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Abstract
Shape analysis of objects in images is a critical area of research, and several approaches, including those that utilize elastic
Riemannian metrics, have been proposed. While elastic techniques for shape analysis of curves are pretty advanced, the
corresponding results for higher-dimensional objects (surfaces and disks) are less developed. This paper studies shapes of
solid planar objects that are embeddings of a compact domain—a unit square or a unit disk—inR2. Specifically, it introduces
a mathematical representation of objects using tensor fields and uses a re-parametrization-invariant Riemannian metric on
these tensor fields to analyze object shapes elastically. The essential contribution here is developing an efficient numerical
technique to map tensor fields back to the object space, allowing one to approximate geodesic paths in these objects’ shape
spaces. Finally, the paper extends this framework to reach landmark-driven registration and improve geodesic computations.
The paper illustrates this framework using several simulated and natural objects.

Keywords Elastic shape analysis · Invariant metrics · Landmark registration · Shape geodesics

1 Introduction

Characterization of objects in image or video data is an inte-
gral part of computer vision and image understanding, and
shapes of objects play an essential role in this characteriza-
tion. Since objects display a tremendous variability in their
appearances, even within the same object class, the statis-
tical analysis of shapes becomes critical. Statistical shape
analysis of objects in images has a wide variety of appli-
cations, ranging from anatomy, biology, and chemistry on
the one hand to surveillance, security, graphics, and gaming
on the other. The shapes of objects exhibit huge variability,
differing in geometries and topologies, complexity, scales,
representations, and functionalities. Shape analysis is chal-
lenging because the shape is a property that is invariant
to certain transformations—translation, rotation, scale, and
parameterization—of objects, and this fact rules out the use
of classical Euclidean calculus for analyzing shapes.
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To develop statistical models and testing procedures for
shapes, one needs precise mathematical representations and
invariant metrics that can efficiently capture shape variability
within and across shape classes while being invariant to the
transformations mentioned above. This necessitates narrow-
ing the scope and focusing on a specific family of objects to
pursue more detailed studies. Here, we focus on solid pla-
nar shapes extracted from 2D images, with an interest in
objects’ boundaries and interiors. Mathematically speaking,
we are interested in objects specified as mappings of com-
pact planar domains (the unit square or the unit disk) intoR2.
Figure 1 shows someexamples of these planar objects consid-
ered here. The top part shows some natural objects—leaves,
face images, and butterflywings,while the bottompart shows
some parameterized mathematical objects. Ignoring the tex-
tures and patterns on objects, we will restrict ourselves to:
(1) A boundary curve with the parameterized interior and (2)
If available, some discrete landmarks (points) in the interior
of each object. For such objects, our goal here is to develop
a framework that enables computations of geodesic paths
between shapes of objects.

From a methodological perspective, we focus on Rie-
mannian approaches because they provide comprehensive
toolboxes for statistical shape analysis. Within that broad
field, we are interested in elastic shape analysis (ESA), an
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Fig. 1 Examples of planar objects, having boundaries and interiors,
studied in this paper. The top two rows show images, while the bottom
two show mathematical objects alongwith their coordinate systems

approach that integrates the registration problem (the prob-
lem of dense matching of points across objects), with the
quantification of shape differences. A typical ESA frame-
work first chooses a representation space for shapes of
interest, endows it with an invariant Riemannian structure
and derives solutions for items such as the exponential maps,
inverse exponential maps, and geodesics. Finally, it induces
a metric structure on the original object space by inverting
the representation and preserving the registration and met-
ric. Among other things, it provides a tool for computing
geodesic paths (optimal deformations) and geodesic dis-
tances between shapes of objects.

1.1 Related PastWork on 2D Shapes

Before we lay down our approach and outline the main con-
tributions, we briefly review some relevant past research in
this area.

1.1.1 2D Curves

Previous work on analyzing 2D shapes using Riemannian
methods has primarily focussed on analyzing their bound-
aries as simple closed curves. This field started with some
foundational papers [15,18,19,22,23] and has developed into
a very mature discipline with many follow up papers, includ-
ing [1,2,6,20,21]. While these methods show great power
in quantification, registration, and classification of shapes,
they are primarily designed for studying the boundaries or
the silhouettes of objects. In the case of objects containing
information inside the boundaries, which is essential in reg-
istration and shape comparisons, it is not easy to extend
curve-based representations to incorporate this additional
information.

1.1.2 2D Deformable Images

Another approach for studying shapes of 2D objects is to
embed them in planar domains and transform the domains
usingdiffeomorphismgroups’ actions.Awell-knownapproach
of this type, named LDDMM [5], uses the diffeomorphisms
of Euclidean domains to help register points across objects.
While this is a prominent approach for registering images,
especially in computational anatomy, it is not naturally suited
for shape analysis of objects. Specifically, it does not always
result in invariant metrics or geodesics, especially when the
action of the diffeomorphism group is not transitive, that are
essential for statistical shape analysis. We will, however, use
LDDMM to provide registrations of landmarks on objects
when such landmark information is available.

1.1.3 Other Approaches

In order to present some other relevant ideas and to dis-
tinguish our approach, we consider different mathematical
representations of 2D objects, as listed in Table 1. Let
f : D → R

2 represent a parameterized 2D object, where
D is a two-dimensional domain (such as the unit disk or the
unit square). As the table shows, one can either work with
f directly or use some maps derived from f for making the
representations invariant. These maps, or features, are typ-
ically derivative-based – for s ∈ D, we have the option of
using ∇ f (s) ∈ R

2×2, (∇ f (s))T · ∇ f (s) ∈ R
2×2, and so on.

Each choice carries its advantages and disadvantages. One
would like a representation that allows efficient computation
of geodesics and invariance to shape-preserving transfor-
mations. If we use one of these feature maps, there is an
additional requirement of inverting the representation back
to f . This inversion is needed to derive shape analysis tools
in the original object space rather than the feature space.
Typically, one seeks to balance the desire for invariance to
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Table 1 Candidate
representations of embedding f

Representation Surface Gradient Tensor field Area density

Symbol f ∇ f g = ∇ f T · ∇ f μ = det(∇ f T · ∇ f )

Invariance None Translation Translation + Rotation Translation + Rotation

Elastic Metric Difficult Simple Simple Simple

Extrinsic geodesic Difficult Complicated Closed-form Simple

Registration Difficult Complicated Complicated Simple

Inversion N.A. Trivial Difficult Ill-defined

Trans. Translation, Rot. Rotation

shape-preserving transformations against the computational
cost of constructing geodesics and inverting representations.

A recent paper [3] studies shapes of 2D objects using their
gradient vectors fields ∇ f (s), as one forms. Such a repre-
sentation comes with invariance to translation but the com-
putation of geodesics (under an invariant metric) becomes
relatively harder. Another paper [4] studies diffeomorphism-
based density matching on Euclidean domains, and can be
applied to the current problem in a limited way. If f is rep-
resented by its area element det(∇ f (s)T · ∇ f (s)) ∈ R (last
column of Table 1), then some form of shape comparison
can be performed in that feature space. While the match-
ing problem here is straightforward, the inversion problem
is ill-defined for this case. That is, in going from f �→
det(∇ f T ·∇ f ) one loses significant information and it seems
difficult to reconstruct f from this scalar (area) function.

1.2 Proposed Approach

Considering different possibilities presented in Table 1, we
see that representing an object f by its tensor field g = ∇ f T ·
∇ f enjoys some useful properties and remains relatively
unexplored in the literature. The advantages of choosing this
representation are several:

• The definition of the tensor field g ensures invariance to
translation and rotation of objects. One removes the scale
easily through area normalization.

• There is a convenient Riemannian metric, for comparing
2D tensor fields, that is invariant to reparametrizations of
objects. The geodesic between two tensor fields g1 and
g2 is also available with an explicit and straightforward
expression.

