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Structures of arterial networks in the human brain, termed Brain Arterial
Networks or BANs – that are complex arrangements of individual arteries,
their branching patterns, and inter-connectivities – play an essential role in
characterizing and understanding brain physiology. One would like tools for
statistically analyzing the shapes of BANs, i.e., quantifying shape differences,
comparing a population of subjects, and studying the effects of covariates on
these shapes. This paper mathematically represents and statistically analyzes
BAN shapes as elastic shape graphs. Each elastic shape graph consists of
nodes, or points in 3D, connected by some 3D curves, or edges, with arbitrary
shapes. We develop a mathematical representation, a Riemannian metric and
other geometrical tools, such as computations of geodesics, means, covari-
ances, and PCA, for helping analyze BANs as elastic graphs. We apply this
analysis to BANs after dividing them into four components – top, bottom,
left, and right. The framework is then used to generate shape summaries of
BANs from 92 subjects and study the effects of age and gender on shapes of
BAN components. We conclude that while gender effects require further in-
vestigation, age has a clear, quantifiable effect on BAN shapes. Specifically,
we find an increased variance in BAN shapes as age increases.

1. Introduction. The human brain is one of the most sophisticated organs in the hu-
man body and serves as the center of the nervous system. It requires a significant amount
of energy to accomplish its designated tasks and a complex network of arteries is used to
supply the necessary oxygen and nutrition to parts of the brain. This network, called the
Brain arterial network or BAN, is central to maintaining standard anatomical functionality
of the brain. The structure or morphology of BANs determines their effectiveness in provid-
ing supply lines and in characterizing and diagnosing brain health. Consequently, a statistical
analysis of BANs, which constitutes representing and analyzing shape variability within and
across human populations is a significant problem area. However, this analysis is challeng-
ing because the BANs have complicated structures, with tremendous variability in terms of
branching, winding, and merging nature of arteries on the one hand, and the shapes and sizes
of arteries on the other.

Fig. 1 shows some examples of BANs for different human subjects. Each BAN is recon-
structed from a 3D Magnetic Resonance Angiography (MRA) image using a tube-tracking
vessel segmentation algorithm [Aydın et al. (2009); Aylward and Bullitt (2002)]. Given the
complex nature of BANs, previous analyses have primarily focused on first extracting some
low-dimensional features from the original data, followed by a statistical analysis of these
features. One of the earliest analyses [Bullitt et al. (2010)] focused on some simple geo-
metrical summaries, such as the numbers and the lengths of the arteries. In recent years,
the extracted features have become more sophisticated. For instance, Bendich et al. (2016)
uses tools from Topological Data Analysis (TDA), where one extracts certain mathematical
features (e.g., persistent homology) from the data and compares these features using certain
metrics [Wasserman (2018)]. However, the difficulty in such feature-based approaches is that
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these representations are typically not invertible. Feature extraction usually represents only
partial information about the original objects, forming a many-to-one mapping (from the ob-
ject space to a feature space). Moreover, it is not clear as to which set of shapes share the
same topological features. Because of this lack of invertibility, it is not easy to map solutions
or statistical inferences back to the object space. This paper takes a more ambitious approach,
where we develop a statistical analysis of BANs in the original space itself without resorting
to extracting any features. In the process, we seek solutions – shape summaries, shape PCA,
and shape models – that can be studied as BANs themselves.

Besides BANs, there are other biological and anatomical objects with similar shape ar-
chitectures, displaying complex filamentary shapes. Examples include retinal blood ves-
sels [Hoover, Kouznetsova and Goldbaum (2000)], vein structures in fruit fly wings [Son-
nenschein et al. (2015)] and neurons [Kong et al. (2005)]. A defining characteristic of these
objects is that they are composed of a network of 2D/3D curves, each with arbitrary shapes
and sizes. Moreover, these curves merge and branch at arbitrary junctions and result in in-
tricate patterns of pathways. While we mainly focus on BANs in this paper, the proposed
framework is also applicable to these other application domains. Statistical shape analysis
of such objects is difficult because, to quantify shape differences, one needs to consider the
numbers, locations, branchings, and shapes of individual curves. In particular, one has to
solve a difficult problem of registration of points and parts across objects, i.e., which points
on a branch on one object matches with which points or parts on the other.

The field of shape analysis has steadily gained relevance and activity over the last two
decades. This rise is fueled by the availability of multimodal, high-dimensional data that
records objects of interest in various contexts and applications. Shapes of objects help char-
acterize their identity, classes, movements, and roles in larger scenes. Consequently, many
approaches have been developed for comparing, summarizing, modeling, testing, and track-
ing shapes in a static image or video data. Statistical shape analysis requires mathematical
representations and proper metrics. While early methods generally relied on discrete rep-
resentations of shapes [Kendall (1984); Kendall et al. (1999); Small (1996); Dryden and
Mardia (2016)], more recent methods have focused on continuous objects such as scalar
functions [Srivastava and Klassen (2016)], Euclidean curves [Younes (1998); Klassen et al.
(2004); Younes et al. (2008); Srivastava and Klassen (2016)], and 3D surfaces [Jermyn et al.
(2017)]. The main motivation for this paradigm shift comes from the need to address the
registration problem, considered the most challenging issue in shape analysis. As mentioned
earlier, registration refers to establishing a correspondence between points or features across
objects and is an important ingredient in comparing shapes. Continuous representations of
objects use actions of the re-parameterization groups to help solve dense registration prob-
lems. Furthermore, they use elastic Riemannian metrics – which are invariant to the actions
of re-parameterization groups – and some simplifying square-root representations to develop
very efficient techniques for comparing and analyzing shapes.

While elastic Riemannian shape analysis is considered well developed for elementary ob-
jects – Euclidean curves [Younes et al. (2008); Srivastava et al. (2011)], manifold-valued
curves [Zhang, Klassen and Srivastava (2018); LeBrigant (2019)], 3D surfaces [Jermyn et al.
(2012)], trees [Duncan et al. (2018); Wang et al. (2020)] - the problem of analyzing more
complex objects remains less explored. In other words, the past work has mainly focused
on objects that exhibit only the geometrical variabilities while being of the same or similar
topologies. Similar topologies help pose the registration problem as that of optimal (diffeo-
morphic) re-parameterization of the common domain. In this paper, we are concerned with
comparing BANs that can potentially differ in both topologies and geometries.
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FIG 1. Examples of brain arterial networks. Left side is the different representations of BAN data. Cyan, black,
green, and blue display the four components: top, left, bottom, and right, respectively. Red circles denote nodes.
Right side is examples of four components of BANs from different subjects.

