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ABSTRACT

Mobile application (app) reviews contain valuable information for
app developers. A plethora of supervised and unsupervised tech-
niques have been proposed in the literature to synthesize useful
user feedback from app reviews. However, traditional supervised
classification algorithms require extensive manual effort to label
ground truth data, while unsupervised text mining techniques, such
as topic models, often produce suboptimal results due to the sparsity
of useful information in the reviews. To overcome these limitations,
in this paper, we propose a fully automatic and unsupervised ap-
proach for extracting useful information from mobile app reviews.
The proposed approach is based on keyATM, a keyword-assisted
approach for generating topic models. keyATM overcomes the prob-
lem of data sparsity by using seeding keywords extracted directly
from the review corpus. These keywords are then used to generate
meaningful domain-specific topics. Our approach is evaluated over
two datasets of mobile app reviews sampled from the domains of
Investing and Food Delivery apps. The results show that our ap-
proach produces significantly more coherent topics than traditional
topic modeling techniques.
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1 INTRODUCTION

The explosive growth and widespread of mobile technology in
the past decade has changed the way software is produced and
consumed. More users now rely on mobile software than ever
before. According to App Annie - the mobile market data and
analytics platform, the average user spends around 4.2 hours a
day using apps [43]. In response to this massive demand, mobile
app marketplaces, such as Google Play and the Apple App Store
has grown dramatically in size, offering users virtually unlimited
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choices of apps. For instance, as of 2020, more than four million
apps were available to download on the Apple App Store alone [74].

Popular app stores enable users to share their experience with
app developers via ratings and textual reviews. This unique chan-
nel of user feedback created an opportunity for app developers to
monitor their end users’ reactions to the different releases of their
apps. Recently, analyzing mobile app reviews has attracted a con-
siderable attention from the research community [21]. Researchers
have utilized supervised and unsupervised machine learning algo-
rithms to extract informative feedback from user reviews, including
feature requests and bug reports as well as user goals and their
rationale [14, 25, 44, 47, 53, 65, 73].

In general, review mining techniques achieve adequate levels
of accuracy, however, they suffer from several limitations. For in-
stance, supervised classification techniques rely on the presence
of ground-truth datasets that typically require significant manual
effort to generate [25, 44, 65, 72]. Furthermore, these techniques
are constrained to a single rubric of predefined categories and, as
a result, require additional data and model tweaking to general-
ize over domain-specific feedback [84]. For example, users of the
Ridesharing app Uber might complain about wait times and rates,
while users of the Investing app Robinhood might raise concerns
about the app’s request for their social security or bank informa-
tion. These categories of user feedback can be easily missed in the
ground truth data. Consequently, a one-size-fits-all approach may
not be suitable for domain-specific user feedback [21, 69, 84].

To avoid the drawbacks of supervised techniques, unsupervised
topic modeling techniques, such as Latent Dirichlet Allocation
(LDA) [9], have been applied to extract useful information from app
store reviews [22, 26, 28, 33, 62, 67]. However, LDA does not per-
form well when dealing with small and unstructured text [6, 30, 85].
Short text artifacts, such as user reviews [81], do not typically
contain enough information for statistical bag-of-words models
to establish semantic connections between words [1]. Therefore,
generated topics can be hard to interpret and rationalize and of-
ten require an extensive calibration of hyperparameters to avoid
misclassifications [12, 30, 87].

To overcome these limitations, in this paper we propose a new
approach for extracting useful user feedback from app store re-
views. The proposed approach is based on the keyword-assisted
topic model keyATM [35]. keyATM relies on a set of representative
seed words to model the topics of a large document collection by
finding evidence on the underrepresented topics. Such seeds can
be extracted from the document corpus automatically by applying
automated text summarization techniques. Our proposed approach
is evaluated using two datasets of user reviews sampled from the
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domains of Investing and Food Delivery apps. The quality of gener-
ated topics is assessed using a set of intrinsic and extrinsic measures
of topic coherence [8].

