

Cite as: R. B. J. Benson *et al.*, *Science* 10.1126/science.abj5976 (2022).

Comment on “The influence of juvenile dinosaurs on community structure and diversity”

Roger B. J. Benson^{1*}, Caleb M. Brown², Nicolás E. Campione³, Thomas M. Cullen^{4,5}, David C. Evans^{6,7}, Lindsay E. Zanno^{5,8,9}

¹Department of Earth Sciences, University of Oxford, Oxford, UK. ²Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta, Canada. ³School of Environment and Rural Science, University of New England, Armidale, New South Wales, Australia. ⁴Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada.

⁵Nagaunee Integrative Research Centre, Field Museum of Natural History, Chicago, IL, USA. ⁶Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada. ⁷Royal Ontario Museum, Toronto, Ontario, Canada. ⁸Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA. ⁹Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.

*Corresponding author. Email: roger.benson@earth.ox.ac.uk

Schroeder *et al.* (Reports, 26 February 2021, p. 941) reported a size gap among predatory dinosaur species. We argue that the supporting dataset is skewed toward Late Cretaceous North America and that the gap was likely absent during other intervals in most geographic regions. We urge broader consideration of this hypothesis, with quantitative evaluation of preservational and dataset biases.

Schroeder *et al.* (1) reported a gap in the body size distribution of predatory dinosaurs. They argued that this was caused by the presence of >1000-kg megapredators, which, as giant oviparous animals, produced hatchlings that grew through several orders of magnitude (2), traversing distinct ecological niches as they grew (ontogenetic niche shifts). Under this hypothesis (1), juvenile megapredators competitively excluded smaller-bodied species, causing a “predator size gap” at 100 to 1000 kg. Schroeder *et al.* state that this size gap was absent from the global body size distribution but present within communities. If so, this could reflect the effects of competitive exclusion on community assembly from a broader species pool. However, we argue that it instead occurs because different datasets were used to characterize “global” and “community” signals.

Using the community dataset, we captured community signal as the median relative frequencies of body size classes, and global signal by pooling all species (omitting potential duplicates); this approach recovers almost identical global and community body size distributions (Fig. 1, A and B). The different global pattern shown by Schroeder *et al.* (Fig. 1A) is based on a more inclusive dataset. This dataset includes species from a larger set of communities, and the absence of a predator gap here suggests that those additional communities often lacked the gap. Indeed, “gap fillers” are common in the Jurassic–Early Cretaceous, especially among megalosauroids, abelisauroids, and tyrannosauroids, which often coexisted with allosauroid or megalosauroid megapredators. We therefore argue that the reported predator size gap results not from processes of

community assembly, but rather from the omission of nonconforming data.

There could be good reasons to exclude some communities, such as low sampling intensity or size-biased preservation. We searched for patterns using the 314 formations from the Paleobiology Database (paleobiodb.org) that include more than four dinosaur-yielding localities. We find that the dataset preferentially oversamples the Late Cretaceous of North America (Fig. 2) and exacerbates this bias by pseudoreplication of formations: 12% represent geographic extensions of strict lateral equivalents [e.g., Oldman ≈ Judith River ≈ Two Medicine; Lance ≈ Hell Creek ≈ Laramie ≈ Scollard (3)]. Late Cretaceous formations of North America constitute just 21% of the input formations but represent 35% of the community dataset (1) and 67% of figured exemplars (Fig. 2A). The late Campanian Western Interior Basin of North America is represented six times in the data, but equivalent-aged communities in Asia, Africa, and Europe only once.

The hypothesis of Schroeder *et al.* predicts that the size gap should be widespread in time and space, emerging as a definitional feature of dinosaurian biology. However, it is absent in many formations, especially from the Jurassic (Fig. 2C). Furthermore, many well-sampled formations from distinct regions and time intervals were omitted from the community dataset without explanation (Fig. 2D). These include the Nemegt Formation (Mongolia), Shishugou Formation (China), Huincul Formation (Argentina), and Wessex Formation (United Kingdom) (Fig. 1), all of which contain species within the predator size gap (Fig. 1).