Specific Goals: Our goal here is to develop a suite of techniques for statistical analysis of
BAN shapes. Specifically, we seek: (1) a shape metric that is invariant to the usual shape-
preserving transformations, (2) elastic registration of parts across BANs, (3) computation
of geodesic paths between any two BANs and (4) computation of statistical summaries –
mean, covariance, PCA – in the shape space of BANs. These tools, in turn, can be used for
analysis, clustering, classification, and modeling of shapes in conjunction with other machine
learning methods. We reiterate that existing techniques may provide some but not all of these
solutions.

Our approach is to view BANs as extensions of traditional graphs with the usual node-edge
representations. The difference lies in that edge characterization is now more sophisticated -
each edge is a full shape of a curve connecting the corresponding nodes, as shown on the right
side of Fig. 1. These graphs, called elastic graphs, are represented by their adjacency matri-
ces, with matrix elements given by the shapes of the corresponding edges. Since the ordering
of nodes in these graphs and the subsequent indexing of adjacency matrices is arbitrary we
model this variability using the action of the permutation group and represent each shape as
an orbit under this group. Then, we develop techniques for optimization under this permuta-
tion group (also known as graph matching), leading to computations of geodesics and sum-
maries under the induced metric on the Riemannian quotient space, termed the graph shape
space. There is no current geometrical framework for the shape analysis of such graphical
objects. While TDA and other such methods can measure dissimilarity in shapes, this paper
provides more comprehensive statistical quantities, such as mean, covariance, and principal
components, for a more in-depth shape summarization and modeling.

In order to further tame the complexity and to improve registration results, we divide a
BAN into four components – top, bottom, left, and right – as shown in different colors on the
left side of Fig. 1. This division is not always precise, but the subsequent statistical analysis is
generally robust to small variations in the division. Then, we study each of these components
independently, as separate objects. Right side of Fig. 1 shows some examples of these four
components from different subjects.

2. Proposed Mathematical Framework. We now present a mathematical framework
for representing elastic graphs, keeping in mind that BAN components form the focus of
this study. The proposed framework can be viewed as an extension of some previous works
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on graphs [Calissano, Feragen and Vantini (2020); Chowdhury and Needham (2020); Guo,
Srivastava and Sarkar (2021); Jain and Obermayer (2009, 2011, 2012)]. However, those past
works are restricted to only scalar-weighted graphs and do not consider more sophisticated
features such as edge shapes.

2.1. Elastic Graph Representation. We are interested in objects made of several 3D
curves, with arbitrary shapes and placements, that merge and branch at arbitrary junctions
and result in networks of pathways. We will represent them as graphs with nodes corre-
sponding to junctions and edges corresponding to the shapes of 3D curves connecting the
nodes. Here we assume that any two nodes are connected directly by at most one curve. An
edge attributed graph G is an ordered pair (V,a), where V is a set of nodes and a is an edge
attribute function: a : V × V → S . S is the shape space of elastic 3D curves that is briefly
discussed next.

The edges in elastic graphs are Euclidean curves and to analyze their shapes we use elas-
tic shape analysis framework described in [Srivastava and Klassen (2016)]. Let β : [0,1]→
Rn, n= 2 or 3, be an absolutely continuous function, representing a parametrized curve. De-
fine the square root velocity function (SRVF) of β as: q(t) = β̇(t)√

|β̇(t)|
∈Rn, if |β̇(t)| 6= 0 and

zero otherwise. One can recover β from its SRVF using β(t) = β(0)+
∫ t
0 q(s)|q(s)|ds. If β is

absolutely continuous, the SRVF is square-integrable, i.e., q ∈ L2([0,1],Rn) or simply L2. It
can be shown that the L2 norm on SRVF space is an elastic Riemannian metric on the original
curve space. Therefore, one can compute the elastic (i.e., rotation and reparameterization-
invariant) distance between two curves β1, β2 using d(β1, β2) = ‖q1 − q2‖L2 . One of the
most important challenges in shape analysis is registration, a dense correspondences across
curves. Let γ : [0,1]→ [0,1] be a diffeomorphism; in classical elastic shape analysis, diffeo-
morphisms are restricted to be orientation-preserving (γ(0) = 0 and γ(1) = 1), but in the pro-
posed framework we make no such restriction. The action of the diffeomorphism group on an
SRVF q is q∗γ = (q◦γ)

√
γ̇. This is same the expression as the SRVF of the re-parameterized

curve: β ◦ γ. To register points across curves, one mods out this re-parametrization group
as follows. Each shape can be represented by orbits under the re-parametrization group:
[q] = {q ∗ γ|γ ∈ Γ}. The set of all orbits is the shape space of curves in Rn is denoted
S = {[q]|q ∈ L2}. The shape metric is then given by: ds([q1], [q2]) = infγ ‖q1 − (q2 ∗ γ)‖.
By including both orientation-preserving and reversing diffeomorphisms, the shape distance
between a curve (β(t)) and its parameterized reflection (β(1− t)) is zero.

One can use this metric ds to define and compute averages of shapes of curves and their
PCA analysis. For further details, we refer the reader to the textbook [Srivastava and Klassen
(2016)].

REMARK 1. Note that traditionally one further removes the rotation and scale of curves
from considerations in shape analysis, but here these two variables are integral to the shapes
of arteries and the network as a whole. So, we do not remove them. We do perform a global
scale and rotational alignment of the whole BAN when comparing it with another BAN.

