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Independent normalization for γ-ray strength functions: The shape method
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The shape method, a novel approach to obtain the functional form of the γ -ray strength function (γ SF), is
introduced. In connection with the Oslo method the slope of the nuclear level density (NLD) and γ SF can be
obtained simultaneously even in the absence of neutron resonance spacing data. The foundation of the shape
method lies in the primary γ -ray transitions which preserve information on the functional form of the γ SF.
The shape method has been applied to 56Fe, 92Zr, and 164Dy, which are representative cases for the variety of
situations encountered in typical NLD and γ SF studies. The comparisons of results from the shape method to
those from the Oslo method demonstrate that the functional form of the γ SF is retained regardless of nuclear
structure details or Jπ values of the states fed by the primary transitions.
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I. INTRODUCTION

The number of nuclear levels per energy interval, the nu-
clear level density (NLD), and the γ -ray strength function
(γ SF), which is a measure of the average reduced γ -ray
decay probability, have received significant experimental and
theoretical attention over the last decade. The necessity for
reliable γ SF data has compelled the International Atomic
Energy Agency to establish a dedicated γ SF database to-
gether with recommendations [1]. The demand for γ SFs and
NLDs is driven in part due to their relevance to astrophysical
nucleosynthesis via capture processes [2–5]. Recent experi-
mental results have clearly demonstrated that capture cross
sections can be reliably obtained using NLDs and γ SFs as
input into reaction models [6–9], which are based on the
Hauser-Feshbach approach [10].

Several experimental methods exist [1] to extract γ SFs
from experimental data, and of those the Oslo method [11]
has been extensively used. The advantage of the Oslo method
lies in its ability to simultaneously extract the γ SF and
NLD from particle-γ coincident data albeit with the need
of external normalization. The NLD and γ SF are tradition-
ally normalized by three external parameters: (i) the NLD is
normalized to the level densities of discrete states at low exci-
tation energies, (ii) the NLD at the neutron separation energy
(Sn) is constrained to the s-wave neutron resonance spacing
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(D0), and (iii) the absolute value of the γ SF is determined
from the average total radiative width of s-wave resonances
(〈#γ 0〉). The functional form of the NLD is linked to that
of the γ SF and can be fully constrained by normalizations
(i) and (ii) above. The γ SFs extracted with the Oslo method
have been shown to be reproduced using alternative meth-
ods, which do not rely on external models or normalization
[12–14].

Difficulties in normalizing NLD and γ SF data from the
Oslo method emerge for nuclei without available D0 and/or
〈#γ 0〉 values. This is the case for many nuclei A when A − 1
targets are difficult or even impossible to manufacture, due
to the physical or chemical properties of the isotopes and
elements, respectively. The lack of D0 and 〈#γ 0〉 data present
challenges for the normalization of NLDs and γ SFs. In the
absence of normalization data, no coherent prescription is
currently available as case-specific approaches [7,8,15–17] do
not appear to be consistently applicable. Even in cases where
D0 is known, the normalization procedure introduces a model
dependence, which can lead to large uncertainties [1,18]. A
reliable approach is highly desirable, especially since the re-
quired data needs driven by nucleosynthesis studies primarily
involve nuclei for which direct measurements of capture cross
sections as well as D0 and 〈#γ 0〉 values are not possible.
Experimentally, γ SF and NLD data for nuclei away from the
line of stability are readily reachable however, in particular
with recent advances in extending the Oslo method to previ-
ously inaccessible regions through the β-Oslo [7,15,19] and
inverse-Oslo [20] methods.
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In this paper, the shape method is introduced, which is a
novel and mostly model independent approach to determine
the slope of NLDs and γ SFs extracted with the Oslo method
in the absence of measured D0 values. We have also applied
the shape method to β-decay data on 76Ge and 88Kr to ex-
plore the extraction of model-independent NLDs away from
stability [21]. In Sec. II the Oslo method and the normaliza-
tion for NLDs and γ SFs are reviewed. Section III presents
the concepts and details of the shape method, which allows
for the normalization of NLDs and γ SFs. Section IV focuses
on the shape method analysis and results on 56Fe, 92Zr, and
164Dy. The discussion of results together with recommen-
dations on the use and applicability of the shape method
is provided in Sec. V. Summarizing remarks are made in
Sec. VI.