• Optimization over the diffeomorphism group, for regis-
tration of points on objects, is relatively straightforward
when we use a simpler (L2-norm based) surrogate objec-
tive function.

In this paper, we will use the tensor field g to represent and
analyze the shape of f . The only challenge from this choice
lies in mapping the representation g back to the object f .
There are some open questions associated with the forward

map f �→ g.Whilewe know that thismap is neither injective
nor surjective, for some natural choices of domains and range
spaces, the geometries of these spaces are not well under-
stood. Bypassing these fundamental mathematical questions,
we take a purely computational approach to this inversion.
For a given tensor field g, we use a numerical approach to
find an f whose forward map is as close to the target g as
possible. Such a numerical approach has been used success-
fully in the literature before. For example, Laga et al. in [17]
use a numerical inversion of the so-called square-root normal
fields to study shapes of genus-0 surfaces.Wewill take a sim-
ilar multiresolution approach to registration and inversion in
this paper.

The main contributions of this paper are the following:

1. We develop a framework for elastic shape analysis of
embeddings of the type f : D → R

2, using a novel
tensor-field representation g. This framework involves the
development of a numerical approach for inverting the
map f �→ g.

2. We extend past results for computing geodesics between
individual tensors, under a well-known invariant Rie-
mannian metric, to a similar geodesic analysis between
complete tensor fields on a domain D.

3. Given a small number of registered landmarks (in the
interior of the domain D) for each object, we develop
a framework for landmark-guided elastic shape analysis
of f . We derive efficient numerical techniques for solv-
ing for optimal registration of objects while respecting the
given landmarks.

4. We illustrate these ideas using simulated and real data
examples from drosophila wings and tree leaf databases.

The rest of this paper is as follows. Section 2 summarizes
the ESA framework for shape analysis of solid planar shapes.
Section 3 develops tools for computing geodesics in the pre-
shape spaceF , using a numerical solution to invert back from
g to f . Section 4 solves the optimization problem over the
reparametrization group, resulting in an extrinsic geodesic
in the shape space S. Section 5 extends this framework to
incorporate information from registered landmarks in reg-
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Fig. 2 Examples of objects f and their representations as tensor fields
g = ∇ f T∇ f

istering objects and computing geodesics. It also illustrates
these ideas using a wing dataset and a leaf dataset.

2 Mathematical Framework

2.1 Mathematical Representation of Embeddings

Let F = { f : D → R
2| f is an embedding} be the object

space of solid planar shapes, where D is a compact set in
R
2. In this paper, D will either be Ds , the unit square, or Dk ,

the unit disk. We will utilize a tensor field g to represent and
analyze shapes of f in an elastic Riemannian framework.

Definition 1 Given an embedding f = ( f1(s), f2(s)) ∈ F ,
define the tensor field g at a point s = (x, y) to be:

g(s) = ∇ f T · ∇ f =
[

∂ f1
∂x

∂ f1
∂ y

∂ f2
∂x

∂ f2
∂ y

]T [ ∂ f1
∂x

∂ f1
∂ y

∂ f2
∂x

∂ f2
∂ y

]

=
[ 〈 fx , fx 〉

〈
fx , fy

〉〈
fx , fy

〉 〈
fy, fy

〉 ] ,

fx =
[
∂ f1
∂x

,
∂ f2
∂x

]
, fy =

[
∂ f1
∂ y

,
∂ f2
∂ y

]
.

Denote this mapping as G : f �→ g.

For each point s = (x, y) ∈ D, g(s) is a 2 × 2 tensor
or a symmetric, positive-definite matrix (SPDM). Thus, g is
a tensor field on D. Figure 2 illustrates this representation
pictorially for two objects, with the objects shown on the
left and the tensor field shown on the right. The domain in
this illustration is Ds = [0, 1]2. A tensor or SPDM at each
s ∈ Ds is drawn using an ellipse in the right panels. We
will denote the representation space of all tensor fields as
G �

{
g|g : D → Sym+(2)

}
, where Sym+(2) is the space

of 2 × 2 SPDMs. Thus, G : F → G.

To analyze the shape of f , we need representations and
metrics invariant to rigid rotation, translation, global scaling,
and re-parameterization of f . We check the invariance of our
chosen representation g.

1. Scale: We can get rid of the scale variability through a
pre-processing step—rescale f so that its total area is
one: f �→ f

μf
, where

μf =
∫
D

√
det(∇ f T (s) · ∇ f (s))ds .

If we multiply an object f by a positive scalar a ∈ R+,
that is f �→ a f , then its tensor field gets multiplied by a2,
g �→ a2g. Imposing a unit area constraint on f , imposes a
corresponding constraint on its tensor field g, i.e. g should
satisfy

∫
D

√
det(g(s)) ds = 1. One can impose this con-

straint either in F or G space; we will impose it in F
during a preprocessing step. In this paper, we will restrict
to the rescaled objects and, with a slight abuse of notation,
we will denote the space of these rescaled embeddings as
F .

2. Translation: The representation g is naturally invariant
to the translation of f , because of the use of ∇ f in the
definition of g.

3. Rotation: The tensor field g is invariant to the rotation of
f because for a f̃ = O f , where O ∈ SO(2), we have
g̃ = ∇ f̃ T · ∇ f̃ = ∇ f T OT · O∇ f = ∇ f T · ∇ f = g.
In fact, the loss of rotation is much stronger than that
desired. Even if we introduce a different rotation at each
point s ∈ D, i.e. f̃ (s) = O(s) f (s), the resulting tensor
field remains same. This loss of a full rotation fieldmakes
it more challenging to invert themap f �→ g, as discussed
later.

4. Re-Parameterization:LetΓ be thegroupof all orientation-
preserving diffeomorphisms of D. Elements ofΓ play the
role of reparameterizations (or domain warpings) for ele-
ments of F . For any γ ∈ Γ and f ∈ F , the embeddings
f and f ◦ γ has the same shape. This is illustrated pic-
torially using two examples in Fig. 3. Each row shows an
embedding f , a diffeomorphism γ and their composition
f ◦γ . Under γ , a boundary point of f goes to a boundary
point of f ◦ γ , and an interior point maps to an interior
point.

If g is the tensor field of an embedding f , then tensor field
of f ◦ γ is not g, i.e., g is not invariant to the reparame-
terizations of f . Thus, the invariance to reparameterization
is not automatic but is enforced algebraically by forming a
quotient space corresponding to the action of Γ on G. This
is described next.
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Fig. 3 f and f ◦ γ have the same shape

Since elements of G change under reparameterizations,
this set is called the preshape space. The action of Γ on the
preshape space G is as follows.

Definition 2 Define the right group action of Γ on G as
(g�γ ) = ∇( f ◦ γ )T∇( f ◦ γ ) = J Tγ (g ◦ γ )Jγ , where Jγ is
the Jacobian matrix of γ :

Jγ =
[

∂γ1
∂x

∂γ1
∂ y

∂γ2
∂x

∂γ2
∂ y

]
.

It is useful to note the fact that this group action is linear, i.e.

((c1g1 + c2g2)�γ ) = c1(g1�γ ) + c2(g2�γ ) ,

for any c1, c2 ∈ R, g1, g2 ∈ G, and γ ∈ Γ .
As shown in Fig. 4, the mapping f �→ g and the group

actions of Γ on these spaces form a diagram that commutes.
Whether we apply G to f first and then apply γ to the result-
ing tensor field g, or if we apply γ to f first then compute its
tensor field, the result is identical, i.e. G( f ◦γ ) = (G( f )�γ ).
(Keep inmind that the actions are different in the two spaces.)
The action of Γ on G leads to orbits and partitioning of G
into equivalence classes. The orbit of a tensor field g ∈ G
under Γ is given by:

[g] = closure {(g�γ )|γ ∈ Γ } ,

which represents all possible re-parameterizations of f :
[ f ] = closure { f ◦ γ |γ ∈ Γ }. Each orbit represents a shape
of interest uniquely, and the set of all [g] forms the quotient
space S = G/Γ ; we shall call it the shape space.