Returning to the elastic graph, the shape a(vi, vj) = [qij ] characterizes the shape of curve
connecting the nodes vi, vj ∈ V, i 6= j. Since the representation [qij ] includes both a curve and
its parameterized reflection, this edge attribute is directionless. Assuming that the number of
nodes is n, G can be represented by its adjacency matrix A= {aij} ∈ Sn×n, where the ele-
ment aij = a(vi, vj). For an undirected graph G, we have a(vi, vj) = a(vj , vi) and therefore
A is a symmetric matrix. As an example, the adjacency matrix of the third graph shown in
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Fig. 2 is given by 
0 [q12] 0 · · · [q18]

[q21] 0 [q23] · · · [q28]
0 [q32] 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
[q81] [q82] 0 · · · 0

 ∈ Sn×n,
where 0 denotes a null edge. It implies that the corresponding nodes are not connected and
we substitute the constant zero function 0 ∈ L2 as its shape. Note that [0] = 0 is an element
of the shape space S and one can perform all the standard operations, such as computing
shape distance, computing averages, or performing tangent PCA, with null edges using the
geometry of S . A little later we will also use the concept of null nodes, extraneous nodes
that are attached to the existing graphs using null edges. This use of null nodes facilitates
improved matching and comparisons of graphs. As mentioned earlier, we will assume that
there are no self-loops in BANs and therefore the diagonal entries in A will also be null. The
set of all such adjacency matrices is given by A= {A ∈ Sn×n|A=AT ,diag(A) = 0}.

In some situations, it may be useful to include the node attributes also in graph compar-
isons. In this paper, we use the degree of a node, i.e., the number of other nodes connected
to a node by non-trivial edges, as its attribute. Let u ∈ Rn denote the vector of node at-
tributes associated with the graph. Note that the ordering of nodes in u matches the order-
ing of nodes in A. Combining the node-edge representations we get a joint representation
B = (A,u) ∈A×Rn ≡B.

Next we define a metric for comparing graphs. We will start by assuming that all the graphs
have the same number of nodes, but will include graphs with arbitrary number of nodes
shortly. For any two A1,A2 ∈ A, with the corresponding entries a1ij and a2ij , respectively,

we define the edge metric da to be: da(A1,A2) ≡
√∑

i,j ds(a
1
ij , a

2
ij)

2. da quantifies the
differences between adjacencies of graphs, A1 and A2, where ds is the shape metric for
curves as defined above. Additionally, let the matrix of distances between the node attributes
u1, u2 to be:D = |u11Tn −1nu

T
2 |, where 1n is an n-vector of all ones. Thus,Dij is difference

between the attributes of nodes v1i and v2j . This leads to a node metric between two graphs
according to dv = Tr(D). Finally, we can combine the two metrics to reach a composite
metric: db(B1,B2)≡ da + λTrD, where λ is the relative weight between the contributions
of the edges and the nodes.

Under the chosen metric, the geodesic or the shortest path between two points in A can
be written as a set of geodesics in S between the corresponding components. That is, for
any A1,A2 ∈ A, the geodesic α : [0,1]→ A consists of components α = {αij} given by
αij : [0,1]→ S , a uniform-speed geodesic path in S between a1ij and a2ij . Note that this
solution also provides an optimal registration of points across edges a1ij and a2ij . Also, if
needed, one can linearly interpolate between the attributes of the corresponding nodes, to
provide node attributes for the intermediate graphs.

The main issue in this comparison is that the indexing of nodes in the graphs A1 and A2 is
arbitrary and, thus, corresponding matching of edges a1ij with a2ij is also arbitrary. To illustrate
this point, Fig. 2 shows the same graphical object several times and imposes a different node
indexing every time. In order to provide a reasonable comparison of these graphs using the
metric da, one has to reorder nodes every time we compare any two graphs. Otherwise, we
will end up with large da distances between these graphs despite having the same structure.
We shall use the permutation group to implement this reordering. This permutation is similar
to the work by Jain and Obermayer (2009, 2011) on graphs with Euclidean attributes. A
permutation matrix is a matrix that has exactly one 1 in each row and column, with all the
other entries being zero. Let P be the group of all n× n permutation matrices with group
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FIG 2. Four graphs with the same shape but with different node labels.

operation being matrix multiplication and identity element being the n× n identity matrix.
We define the action of P on B as:

(2.1) P ×B→B, P ? (A,u) = (P ·A · P T , Pu) .

Since each entry of A is an element of the shape space S , this group action denotes a permu-
tations of shapes in that matrix. Here · implies a permutation of entries of A according to the
nonzero elements of P . The action P ?A results in the swapping of rows and columns of A.
The elements of the node attribute vector u are permuted according to P in the same way.
Under the chosen metric db = da + λTr(D), this mapping is isometric.

LEMMA 1. 1. Permutation Group: The action of P on the set B given in Eqn.
2.1 is by isometries. That is, for any P ∈ P , A1,A2 ∈ A and u1, u2 ∈ Rn, we have
db((A1, u1), (A2, u2)) = db(P ? (A1, u1), P ? (A2, u2)).

2. Global Rotation Group: The action of the rotation group SO(d), d= 2,3 on B, is given
by (A,u) 7→ (O � A,u), which implies that each element of A is rotated by the same
O. In other words, (O �A)ij = Oaij , for all i, j. Note that the node attributes here are
assumed to be invariant to graph rotations. This rotation action on B is also by isometries.
That is, for any O ∈ SO(d) and (A1, u1), (A2, u2) ∈ B, we have db((A1, u1), (A2, u2)) =
db(O� (A1, u1),O� (A2, u2)).

Under the joint action of P and SO(d), the orbit of an (A,u) ∈ B is given by: [(A,u)] =
{O� (P ? (A,u))|P ∈ P ,O ∈ SO(d)}. Any two elements of an orbit denote the same graph
shape, except that the nodes’ ordering has changed and the graph is rotated. Orbit member-
ship defines an equivalence relation ∼ on A: (A1, u1), (A2, u2) ∈ [A1] implies

(A1, u1)∼ (A2, u2)⇔∃P ∈ P ,O ∈ SO(d) :O� (P ? (A1, u1)) = (A2, u2) .

The set of all equivalence classes forms the quotient space: G ≡ B/(P × SO(d)) =
{[(A,u)]|(A,u) ∈ B}. Henceforth, we will call G the elastic graph shape space.