II. REVIEW OF THE OSLO METHOD AND
NORMALIZATIONS

The Oslo method [11] extracts the γ SF and NLD si-
multaneously through the following procedure: States in the
quasi-continuum (below the particle threshold) are typically
populated with charged-particle direct and scattering reactions
or following β decay. The γ -ray spectrum is unfolded with
the detector response function using an iterative subtraction
technique [22]. From the unfolded spectra, and with the as-
sumption that the residual nucleus reaches a compound state,
the primary γ -ray spectrum is obtained through the first-
generation method [23]. The first-generation matrix P(Ei, Eγ )
is proportional to the γ -ray decay probability and can be
factorized according to the expression that is derived from the
compound nucleus formalism (details are found in Appendix
C of Ref. [24])

P(Eγ , Ei ) ∝ ρ(E f )T (Eγ ), (1)

where ρ(E f ) is the nuclear level density and T (Eγ ) is the
transmission coefficient, which is independent of excitation
energy (Ei) and hence nuclear temperature. This follows from
the generalized Brink-Axel hypothesis [25], which states that
collective excitation modes built on excited states have the
same properties as those built on the ground state. The hy-
pothesis has been validated in the quasicontinuum with the
Oslo method in 238Np [26], 116,120,124Sn [27], 64,65Ni [28],
and 56,57Fe [29]. The theoretical matrix Pth(Eγ , Ei ) is given
by [11]

Pth(Eγ , Ei ) = ρ(E f )T (Eγ )∑
Eγ

ρ(E f )T (Eγ )
. (2)

The ρ(E f ) and T (Eγ ) can be simultaneously extracted by per-
forming a χ2 minimization between the theoretical Pth(Eγ , Ei )
and experimental P(Eγ , Ei ) first-generation matrices [11].

From Eq. (2) an infinite number of solutions are obtained,
and the physical solution is found by normalizing T (Eγ ) and
ρ(E f ) to experimental data [11] with

ρ̃(E f ) = Aρ(E f )eαE f (3)

and

T̃ (Eγ ) = BT (Eγ )eαEγ , (4)

where A and B are constants and α is the transformation that
affects the common slope. The slope α and constant A are
determined by the NLD of the known discrete states at lower
excitation energies and the total NLD at Sn. The functional
form of ρ(E f ) and T (Eγ ) is defined from the χ2 fit to the
primary γ -ray matrix P(Eγ , Ei ). For a detailed discussion and
implementation of the Oslo method, see Ref. [24].

In this work, data from 56Fe [30], 92Zr [31], and 164Dy
[32] have been reanalyzed with the Oslo method using an
intrinsic spin-distribution for the absolute normalization at Sn.
The γ SFs of those nuclei may therefore deviate slightly from
results presented in previous publications. The form of the
spin-distribution is assumed to follow [33]

g(E , J ) % 2J + 1
2σ 2(E )

exp[−(J + 1/2)2/2σ 2(E )], (5)

where E is the excitation energy, J the spin, and the spin
cutoff parameter σ (E ) is assumed to have the functional form
[34,35]

σ 2(E ) = σ 2
d + E − Ed

Sn − Ed

[
σ 2(Sn) − σ 2

d

]
, (6)

determined by two excitation energies. At the lower excitation
energy E = Ed , we determine the spin cutoff parameter σd
from known discrete levels. The second point at E = Sn is
estimated assuming a rigid moment of inertia [36,37]

σ 2(Sn) = 0.0146A5/3 1 +
√

1 + 4aUn

2a
, (7)

where A is the mass number, a is the NLD parameter, Un =
Sn − E1 is the intrinsic excitation energy, and E1 is the energy-
shift parameter.

At Sn, normalization is achieved from NLDs calculated
with [11]

ρ(Sn) = 2σ 2(Sn)

D0
(
(Jt + 1) exp

[
− (Jt +1)2

2σ 2(Sn )

]
+ Jt exp

[
− J2

t
2σ 2(Sn )

]) .

(8)
The experimental D0 value is obtained from ) = 0 (s-wave)
neutron resonance spacing data which are typically retrieved
from Refs. [35,38] and Jt is the initial spin of the target
nucleus. Generally, NLDs can only be extracted to excitation
energies well below Sn with the Oslo method. The absolute
normalization at Sn, which sensitively depends on the spin
distribution, is achieved by extrapolating the NLDs using
a variety of level density models, such as the back-shifted
Fermi-gas [39], the constant temperature [40], or the Hartree-
Fock-Bogoliubov-plus-combinatorial [41] models.

The absolute normalization parameter B in Eq. (4) is ob-
tained by constraining the experimental data to 〈#γ 0〉 for
s-wave resonances by [24,42]

〈Γγ 0(Sn)〉 = 1
2πρ(Sn, Jt ± 1/2,πt )

×
∑

Jf

∫ Sn

0
BT (Eγ )ρ(Sn − Eγ , Jf )dEγ , (9)

014311-2



INDEPENDENT NORMALIZATION FOR γ -RAY … PHYSICAL REVIEW C 104, 014311 (2021)

TABLE I. Parameters used for the extraction of NLDs and γ SFs (see text for details).

Sn D0 ac E1
c Ed ρ(Sn) TCT 〈#γ 〉

Nucleus (MeV) (eV) (MeV−1) (MeV) (MeV) σd σ (Sn) (MeV−1) (MeV) (meV)

56Fe 11.197 6.196 0.94 2.70 2.5 4.05 2870(680)d 1.35(5) 1900(600)d

92Zr 8.635 514(15)a 10.4 0.66 3.0 3.0 4.50 16640(490) 0.90(2) 131(56)
164Dy 7.658 6.8(6)b 18.12 0.31 1.09 3.6 6.91 2.59(52)×106 0.59(2) 113(13)

aValue from [38].
bValue from [35].
cValues from [36,37].
dEstimated from systematics corresponding to norm-2 in Ref. [29].

where πt is the parity of the target nucleus in the (n, γ )
reaction, Jf and Jt are the spins of the levels in the final and
target nucleus, respectively.

