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Schroeder et al. (1) reported a gap in the body size distribu-
tion of predatory dinosaurs. They argued that this was 
caused by the presence of >1000-kg megapredators, which, 
as giant oviparous animals, produced hatchlings that grew 
through several orders of magnitude (2), traversing distinct 
ecological niches as they grew (ontogenetic niche shifts). 
Under this hypothesis (1), juvenile megapredators competi-
tively excluded smaller-bodied species, causing a “predator 
size gap” at 100 to 1000 kg. Schroeder et al. state that this 
size gap was absent from the global body size distribution 
but present within communities. If so, this could reflect the 
effects of competitive exclusion on community assembly 
from a broader species pool. However, we argue that it in-
stead occurs because different datasets were used to charac-
terize “global” and “community” signals. 

Using the community dataset, we captured community 
signal as the median relative frequencies of body size clas-
ses, and global signal by pooling all species (omitting po-
tential duplicates); this approach recovers almost identical 
global and community body size distributions (Fig. 1, A 
and B). The different global pattern shown by Schroeder et 
al. (Fig. 1A) is based on a more inclusive dataset. This da-
taset includes species from a larger set of communities, 
and the absence of a predator gap here suggests that those 
additional communities often lacked the gap. Indeed, “gap 
fillers” are common in the Jurassic–Early Cretaceous, es-
pecially among megalosauroids, abelisauroids, and tyran-
nosauroids, which often coexisted with allosauroid or 
megalosauroid megapredators. We therefore argue that the 
reported predator size gap results not from processes of 

community assembly, but rather from the omission of 
nonconforming data. 

There could be good reasons to exclude some communi-
ties, such as low sampling intensity or size-biased preserva-
tion. We searched for patterns using the 314 formations 
from the Paleobiology Database (paleobiodb.org) that in-
clude more than four dinosaur-yielding localities. We find 
that the dataset preferentially oversamples the Late Creta-
ceous of North America (Fig. 2) and exacerbates this bias by 
pseudoreplication of formations: 12% represent geographic 
extensions of strict lateral equivalents [e.g., Oldman ≈ Ju-
dith River ≈ Two Medicine; Lance ≈ Hell Creek ≈ Laramie ≈ 
Scollard (3)]. Late Cretaceous formations of North America 
constitute just 21% of the input formations but represent 
35% of the community dataset (1) and 67% of figured exem-
plars (Fig. 2A). The late Campanian Western Interior Basin 
of North America is represented six times in the data, but 
equivalent-aged communities in Asia, Africa, and Europe 
only once. 

The hypothesis of Schroeder et al. predicts that the size 
gap should be widespread in time and space, emerging as a 
definitional feature of dinosaurian biology. However, it is 
absent in many formations, especially from the Jurassic 
(Fig. 2C). Furthermore, many well-sampled formations from 
distinct regions and time intervals were omitted from the 
community dataset without explanation (Fig. 2D). These 
include the Nemegt Formation (Mongolia), Shishugou For-
mation (China), Huincul Formation (Argentina), and Wes-
sex Formation (United Kingdom) (Fig. 1), all of which 
contain species within the predator size gap (Fig. 1). 
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Our different opinion also arises because we view the 
dinosaur assemblages of most formations as incomplete 
samples of their underlying communities, as indicated by 
objective measures of sampling rate (4). Of the 43 for-
mations analyzed, only four record more than 10 predator 
species, and 70% of them have fewer than five species; this 
suggests a major sampling deficiency for most of their se-
lected formations (Fig. 2D), even among their figured exem-
plars (e.g., Cloverly Formation; N = 3 predators). Because of 
their methodological decisions, poorly sampled assemblages 
will always contain “gaps” due to the high count of histo-
gram bins (Nbins = 10). 