Our different opinion also arises because we view the dinosaur assemblages of most formations as incomplete samples of their underlying communities, as indicated by objective measures of sampling rate (4). Of the 43 formations analyzed, only four record more than 10 predator species, and 70% of them have fewer than five species; this suggests a major sampling deficiency for most of their selected formations (Fig. 2D), even among their figured exemplars (e.g., Cloverly Formation; $N = 3$ predators). Because of their methodological decisions, poorly sampled assemblages will always contain “gaps” due to the high count of histogram bins ($N_{\text{bins}} = 10$).

Size-dependent preservation and detection distort face-value body size distributions (5–7). This possibility was dismissed by Schroeder *et al.*, but such biases are systematic and become compounded, not ameliorated, at larger study scales. For example, extant mammals do not have bimodal body size distributions, but bimodality is widespread in fossil mammals (7, 8), suggesting a preservational interpretation of many “size gaps” in the fossil record. Preservational bias also influences other claims, such as the assertion that the body size distribution of dinosaurs was negatively skewed, with most dinosaur species having large body sizes (1, 9). Instead, quantitative assessments demonstrate strong, order-of-magnitude biases against the preservation of small- to medium-sized dinosaurs, indicating a large but hidden species richness of smaller predators even in well-sampled formations (6, 7, 10).

In short, we argue that Schroeder *et al.* present a biased and pseudoreplicated sample, omit important evidence, and include interpretations based on the unfounded assumption that taphonomic biases are not important. These issues are compounded by their biological interpretations, which make coarse assumptions regarding the distribution of ontogenetic niche shifts among dinosaurs. For example, small-bodied theropods also underwent these shifts, as evidenced by dietary proxies (11), and studies cited by Schroeder *et al.* to support their claim that ontogenetic niche shifts varied among megatheropod groups actually conclude the opposite or are equivocal (12, 13). Furthermore, large-bodied herbivorous dinosaurs grew through several orders of magnitude and must have shown size-dependent ontogenetic niche shifts (14), but a “herbivore size gap” is absent (1).

We therefore conclude that the “predator size gap” was not widespread in Mesozoic communities. Moreover, where it did occur, it may not have resulted from competitive exclusion by juvenile megapredators. The predator size gap may be exclusive to the Late Cretaceous of North America (Fig. 2), with tyrannosaurids outsizing other predators as a product of their evolutionary history (15). Various other macroevolutionary and macroecological hypotheses might explain this pattern and largely remain untested, including

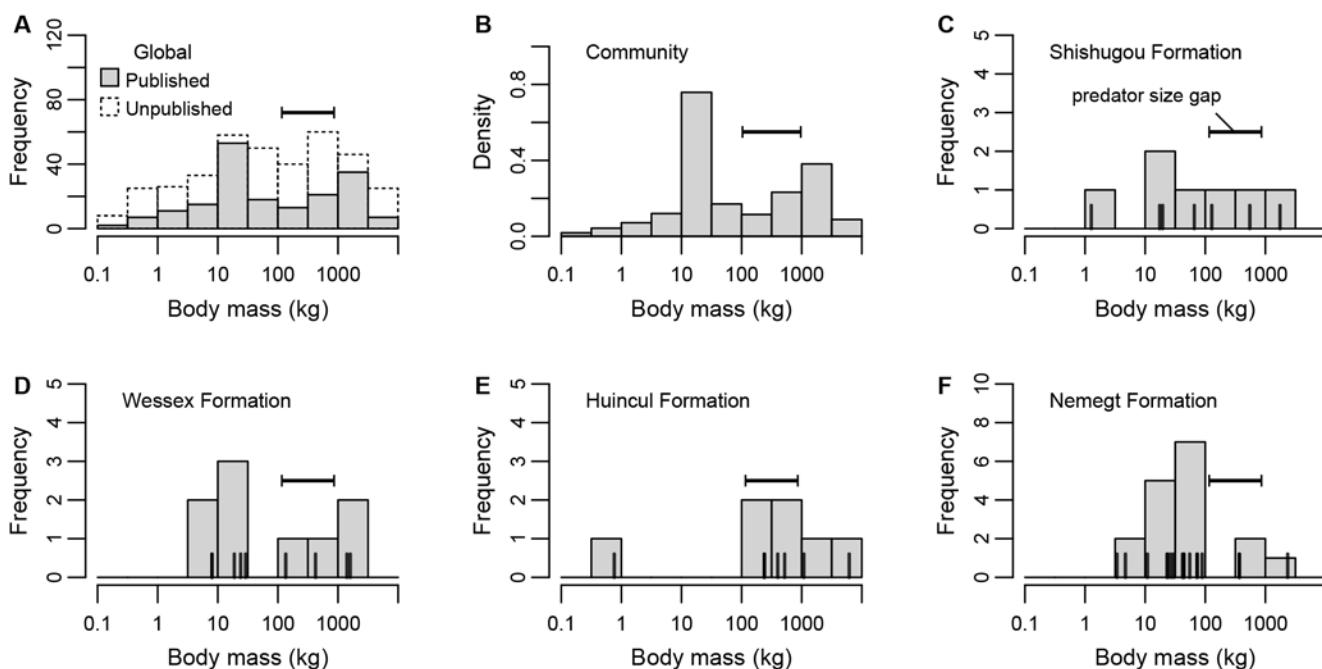
historical factors such as selective extinctions of non-coelurosaurian theropods, along with ecosystem upheavals during the “Cretaceous Terrestrial Revolution.” Although we disagree with the findings of Schroeder *et al.*, we appreciate the motivation to explore important hypotheses of dinosaur biology. However, such hypotheses can only be tested through critical evaluations of body size frequency distributions in the fossil record, which are incomplete and biased by size-dependent preservation and may have varied substantially through space and time.