The rest of this paper is organized as follows. Section 2 formally
describes LDA and its extension, keyATM. Section 3 introduces our
approach. Section 4 evaluates our approach using two datasets of
mobile app reviews. Section 5 discusses our main findings and their
potential implications. Section 6 describes related work. Section 7
addresses the limitations of our study. Finally, Section 8 concludes
our paper and discusses future work.

2 BACKGROUND

Topic models are statistical techniques that are commonly used for
discovering latent topics in text collections. In topic modeling, a
topic can be described as a collection of words which represent
a thematic concept in a corpus, and documents in the corpus are
represented as probabilistic distributions over these topics. In what
follows, we introduce the most commonly used topic modeling
approach, LDA, and its extension - the keyword-assisted topic
model (keyATM).

2.1 Latent Dirichlet Allocation (LDA)

Introduced by Blei et. al [9], LDA is an unsupervised technique for
modeling topics in a collection of documents. LDA utilizes word co-
occurrence information in order to group related words into a single
topic. To infer topics from a corpus of documents, LDA represents
documents as random mixtures over latent topics. Formally, LDA
calculates two Dirichlet distributions: the word-topic distribution
¢y for topic k and the document-topic distribution 8,; for document
d. The hyperparameters a and f are typically used as priors for ¢
and 0. For each word i in the dataset, the topic z; is drawn from the
04 distribution and the word w; is drawn from the ¢, distribution.

LDA’s usecases include traditional topic extraction for long
texts [10, 45, 61, 76], tag recommendation for search engines [42],
software systems categorization [79], and bug localization [51]. De-
spite its advantages, LDA suffers from several limitations when it
comes to processing online user-generated text. For instance, in
the context of app feedback analysis, mobile app reviews are often
short, personal, and contain colloquial terms. Thus, they are too
semantically-restricted for complex distributional approaches such
as LDA to operate, leading LDA to generate random topics or even
overfit the data [3, 59, 63, 77, 87]. Furthermore, LDA, by design,
tends to generalize over larger topics in order to better model fre-
quently occurring words. Therefore, more specific and nuanced
topics are often left ignored [35]. This limitation is critical for user
review analysis as useful information in user reviews is typically
domain-specific [21, 69, 80, 84].

2.2 Keyword-Assisted Topic Modeling

Keyword-assisted topic modeling (keyATM) is a novel technique
that has been proposed to improve upon traditional topic models,
such as LDA [20, 35]. The key idea behind keyATM is that it in-
corporates user-defined seed words for topic-word distributions.
Each potential topic can be supplemented by specific keywords
that are believed to describe a theme. Formally, keyATM modifies
the traditional LDA algorithm in two ways:
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(1) The word-topic distribution ¢y is replaced with a “mix-
ture” of two distributions: a seed-topic distribution ¢* and
a regular-topic distribution ¢”. The seed-topic distribution
can only select words from the initial seed set, while the
regular-topic distribution may select any words in the cor-
pus, including the seed words. The parameter ;. controls
the probability of drawing a word from either ¢° or ¢".

(2) To draw the document-topic distribution 6, for each docu-
ment d, a binary vector b of the length S (number of seeded
topics) is generated. b takes the values of 1 if d contains any
keyword from a respective seed set and 0 otherwise. Next,
a document-group distribution ¢’ d s sampled from b with a
hyperparameter 7 from which a group variable g is drawn.
Each group represents a seed set selected from the corpus.
Finally, the group-topic distribution ¢; is used as prior to
draw 6.

Algorithm 1 formally describes the complete keyword-assisted

topic model’s generative process [35].

Algorithm 1 keyATM’s topic generative process.

1: for topick=1...T do

2 choose regular topic distribution ¢;. ~ Dir(5;)
3 choose seeded topic distribution ¢7 ~ Dir(Bs)
4 choose parameter 7 > prob. of drawing from seeded topic
5: end for

6: for seedsets=1...S do

7

8

9

choose group-topic distribution /s ~ Dir(er) > of length T
: end for
: for documentd =1...D do
10: choose a binary vector b > of length S

11: choose a document-group distribution {4 ~ Dir(rl_;)
12: choose a group variable g ~ Mult(¢%)

13: choose 85 ~ Dir(yy)

14: forwordi=1...Ny do

> of length T

15: choose a topic z; g ~ Mult(6g)