Now that we have a representation space, we impose a
metric structure on it next.

Fig. 4 Representation and reparameterization of an embedding f using
the tensor field g

2.2 Riemanian Structure on the Representation
Space

To compare shapes of embeddings, we need a proper Rie-
mannian metric defined on the representation space G ={
g|g : D → Sym+(2)

}
. Furthermore, we need a metric that

is invariant to the action of Γ on G. Let Tg(G) denotes the
tangent space of G at the point g ∈ G.
Definition 3 For any g ∈ G and δg1, δg2 ∈ Tg(G), define an
indexed family of Riemannian metrics, indexed by κ ∈ R+,
according to:

〈〈δg1, δg2〉〉g =
∫
D

[
tr
(
g−1δg1g

−1δg2
)

+κtr
(
g−1δg1

)
tr
(
g−1δg2

)]√
det(g) ds .

(1)

For a fixed γ , the differential of the mapping g �→ (g�γ )

helps map the tangent vectors at g to the tangent vectors at
(g�γ ). Since the action of Γ on G is linear, the mapping
of the tangent vectors is identical. A vector tangent to G at
g̃ = (g�γ ), say δg̃, is related to the tangent vector at g, say
δg, according to:

δg̃ = J Tγ (δg ◦ γ )Jγ = (δg�γ ) ∈ Tg◦γ (G) .

This mapping helps establish the invariance of the chosen
Riemannian metric to the action of Γ on G.
Theorem 1 The Riemannian metric on G, given in Eq. 1, is
invariant to the action of Γ on G. That is, for any g ∈ G,
δg1, δg2 ∈ Tg(G), and γ ∈ Γ , we have

〈〈δg̃1, δg̃2〉〉g̃ = 〈〈δg1, δg2〉〉g , (2)

where g̃ = (g�γ ) = J Tγ (g ◦ γ )Jγ and δg̃i = J Tγ (δgi ◦
γ )Jγ , i = 1, 2.

Proof Start with the Riemannian metric at the new point g̃:

〈〈δg̃1, δg̃2〉〉g̃ =
∫
D

[
tr
(
g̃−1δg̃1g̃

−1δg̃2
)

+κtr(g̃−1δg̃1)tr
(
g̃−1δg̃2

)]√
det(g̃)ds.
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For the first term in the integrand, we substitute for g̃ and δg̃
and simplify to obtain,

∫
D

[
tr
(
g̃−1δg̃1g̃

−1δg̃2
)]√

det(g̃)ds

=
∫
D

[
tr
(
(g ◦ γ )−1(δg1 ◦ γ )(g ◦ γ )−1(δg2 ◦ γ )

)]
√
det(g ◦ γ ) det(Jγ )ds .

Substituting by s̃ = γ (s), and ds̃ = det(Jγ )ds, this term
becomes:∫

D

[
tr
(
g(s̃)−1δg1(s̃)g(s̃)

−1δg2(s̃)
)]√

det(g(s̃))ds̃ .

Similarly, for the second term, we substitute and simplify to
obtain∫

D

[
tr
(
g̃−1δg̃1

)
tr(g̃−1δg̃2)

]√
det(g̃)ds

=
∫
D

[
tr
(
g−1δg1

)
tr
(
g−1δg2

)]√
det(g)ds̃ .

Combining the two terms, we get the right side of Eqn. 2. 
�
Now we have a representation space and an invariant Rie-
mannian metric defined on it. It is worth noting that the
Riemannian structure on G imposed by Eq. 1, i.e., the inner
product on its tangent bundle, separates into a point-wise
calculation. That is, given two representations g1, g2 ∈ G,
corresponding to two embeddings f1, f2, respectively, com-
puting geodesics between them under the chosenmetric boils
down to computing individual geodesics between g1(s) and
g2(s), for each s ∈ D. The problem of constructing geodesic
paths under this Riemannian metric has been addressed
in paper [12]. Some relevant items from that paper: the
Riemannian structure of Sym+(2), formulae for geodesics,
exponential map, and inverse exponential maps—are pre-
sented in Appendix A.

2.3 Geodesics and Distances in Pre-Shape Space

For any two tensor fields g1, g2 ∈ G, the geodesic between
them is given by point-wise geodesic at each location. That
is, for any s ∈ D, a spatial component αs , of the full geodesic
α : [0, 1] → G is as follows. Compute the geodesic between
g1(s) and g2(s), given by the expression in Theorem 5 and
parameterized by τ , and set that to be αs(τ ), the s component
of α(τ). The full set, for all s ∈ D, constitutes the geodesic
α(τ) = {αs(τ )| s ∈ D}. The corresponding geodesic dis-
tance between g1 and g2 is given by:

dG(g1, g2)
2 =

∫
D
d(g1(s), g2(s))

2ds , (3)

Fig. 5 Relationship between the object space F and the representation
space G

where the expression for d(·, ·) is given by Theorem 6.
Another way to state the invariance of chosen metric to

the action of Γ on the representation space is by the isometry
condition: dG(g1, g2) = dG(g1�γ, g2�γ ) for all g1, g2 ∈ G
and γ ∈ Γ . This follows by construction from Theorem 1 or
one can prove it directly using the expression for dG .

3 Extrinsic Geodesic Between Two Objects

Given any two objects f1, f2 ∈ F , we can now compute an
extrinsic geodesic between their representations g1 = ∇ f T1 ·
∇ f1 and g2 = ∇ f T2 · ∇ f2 in G. The expression for geodesic
between g1 and g2 is referred to in the previous section. In
order to map this geodesic back to F , we face an inversion
problem that we discuss next.

3.1 Inverting Tensor Field Representation

The inversion problem is as follows: Let α : [0, 1] → G
be the geodesic starting from α(0) = g1 and ending at
α(1) = g2. For any intermediate time point τ ∈ (0, 1),

and the geodesic value gτ
Δ= α(τ), find an fτ ∈ F such

that gτ = ∇ f Tτ ∇ fτ . This problem is illustrated pictorially
in Fig. 5.

This problem raises some fundamental questions: Is this
mapping G : f �→ g invertible? For the composition f �→
∇ f �→ (∇ f )T · (∇ f ) to be bijective, we need both the maps
( f �→ ∇ f and v �→ vT · v) to be bijective in their respective
spaces. Let V be the set of all smooth vector fields on D. The
first map, f �→ ∇ f , viewed as a mapping F → V is neither
injective nor surjective. The second map, from V → G, is
not injective but it is surjective because for any g ∈ G (with
g(s) ∈ Sym+(2)), we can find a v : D → R

2 such that
g(s) = v(s)T ·v(s) for each s ∈ D. So, how does one invert a
map that is neither injective nor surjective?Our approach is to
relax the problem and pose a minimization problem instead.
Given a gτ ∈ G, find an embedding fτ whose forward map
G( fτ ) is as close to gτ as possible, under the Frobenius norm.
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That is, we solve for: fτ = argmin f ∈F E( f ; gτ ), where

E ( f ; gτ ) =
∫
D

‖G( f ) − gτ‖2Fds , (4)

where ‖ · ‖F denotes the Frobenius norm of a matrix. We
will solve this minimization problem over F using numer-
ical optimization, as described next. The resulting solution
{ fτ , τ ∈ [0, 1]} will be called an extrinsic geodesic. This is
because the original geodesic α is in the full space G and not
necessarily restricted to be in the image of G.

3.2 Numerical Optimization

Tominimize E( f ; gτ ),we are going to use a gradient-descent
method and that requires specification of the gradient ∇ f E .