REFERENCES

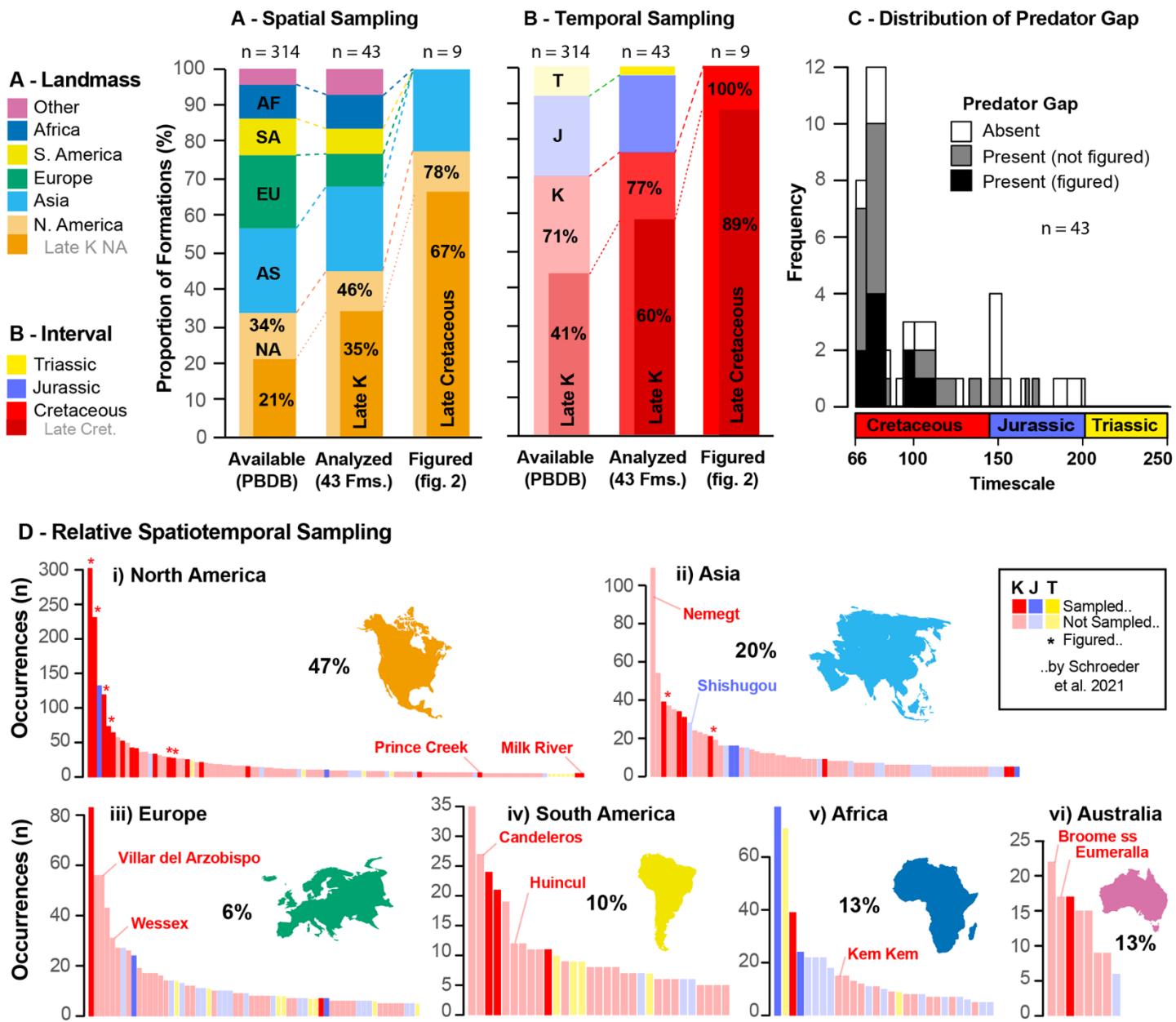
1. K. Schroeder, S. K. Lyons, F. A. Smith, The influence of juvenile dinosaurs on community structure and diversity. *Science* **371**, 941–944 (2021). [doi:10.1126/science.abb9220](https://doi.org/10.1126/science.abb9220) [Medline](#)
2. P. M. Sander, M. Clauss, Sauropod gigantism. *Science* **322**, 200–201 (2008). [doi:10.1126/science.1160904](https://doi.org/10.1126/science.1160904) [Medline](#)
3. D. W. Fowler, Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America. *PLOS ONE* **12**, e0188426 (2017). [doi:10.1371/journal.pone.0188426](https://doi.org/10.1371/journal.pone.0188426) [Medline](#)
4. R. A. Close, R. B. J. Benson, P. Upchurch, R. J. Butler, Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification. *Nat. Commun.* **8**, 15381 (2017). [doi:10.1038/ncomms15381](https://doi.org/10.1038/ncomms15381) [Medline](#)
5. A. K. Behrensmeyer, D. Western, D. E. D. Boaz, New perspectives in vertebrate paleoecology from a recent bone assemblage. *Paleobiology* **5**, 12–21 (1979). [doi:10.1017/S0094837300006254](https://doi.org/10.1017/S0094837300006254)
6. C. M. Brown, D. C. Evans, N. E. Campione, L. J. O'Brien, D. A. Eberth, Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **372**, 108–122 (2013). [doi:10.1016/j.palaeo.2012.06.027](https://doi.org/10.1016/j.palaeo.2012.06.027)
7. R. B. J. Benson, Dinosaur macroevolution and macroecology. *Annu. Rev. Ecol. Evol. Syst.* **49**, 379–408 (2018). [doi:10.1146/annurev-ecolsys-110617-062231](https://doi.org/10.1146/annurev-ecolsys-110617-062231)