16: choose x; ~ Bern(sz,) = choose which topic distr. to draw from
17: if x; is 0 then

18: select a word w; ~ Mult(¢47,) > from regular
19: else

20: select a word w; ~ Mult(¢#3,) > from seeded
21: end if

22: end for

23: end for

Our main assumption in this paper is that keyATM can over-
come the limitations of LDA when dealing with mobile app reviews.
In particular, to address the domain-specificity problem, keyATM
utilizes a binary vector b which elevates the less-common topics
for the provided seed words. These seed words can be extracted in
advance based on expert opinion in order to supplement keyATM
with a high-level overview of the user review corpus. The main ad-
vantage of keyATM is that once the initial seeds are provided, it can
collect additional semantically-related keywords from regular top-
ics (line 2, line 16). By combining seeded and regular distributions,
keyATM generates more cohesive and focused topics, overcoming
the main limitation of using LDA to model semantically-restricted
user reviews.
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3 APPROACH

The proposed approach is depicted in Fig. 1. Our approach can be
divided into three steps. In the first step, we apply several heuristics
to extract informative user reviews. In the second step, we pre-
process and summarize extracted reviews in order to generate a
representative set of important keywords, or seeds, for the corpus.
In the third step, seeds are fed into keyATM to generate a topic
distribution over extracted reviews. In what follows, we describe
each of these steps using illustrative examples.

3.1 Informative Review Extraction

Mobile app reviews vary in quality. Previous research has shown
that app reviews do not follow a well-defined structure and often
contain spelling fluctuations, colloquial terms, and spam [39, 82].
Therefore, a large proportion of app store reviews is simply un-
informative [39]. As topic models are particularly susceptible to
generating uninterpretable topics from semantically poor docu-
ments [18], the first step of our approach is to improve the quality
of our review corpus by filtering out uninformative feedback.

To detect informative reviews, we adopt Guo and Singh’s ap-
proach for synthesizing potentially meaningful user stories from
mobile app reviews [24]. A user story can be defined as a relation-
ship between an action that a user took and a problem that an app
produced in response to that action. Such stories describe users’
experiences and outcomes when interacting with their apps. For
example, a user might complain that their navigation app loses
GPS signal when in drive mode. Such a story contains potentially
useful information for app developers as it outlines the condition
(in drive mode) under which a problem (GPS lost signal) occurred.
These stories are commonly present in low-star app reviews (one
and two stars) given that app problems are often accompanied by
low ratings [31, 38, 81]. Our expectation is that topics modeled after
reviews with user stories will be more coherent, and thus, more
interpretable.

To identify reviews that might contain user stories, common
temporal conjunctions are used, including words such as after,
as soon as, before, every time, then, until, when, whenever, while,
and during. Temporal conjunctions indicate temporal and causal
ordering of events that was found to be particularly helpful for
mitigating problems of text sparseness [55]. For example, consider
the four app reviews in Example 1. Ry, Ry, and R3 are informative
reviews that contain user stories in the form of action-problem pairs
(temporal conjunctions are underlined). Ry describes an action of
scroll through the pages and a problem, a crash. Such a review can
help a topic model to build a semantic association between crash
and scrolling. Ry is a false positive.

o R;: This app crashes when I scroll through the pages.

e Ry: They want your SSN before you can even look. It’s
definitely a scam.

o R3: To verify identity it requires u take a picture but
then immediately crashes.

o Ry: Still waiting, after a month, to be approved.
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3.2 Seed Generation

Under this step of our approach, we seek to generate sets of repre-
sentative seeds (keywords) from extracted user reviews. To correctly
model the underlying latent topic structure, these keywords have
to be representative of as many themes in the review corpus as
possible [35]. Therefore, the keyword generation process requires
a priori knowledge of the domain of interest which might not be
always readily available [4, 5]. For example, to model the represen-
tative topics of app reviews in the domain of Investing apps, the
researcher has to know the specific themes that users discuss in the
reviews and the corresponding keywords to generalize over these
themes. Extracting such keywords typically involves manually clas-
sifying user reviews into representative topics, which nullifies the
advantage of unsupervised techniques. To address this limitation, in
our adaptation of keyATM, instead of determining seeds manually,
we use extractive summarization.