The essential parameters used here for the extraction of the
NLDs and γ SFs are listed in Table I. More details on the
extraction of NLDs and γ SFs for 56Fe, 92Zr, and 164Dy are
discussed in Refs. [30–32].

The relationship between T (Eγ ) and the γ SF [ fXL(Eγ )]
with XL being the type and multipolarity of the radiation,
respectively, is [35]

TXL(Eγ ) = 2πEγ
2L+1 fXL(Eγ ). (10)

With the assumption that statistical γ -ray decay is dominated
by dipole transitions, the total γ SF [ f (Eγ )] becomes

f (Eγ ) = fE1(Eγ ) + fM1(Eγ ) = T (Eγ )
2πE3

γ

. (11)

The values of D0 and 〈#γ 0〉 from s-wave resonance and
to a limited extent D1 and 〈#γ 1〉 values from p-wave reso-
nance measurements1 are generally available for nuclei which
are populated through (n, γ ) reactions on stable targets. For
the majority of nuclei the information required by the Oslo
method to determine A, B, and α has not been measured,
mostly due to the unavailability of targets. This led to many
nonstandardized approaches to estimate the values D0 and
〈#γ 0〉 [7,8,15–17].

The development of a method with no or only very limited
model dependencies, which can be systematically applied to
nuclei, is of utmost importance to obtain the normalization
when D0 and 〈#γ 0〉 values are not available. A new method,
the shape method, will now be described, which provides a
prescription for the normalization of the slope of the NLD and
γ SF in the absence of D0. Software for the Oslo and shape
(diablo.c) methods are available from Refs. [24,43].

III. THE SHAPE METHOD

In this section, the shape method is presented. The method
utilizes concepts from γ SF measurements using the average
resonance capture approach and from the ratio and χ2 meth-
ods using particle-γ -γ coincident data. These approaches are

1A similar treatment as for D0 can be applied to p-wave neutron
resonance spacing data (D1) and if available may be used to provide
additional constraints.

briefly summarized before we continue with a detailed de-
scription of the shape method.

A. Average resonance capture

The methodology for average resonance capture [44–46]
is similar for beams of protons or neutrons, and several
resonances are populated and combined in specific excitation-
energy ranges. The shape method will be applied following
charged particle reactions and we will focus on the example
of average resonance capture with proton beams. Experimen-
tal data from (p, γ ) reactions have been used to deduce the
γ SFs for several 45 < A < 91 nuclei for which the proton
separation energy (Sp) is located below Sn, see for example
Refs. [1,47,48]. The use of high-resolution detectors allows
for the identification of individual primary γ -ray transitions to
low-lying levels as long as the resolution of the proton beam is
better than the spacing of low-lying levels. The relative inten-
sities of primary transitions (corrected by E3

γ ), which originate
from a given excitation energy region and decay to low-lying
levels with the same spin and parity, preserve the shape and
hence the energy dependence of the γ SF. The proton beam
energies, together with the target thicknesses, provide an un-
ambiguous assignment of specific excitation energies. Data of
primary transitions to low-lying states of different spins and
parities (Jπ ) are normalized by weighting the different contri-
butions through the Hauser-Feshbach formalism. Regardless
this normalization, the energy dependence of the γ SF remains
completely independent of any model input.

B. Ratio and χ2 Methods

The Ratio method [12] is a model-independent approach
to obtain the γ -energy dependence of the γ SF from corre-
lated particle-γ -γ events. The γ -γ coincidence is between the
primary γ -ray transition, originating from the region of the
quasi-continuum populated in the reaction, and the transition
from low-lying discrete states, which are fed by the primary
γ rays. When a discrete transition from a low-lying state is
detected in coincidence with a charged particle, additional
stringent requirements are applied to the primary γ ray, so
that the energy sum of the discrete and primary transitions is
equal to the excitation energy within the energy resolutions
of the detectors and particle beams. Any particle-γ -γ event
satisfying these conditions provides an unambiguous determi-
nation of the origin and destination of the observed primary
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transition. As long as the primary γ rays feed discrete states
of the same Jπ the shape of the γ SF remains independent of
model input by analogy with the average resonance proton
capture method. The ratio R of intensities N for two different
primary γ -ray energies from the same initial excitation energy
Ei to discrete low-lying levels of same Jπ at energies El1 and
El2 is

R = f (Ei − El1 )
f (Ei − El2 )

= Nl1 (Ei )(Ei − El2 )3

Nl2 (Ei )(Ei − El1 )3
. (12)

When the ratios from different excitation energies are com-
pared, information on the energy dependence of the γ SF is
obtained as demonstrated from (d, pγ γ ) [12], (p,p’γ γ ) [14],
((γ , γ γ ) [49], and (p, γ γ ) [50] reactions.