For the functional E(·; gτ ) : F → R, let d f E : F → R

denote its differential at an f ∈ F . We can evaluate this
differential in any direction w ∈ F using:

d f E(w) = d

dt
|t=0E( f + tw; gτ ) .

This is also called the directional derivative of E in the
direction of w. Using the L

2 inner-product on F , we can
define the gradient ∇ f E to be the quantity that satisfies:
d f E(w) = 〈∇ f E, w

〉
, for allw ∈ F . Let BF be an orthonor-

mal basis of F with respect to the L
2 norm, then we can

express the gradient using the directional derivatives accord-
ing to:

∇ f E =
∑
b∈BF

(d f E(b))b .

Next, the directional derivative d f E(b) can be derived as
follows:

d f E(b) = d

dt

∣∣∣∣
t=0

E ( f + tb; gτ ))

= d

dt

∣∣∣∣
t=0

∫
D

‖gτ − ∇( f + tb)T · ∇( f + tb)‖2Fds

= 2
∫
D
trace(

(
∇ f T · ∇ f − gτ

) (
∇ f T · ∇b

+∇bT · ∇ f
)
)ds.

The gradient update is given by f �→ f − ε∇ f E , for a
step size ε > 0. To improve convergence speed, we use the
accelerated gradient descent (AGD) algorithm. The complete
procedure is summarized in Algorithm 1.

We demonstrate this algorithm with a few examples for
the unit disk domain Dk . In these examples we use a Fourier
basis for elements ofF ; this basis is specified in the next sub-
section. Given a true ftrue, gtrue = G( ftrue) = ∇ f Ttrue ·∇ ftrue,

Algorithm 1 Accelerated gradient-descent for numerical
inversion of tensor field
1. Choose a proper embedding f0 as an initial guess and choose a scalar

step size ε > 0;
2. Compute the gradient ∇ f E( f0), and update f1 = f0 − ε∇ f E( f0).

Set i=1;
3. Compute y = fi + i−1

i+2 ( fi − fi−1);
4. Compute ∇ f E( fi ) and set fi+1 = y − ε∇ f E( fi );
5. Stop if converged, otherwise set i = i + 1 and return to Step 3.

Fig. 6 Simulated examples of numerical inversion of tensor fields using
Algorithm 1. Each row shows a different example. The first panel shows
the initial guess for the gradient descent algorithm, the second panel
shows the ground truth, the third panel shows the final estimated shape,
and the last panel shows the change in the cost E during minimization

we solve for f̂ = argmin
f ∈F

E( f ; gtrue) using Algorithm 1. In

this setting, the inverse exists and the infimum of E( f ; gtrue)
is zero. As shown in the bottom two examples of Fig. 6,
the algorithm actually recovers the original ftrue perfectly,
and E becomes negligible. However, since the search is
gradient-based, it can fail to reach a global solution if the
initial condition is far away from that global solution. The
top example of Fig. 6 illustrates such a case where the ini-
tial f is far from ftrue and the energy reduces to 9.2527, a
small number but not zero. This example highlights the need
for a good initial condition for the numerical inversion to be
successful.

3.3 Fourier BasisBF forF on Dk

To express the gradient ∇ f E = ∑
b∈BF

(∇ f E(b))b, we need

an orthonormal basis BF of the vector space F , with respect
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Fig. 7 Reconstruction using Fourier basis on Dk : The first panel shows
f = (9 + 3 cos(8π y)) [x cos(2π y), x sin(2π y)]; the second panel
shows the reconstruction of f using BF; the last panel shows that the
reconstruction error is negligible

to the L2 norm. In this paper, we will use the Fourier basis

BF = {1, x cos(2kπ y), x sin(2kπ y) : k = 1, 2, . . . , }
×{1, x cos(2kπ y), x sin(2kπ y) : k = 1, 2, . . . } .

Here s = (x, y) ∈ Dk . We then apply the Gram-Schmidt
method to this set tomake the elements orthonormal. Figure 7
shows an example of representing an object f via this Fourier
basisBF . As shown in the figure, this reconstruction of f can
bemade arbitrarily close to the original f for smooth objects.

3.4 Extrinsic Geodesics Between Embeddings

Putting together different pieces developed so far, we reach a
procedure for computing an extrinsic geodesic path between
any two objects f1, f2 ∈ F . First, we construct a geodesic
between the tensor fields g1 and g2 in G, and then invert
selected points (or tensor fields) along that geodesic in using
Algorithm 1. (These geodesics are termed extrinsic because
the first step technically yields geodesics in the larger spaceG
and not necessarily restricted to the range space ofG.) A crit-
ical issue in a gradient-descent-based inversion is to choose
a good initial condition. In the current context, there are at
least two ideas for selecting an initial condition recursively.
Firstly, one can go forward in time as follows. Starting from
the source f1, use it as the initial conditional for inverting
the tensor field at the next discrete-time. Then, use that solu-
tion for the next time step and so on. Secondly, one can start
at the target f2 and go backward in time. Theoretically, the
two results—forward and backward—should be identical,
but they can differ in practice due to numerical errors and
locality of solutions. We take advantage of both the direc-
tions and form a combined geodesic by choosing the one
with smaller energy at each intermediate time point. These
steps for computing a combined geodesic are summarized
next.

Figure 8 shows examples of geodesics between some sim-
ulated objects. In each row, we show f1 (first object) and f2
(last object) and the intermediate objects are equidistant time

Algorithm 2 Combined geodesic between embeddings
Suppose we want N + 1 time points on the geodesic between f1 and
f2. Set geoF0 = f1, geoFN = f2.

1. Represent fi with the tensor field gi = ∇ f Ti · ∇ fi , i = 1, 2.
2. Find the geodesic between g1 and g2 using the expression given in

Theorem 5, and denote it by α(τ), τ ∈ { j/N : j = 0, 1, . . . , N }.
3. To find the forward geodesic, start from geoF0, and solve for

geoF j = argmin E [G( f ); α( j/N )] , j = 1, . . . , N ,

with geoF j−1 as the initial condition.
4. To find the backward geodesic, start from geoFN , and solve for

geoF j = argmin E [G( f ); α( j/N )] , j = N − 1, N − 2, . . . , 0

with geoF j+1 as the initial condition.
5. For each j , choose the geoF j with the smaller energy from the

forward geodesic and the backward geodesic to get the combined
geodesic.

points along the geodesics obtained using Algorithm 2. The
bottom panel shows E values associated with the inversion
minimization problem at each of the three intermediate times
for each of the three examples.

4 Registration Between Embeddings

So farwe have developed tools for computing geodesic paths,
albeit extrinsic, between parameterized objects. Next, we
consider the problem of registering these objects in order
to remove the parameterization variability. The shape space
S is defined to be the quotient space G/Γ and the geodesic
in G/Γ is given by: ατ (g1, (g2�γ ∗)) where,

• γ ∗ = argminγ∈Γ dG(g1, (g2�γ )),
• dG is defined in Eqn. 3.

We perform optimization over Γ in two steps:

• First, we register the boundary of f1 with the boundary
of f2. Then, we register the interior points while keeping
the boundary registration fixed. If the first step provides
multiple solutions, then we compute the eventual cost
(after performing the second step for each of the first
step solutions) of all these options and keep the overall
minimum.

• For the internal registration, the objective function
dG(g1, (g2�γ )) seems computationally expensive to opti-
mize over, despite the availability of a closed-form
expression for dG . Instead, we choose a simpler surrogate
that is both easier to minimize and to evaluate. Because
of that, the final deformation is not guaranteed to be a
proper geodesic in the shape space. We will simply call
it the extrinsic geodesic between registered objects.
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Fig. 8 Simulated examples of extrinsic geodesics in G using Algo-
rithm 2. The bottom three rows show the energy function E during
inversion for the intermediate objects on the geodesic

We describe these two steps in the next sections.