A summary can be described as a short and concise descrip-
tion that encompasses the main themes in a collection of docu-
ments [37, 48]. In extractive summarization, text artifacts (e.g., re-
views, comments, and tweets) which contain the most important
keywords in the corpus are extracted as potential summaries of the
entire corpus. In a sense, each generated summary represents a po-
tential latent theme in a collection of documents, thus can be used
to provide representative keywords (seeds) for keyATM. Common
extractive summarization techniques, such as Hybrid TF.IDF [34]
and SumBasic [60], have been applied to summarize unstructured
online user feedback (e.g., tweets, YouTube comments, and user
reviews) [36, 68, 83, 84] and have been shown to achieve very high
levels of agreement with human-generated summaries. Based on
these observations, in our analysis, we utilize such techniques to
extract the initial set of seeding keywords from the corpus.

To generate summaries from app user reviews, Hybrid TF.IDF [34]
is often utilized. TF.IDF consists of two components: 1) TF - Term
Frequency, or how many times a term appears in a document
and 2) IDF - Inverse Document Frequency, or how much infor-
mation a term provides. TF.IDF-based methods have shown ac-
ceptable accuracy levels across a variety of text summarization
tasks [2, 16, 32, 40, 56]. However, short texts, such as user reviews,
pose a unique challenge to TF.IDF. In particular, because short texts
contain only a handful of words, the probability of individual terms
occurring multiple times in a single review is low. Therefore, the
majority of words are assigned the same TF value. Hybrid TF.IDF
addresses this issue by calculating term frequency as the number
of times a term t appears across all reviews divided by the total
number of terms in the review collection. Formally, the Hybrid
TF.IDF of a term ¢ can be computed as:

Je.0 o ID|
Sfa  BldeD:ted|

where f; p is the frequency of term ¢ in all documents, . f; 4 is
the total number of terms in the collection, |D| is the number of
documents in the corpus, and |[d € D : t € d| is the number of
documents that contain ¢. The total weight of a document d is cal-
culated by summing up all terms’ weights. However, in the current
form, Hybrid TF.IDF would be biased toward longer reviews as they
contain more terms. To work around this problem, a normalization

Hybrid TEIDF(t, d) = 1)
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Figure 1: Our proposed approach for app review topic modeling

factor nf is introduced. The modified Hybrid TF.IDF formula for a
document d can be defined as follows:

|d|

Hybrid TFIDF(d) = X Z Hybrid TEIDF(t;, d) (2)
i=1

_
max(nf, |d[)

The normalization factor is typically defined as the upper-bound of
the required summary length (number of words) and can be deter-
mined experimentally. The actual summarization is then performed
by ranking the reviews by their total weight. To avoid a situation
where summaries with similar words are ranked together, a simi-
larity threshold, calculated as the cosine of the angle between the
vectorized representations of each two summaries, is used. An op-
timal similarity threshold can be determined experimentally based
on the desired uniqueness of summaries.

To illustrate our summarization step, consider the summaries
in Example 2 generated for a dataset of reviews sampled from the
domain of Investing apps with a threshold of 0.1 (no two summaries
should have a cosine similarity greater than 0.1). Each summary
encompasses a separate topic, such as taking money from a user’s
account (S1), app crashing (S2), problems with selling a stock (Ss3),
and issues with customer support (S4).

S1: This app takes out money even after you close your
account...
S,: This app now crashes 100% of the time, every time I

open it

S3: Allowed me to buy stock, but when i tried to sell my
stock they didn’t sell it

S4: Great until you need customer support, once you
need support you're on your own

To improve the accuracy of summarization, text processing
strategies are often used. Before generating summaries, extracted
app reviews are first converted to lowercase and tokenized into
individual words, with punctuation, URLs, and other special sym-
bols removed. Additional splitting strategies, such as splitting digits
and alpha-characters are performed (e.g. 2hrs becomes 2 hrs). Eng-
lish stop-words, such as will, this, it, are removed based on the list
provided in the NLTK package [7]. Additional cohort-specific stop-
words are manually identified and added to the list. These words
include app names (e.g., robinhood and acorn), frequent words (e.g.,
yeah and well), and short 1-2 letter words that do not contain any

semantic information. Finally, lemmatization is applied to the re-
sulting list of words. Lemmatization is a normalization technique
which reduces the number of distinct entries in the data. More
specifically, lemmatization converts a word to its dictionary form.
This process is applied to improve the performance of clustering
algorithms by collapsing different forms of the same word into a
single entity [41]. Example 3 shows the processed summaries from
Example 2.