LEMMA 2. Since the finite-dimensional group P × SO(d) acts by isometries under the
metric db = da +λdv , there is a well-defined induced metric on the quotient space G, defined
by

dg([(A1, u1)], [(A2, u2)]) = min
P∈P,O∈SO(d)

db((A1, u1),O� (P ? (A2, u2))) .(2.2)

Since the Lie group P × SO(d) is compact, the minimum in (2.2) exists. Note that the
solution may not be unique, i.e., their may be multiple ways to register two graphs optimally.
If

(P̂ , Ô) ∈ argmin
P∈P,O∈SO(d)

db((A1, u1),O� (P ? (A2, u2))),
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then (A1, u1) and Ô� (P̂ ? (A2, u2)) are considered to be aligned and registered. The short-
est path between [(A1, u1)] and [(A2, u2)] under the metric dg is given by [α(t)] where
α : [0,1]→B is: (1) for edges a geodesic between A1 and Ô� (P̂ ? A2) and (2) for nodes it
is a straight line between u1 and P̂ u2. This shortest path is a geodesic in the sense that each
of its component is a geodesic in S between the registered edges.

2.2. Graph Matching. The problem of optimization over P , stated in Eqn. 2.2, is an in-
stance of a generalized graph matching problem and is the most important challenge in the
proposed framework. Given an optimal P ∈ P , the optimization over SO(d) is straightfor-
ward, and the result is obtained using the Procrustes method. We will not discuss it further
and will focus only on graph matching. This matching problem is, in fact, NP complete [Yan
et al. (2016)], and its global solution cannot be found in a reasonable time as the graph size
increases. Instead, one uses relaxation techniques to find approximate solutions in one of
several ways.

If the adjacency matrix A were real-valued and edge similarities were measured by the
Euclidean norm, then the matching problem can be written as P̂ = arg minP∈P ‖A1 −
PA2P

T ‖= arg maxP∈P Tr(A1PA2P
T ). This particular formulation is known as Koopmans-

Beckmann’s quadratic assignment programming (QAP) problem [Koopmans and Beckmann
(1957)]. In this case, one can use an existing relaxation solution for approximating the op-
timal registration [Caelli and Kosinov (2004); Liu, Qiao and Xu (2012); Umeyama (1988);
Vogelstein et al. (2015)].

However, when elements of A belong to a more general metric space, e.g., shape space S ,
some of the previous solutions are not applicable. Instead, the problem can be rephrased as
P̂ = arg maxP∈P vec (P )TK vec (P ), where vec (P ) denotes a concatenation of elements of
P in a column vector. HereK ∈Rn2×n2

, called an affinity matrix, has the following structure.
Suppose A1 has node index a, b, etc. and A2 has node index i, j, etc. Then,

• the diagonal entries kaiai measure the affinity between node a of A1 and node i of A2, and
• the off-diagonal entries kaibj measures the affinity between edge ab of A1 and edge ij of
A2.

In this paper we use the shape similarity between two edges, while modding out the re-
parametrization group, as affinity:

kaibj =

{
0, if either a1ab or a2ij is null
supγ〈q1,O(q2 ◦ γ)

√
γ̇〉, otherwise

.

Note that this sup over γ is related to the infimum over γ in the definition of ds because:

‖q1 −O(q2 ∗ γ)‖2 = ‖q1‖2 + ‖q2‖2 − 〈q1,O(q2 ◦ γ)
√
γ̇〉 .

Here q1, q2 denote the SRVFs of the edges ab of A1 and ij of A2 and γ is a diffeomorphic
reparameterization and the supremum, computed using the Dynamic Programming Algo-
rithm (DPA) [Srivastava et al. (2011)]. The matrix O ∈ SO(d) is the global rotation matrix
that is used to rotationally align two elastic graphs. (The same O matrix is applied to all the
edges of the second graph and minimized using the Procrustes rotation.) When λ > 0 and
node attributes are involved in shape analysis, we can set kaiai = λ exp(− |u1(a)−u2(i)|2

2σ2 ). In
practice, the choice of λ and σ are an issue and one can use learning or cross-validation to
estimate suitable values.

The resulting formulation is called the Lawler’s QAP problem [Lawler (1963)]. Koopmans-
Beckmann’s QAP is a particular case of Lawler’s QAP. To solve for Lawler’s QAP, at least
approximately, there are several algorithms available [Cour, Srinivasan and Shi (2007); Gold
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Graph G1 Graph G2 Matched graphs padded with null nodes/edges

FIG 3. Labeling and addition of null nodes in order to facilitate registration between two graphs.

and Rangarajan (1996); Leordeanu and Hebert (2005); Leordeanu, Hebert and Sukthankar
(2009); Zanfir and Sminchisescu (2018); Zhou and De la Torre (2012, 2015)]. In this paper,
we use the well-known factorized graph matching (FGM) algorithm [Zhou and De la Torre
(2015)] to match elastic graphs. As mentioned previously, we need to optimize edge affinity
over both orientation-preserving and reversing diffeomorphisms, to allow for the possibility
of an orientation-reserving registration (the original DPA is only applicable for orientation-
preserving diffeomorphisms). We can work around it using the directed FGM. We treat each
edge aij in the graph as two directed edges: one from i to j and one from j to i. The edge
affinity between any two edges is evaluated four times (two directions of one edge times two
directions of another edge) using the original DPA. In practice, we calculate the affinities
only twice and use each value twice.

2.3. Introducing Null Nodes. Thus far, we have assumed that the graphs being matched
are all of the same size (in terms of the number of nodes). For graphs G1 and G2, with
different numbers of nodes n1 and n2, we can append them with n2 and n1 null nodes,
respectively, to bring them each to the same size n1 + n2. This addition of null nodes can
be done even when they are the same size, as it can help improve graph matching. This way,
the original (real) nodes of both G1 and G2 can potentially be registered to null nodes in the
other graph and bring down the matching cost.