Data of primary γ -ray intensities from an excitation energy
range to different discrete levels of the same Jπ and corrected
for E3

γ , can also be fitted with a χ2 minimization procedure
[12,13], referred here as the χ2 method. The set of data from
different initial excitation energies are independent of each
other and following the χ2 minimization, which combines the
sets from different excitation energy bins, yields information
on the shape of the γ SF.

C. Shape Method Procedure

In the above-described methods discrete γ -ray lines were
studied with high-resolution germanium detectors. When
the total γ SF extending across larger excitation and γ -ray
energy ranges is to be measured, the Oslo method with high-
efficiency detectors, albeit with worse energy resolution, is
regularly used. In the following, we will extend the previous
techniques and replace the identification of γ -ray lines from
discrete levels l j with diagonals Dj in a particle-γ matrix.

The diagonals Dj are directly related to the first-generation
(or primary) P(Eγ , Ei ) matrix provided by the Oslo method.2

Figure 1 illustrates the concepts of diagonals and symbols
used where one may define a final excitation energy E f fed
from an initial excitation energy Ei by a γ transition with en-
ergy Eγ . This is given by Ei(Eγ ) = Eγ + E f with E f fixed and
the diagonals Dj with different E f are parallel to each other as
schematically shown in Fig. 1. Here, the direct γ -ray decay
from Ei to the ground state is simply given by Ei(Eγ ) = Eγ

(within the resolutions of the detectors). The diagonals may
appear in three variants containing (i) one final state with
given Jπ , (ii) two or more specific final states, or, in the case of
high level density, (iii) a large number of final states (typically
>10) with a corresponding average E f and possibly many
different Jπ .

The intensities (counts) given by the content of the pixel
(Eγ , Ei ) for two diagonals are exploited to obtain a pair of
data points which are proportional to the γ SF.

In the following, we assume a symmetric parity distribution
with the spin distribution g(Ei, Ji ) of Eq. (5). Furthermore, we
assume the population of a typical state at excitation Ei and

2The total γ -ray matrix (all γ rays in a cascade) may be utilized,
as long as it is certain that the diagonals contain only primary
transitions.

!

FIG. 1. Illustration of diagonals (blue) D1 and D2 selecting spe-
cific final states in the P(Eγ , Ei ) matrix. Horizontal bars (yellow)
indicate three initial excitation energies Ei. The number of counts at
the crossing points between a diagonal and a bar (Eγ , Ei ) gives the
intensity of the γ transitions from Ei to Ei − Eγ , here symbolized
with filled circles, squares, and triangles. With intensities from two
diagonals at the same Ei, a pair of internally normalized γ SF data
points can be established.

spin Ji is given by the cross section σ (Ei, Ji ). The number of
counts in a diagonal Dj at (Eγ , Ei ) with one or more final Jπ

states included can then be expressed as a sum of products,

ND ∝
∑

[Jf ]

Ji=Jf +1∑

Ji=Jf −1

σ (Ei, Ji )g(Ei, Ji )G(Ei, Eγ , Ji, Jf ), (13)

where we define [Jf ] as the spins of the final levels within the
diagonal; e.g., if the diagonal contains four states with [Jf ]
then

∑
[Jf ] is the sum over those four terms. The second sum

is restricted to the available Jπ populated by dipole transitions
connecting initial and final states, which generally includes
three initial spins. However, in the case of Jf = 0 only the
Ji = 1 spin is included and for Jf = 1/2 only the Ji = 1/2
and Ji = 3/2 spins are included.

The third factor G in Eq. (13) is proportional to the γ -decay
width given by

G(Ei, Eγ , Ji, Jf )

∝
∫ Eγ ++/2

Eγ −+/2
T (Ei, E ′

γ , Ji, Jf )δ(Ei − E ′
γ , Jf )dE ′

γ , (14)

where + is the energy width of the diagonal which includes
the specific final level Jf at E f = Ei − Eγ . The δ function
assures that one specific level is counted giving

∫
δ dE ′

γ = 1.
With the assumption that the transmission coefficient is al-
most constant within the energy interval [Eγ − 1/2+, Eγ +
1/2+], it can be placed outside the integral with a value of
T (Ei, Eγ , Ji, Jf ).