S$1: take, money, even, close, account

S,: app, crash, time, every, time, open

S3: allow, buy, stock, try, sell, stock, sell

S4: great, need, customer, support, need, support

3.3 Topic generation

Since each summary succinctly describes a separate theme, seeds
are generated by obtaining distinct terms from the processed sum-
maries. For example, the terms great, need, customer, and support
are extracted from S4 to describe a theme discussing issues with
customer support. These seeds are then supplied to keyATM for
the topic modeling step. Our assumption is that these terms can
provide enough semantic information for keyATM to be able to
generalize over the whole dataset of extracted user reviews. In what
follows, we empirically evaluate our assumption using two datasets
of mobile app reviews.

4 EVALUATION

In this section, we illustrate the operation of our proposed topic
generation approach over two datasets of user reviews sampled
from the domains of Investing and Food Delivery apps. We further
evaluate our generated topics by comparing them to the topics
generated by LDA. Our main research question is: How well does
our approach perform in comparison to LDA?

4.1 Data Collection

To demonstrate the operation of our approach, we apply it on
two datasets of mobile app reviews sampled from the domains of
Investing and Food Delivery apps. Investing apps have become
increasingly popular in recent years due to the increasing inter-
est in cryptocurrency trading. Zero-commission trading fees and
continuous media coverage have multiplied the popularity effect
of these apps by bringing in millions of new first-time traders. For
example, Robinhood, a simplified Investing app, reported that more
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than 6 million new users have joined the platform in 2021 right
after the WallStreetBets subreddit controversy [23, 57]. Similarly,
the domain of Food Delivery has experienced an unprecedented
growth during the COVID-19 pandemic as the demand for Food
Delivery services has significantly increased. For example, the four
major Food Delivery apps: DoorDash, UberEats, GrubHub, and
Postmates reported a significant increase in revenue during the
stay-at-home order of 2020 [75]. In fact, the market segment of food
delivery apps, currently estimated at $126.91 billion, is expected to
grow to $192.16 billion by 2025 [70].

To collect user reviews for our analysis, we selected the most
popular apps from both domains. To identify these apps, the top
100 apps in the categories of Finance (Investing) and Food&Drink
(Food Delivery) on Google Play and the Apple App Store were
examined. Apps which met the following criteria were included in
our analysis:

(1) For an app to be included in our analysis, we only consid-
ered apps with 10,000 reviews or more. This number of re-
views is necessary in order to include only popular and
well-established apps in our dataset.

(2) For the Investing domain, banking “all-in-one” apps were
excluded as the majority of these apps did not provide Invest-
ing services. For Food Delivery apps, specific restaurants’
delivery apps, such as Papa John’s Pizza & Delivery official
app, were also excluded.

After examining the top 100 apps, eight Investing and five Food
Delivery apps were included. For each of these apps, we collected all
textual reviews up to January 1st of 2021 from the Apple App Store
and Google Play using Python web scrappers!?. Overall, 370,820
app reviews were collected for our set of Investing apps and 266,544
reviews were collected for the set of Food Delivery apps. Out of
these reviews, only 1-2 star rating reviews which included user
stories (See Section 3.1) were considered in our analysis, a total
of 20,760 reviews for the domain of Investing apps and 130,676
reviews for the Food Delivery apps. The distribution of extracted
reviews over our apps is shown in Table 1.

4.2 Evaluation measures

Due to the fact that there is typically no ground-truth document-
topic distribution that exists for every corpus, evaluating topic
models can be a challenging task. To address this challenge, several
topic evaluation techniques have been proposed in the literature.
From among these techniques, Normalized Pointwise Mutual Infor-
mation has been found to be very closely correlated with human
judgment of topic quality [15, 46, 71].