When we add null nodes to a graph, we need to assign attributes to these extra nodes and
edges thus created. We set the edges connected to null nodes to have a value 0 ∈ S . In other
words, we extend the adjacency matrices of the two graphs from Ai to Ãi as shown below.
For the null nodes, we do not assign the node attributes explicitly. Instead, we extend the
node distance matrix D to D̃ by setting the entries corresponding to the null nodes to be
zero. This setting implies that the null nodes’ attributes are equal to those of the nodes they
are being matched to in the other graph. This choice ensures that the attributes of null nodes
do not contribute to the matching cost. The extended matrices are constructed as follows:

Ã1 =

A1 0

0 0


n1

n2

n1 n2

,
Ã2 =

A2 0

0 0


n2

n1

n2 n1

,
D̃ =

D 0

0 0


n1

n2

n2 n1

.
Once we have extended the graphs using the null nodes, we apply the same matching pro-
cedure as before. In terms of displaying the extended graphs, we do not display null nodes
matched with null nodes. The null nodes matched with real nodes are assigned the same
coordinates, as their matched counterparts, for display purposes.

Figure 3 shows an example of this idea. The left side shows two graphs that have different
number of nodes and edges, but still seem to have a common structure. On the right side
we label the nodes to show a particular matching of these graphs. The matched nodes are
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Geodesic in B Geodesic in G

FIG 4. Geodesic between graphs in space B (left) and the G (right). Coloring is used to depict registration of
edges across graphs. The top two rows show 2D graphs while bottom two use 3D graphs. (GIF animations of
these geodesics are provided with the supplementary material [Guo et al. (2021)].)

labelled 1− 1′, 2− 2′, and so on. We obtain this matching by adding two null nodes: 5′ and
10′, and corresponding null edges 1′↔ 5′, 10′↔ 5′, 10′↔ 4′, 5′↔ 4′ in G2, and the null
edges 1↔ 4, 2↔ 8 in G1. We emphasize that the matching between graphs is performed
at the node level and is one-to-one. This framework does not allow nodes to split or merge
when registering across graphs (as in, e.g., Chowdhury and Needham (2020)). Consequently,
the edges (where real or null) are also matched in a one-to-one fashion. Once again, there is
no split or merging of edges allowed when matching graphs. For instance, in Fig. 3, the edge
1↔ 4 can only be matched with a single edge, say 1′↔ 4′, but can not be matched with the
pair say 1′↔ 5′↔ 4′.

Once we match the two graphs, we can compute geodesics between them by interpolat-
ing between the corresponding nodes and edges (according to their respective metrics). We
present four illustrative examples in Fig. 4. The two graphs G1 and G2 drawn as the first and
the last graphs in each picture in each sequence. Additionally, we show a sequence of shapes
along the geodesic path between them in two different spaces – B and G, i.e., with arbitrary
registration and with optimal registration. The deformations between registered graphs, as-
sociated with geodesics in G, look much more natural than those in B. The edge features are
preserved better in the intermediate graphs along the geodesics in G. The edges in one graph
that are unmatched in the other graph either disappear or appear along the geodesic. We can
display this effect using either thickening/thinning or shrinking/growing of edges. For inter-
nal edges, the change in thickness seems more appropriate, but for the terminal edges, i.e.,
edges that have a node with only one edge attached to it, it seems more natural to shorten
(lengthwise) a non-null edge into a null edge. Note that the framework currently does not
utilize any information about edge thickness in shape comparisons. This property is manip-
ulated only for display purposes. The top two rows are for 2D graphs, while the remaining
examples are 3D graphs. As mentioned earlier, the points along registered edges of graphs
are registered while computing ds. Thus, we reach a dense (complete) registration of parts
across the two graphs, making the deformations appear more natural.

3. Shape Summaries of Elastic Graphs. We are interested in tools that facilitate sta-
tistical inferences for the given BAN dataset. These inferences include classification, cluster-
ing, hypothesis testing, and modeling. The use of a metric structure to compute summaries
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of shapes of graphs is of great importance in these analyses. We will use the earlier metric
structure to define and compute shape statistics – such as mean, covariance, and PCA – of
given graph data. Further, we will use these representations to perform dimension reduction
and hypothesis testing.

3.1. Mean Graph Shapes. Given a set of graph shapes {[Ai] ∈ G, i = 1,2, . . . ,m}, we
define their mean graph shape to be:

[Aµ] = arg min
[A]∈G

(
m∑
i=1

dg([A], [Ai])
2

)
,

where dg is as defined in Eqn. 2.2. This construction has been named Fréchet, Karcher, or
intrinsic mean interchangeably. There are at least two different ways of computing this mean.
One relies on the gradient of the cost function in this optimization, and the other relies on
finding a sequence of geodesic paths. In the following, we focus on computing the means of
the edge attributes, since the computation of node averages is relatively straightforward.

Method 1– Gradient Approach: Algorithm 1 outlines a gradient-based approach for com-
puting the mean shape. This gradient solution is a local minimum of the cost functional and
does not guarantee a global minimizer.

Algorithm 1 Graph Mean in G
Given adjacency matrices Ai, i= 1, ..,m:

1: Initialize a mean template Aµ (e.g., the largest graph).
2: Rotationally align Ais to Aµ using the Procrustes method.
3: Match Ai to Aµ under the permutation group P using FGM [Zhou and De la Torre (2015)] and SRVF [Sri-

vastava and Klassen (2016)], store the matched graph shape as A∗i , for i= 1, ..,m.
4: Update Aµ = 1

m
∑m
i=1A

∗
i . Since the graphs are all registered to Aµ, we can take a Euclidean average of

the elements of A∗i s here.
5: Repeat 2 and 3 until

∑m
i=1 da(A

∗
i ,Aµ)

2 converges.

We present an example of computing mean graphs in Fig. 5. The top left side shows a set
of 12 graphs whose mean is being computed. While these graphs have a common skeletal
structure – a ringlike interior with radial offshoots – they also differ significantly in terms
of the number of nodes/edges and shapes of edges. The mean of these graphs, computed
using Algorithm 1, is shown in the figure’s top right. It provides a reasonable visual and
mathematical representation of the sample graphs, capturing the overall ringlike skeleton.
The thickness of edges in the mean graph represents the frequency at which they appear in
the given samples. One can always prune the thinner edges to improve clarity and focus on
the larger, common structures.

Method 2 – Sequential Approach: This approach starts with any two graphs and computes
their mean to initialize the current mean. It then sequentially compares the current mean and
one additional individual graph at each time and computes their pairwise weighted mean.
This weighted mean becomes the new current mean for the next step. The full algorithm is
given below. The theoretical properties of this estimator of population mean are discussed in
Chakraborty and Vemuri (2019).