4.1 Registration of Boundaries

There are several possibilities for registering the boundaries
of objects. Since boundaries form planar, closed curves, we
can use techniques from elastic shape analysis of planar
curves [20,22,23] for registration of boundary points. These
techniques provide a diffeomorphism of S1, optimal under
a chosen Riemannian distance, to register points along the
boundaries of f1 and f2.

Amuch simpler alternative is linear registration that seeks
the best circular shift that registers the two closed curves.
As shown in Fig. 9, a planar shape with n points on the
boundary has n possible linear shifts.We compute a geodesic
distance dG for each candidate shift and choose the one with

Fig. 9 Linear shifting of points along the boundary of D to register
boundaries of two embeddings

Fig. 10 Simulated examples of extrinsic geodesics in G inverted back
to F under different linear registrations of boundary points

the smallest distance. This is shown in Fig. 10 where each
row represents a geodesic path for a different linear shift of
the boundary of the second object. The geodesic distance for
each shift is calculated using Eqn. 14.We select the boundary
registration that results in the minimum distance.

4.2 Registration of Interiors

As mentioned above, the complicated expression in Eq. 14
makes it difficult to optimize this quantity over Γ . Instead,
we a surrogate objective function that is much simpler and
intuitive. Secondly, we will perform this optimization over
Γ incrementally. At each iteration, we will assume a current
diffeomorphism, say γ0, and we will seek an incremental
diffeomorphism γ that best reduces the chosen cost. The
advantage of using incremental solutions is that a small dif-
feomorphism can be expressed as an element of the tangent
space Tγid (Γ ), which is a vector space. Thus, one can use an
orthonormal basis of Tγid (Γ ) to help solve for these incre-
mental diffeomorphisms, one at a time.

Define the energy function associated with a γ ∈ Γ as:

L(γ ; g1, g2) =
∫
D

‖g1 − (g̃2�γ )‖2ds, (5)

where g̃2 = G( f̃2) = G( f2 ◦γ0) and γ0 is the current cumu-
lative re-parametrization from previous iterations. We will
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simplify by writing L(γ ) when the other two arguments are
clear from the context. Let dγid L : Tγid (Γ ) → R denote the
differential of L at γid and, thus, dγid L(ν) is the directional
derivative of L at γid in the direction of ν ∈ Tγid (Γ ). Let Ψ
denote an orthonormal basis of Tγid (Γ ) with respect to the
L
2 norm. Then, the gradient of L with respect to γ can writ-

ten in terms of the directional derivatives according to the
sum: ∇γ L = ∑

ψ∈Ψ (dγid L(ψ))ψ . This expression assumes

the use of L2 metric for expressing the differential of L as a
gradient.

4.2.1 Directional Derivative of L for Ds

Next we derive an expression for the directional derivative
of the cost functional L , focusing on the square domain Ds

first.

Theorem 2 Let ψ ∈ Tγid (Γ ), f̃2 ∈ F , g̃2 = ∇ f̃ T2 · ∇ f̃2 ∈
G, and define φ(γ )

Δ= (g̃2�γ ) ∈ G. Then, the directional
derivative of L with respect to γ at γid , in the direction of
ψ ∈ Ψ , is given by

dγid L(ψ) = dL(γid + tψ)

dt

∣∣∣∣
t=0

= −2
∫
D
tr
(
(g1 − g̃2)

(
HT · ∇ f̃2 + ∇ f̃ T2 · H

))
ds,

(6)

where:

• the quantity H is given by

H =
[∇ f̃2,1x · ψ ∇ f̃2,1y · ψ

∇ f̃2,2x · ψ ∇ f̃2,2y · ψ

]
+ ∇ f · ∇ψ; and,

• the term ∇ f̃2,1x · ψ = ∂ f̃2,1x
∂x ψ1 + ∂ f̃2,1x

∂ y ψ2, ∇ f̃2,1y ·
ψ = ∂ f̃2,1y

∂x ψ1+ ∂ f̃2,1y
∂ y ψ2, and so on. Hereψ = (ψ1, ψ2)

denote two components of the vector field ψ .

Proof Since γ is an incremental diffeomorphism, we can
express it as γ = γid + tψ which, in turn, implies that∇γ =
I2 + t∇ψ . Using chain rule, we evaluate the derivative:

d
[
∇( f̃2 ◦ γ )

]
dt

=
d
[
(∇ f̃2 ◦ γ )∇γ

]
dt

=
d
[
∇ f̃2 ◦ γ

]
dt

∇γ + (∇ f̃2 ◦ γ )
d(∇γ )

dt
.

We will derive each term on the right one by one. Starting
with a part of the first term:

d
[
∇ f̃2 ◦ γ

]
dt

= d

dt

[
( f̃2,1x ◦ γ ) ( f̃2,1y ◦ γ )

( f̃2,2x ◦ γ ) ( f̃2,2y ◦ γ )

]

=
⎡
⎣
〈
(∇ f̃2,1x ◦ γ ),

∂γ
∂t

〉 〈
(∇ f̃2,1y ◦ γ ),

∂γ
∂t

〉
〈
(∇ f̃ 22,2x ◦ γ ),

∂γ
∂t

〉 〈
(∇ f̃2,2y ◦ γ ),

∂γ
∂t

〉
⎤
⎦

. Evaluating this expression for t = 0, we set γ = γid ,∇γ =
I2, and the full first term becomes

⇒
d
[
∇ f̃2 ◦ γ

]
dt

∇γ

∣∣∣∣∣∣
t=0

=
⎡
⎣
〈
∇ f̃2,1x , ψ

〉 〈
∇ f̃2,1y, ψ

〉
〈
∇ f̃2,2x , ψ

〉 〈
∇ f̃2,2y, ψ

〉
⎤
⎦ .

The full directional derivative thus becomes:

⇒
d
[
∇( f̃2 ◦ γ )

]
dt

∣∣∣∣∣∣
t=0

=
⎡
⎣
〈
∇ f̃2,1x , ψ

〉 〈
∇ f̃2,1y, ψ

〉
〈
∇ f̃2,2x , ψ

〉 〈
∇ f̃2,2y, ψ

〉
⎤
⎦+ ∇ f · ∇ψ .

We define the term on the right of equality as H . Now, since

φ(γ ) = (g̃2�γ ) =
[
∇( f̃2 ◦ γ )

]T ·
[
∇( f̃2 ◦ γ )

]
, we have

dφ(γ )

dt

∣∣∣∣
t=0

= HT · ∇ f̃2 + ∇ f̃ T2 · H

and the directional derivative of L at γid is given by

⇒ dγid L(ψ)

= dL(γid + tψ)

dt

∣∣∣∣
t=0

= −2
∫
D
tr

(
(g1 − (g̃2�γid))

(
dφ(γ )

dt

∣∣∣∣
t=0

))
ds

= −2
∫
D
tr
(
(g1 − g̃2)

(
HT · ∇ f̃2 + ∇ f̃ T2 · H

))
ds.


�

4.2.2 Direction Derivative of L for Dk

For the disk domain Dk , the expression for the directional
derivative of L is the same, except for a change of vari-
able. We have Dk = {

(p, q)|p2 + q2 ≤ 1
}
and Ds =

{(x, y)|0 ≤ x, y ≤ 1}. The relationship between the two
coordinate systems is (p, q) = (x cos(2π y), x sin(2π y)).
Therefore, ∇ f pq(s) = ∇ fxy(s)J (s), where

J (s) = ∂(x, y)

∂(p, q)
=
[

∂x
∂ p

∂x
∂q

∂ y
∂ p

∂ y
∂q

]
=
[

∂ p
∂x

∂ p
∂ y

∂q
∂x

∂q
∂ y

]−1

=
[
cos(2π y) −2πx sin(2π y)
sin(2π y) 2πx cos(2π y)

]−1

=
[
cos(2π y) sin(2π y)
− sin(2π y)

2πx
cos(2π y)

2πx

]
Δ= Jxy

Thus, it is easy to prove the following result.