Size-dependent preservation and detection distort face-
value body size distributions (5–7). This possibility was dis-
missed by Schroeder et al., but such biases are systematic 
and become compounded, not ameliorated, at larger study 
scales. For example, extant mammals do not have bimodal 
body size distributions, but bimodality is widespread in fos-
sil mammals (7, 8), suggesting a preservational interpreta-
tion of many “size gaps” in the fossil record. Preservational 
bias also influences other claims, such as the assertion that 
the body size distribution of dinosaurs was negatively 
skewed, with most dinosaur species having large body sizes 
(1, 9). Instead, quantitative assessments demonstrate strong, 
order-of-magnitude biases against the preservation of small- 
to medium-sized dinosaurs, indicating a large but hidden 
species richness of smaller predators even in well-sampled 
formations (6, 7, 10). 

In short, we argue that Schroeder et al. present a biased 
and pseudoreplicated sample, omit important evidence, and 
include interpretations based on the unfounded assumption 
that taphonomic biases are not important. These issues are 
compounded by their biological interpretations, which make 
coarse assumptions regarding the distribution of ontogenet-
ic niche shifts among dinosaurs. For example, small-bodied 
theropods also underwent these shifts, as evidenced by die-
tary proxies (11), and studies cited by Schroeder et al. to 
support their claim that ontogenetic niche shifts varied 
among megatheropod groups actually conclude the opposite 
or are equivocal (12, 13). Furthermore, large-bodied herbivo-
rous dinosaurs grew through several orders of magnitude 
and must have shown size-dependent ontogenetic niche 
shifts (14), but a “herbivore size gap” is absent (1). 

We therefore conclude that the “predator size gap” was 
not widespread in Mesozoic communities. Moreover, where 
it did occur, it may not have resulted from competitive ex-
clusion by juvenile megapredators. The predator size gap 
may be exclusive to the Late Cretaceous of North America 
(Fig. 2), with tyrannosaurids outsizing other predators as a 
product of their evolutionary history (15). Various other 
macroevolutionary and macroecological hypotheses might 
explain this pattern and largely remain untested, including 

historical factors such as selective extinctions of non-
coelurosaurian theropods, along with ecosystem upheavals 
during the “Cretaceous Terrestrial Revolution.” Although we 
disagree with the findings of Schroeder et al., we appreciate 
the motivation to explore important hypotheses of dinosaur 
biology. However, such hypotheses can only be tested 
through critical evaluations of body size frequency distribu-
tions in the fossil record, which are incomplete and biased 
by size-dependent preservation and may have varied sub-
stantially through space and time. 
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Fig. 1. Body size distributions from reanalysis of the published dataset and for communities excluded from the 
published dataset. (A and B) Histograms of log[body size (kg)] for global treatment of the published dataset (1) (gray 
fill) compared to the unpublished global dataset (white fill) (A) and community-level treatment of the published dataset 
(B). (C to F) Histograms of log[body size (kg)] for samples from Shishugou Formation, Late Jurassic of China (C); Wes-
sex Formation, Early Cretaceous of the United Kingdom (D); Huincul Formation, Late Cretaceous of Argentina (E); and 
Nemegt Formation, Late Cretaceous of Mongolia (F). Histogram bins introduce arbitrary gaps, so short vertical line 
segments are used to indicate individual species’ body masses in (C) to (F). The hypothesized predator size gap is indi-
cated by a horizontal bar. 
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Fig. 2. Comparison of dinosaur-yielding formations sampled by Schroeder et al. compared to the Paleobiology Data-
base (PBDB). (A and B) Spatial distribution (A) and temporal distribution (B) of PBDB formations with more than four 
dinosaur-yielding localities (n = 314), compared to those analyzed (n = 43) and figured (n = 9) by Schroeder et al. (1). (C) 
Temporal distribution of the predator gap within formations analyzed by of Schroeder et al. (n = 43). (D) Spatial (land-
mass) and temporal (geological period, color) distribution of the PBDB formations (n = 314) with more than four dino-
saur-yielding localities, highlighting those analyzed (solid color) and figured (asterisk) by Schroeder et al. Percentages in 
(D) indicate proportions of highest-sampled formations (max n = 30) included in the published data of Schroeder et al. 
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