The top right panel of Fig. 5 also shows the result of computing the mean shape using
Algorithm 2. This shape denotes the mean of 12 graphs shown on the left side of this figure.
Comparing this mean shape with the mean computed using Algorithm 1, we see a lot of
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Sample Shapes Mean Shape

Method 1

Method 2

First Principal Direction

Second Principal Direction

FIG 5. Mean and PCA of 12 sample graphs. The thickness of edges in the mean shape represents how often an
edge is present in sample shapes. For PCA, in each row, the middle shape is the mean (method 1) while the right
sides and left sides are perturbation from mean by ±1,±2 square-root of the singular values.

Algorithm 2 Graph Mean in G
Given adjacency matrices Ai, i= 1, ..,m:

1: Find the constant speed geodesic between A1 and A2 and set µ to be the halfway point.
2: For each i = 3,4, . . . ,m, find the constant speed geodesic between µ and Ai. Set µ to the point at 1

i th
distance from the previous µ along that new geodesic.

structural similarities, but we also see some visible differences in the shapes of individual
edges across the two means. Ideally, these two results should be identical. We attribute these
differences to several factors, including the numerical errors involved in different steps of
these procedures, especially Algorithm 1. The differences can also result from each solution
being a local rather than a global minimizer of the cost function.

3.2. Tangent PCA in Graph Shape Space. Graphical shape data is often high dimen-
sional and complex, requiring tools for dimension reduction for analysis and modeling. In
past shape analysis, the tangent PCA has been used to perform dimension reduction and dis-
cover dominant modes of variability in the shape data. Given the graph shape metric dg and
the definition of shape mean Aµ, we can extend TPCA to graphical shapes in a straightfor-
ward manner. As mentioned earlier, due to the non-registration of nodes in the raw data, the
application of TPCA directly in A will not be appropriate. Instead, one can apply TPCA in
the quotient space G, as described in Algorithm 3. After TPCA, one can represent the graphs
using low-dimensional Euclidean coefficients, which facilitates further statistical analysis.
Besides TPCA, one may pursue geodesic PCA to reduce dimensions [Bigot et al. (2017);
Calissano, Feragen and Vantini (2020); Cazelles et al. (2018); Huckemann, Hotz and Munk
(2010)] —implementation of geodesic PCA for elastic graphs will be a direction of future
research.
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Algorithm 3 Graph TPCA in G
Given adjacency matrices Ai, i= 1, ..,m:

1: Find the mean Aµ using Algorithm 1 or 2. They results in the mean and the registered graphs A∗i , i =
1,2, ..,m.

2: For each i, evaluate the shooting vectors vi = (A∗i −Aµ) as elements of TAµ(G) (the tangent space of G at
Aµ).

3: Perform PCA using the shooting vectors {vi, i = 1,2, . . . ,m} in TAµ(G). Obtain principal directions and
singular values for the principal components.

Bottom of Fig. 5 shows an example of this TPCA procedure for graphical shapes. The
figure shows shape variability along the first two principal directions. As we can see, the
first principal direction mainly changes the smaller edges’ shapes since the largest path is
essentially the same across all the graphs.

4. Brain Artery Networks. Having developed tools for registering, comparing, and
summarizing graphs using means and covariance, we now turn our attention to BAN data
analysis [Bullitt et al. (2005)].

We study the data from a geometric point of view and analyze these brain networks’
shapes. From an anatomical perspective, it seems natural to divide the full network into four
components, as shown in Fig. 1. This division helps us focus on comparing individual com-
ponents across subjects and makes the computational tasks more efficient. The original data
has 98 subjects, but we remove six that are difficult to separate into components, resulting in
a sample size of N = 92. In the supplementary material [Guo et al. (2021)], we provide some
relevant statistics on the numbers of nodes and edges in the four components over the se-
lected sample. As these histograms show, these graphs differ significantly in the numbers of
nodes and edges across subjects. Additionally, there are large differences in both the shapes
and the patterns of arteries forming these networks. Consequently, analyzing the shapes of
these BANs is quite challenging and remains relatively unexplored in the past.

4.1. Geodesic Deformations. We use the techniques developed in this paper to compute
geodesic paths between BAN components and present some examples in Fig. 6. We use both
the edge and node attributes in these experiments, with λ selected manually through trial
and error. The first column in each row shows a geodesic comparing a BAN component of
one subject to that of another, as elements of G. To improve visual clarity, we remove some
unmatched edges from the graphs and plot the same geodesic again in the right column.
We have used color-coding of edges to show registration and to track the deformation of
each edge. These geodesics are useful in several ways. They provide registrations of arteries
across networks, and they help follow deformations of matched arteries from one network to
another.

4.2. Average BAN Shapes. For the given 92 BANs, it is informative to compute their
mean shape. Since the computational cost of pairwise matching of graphs is high, the compu-
tation of mean graph using Algorithm 1 becomes very expensive. To accelerate this process,
we approximated the mean algorithm by registering each graph to the largest size graph in
the dataset. We then used the fixed registration to compute the mean. This registration is not
optimal, but it represents a tradeoff between accuracy and computational cost. In order to
quantify this approximation, we perform a simple experiment. We take a small set of BANs,
say 8 graphs, and compute three different pairwise distance matrices for them: (1) the dis-
tance db without any registration, (2) the distance d̃b, which is pairwise db after registering all
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Components Full Geodesic Pruned Geodesic

Left

Right

Top

Bottom

FIG 6. Geodesics between BAN components. In each row we first show the full geodesic and then show a pruned
geodesic where the unmatched edges are dropped.(GIF animations of these geodesics are provided with the sup-
plementary material [Guo et al. (2021)].)

FIG 7. Histograms of decreases in distances due to: (1) pairwise registration (red) and (2) registered to the largest
graph (blue).

of them to the largest BAN in the group, and (3) the distance dg after optimal pairwise regis-
tration. Fig. 7 shows the results using histograms of two quantities: (1) db − d̃b in blue, and
(2) db−dg in red. This plot underscores that the proposed approximation provides reasonable
gains in distance computations at very small computational cost. Here we have tried one so-
lution, ı.e., matching all the graphs to the largest graph, but there are other choices too, each
representing its own tradeoff. For instance, one can cluster the graphs into smaller groups
and then iteratively improve the registration between and across the clusters. Another idea
is to train graph neural networks for performing graph matching. In case there is sufficient
training data available, neural networks can provide very efficient computational solutions.
Of course, any such solution can be good or bad depending upon actual structural variability
in the data. One can always return to the pairwise optimal matching if accuracy is the real
concern and the computational cost is less relevant.