According to the generalized Brink-Axel hypothesis, the
transmission coefficient T (Ei, Eγ , Ji, Jf ) is assumed to be
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independent of spin, parity, and excitation energy. Thus, we
replace the expression for the transmission coefficient by
T (Eγ ), i.e., a function only dependent of Eγ . Furthermore,
if we assume the dominance of dipole transitions in the quasi-
continuum region, the transmission coefficient can be replaced
by the γ SF through T (Eγ ) = 2π f (Eγ )E3

γ from Eq. (11).
With the considerations above, Eq. (13) can be written as

ND ∝ f (Eγ )E3
γ

∑

[Jf ]

Ji=Jf +1∑

Ji=Jf −1

σ (Ei, Ji )g(Ei, Ji ). (15)

In the following we will assume that the probability of pop-
ulating a certain initial state with spin Ji at a given Ei is
approximately independent of spin, i.e., σ (Ei, Ji ) ≈ σ (Ei, J ′

i ).
The shape method applies for the same Ei but for two

different diagonals D1 and D2; see Fig. 1. We choose diagonal
D1 to represent a lower final excitation energy E f 1 and D2
a higher final excitation energy E f 2. At the initial excitation
energy Ei, the γ -ray energies are Eγ1 = Ei − E f 1 and Eγ2 =
Ei − E f 2 for diagonals D1 and D2, respectively.

The strength functions at Eγ1 and Eγ2 are determined by
the number of counts at the diagonals D1 and D2 for the same
initial excitation energy Ei, using Eq. (15):

f (Eγ 1) ∝ ND1

E3
γ 1

∑
[Jf 1]

∑Ji=Jf 1+1
Ji=Jf 1−1 g(Ei, Ji )

f (Eγ 2) ∝ ND2

E3
γ 2

∑
[Jf 2]

∑Ji=Jf 2+1
Ji=Jf 2−1 g(Ei, Ji )

. (16)

In synergy with the methods introduced above, such a
pair of γ SF data points is internally normalized and we can
determine a γ SF data-point pair for each Ei. The double sum
can be omitted if the two diagonals include one final level each
of the same Jπ . However, such diagonals are often difficult
to identify in the data, and it is more common to observe
different spins for two diagonals, such as the 0+ ground state
and the first-exited 2+ state in even-even nuclei.

Figure 2 illustrates a sewing technique that allows one to
connect pairs of γ SF data points and is the final step of the
shape method to obtain the functional form of the γ SF. In this
example, we show three different pairs, each from a different
Ei, marked by filled circle, square, and triangle data points.
The second and third γ SF pairs are scaled as explained in
the figure caption. In detail, this is accomplished by finding
a matching-point energy, which is chosen to be the average
γ -ray energy Eγ ave of the two extreme γ SF data points of two
neighboring pairs. Generally, the deviations between adjacent,
matched pairs are larger when using a linear interpolation.
Therefore, we use a logarithmic interpolation of the γ SF data
points for each pair to Eγ ave. The resulting sewed γ SF is
represented by the black line to guide the eye in panel (c) and
exhibits the shape of the γ SF.

IV. SHAPE METHOD ANALYSIS AND RESULTS

In the following, when referring to discrete final levels
within the diagonals, we always refer to levels in the data
base from the National Nuclear Data Center (NNDC) [51].

! !
!

FIG. 2. Illustration of the sewing technique for three γ SF pairs
(filled circles, squares, and triangles) with each pair connected by
dashed lines in (a). The matching-point energy is chosen to be the
average (location of arrows) γ -ray energy Eγ ave of the two extreme
(lowest and highest) γ SF data points of two neighboring pairs. The
second pair of data points (filled squares) is scaled by a factor to
match the first pair of data points at a location indicated by the arrow
(filled circles) (a). Then the third pair of data points (filled triangles)
is scaled to match the previously corrected data pair (filled squares)
at the location of the arrow (b). Finally, the resulting sewed γ SF is
presented in (c) (solid black line).

For each application of the shape method we use a first-
generation matrix with ≈30–40 keV/channel on both axes
from which the numbers of counts are determined through
integration. These are then further compressed into bins of
≈120 keV/channel unless otherwise noted. The statistical
uncertainties are included for each data point through error
bars. The observed spread between neighboring matched data
points is reflective of the uncertainty band due to the sewing
method, e.g., logarithmic interpolation. Detailed discussions
on the comparisons of the results from the shape and Oslo
methods are deferred to Sec. V.

A. Diagonals with the same final Jπ: 56Fe

We utilize data from the 56Fe(p, p′γ ) 56Fe reaction pre-
viously presented in Refs. [29,30], where the γ rays were
measured with six large-volume LaBr3(Ce) detectors from
the HECTOR+ array [52] and the charged particles with the
SiRi silicon telescope [53]. Figure 3(a) shows the resulting
P(Eγ , Ei ) matrix of 56Fe. Gates were set on the diagonals and
correspond to the direct decays to the 2+

1 (diagonal D1) and 2+
2

(diagonal D2) levels at 847 and 2658 keV in 56Fe, respectively.
As the spins and parities for the two final levels are the same,
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FIG. 3. (a) The first-generation matrix P(Eγ , Ei ) of 56Fe showing the cuts on the diagonals decaying to the 2+
1 level (D1) at Ef = 847 keV

and the 2+
2 level (D2) at Ef = 2658 keV. (b) The resulting γ SF from the shape method (filled and open blue triangles) compared to the Oslo

method results (solid black squares) [29] normalized with the spin-cutoff parameter given by the rigid-body moment of inertia [36]. At the
highest γ -ray energies the Oslo method (solid grey squares) is affected by the empty region in the matrix (see text for details). Note that the
bin width is 248 keV/channel in this case due to 56Fe being a relatively light nucleus with a low level density. The shape method data points
are multiplied by a common absolute-normalization factor, which is found by a χ2 fit to the Oslo data in the approximate γ -energy region
6 ! Eγ ! 8 MeV.

