωk )), (A7f)

where

u2
ξ = 1

2

(
1 + ξ

ε

)
v2

ξ = 1
2

(
1 − ξ

ε

)
, (A8)
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with ε =
√

ξ 2 + #2
0. In these expressions, |mk|2 is the squared electron–phonon matrix element (which is linear in k) and ωk = ck

is the phonon dispersion. Finally, by linearizing the resulting equations we obtain Eq. (10).
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