Figure 8 shows the resulting mean shapes for each of the four components across 92
subjects. Since these 92 graphs differ in the number, connectivities, and shapes of edges,
it is not easy to visualize and interpret the mean shapes. One needs to view 3D displays of
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FIG 8. Average shapes of BAN components across 92 subjects. From left to right, it is the mean shape for left,
right, top, and bottom components, respectively. The color and thickness of an edge represents its proportional
presence in individual subjects – a more red and thicker edge indicates it is present in more subjects.

these shapes to appreciate how well these means capture the common structures in individual
graphs. We use the color and thickness of edges to denote the proportion of individual graphs
in which that particular edge is present. As expected, these mean shapes show a smoother,
broader representation of individual shapes and mainly preserve connectivity patterns present
in the data.

The computation of an average shape is a significant, novel result and has not been
achieved previously for BANs or any similar graph data. Its importance lies in our need
to separate structures common to all subjects from structures that distinguish subjects from
each other. By separating this variability, one can focus on individual differences and model
this variability using statistical models. Once the common structures have been removed, the
subsequent statistical analysis simplifies greatly. We present these studies in the next few
sections.

4.3. PCA-Based Analysis of Covariate Effects on Shape. An essential use of the pro-
posed framework is in understanding the effects of covariates, such as gender and age, on
shapes of BANs. Due to the high dimensionality and complex nature of BANs, this task
is nearly impossible in its original space. We use the elastic shape analysis framework to
compute average shapes, extract individual variability, and focus on modeling this individual
variability against covariates. As earlier, we do this component-wise, i.e., a separate analysis
of each component of BAN.

We first perform Graph PCA using Algorithm 3 on BAN components and represent each
subject data into a low-dimensional vector space via projection. A BAN component with 197
nodes and 50 sample points along each edge has a discrete representation with 3×50×197×
197 = 5821350 elements. However, using Graph PCA, we can retain 80% of the variability
in the original data using only 60 principal components. To avoid the confounding effect of
artery size, we rescale edges by the total artery length for each graph. As a result, we can
focus on gender and age effects on the shapes of BANs.

4.3.1. Gender Effect on BAN Shapes. To study the effect of gender on the arterial graph
shapes, we implement a two-sample t-test on the first principal scores and a Hotelling’s T -
squared test on the first few principal scores. The resulting p-values can be found in Table
1. Most of the p-values are high; thus, we do not find any significant difference between the
BAN shapes and the gender. To further investigate this result, we also applied a permutation
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TABLE 1
Testing of gender effect on principal scores of shapes of brain arterial networks.

t test Hotelling’s T-squared test
PC-1 PC 1-2 PC 1-3 PC 1-4 PC 1-5

Left 0.1354 0.5228 0.4333 0.5074 0.4009
Right 0.8868 0.0785 0.1630 0.0792 0.1210
Top 0.9236 0.6788 0.0676 0.1200 0.1400

Bottom 0.4005 0.0599 0.1256 0.1447 0.2328
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FIG 9. Correlation between the age and the first principal score of shape of arterial networks. To better show
the correlation patterns, we removed the maximum principal score for those four components, respectively. In
addition, we also removed the second maximum for the left component.

test (described in the following paragraphs) and obtained similar results; see Table 2. We
note that Bendich et al. (2016) and Shen et al. (2014) reported multiple insignificant and
significant p-values on the same data using very different mathematical representations from
ours. Whether there is an anatomical shape difference between BANs of female and male
subjects remains an open question and requires further investigation.

4.3.2. Age Effects on BAN Shapes. To study the effect of age of a subject on his/her
BAN shape, we studied correlations between the age and the PCA scores of arterial shapes.
The results are shown in Fig. 9. We found a significant linear correlation between age and
first principal scores of brain arteries in most cases (in all except the top component). The
correlation coefficients between the first principal shape score for the left, right, and bottom
components and age are 0.29, 0.38, and 0.39, respectively. All of them are statistically sig-
nificant, with corresponding p-values being very close to zero. This result is similar to some
published results in the literature but obtained using different mathematical representations
than ours [Bendich et al. (2016); Shen et al. (2014)]. The strength of our approach lies in our
ability to visualize the nature of deformations resulting from aging. As mentioned before, we
also use a permutation test to validate the age effects.

Next, we pose an important question: How do the BAN shapes change as a subject gets
older? The tools developed in this paper can be used to visualize the effects of aging on the
shape of brain arteries, while feature-based methods proposed in the past cannot address this
question. Using Algorithm 3, we compute PCA scores for each BAN shape. Treating these
scores as a response and age as a predictor, we fit a zero-mean regression model to the data.
Note that since principal scores can be used to reconstruct original graphs, we have a way of
mapping these representations back to graphs and facilitate visualizations. Therefore, we can
visualize the effects of aging on the shapes of BANs, as in Fig 10. Here we fit a linear model
using age to predict the first principal scores. To focus visualization on where the changes
are occurring, we calculate the edgewise shape differences using the mean shape as baseline
and use different colors (rather than gray color) to denote edges with large deformations, i.e.,
deformations that are larger than 50% of the differences.
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Age (from 22 to 79 years)

Left

Right

Bottom

FIG 10. Aging effect on brain arteries. For each component, from left to right is the mean shape deformation
when going from age 22 to 79. The colors highlights edges that have large deformations.
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FIG 11. Matrices of shape distances between BAN components of 92 subjects. The axes are labeled by ages.

4.4. Metric-Based Study of Covariates Effects on Shapes. We also investigate the effects
of covariates on full BAN shapes using the shape metric dg (Eqn. 2.2) directly. Fig. 11 shows
matrices of pairwise distances between subjects, one matrix for each of the four components
separately. (As mentioned before, we have scaled the edges by the total artery length; thus,
the distances quantify only shape differences.) We reorder the distance matrices by the age of
subjects to help elucidate the effect of aging on shape variability. The color pattern of pixels
in these matrices shows that shape distances increase with age (darker red colors are towards
the bottom right). This pattern implies that brain arterial networks’ shape variability grows
with age for three of the four components. This pattern does not seem to hold for the top
component.