8. J. Alroy, Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. *Science* **280**, 731–734 (1998). [doi:10.1126/science.280.5364.731](https://doi.org/10.1126/science.280.5364.731) [Medline](#)
9. D. Codron, C. Carbone, D. W. H. Müller, M. Clauss, Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates. *Biol. Lett.* **8**, 620–623 (2012). [doi:10.1098/rsbl.2012.0240](https://doi.org/10.1098/rsbl.2012.0240) [Medline](#)
10. D. C. Evans, R. K. Schott, D. W. Larson, C. M. Brown, M. J. Ryan, The oldest North American pachycephalosaurid and the hidden diversity of small-bodied ornithischian dinosaurs. *Nat. Commun.* **4**, 1828 (2013). [doi:10.1038/ncomms2749](https://doi.org/10.1038/ncomms2749) [Medline](#)
11. J. A. Frederickson, M. H. Engel, R. L. Cifelli, Ontogenetic dietary shifts in *Deinonychus antirrhopus* (Theropoda; Dromaeosauridae): Insights into the ecology and social behavior of raptorial dinosaurs through stable isotope analysis. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **552**, 109780 (2020). [doi:10.1016/j.palaeo.2020.109780](https://doi.org/10.1016/j.palaeo.2020.109780)
12. C. Foth, B. P. Hedrick, M. D. Ezcurra, Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs. *PeerJ* **4**, e1589 (2016). [doi:10.7717/peerj.1589](https://doi.org/10.7717/peerj.1589) [Medline](#)
13. N. O. Ratsimbaholison, R. N. Felice, P. M. O’Connor, Ontogenetic Changes in the Craniomandibular Skeleton of the Abelisaurid Dinosaur *Majungasaurus crenatissimus* from the Late Cretaceous of Madagascar. *Acta Palaeontol. Pol.* **61**, 281–292 (2016).
14. A. R. Fiorillo, Dental microwear patterns of the sauropod dinosaurs *Camarasaurus* and *Diplodocus*: Evidence for resource partitioning in the Late Jurassic of North