the initial level density ρ(Ei ) and the population-depopulation
factor σ (Ei, Ji )g(Ei, Ji ) of the initial levels that feed the fi-
nal states in the diagonals are also the same. Therefore, the
number of counts in the diagonals for a given Ei only needs
to be corrected by the E3

γ factor. Following the sewing steps
outlined above for the pairs of intensities for each Ei, the shape
of the γ SF is obtained and compared to the results of the Oslo
method in Fig. 3(b). The γ SF at the highest γ -ray energies ob-
tained with the Oslo method are affected by the empty region
between D1 and the 4+

1 diagonal. As these pixels with zero
counts are included in the global, simultaneous fit of the NLD
and γ SF, the NLD is (close to) zero in between the discrete
levels, and the γ SF is accordingly strongly suppressed as there
are no levels for decay to occur.

Due to the lack of neutron-resonance spacing data for 56Fe,
as 55Fe is unstable, previous works have relied on systematics
from nuclear data to obtain the slope of the NLD and γ SF
[29,30]. Comparing the previous results with those of the
new shape method, we can conclude that the two normaliza-
tions previously used [29] are indeed reasonable. However,
as there is only a ≈30% relative change in the estimated
NLD at Sn, with ρ(Sn) = 2.18(59) × 103 MeV−1 (based on
the phenomenological spin-cutoff parameter of Ref. [54]) and
2.87(68) × 103 MeV−1 (spin-cutoff parameter given by rigid-
body moment of inertia from Refs. [36,37]) between the two
normalizations, we are not in a position to confirm which
normalization is correct. If there was a more pronounced
discrepancy in slope between the different normalizations,
the present method may enable a discrimination between the
input spin-distribution models. We would like to point out
that the previous approach of utilizing systematics for the
determination of D0 in 56Fe [29] appears to be appropriate
in this case. However, there is no reason to assume that such a

methodology based on systematics can be applied in general.
Hence, if no reliable systematics can be made, such as for
nuclei far away from stability, the present method, which is
based on a sound foundation, clearly provides a significant
constraint on the slope of the NLD and γ SF. The low- and
high-energy discrepancies observed in Fig. 3(b) are further
explored in Sec. V.

B. Several diagonals with different final Jπ combinations: 92Zr

Data from the (p, p′) reaction populating 92Zr [31] were
used with the γ rays detected in the NaI(Tl) CACTUS array
[55] and the charged particles in SiRi. With N = 52, 92Zr
is close to the magic N = 50 shell closure and is character-
ized by few low-lying levels. With the present experimental
resolution it is possible to identify four diagonals. With the
six combinations D1D2, D1D3, D1D4, D2D3, D2D4, and D3D4
one can investigate the consistency between the various γ SFs
from the shape and Oslo method results.

Figure 4(a) shows the primary matrix with the diagonals
Dj which include the following discrete states:

D1: 0+(0 keV).
D2: 2+(934 keV).
D3: 0+(1383 keV) and 4+(1495 keV).
D4: 3−(2340 keV), 4+(2398 keV), and 5−(2486 keV).

The lower part of the matrix shows that many nonstatistical
γ -ray transitions connect discrete levels and it is important to
point out that these should not be taken into account when
extracting the average γ SF for 92Zr. Thus, the results for the
Oslo method in Fig. 4(b) were extracted for Ei > 4.5 MeV.

014311-6



INDEPENDENT NORMALIZATION FOR γ -RAY … PHYSICAL REVIEW C 104, 014311 (2021)

1 2 3 4 5 6 7 8 9
 (MeV)
!

E-ray energy !

1

2

3

4

5

6

7

8
 (

M
eV

)
i

E
E

xc
ita

tio
n 

en
er

gy
 

10

210

310

10

210

310

1    D2 D3  D4DZr92)!Zr(p,p'92(a)

1 2 3 4 5 6 7 8 9
 (MeV)
!

E-ray energy !

1

10

210

)
-3

 M
eV

-8
) 

(1
0

!
E(f

S
F

!

Oslo method
 rays feeding lower D!
 rays feeding upper D!

(b)

4D3D
4D1    D4D2D

3D1D

2D1D

3D2D
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5 ! Eγ ! 7 MeV.

Similarly, when applying the shape method it is imperative
to remain above Ei values with enough initial states within the
energy bin at Ei that feed the levels contained by the diagonals.
For 92Zr we obtain erratic fluctuations for Eγ < 5 MeV and
these data are not shown.