∇ f pq = ∇ fxy Jxy, gpq = ∇ f Tpq∇ f pq = J Txygxy Jxy .

For L(g1pq , g̃2pq) = ∫
Ds

(
g1pq − g̃2pq

)2
dp dq , the gradi-

ent of L with respect to γ at γid , in the direction of ψ , is
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given by:

dγid L(ψ) = −2
∫
Ds

tr
(
(g1pq − g̃2pq)(H

T
pq∇ f̃2pq

+∇ f̃ T2pq Hpq)
)
dp dq.

(7)

With change of variables, the volume element dp dq =
det( ∂(p,q)

∂(x,y) )dx dy = det(J−1
xy )dx dy = 2πxdx dy.

4.3 The Tangent Space T�id(0)

The next step is to specify a convenient basis for the tan-
gent space of Γ at identity γid , Tγid (Γ ). It is the set of all
ψ that are smooth vector fields in the interior of D and zero
on the boundaries. Although one can form this basis ana-
lytically, using Fourier or other well-known bases, we will
take an empirical approach instead. Our idea is to generate
lots of small deformations using simple techniques and use
them to learn the desired basis. We will use the well-known
LDDMM algorithm, in conjunction with some uniformly-
spaced landmarks, to generate some vector fields and then
use these fields to form a basis BT .

The use of the LDDMM algorithm to match a set of land-
marks is discussed later in Sect. 5.1. We start with a set of
uniformly distributed points in the interior of the domain D.
See the top row of Fig. 11. Then we select a pair of neigh-
boring points and use the LDDMM algorithm to generate a
vector field matching these two points. That is, if γ is the
output of LDDMM for matching one point to the other, then
set b = γ −γid . The bottom two rows of Fig. 11 show picto-
rial examples of this idea. Repeating this step several times
generates a set of vector fields {b}. We apply the Gram–
Schmidt algorithm to this set using the L

2 norm to result
in an orthonormal set BT . For example, using a spacing of
δ = 0.08 between the neighboring pairs and a grid size of
21 × 21, we end up with 1407 elements in BT .

4.4 Registration Algorithm and Examples

Here, we collect all the pieces needed for registering objects
and list the full procedure (for optimization over boundary-
preserving diffeomorphisms) in Algorithm 3.

Wedemonstrate this algorithmwith a few simulated exam-
ples. In thefirst set of examples,we take anobject f1 and form
f2 by simply re-parameterizing it with an arbitrary γ ∈ Γ .
That is, we construct f2 = f1 ◦γ . Then, we use Algorithm 3
to solve for the optimal registration γ ∗ between f1 and f2.
Here, we should get min

γ∈Γ
L(γ ; g1, g2) = 0 and f2 ◦ γ ∗ = f1

and this iswhatweobtain in practice also, as shown inFig. 12.
Each row in this figure shows the original f2, the registered
f2 (i.e., f2 ◦γ ∗), the difference f1 − f ∗

2 , and the evolution of
the cost L during optimization.One can see that the algorithm

Fig. 11 Construction of orthonormal basis of Tγid (Γ ). The top panel
shows a uniform placement of points in D and bottom two rows show
deformations resulting from applying LDDMM to match some neigh-
boring points

Algorithm 3Gradient-descent method for optimization over
Γ
Goal: To solve γ ∗ = argmin

γ∈Γ

L(γ ; g1, (g2�γ )),

1. Choose a proper step size ε and let g02 = g2.

2. L(γ ) = L(γ ; g1, (gi2�γ )), ∇Lγid ≈
N∑
i=1

(dγid L(ψi ))ψi where

dγid L(ψi ) is given in Eqns. 6, (7).
3. γ i = γid − ε∇Lγid , g

i+1
2 = (gi2�γ

i ).
4. If converged, then stop. Else, set i = i + 1 and return to Step 2.

The final re-parameterization is γ ∗ = γ 0 ◦ γ 1 ◦ · · · ◦ γ end and the
registered second tensor field is g∗

2 = gend2 = (g2�γ ∗).

is quite successful in recovering the original γ , or rather its
inverse, that was used in creating f2.

In the second experiment, we use the same setup, except
this timewe use f1 and f2 with noticeable differences in their
shapes. In each row of Fig. 13, we show an experiment with
the first three panels showing f1, γ ∗ and f2◦γ ∗, respectively.
The last panel in each row shows the evolution of L during
optimization using Algorithm 3. As these results suggest, the
algorithm is successful in reducing the objective function and
providing a good registration between points across objects.
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Fig. 12 Simulated examples of optimization over Γ . Given the ground
truth f and some γ0 ∈ Γ , let f1 = f , f2 = f ◦ γ0. Theoretically, the
best γ ∗ that registers f2 to f1 should be γ −1

0 . The first panel shows the
known object f2 = f ◦ γ0; the second panel shows after registration
f ∗
2 = f2 ◦γ ∗; the third panel shows that f ∗

2 is basically the same as f1;
the last panel shows the energy function in solving γ ∗ with Algorithm 3

Fig. 13 Simulated examples of optimization over Γ . Given two objects
f1, f2 ∈ F , the first panel shows f1; the second panel shows the best
γ ∗ that registers f2 to f1; the third panel shows f ∗

2 = f2 ◦ γ ∗; the last
panel shows the energy function in solving γ ∗ with Algorithm 3

4.5 Extrinsic Geodesic Between Registered Objects

Once we find a γ that optimally registers f1, f2 ∈ F , we
can solve for the geodesic between f1 and f ∗

2 = f2 ◦ γ ∗
as laid out in Sect. 3.4. First, we calculate the geodesic
between registered tensor fields g1 = ∇ f T1 · ∇ f1 and
g∗
2 = ∇ f ∗T

2 · ∇ f ∗
2 . Then, we invert some sample points

along this geodesic by minimizing the energy function:

fτ = argmin f ∈F E( f ; gτ ), where E is defined in Eq. 4.
In Sect. 3.4, we use the Fourier basis BF for evaluating
the gradient ∇ f E = ∑

b∈BF

(∇ f E(b))b. Theoretically, any

basis for representing element f ∈ F should suffice for
representing ( f ◦ γ ) ∈ F also. However, we have found
that re-parameterization sometimes introduces roughness in
f ◦ γ , and one needs a lot of Fourier elements to represent
it well. Therefore, we suggest supplementing the basis as
follows.

4.5.1 A Basis for Re-Parametrized Functions

Our goal is to form an orthonormal basis for representing
functions of the type f ◦γ , for smooth f and γ . Recall that for
small diffeomorphisms, we can use the approximation γ =
γid+b, b ∈ BT , whereBT denotes a basis of Tγid (Γ ). So, one
way to construct a basis for re-parameterized functions is by
forming a collection { f ◦ γ | f ∈ BF , γ = γid + b, b ∈ BT }
and orthonromalize it using Gram-Schmidt basis. However,
this process results in a huge set, and that leads to inefficiency
in representation. Instead, we use the Taylor expansion,

f ◦ γ ≈ f ◦ γid + ∇ f (γid) · (γ − γid)

to motivate another idea. This expansion shows that a func-
tion f ◦γ can be approximated using a linear combination of
a basis of f ≡ f ◦ γid and a basis for b = (γ − γid). So, we
can construct a new basis forF withB = BF ∪BT , followed
by the Gram–Schmidt procedure to orthonormalize it.