To further validate the gender and age effects, we implement a permutation test [Hagwood
et al. (2013)] based on shape metric dg . The basic idea is as follows. We divide the subjects
into two groups – older than 50 and younger than 50 – and compute a two-sample shape
test statistic specified in [Hagwood et al. (2013)]. For two groups, labeled A and B, the test
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TABLE 2
Permutation test of gender and age effect on distances of shapes of brain arterial networks.

Left Right Top Bottom

Gender 0.0385 0.2128 0.4835 0.0706
Age 0.0006 0 0.4772 0

statistics is defined to be: 2

m1m2

∑
ai∈A

∑
bj∈B

dg(gai , gbj )−
1

m2
1

∑
ai∈A

∑
aj∈A

dg(gai , gaj )−
1

m2
2

∑
bi∈B

∑
bj∈B

dg(gbi , gbj )

 .

Here m1 and m2 are the sizes of the two sets A and B, respectively. We evaluate the signif-
icance of this value using a Permutation test.

That is, we repeat this process 30K times, each time randomly assigning subjects into dif-
ferent groups and computing the test statistics. Using a histogram of the 30K test statistics,
we can compute the p-value of the real-data test statistic. The result can be found in Table
2. While the gender effect remains unclear, one can see a significant age effect on the brain
arteries for the left, right, and bottom components. We also see that the top component re-
mains relatively unchanged between young and older people. (We remind the reader that the
pairwise distance used here is an approximation because of the considerable computational
cost associated with the exact computation. Here we first match each graph to the largest
graph in the dataset and compute pairwise shape distances between them without any further
matching.)

5. Improving Registration Using Landmarks. As stated earlier, matching parts of
BANs is the most crucial bottleneck in the shape analysis of elastic graphs. The procedure laid
out so far for graph matching is fully automated but, in the end, does not guarantee a global
solution. One can potentially improve this solution in case there is some extra matching in-
formation. This knowledge can be in the form of some prominent points, called landmarks,
that have known registrations across graphs. In this context, two issues arise: (1) How can we
obtain the landmarks? and (2) How to incorporate this extra information in improving dense
registration of graphs?

For the first issue, there are several possibilities. The landmarks may be provided by the
domain experts using manual analysis. Another possibility is to perform a preliminary inves-
tigation of the data and extract some landmarks of interest. To facilitate this approach, one
can use traditional graph-theoretic tools to discover and extract some prominent landmarks
automatically. Examples of relevant tools include multi-resolution representations of graphs,
clustering of nodes using graph spectra, and Dijkstra’s method for finding the longest paths
in a graph. For instance, one can use the longest arteries in BANs, extract some prominent
nodes lying on them, and use them as landmarks for matching across BANs.

The second issue – how to incorporate given landmarks registration in solving Eqn. 2.2 –
is more methodological. We will assume that all landmarks are nodes in the original graphs,
although one can relax this assumption albeit at the cost of some increased computational
complexity. For these registered nodes, the corresponding entries of P ∈ P are fixed and no
longer part of the search. Assuming n0 ≤ n to be the number of landmarks, the search space
is now reduced to (n − n0) × (n − n0) permutation matrices. This constrained search has
also been called seeded graph matching in the literature [Fishkind et al. (2012)].

We present an example of landmark-driven matching in Fig. 12. In this example, we study
two BANs shown in the two left and the right corners of the top row. We use five landmarks
– one at a central node and two each placed automatically along the two longest paths in
the graph starting from the central node – to perform improved registration of the graphs.
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Graph 1 Full geodesic from graph 1 to graph 2 Graph 2

Geodesic with unmatched branches pruned

FIG 12. Geodesic path between two BANs (bottom components) using five registered landmarks.

BAN-bottom for five subjects Mean Shape

FIG 13. Sample mean of BAN components using improved landmark-based registration.

The resulting geodesic is presented in the top row. We prune this display by removing the
unmatched edges and show the pruned geodesic in the bottom row. In this example, the
geodesic distance before using landmarks is 244.1698 but comes down to 237.3467 after
using landmarks, signifying an improvement in the registration of nodes. We demonstrate an
example of landmark-based matching and mean computation in Fig. 13. The use of landmarks
improves the registration and thus keeps the major patterns (two longest paths) for the mean.

6. Conclusion. This paper develops techniques for mathematically representing and sta-
tistically analyzing shapes of Brain Arterial Networks or BANs, broken into four major
components. These objects – BAN components – are complicated due to arbitrary numbers,
shapes, sizes, and connectivities of 3D arterial curves. We represent them using elastic graphs
and their adjacency matrices, where entries in adjacency matrices are the shapes of the cor-
responding edges (arteries). We solve for registration of nodes across graphs between com-
pared and use the shape space’s geometry to compute geodesics, sample means, and PCA
components of BANs. The sample means help capture prominent common characteristics
of different BANs while covariance-PCA analysis helps represent individual variability in a
tractable fashion.

The subsequent data analysis shows that age has a significant effect on three components
of BANs – left, right, and bottom – but does not affect the top component. We use the tools
developed here to visualize the nature of BAN shape variability resulting from aging. Vi-
sualizing shapes along the principal directions or age-regression directions is an essential
accomplishment of this framework. One can pinpoint arteries that undergo significant defor-
mations and arteries that do not change much over time.



19

The overall performance of this framework relies on the quality of registration of nodes
across graphs. We have shown using landmarks could potentially improve the registration
quality. For a discussion on the current computation framework, we refer readers to the sup-
plementary materials [Guo et al. (2021)].

Funding. This research was supported in part by the grants NIH R01 MH120299, NSF
DMS 1621787, and NSF DMS 1953087.

SUPPLEMENTARY MATERIAL

Supplement to "Statistical shape analysis of brain arterial networks (BAN)"
Discussion on Computational Issues and Descriptive Statistics of BAN; GIFs of Fig 4 and
Fig 6.
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