It is gratifying that the six extracted γ SFs from the shape
method are all in rather good agreement with the functional
form between each other and the one obtained with the Oslo
method. Since the combination of diagonals represent a vari-
ety of final Jπ values, yet they provide consistent functional
forms, the spin distribution g(E , J ) applied in Eq. (5) with spin
cutoff parameters of Table I is supported.

C. Diagonals including ground and two-quasiparticle
bands: 164Dy

For rare earth nuclei, the level density becomes high
enough that it is difficult to identify final levels in the P(Eγ , E )
matrix within the experimental resolutions. However, the
known levels of 164Dy group into the ground-state band be-
tween 0 and 0.5 MeV and two-quasiparticle band structures
around 1.1 MeV. Figure 5 illustrates the level density ob-
tained with the Oslo method, and displays these two relatively
well-defined structures. This makes 164Dy a feasible case for
applying the shape method to the 164Dy(3He, 3He′) experi-
mental data, measured with the CACTUS and SiRi arrays,
from Refs. [32,56,57]. Furthermore, there are two interesting
features in the previous findings of the γ SF: (i) a scissors
resonance at Eγ = 2.83(8) MeV is built on the tail of the
giant dipole resonance and (ii) it has been speculated that
an enhancement exists around Eγ = 6–7 MeV due to the E1
pygmy resonance [32]. From the matrix in Fig. 6(a) we
recognize the diagonals corresponding to the ground-state and
two-quasiparticle bands. Here, diagonal D1 includes the 0+,
2+, 4+, and 6+ levels of the ground state band in the excitation

region of 0–0.5 MeV. Diagonal D2 includes 14 levels in the
excitation region of 0.76–1.39 MeV, all with known Jπ [51].
Figure 6(b) shows the γ SF extracted with the Oslo method
[32] together with the shape method results. The highest γ -ray
energies above ≈7 MeV are located in a region that is possibly
affected by structural effects. Here, the decay goes to the
ground-state band, for which the NLD is overestimated, as is
apparent from Fig. 5. This could be due to a strong overlap
and thus dependence of the initial levels and the ground band,
with the possible consequence of the NLD and γ SF not being
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FIG. 5. Level densities of 164Dy [57]. The solid line represents
the NLD of known levels. The filled square symbols show the results
of the Oslo method. The data points are connected to the NLD at Sn

(open square) through extrapolation with the constant temperature
(CT) model.
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fully decoupled. Thus, an overestimate of the NLD at low Ex
could lead to a suppressed γ SF at the highest Eγ values.

As the D0 value is in fact known for 164Dy, the overall very
good agreement with the slope of the γ SF from the regular
Oslo normalization provides support for the applicability of
the shape method. It is interesting to note that the scissors
resonance is directly visible from Fig. 6(a) as a yellow-shaded
region for Ei > 4 MeV and Eγ ≈ 2–3 MeV. This enhanced
intensity is the main contributor to the scissors resonance
strength obtained with the Oslo method. It is therefore rather
exciting that the same information is also contained in the
two diagonals used in the shape method, resulting in a similar
enhancement for Eγ ≈ 2–3 MeV.

Furthermore, the shape method provides data up to Sn with
an apparent deviation in slope at Eγ ≈ 5.5 MeV, which may
signal the presence of a resonance located in the Eγ ≈ 6–7
MeV region. The previous results using the Oslo method were
hampered by a reduced γ SF at the highest energies, due to
structural effects at low energies, as indicated by the data
points in Fig. 6(b) for Eγ > 6.6 MeV, and therefore did not
allow for a strong statement regarding the existence of an
enhancement [32].

V. DISCUSSION

The shapes of the γ SFs extracted with the Oslo method
are reasonably well reproduced with the shape method, in
particular for excitation energies for which the total NLD of
initial states is high. With reduced excitation energies discrete
structures may become dominant and the concepts of γ SF
and NLD are no longer applicable. This situation is apparent
when inspecting the γ SF of 56Fe in Fig. 3(b) where the γ SF
below Eγ ≈ 5.5 MeV (Ei ≈ 6.5 MeV) exhibits significant
fluctuations. The NLD at Ei = 6 MeV has been measured
to be ρ ≈ 100 MeV−1 [58]. For 92Zr the shape method has
been applied from Ei = 4.5 MeV where ρ ≈ 180 MeV−1 [31].
For the heavier nucleus 164Dy the level density reaches ρ ≈

800 MeV−1 at Ei = 3 MeV, as is evident from Fig. 5. The rel-
atively high NLD found in 164Dy allows for the shape method
to be applied to low enough Ei values to cover the range of the
scissors resonance. It is important to emphasize that careful
considerations have to be given to identify appropriate Ei
regions for the shape method to be applicable. Discrete states
and/or structures may become dominant features which lie
outside the statistical regime. This is particularly the case for
light A nuclei or those which are located near closed shells.
From our investigation, a minimum of ρ ≈ 100 MeV−1 ap-
pears to be appropriate, or, more specifically, one should have
more than ≈10 transitions from excitation energies where
compound decay dominates, connecting the initial and final
excitation energy bins to reduce the effect of Porter-Thomas
fluctuations [59]. These values are estimates and it is strongly
recommended that each nucleus be investigated carefully to
determine the lowest reliable Ei and hence lowest γ -ray en-
ergy to be used.