4.5.2 Numerically Inverting Registered Tensor Fields

The next step is to invert a tensor field, denoted as g∗
τ , that lies

along the geodesic between g1 and g∗
2 = ∇ f ∗T

2 ·∇ f ∗
2 . For this

step, we slightly modify the objective function given in Eq. 4
by replacing f with f0 + w, to get E( f0 + w; g∗

τ ). Here f0
represents the initial guess for f and a good guess improves
the search results.One possibility for f0 is to use the inversion
of gτ , along the geodesic between g1 and g2 = ∇ f T2 · ∇ f2,
resulting from inversion with the Fourier basis BF . A better
idea is to use a linear interpolation between γid and γ ∗ to
further improve that initial guess. Algorithm 4 summarizes
different steps used in inverting the geodesic between g1 and
g∗
2 . We use B derived in the previous section to represent the

unknown variable w.
Figure 14 presents an illustration of Algorithm 4 for

calculating the geodesic in S. First row shows the linear
interpolation between γid and γ ∗; the second row shows the
geodesic between f1 and f2 according to Algorithm 2; the
third row shows the point-wise composition of the geodesic
between f1 and f2 and the linear interpolation between γid
and γ ∗. Each of these f s are chosen as the initial conditions
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Fig. 14 An example of geodesic in S illustrating Algorithm 4

for inverting g∗
τ using the gradient descent method at the cor-

responding τ . The last row shows the final path between f1
and f ∗

2 by inverting the geodesic between g1 and g∗
2 . Fig-

ure 15 shows the comparison of geodesic between f1 and f2
without andwith optimization overΓ . Figure 16 showsmore
examples of geodesic paths between simulated shapes in S.

Algorithm 4 Geodesic Between Registered Shapes
Given f1, f2 ∈ F , solve γ ∗ = argmin

γ∈Γ

L(g1, (g2�γ )). Suppose we

want N shapes along the geodesic between f1 and f ∗
2 = f2 ◦ γ ∗,

geoS0 = f1, geoSN = f ∗
2 .

1. Calculate the geodesic between γid and γ ∗ : γi = γid + i
N (γ ∗ −

γid ), i = 0, · · · , N ;
2. Calculate the geodesic between f1 and f2 in F : geoF with Algo-

rithm 2;
3. Set geoF i ◦ γi as the initial condition for inverting by gradient-

descent method and solving for geoS i ;
4. Calculate the geodesic between g1 and g∗

2 in G: geoG;
5. To minimize E(w; gτ ) = E(G( f0 + w); gτ ), where gτ is an inter-

mediate point on geoG, use iterative updates f with f − ε∇E f ,
∇E = ∑

b∈B
∇E f (b)∗b.

5 Landmark-Guided Shape Analysis

So far, the registration of objects and computation of the
geodesic paths were fully automated and did not utilize any
additional information. In case we are given a finite set of
registered landmarks (points in the domain D) for all objects,
how can we incorporate that additional information in the
registration and shape analysis of objects? We describe this
process next.

Fig. 15 Examples of geodesics before and after optimization over Γ

Fig. 16 Each row shows an example of geodesic in S. The last panel
in each row shows the optimal registration γ ∗ = argmin

γ∈Γ

E( f1, f2 ◦ γ )

We start with the problem of registering thewhole objects.
Similar to [16], this registration is performed in two steps.
The first step is to find an initial registration that matches
the given landmarks, irrespective of the rest of the shapes. In
mathematical terms, let f1, f2 ∈ F be two objects and let
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Fig. 17 Examples of using LDDMM to find a γ that registers red land-
marks to blue landmarks for Ds (top) and Dk (bottom) (Color figure
online)

{xi ∈ D, i = 1, 2, . . . , k}, {yi ∈ D, i = 1, 2, . . . , k} denote
their respective landmarks. For the initial registration, our
goal is to find a γ ∈ Γ such that yi = γ (xi ). The next step is
to optimize L (Eqn. 5) over those elements ofΓ that preserve
this landmark registration.

5.1 Initial Registration Using LDDMM

Wewill use thewell-knownLDDMMframework [5] adapted
to landmark problem [14] for this purpose. Given two sets of
landmarks {xi , yi , i = 1, . . . , j} ∈ D, the goal of landmark
registration is to compute a boundary-preserving diffeomor-
phism γ : D ↔ D, such that yi = γ (xi ). The solution
presented in [14] constructs a path φt ∈ Γ , t ∈ [0, 1] that
starts at φ0 = γid and ends at φ1 = γ . The path φt is con-
trolled by a time-dependent vector fielddφt/dt = vt (φt ), t ∈
[0, 1]. Thus, γ = φ1 = φ0 + ∫ 1

0 vt (φt )dt registers the given
landmarks.

The optimality of the velocity field is defined by the min-
imization problem:

min
v

(∫ 1

0

∫
D

‖Ov(s, t)‖ dsdt + 1

σ 2

N∑
n=1

‖φ1(xn) − yn‖2
)

,(8)

where φ1(s) = s + ∫ 1
0 vt (φt (s))dt and O is a linear differ-

ential operator that controls the smoothness of the velocity
field and ensures that φt , t ∈ [0, 1] are diffeomorphisms.

Figure 17 shows some examples of landmark registration
using this solution. In each panel we show a diffeomorphism
that matches landmarks shown in red dots—{xn}—to the
landmarks shown in blue dots – {yn}. These diffeomorphisms
provide an initial matching of domains.

5.2 Landmark-Preserving Registration

Next, we consider the rest of the information in objects f1,
f2 and register them while preserving the given registration
of landmarks. In other words, we are interested in solving

the optimization problem stated in Eq. 5, except the search
space for incremental γ is now:

Γ0 = {γ ∈ Γ |γ (yi ) = yi , i = 1, 2, . . . , n} .

That is, the incremental γ ’s do not change the landmarks on
f2. The new optimization problem is given by

γ̂ = argmin
γ∈Γ0

∫
D

(g1 − (g̃2�γ ))2ds, (9)

There are two parts to this matching step: (1 Matching of
the boundary curves, and (2) Matching of the interior points
while preserving the landmark registration.

5.2.1 Registration of Boundaries

Similar to Sect. 4.1, we find the best circular shift that regis-
ters two closed curves representing the two boundaries. Note
that since LDDMM-based registration of landmarks does not
affect the boundaries of f1 and f2, this step of matching the
boundaries using circular shifts is independent of that step. In
other words, the two optimization problems do not interact.

5.2.2 Registration of Interior

Here, we provide an altered basis for Tγid (Γ0) for use in
this optimization. The rest of the procedure, as stated in
Algorithm 3, remains the same. We need to construct a set
Tγid (Γ0) whose elements are vector fields that vanish at {yi }.
Following [16], we begin by providing a construction for
an orthonormal basis that vanishes at only one point, say
y1 ∈ D.

1. Generate the full basis for Tγid (Γ ), denoted by BT with
elements b1, b2, . . . .

2. Among the basis elements in BT , choose two of them,
say b1 and b2, such that b1(y1), b2(y1) form a basis of
Ty1(D).

3. For each basis element bi other than b1 and b2, replace it
by bi − (z1b1 + z2b2), where scalars z1 and z2 are chosen
so that bi (y1) = z1b1(y1) + z2b2(y1).

4. Remove b1 and b2 from the basis set.
5. The altered vector fields form a basis of the smooth vector

fields that vanish at y1.
6. Orthonormalize the remaining basis elements using the

Gram–Schmidt procedure under the L2 metric.