America. *Hist. Biol.* **13**, 1–16 (1998). doi:10.1080/08912969809386568

15. P. R. Bell, N. E. Campione, W. S. Persons 4th, P. J. Currie, P. L. Larson, D. H. Tanke, R. T. Bakker, Tyrannosauroid integument reveals conflicting patterns of gigantism and feather evolution. *Biol. Lett.* **13**, 20170092 (2017). doi:10.1098/rsbl.2017.0092 Medline


ACKNOWLEDGMENTS

We thank K. Schroeder for discussions and for sharing the unpublished global dataset from (1). D.C.E. thanks Natural Sciences and Engineering Research Council of Canada Discovery Grant (NSERC Grant File Number: RGPIN-2018-06788). **Funding:** This work was not supported by grant funding. **Author contributions:** Conceptualization: R.B.J.B., C.M.B., N.E.C., T.M.C., D.C.E., L.E.Z. Methodology: R.B.J.B., C.M.B., N.E.C., T.M.C. Investigation: R.B.J.B., C.M.B., N.E.C., T.M.C., D.C.E., L.E.Z. Visualization: R.B.J.B., C.M.B., N.E.C., T.M.C. Writing—original draft: R.B.J.B., C.M.B., N.E.C., T.M.C., D.C.E., L.E.Z. Writing—review and editing: R.B.J.B., C.M.B., N.E.C., T.M.C., D.C.E., L.E.Z. **Competing interests:** The authors declare that they have no competing interests.


23 May 2021; accepted 16 September 2021

Published online 21 January 2022

10.1126/science.abj5976

Fig. 1. Body size distributions from reanalysis of the published dataset and for communities excluded from the published dataset. (A and B) Histograms of $\log[\text{body size (kg)}]$ for global treatment of the published dataset (1) (gray fill) compared to the unpublished global dataset (white fill) (A) and community-level treatment of the published dataset (B). (C to F) Histograms of $\log[\text{body size (kg)}]$ for samples from Shishugou Formation, Late Jurassic of China (C); Wessex Formation, Early Cretaceous of the United Kingdom (D); Huincul Formation, Late Cretaceous of Argentina (E); and Nemegt Formation, Late Cretaceous of Mongolia (F). Histogram bins introduce arbitrary gaps, so short vertical line segments are used to indicate individual species' body masses in (C) to (F). The hypothesized predator size gap is indicated by a horizontal bar.

Fig. 2. Comparison of dinosaur-yielding formations sampled by Schroeder *et al.* compared to the Paleobiology Database (PBDB). (A and B) Spatial distribution (A) and temporal distribution (B) of PBDB formations with more than four dinosaur-yielding localities ($n = 314$), compared to those analyzed ($n = 43$) and figured ($n = 9$) by Schroeder *et al.* (1). (C) Temporal distribution of the predator gap within formations analyzed by of Schroeder *et al.* ($n = 43$). (D) Spatial (landmass) and temporal (geological period, color) distribution of the PBDB formations ($n = 314$) with more than four dinosaur-yielding localities, highlighting those analyzed (solid color) and figured (asterisk) by Schroeder *et al.* Percentages in (D) indicate proportions of highest-sampled formations (max $n = 30$) included in the published data of Schroeder *et al.*

Comment on “The influence of juvenile dinosaurs on community structure and diversity”

Roger B. J. BensonCaleb M. BrownNicolás E. CampioneThomas M. CullenDavid C. EvansLindsay E. Zanno

Science, 375 (6578), eabj5976. • DOI: 10.1126/science.abj5976

View the article online

<https://www.science.org/doi/10.1126/science.abj5976>

Permissions

<https://www.science.org/help/reprints-and-permissions>