At higher Ei, the data points from the shape method follow
the functional form of the γ SFs from the Oslo method rather
well. At the highest Ei, the Oslo method may underestimate
the γ SF due to structural effects, whereas the shape method
remains robust in this regime. As demonstrated for the three
nuclei under consideration, it is in the region of higher γ -ray
energies where the slope of the γ SF can be reliably obtained
with the shape method and provides the necessary constraints
if alternative normalization procedures are not possible due to
the absence of neutron resonance data.

Nuclei such as 56Fe, for which two low-lying discrete states
of the same Jπ can be separated experimentally, represent the
most fundamental application of the shape method and can be
treated with the fewest assumptions and without any model
input. In such cases, the NLD and cross section dependencies
of primary transitions feeding the states are eliminated.

The shape method remains applicable even when the dis-
crete levels differ in Jπ or if the states cannot be resolved
experimentally. This is clearly demonstrated for 92Zr, where
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six different combinations of final levels all yield strikingly
similar functional forms of the γ SF. This illustrates the ro-
bustness of the applied spin distributions and the assumption
that the population cross section is proportional to the spin
distribution over the Ei ranges considered for the extraction of
γ SF below the particle thresholds.

The results from 164Dy further reveal that the inclusion of
many final levels of widely varying Jπ values or even dis-
tinctive nuclear structures still leads to an energy dependence
which is similar to that of the γ SFs from the Oslo method. The
164Dy Oslo method results show the presence of the scissors
resonance. The same information is retained in both diagonals
and the resonance is observed by the shape method. This
may imply that this resonance is a collective mode obeying
the Brink-Axel hypothesis [60–63]. A suspected pygmy res-
onance at Eγ ≈ 6–7 MeV is apparent through the changing
slope in 164Dy, while previous results were inconclusive [32],
highlighting the complementary nature of the shape method.

It is interesting to note that the results from the shape
method clearly yield very similar γ SFs, regardless if the γ SFs
are built on different nuclear structures or Jπ states of a given
nucleus. This confirms the validity of the generalized Brink-
Axel hypothesis, supporting previous results [26–29]. Another
appealing aspect of the shape method is the fact that it can be
applied to the same set of experimental data as that used to
extract the NLD and γ SF with the Oslo method. This is highly
beneficial when the shape method is used to specifically deter-
mine the slope for the NLD and γ SF from the Oslo method
since it avoids unnecessary additional systematic uncertainties
which would arise when performing different experiments.

VI. SUMMARY

It has long been a challenging endeavor to estimate the
slope of the γ SF in the absence of neutron resonance data,
which is compounded by the fact that no standardized ap-
proach exists which is applicable to all nuclei. The shape
method provides a solution to the γ SF normalization co-
nundrum when D0 values are not available. It provides a
standardized approach to determine the slope of the γ SF and
NLD (if extracted simultaneously through the Oslo method),
which is not only universally applicable but will also provide
consistency for analyses and results.

The shape method makes use of concepts from the aver-
age resonance capture, ratio, and χ2 methods and is based
on the unambiguous experimental identification of the origin
and destination of primary γ -ray transitions. Through their
intensities, pairs of primary transitions retain the information
on the functional form of the γ SF.

The shape method has been applied to three nuclei which
are representative of the typical situations encountered: (i)
low-mass 56Fe, (ii) 92Zr located in the vicinity of shell clo-
sures, and (iii) 164Dy with scissors and pygmy resonances.
These three nuclei further represent a variety of Jπ combi-
nations for low-lying states which are fed by the primary
transitions. In 56Fe, the primary transitions feed two well-
separated and experimentally resolved states of the same Jπ ,
while in 92Zr some of the low-lying states cannot be resolved
and are of different Jπ . For 164Dy the low-lying states can only
be identified through clusters of specific nuclear structures
in the form of the ground and two-quasiparticle bands. Re-
gardless of the intricacies and details of the individual nuclei
considered, the shape method extracts functional forms of
γ SFs which are consistent with those from the Oslo method.
This highlights the robustness of the method and, where appli-
cable, the appropriateness of the assumptions made regarding
the spin distributions. While the shape method provides a
universal prescription to determine the slope of the γ SF (and
for the NLD in the case of the Oslo method) in the absence of
experimentally measured neutron resonance spacing it does
not provide the absolute values of the γ SFs when neutron
resonance widths are not available. Further work is highly
desirable to explore alternate approaches to determine the
absolute values of γ SFs.

Complementary to this work, we have also applied the
shape method to 76Ge and 88Kr for the extraction of model-
independent nuclear level densities away from stability [21].
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