This was the case for one landmark. For n landmarks, in Step
2, choose 2n basis elements with the property that together,
their values at the n points form a basis for the direct sum of
the tangent spaces at the n landmark points. The rest of the
procedure remains the same.
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Fig. 18 Examples of geodesic between f1 and f2 ◦ γ̂ . The last panel: γ̂
and landmarks. The red points represent the set of landmarks on f1; the
blue points represent the set of landmarks on f2(Color figure online)

Fig. 19 Examples of geodesic with and without landmark registration

Once we find the optimal landmark-constrained registra-
tion, the geodesic between registered objects ( f1 and f2 ◦ γ )
can be obtained using Algorithm 4. Some examples using
simulated objects are shown in Fig. 18. Each row in this fig-
ure shows the final geodesic (first five shapes) and the optimal
γ̂ in the last panel. Additionally, we provide some compar-
isons of geodesics with and without landmark registration in
Fig. 19.

5.3 Applications on Real Data

Next, we present applications of landmark-constrained shape
analysis on two datasets:

Fig. 20 Dataset: drosophila wing shapes

Fig. 21 Dataset: leaf shapes

1. Drosophilawing shapes, shown in Fig. 20, are collected in
pairs by Edwards et al. [9] for drosophila species living on
the Hawaiian island chain, and the landmarks are chosen
at the intersections of the veins;

2. Leaf shapes, shown in Fig. 21, are collected by Gupta
and Nath [13], and the landmarks are ink spots marked to
monitor the leaf’s growth.

We start by extracting the boundary and the landmarks
from the image and then parameterize the interior and
the boundary to provide an initial coordinate system. In
drosophila wing shapes, we take four pairs of shapes and
compute elastic geodesics between them with registration.
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Fig. 22 γ̂ that registers landmarks on planitibia and silvestris

Fig. 23 Geodesic between f1 and f2 ◦ γ̂ for wing shapes. The last
panel: γ̂ and landmarks

We use LDDMM to register the landmarks for each pair
and provide an initial registration for f1 and f2. The
overall shapes are very similar in these examples, and
additional landmark-constrained registration does not signif-
icantly change the result. In practice, for such similar shapes,
one can ignore the full re-parametrizations and perhaps man-
age with only the (LDDMM-based) landmark registration
step. An example γ̂ that registers the landmarks on these
shapes is shown in Fig. 22. Specifically, we show the exam-
ple of registering Silvestri to Planitibia. The left two panels
show individual landmarks and the right panel shows γ̂ . We
can see that the deformation is relatively small as the shapes
and the landmarks are relatively similar. γ̂ for the other pairs
are similar and hence not displayed. The geodesics for four
of shapes (displayed in Fig. 20) are presented in Fig. 23.

In leaf shapes, there are many landmarks, perhaps too
many, to make a difference. Therefore, we select a small sub-
set of them to help perform registration.We take the two pairs
of shapes shown in Fig. 21 and compute elastic geodesics
between them. Figure 24 shows the resulting geodesics for
registered leaf shapes.

6 Summary and Discussion

In this paper, we introduce a tensor field representation for
analyzing the shapes of planar solid objects. While this rep-
resentation provides several desired invariances to nuisance
transformations, it presents a challenge in inverting the rep-

Fig. 24 Geodesic between f1 and f2 ◦ γ̂ for leaf shapes. The last panel:
γ̂ and landmarks

resentations back to objects. We use a numerical approach
and minimize a particular energy function to perform inver-
sion successfully.This step, combinedwith dense registration
of points across objects, results in elastic geodesics and
geodesic distances between shapes of planar objects. The
paper develops techniques for the registration of points with
or without using discrete landmarks.

The main limitations of the method presented here are the
following. These limitations also naturally point to items for
future research in this area.

1. As mentioned in the paper, the geometry of the range
space of G has not been respected or utilized in the cur-
rent implementation for geodesics in G. One can explore
the use of this geometry and develop more intrinsic tech-
niques for such geodesics.

2. Ideally, the objective function used for registration should
be the geodesic distance dG defined on the preshape space.
In this paper, we use a simplified surrogate that is compu-
tationally efficient to optimize. Given recent advances in
optimization techniques on nonlinear manifolds, one can
explore the use of dG for registering points across objects.

3. In the current implementation of optimization over Γ , the
chosen basis for Tγid (Γ ) does not allow the movement of
the points on the boundary of the domain. This constraint
can be easily relaxed, and the method extended.

A crucial part of the shape analysis framework is finding a
proper basis for the gradient descent algorithms for registra-
tion. For the optimization over Γ , the classic bases such as
the Fourier basis or the polynomial basis are not as practi-
cal as they do not efficiently capture complex deformations.
Thus, we propose a novel method to formulate the basis
using landmark registration via large deformation diffeo-
morphisms [14], and it gives satisfactory results. The whole
framework can be easily generalized to any objects defined
on D such as f : D → R

1,2,3.
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A Appendix: Geometry of Sym+(n)

For any A ∈ Sym+(n) and U , V ∈ TASym+(n), consider
the following Riemannian metric defined on Sym+(n)

〈U , V 〉A =
(
tr
(
A−1U0A

−1V0
)

+κtr
(
A−1U

)
tr
(
A−1V

))√
det A,

(10)

where κ > 0, U0 = U − 1
n tr(A

−1U )A and V0 = V −
1
n tr(A

−1V )A satisfying tr(A−1U0) = 0 and tr(A−1V0) = 0.
This Riemannian metric was first introduced in [12] and
is termed the split Ebin metric. The geometric structure
of Sym+(n) endowed with the split Ebin metric was stud-
ied thoroughly in [12] and we borrow some results from it
directly.

Theorem 3 Let A ∈ Sym+(n) and K ∈ TASym+(n).

Define q = 1 + tr(A−1K )
4 , θ =

√
κ−1tr(A−1K0A−1K0)

4 , where
K0 = K − 1

n tr(A
−1K )A satisfying tr(A−1K0) = 0. Then,

the exponential map starting at A in the direction of K is
given by

ExpA(K )

=
⎧⎨
⎩
(
q2 + θ2

) 2
n A exp

(
arctan(θ/q)

θ
A−1K0

)
if K0 �= 0,

q
4
n A if K0 = 0.

(11)

Theorem 4 Let A, B ∈ Sym+(n), wehave K = A log(A−1B) ∈
U = TASym+(n)\(−∞,−4/n]A. Then the inverse of the
exponential map is given by the following:

Exp−1
A (B) ={

4
n (β cos θ − 1) A + 1

θ
β sin θK0 if K0 �= 0,

4
n (β − 1) A if K0 = 0,

(12)

where β = exp
(
tr(A−1K )

4

)
, K0 and θ are define as Theo-

rem 3.

Then, the geodesic on Sym+(n) can be solved explicitly.

Theorem 5 Let A, B ∈ Sym+(n), u � Exp−1
A (B), the

geodesic between A and B is given as

φ(t) = ExpA(ut), t ∈ [0, 1]. (13)

Let M be the space of positive semi-definite symmetric
matrices. Then the metric completion of Sym+(n) is given
byM/ ∼, where A ∼ B if they are both degenerate.

When κ = 1
n , we call the Riemannian metric in Eq. 10 as

the standard Ebin metric. It is the usual metric on the space
of all Riemannian metrics considered by [8,10,11]. [7] gives
the geodesic distance between any two matrices in Sym+(n)

of the standard Ebin metric as follows.

Theorem 6 For A, B ∈ Sym+(n). Let K = A log(A−1B).
Then the square of the geodesic distance for the metric (10)
between A and B is given by

d(A, B)2 = 16

n

(√
det(A) − 2 4

√
det(A)

4
√
det(B) cos θ

+√det(B)
)

,

(14)

where θ = min

{
π,

√
ntr(A−1K0A−1K0)

4

}
, K0 is defined as

Theorem 3.

In this paper, we use the standard Ebin metric (κ = 1
2 ) for

computation.
Using these point wise geodesics, we can compute a

geodesic path between any two elements of G. For any
g1, g2 ∈ G, let Φ(s, t) = φ(t), where φ is a parameter-
ized geodesic between g1(s) and g2(s) in Sym+(2), for all
s ∈ D.
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