Introduced by Bouma [11], Normalized Pointwise Mutual Infor-
mation (NPMI) is an information-theoretic measure of information
overlap between words. NPMI can be measured by counting how
many times two words appear in the same document versus how
many times they appear separately. Formally, for two words w; and
wj, NPMI can be calculated as:

(Wi, wj)
P (wi)p(w))
—log p(wi, wj)

log

NPMI(w;, wj) = ®3)

https://pypi.org/project/app- store-scraper/
Zhttps://pypi.org/project/google-play-scraper/
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Table 1: The number of user reviews extracted for each app
in our dataset.

Investing Food delivery

App Reviews | App Reviews
Robinhood 7872 | UberEats 58933
Acorn 4342 | DoorDash 34917
Stash 2445 | Grubhub 17784
E*TRADE 1605 | Postmates 17610
Fidelity 1496 | Seamless 1432
TD Ameritrade 1403

Schwab 1079

Personal Capital 509

where p(w;, wj) is the number of documents in which w; and w;
appear together, and p(w;)p(w;) is the the number of documents
which contain w; and w; respectively. NPMI is normalized using
the negative log-transformed count of the number of times w; and
w; appeared together. This results in a value between -1 (w; and
w; never occur together) and 1 (w; and w; only occur together).

The underlying assumption behind using NPMI for evaluating
topic quality is that words of cohesive topics should be well con-
nected, or have relatively high average pairwise NPMIL For example,
Fig. 2 shows a sample NPMI graph of a word set sampled from the
review corpus of the Food Delivery domain. The graph shows that
the words cold, driver, food, lost, late, and hot form a dense-set of
well-connected nodes (words). This is expected given that these
words frequently appear in the same reviews, for example, “drivers
are always either late or lost I always get my food cold and my drink
hot.” The word discount, while connected to food, stands at a fur-
ther semantic distance from other words as it does not appear as
frequently with them in the same reviews.

There are two main strategies to compute NPMI: intrinsic and ex-
trinsic [8]. Intrinsic NPMI is calculated based on the co-occurrence
of topic words within the corpus. In contrast, the extrinsic strategy
uses external datasets of human-produced textual knowledge, such
as Wikipedia, to compute words co-occurrence, and thus semantic
relatedness, of words. Intrinsic NPMI scores computed over the
corpus can show how well the model learned the underlying data,
or the extent that generated topic models accurately represent the
content of a corpus. Extrinsic NPMI, on the other hand, shows
how common generated topics are in daily language, which can be
analogous to how a human examining the quality of topics would
decide whether they are coherent or not [71].

In our analysis, we employ both strategies for computing topic
coherence. For extrinsic evaluation, we used the entire English
Wikipedia dump of October 2017. The dump included 5 million
articles, 133 word-length per article on average, packed into a 16 GB
JSON file. Each article was tokenized and preprocessed and special
non-ASCII symbols were removed. The coherence of a given topic
is calculated as the average NPMI between its 10 most probable
words in a topic. Formally, topic coherence is calculated as:

9 10
1
coherence(t) = = X ;j;l NPMI(w;, wj) (4)
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Figure 2: A connected NPMI graph of words extracted from
the review corpus of food delivery apps.

4.3 Model Configuration

To compare the performance of our approach to the baseline (LDA),
we perform hyperparameter tuning in order to achieve the maxi-
mum coherence score possible over both datasets. In addition to
the number of topics (K), LDA has two hyperparameters, @ and
. We use the implementation of LDA from the Gensim Python
package®, where « is inferred from the corpus automatically and
is set to 1/K. As a standard practice of topic models evaluation, we
train LDA for K = {10, 20, ..., 100}. These bounds of K were selected
based on the coherence score, where a sharp decline indicates that
a model no longer can generate coherent topics.

One of the main parameters that determines the performance of
our approach is the quality of the seeding words. Smaller number of
seeds might not convey enough semantic information for keyATM
to capture meaningful topics, while larger number of keywords
might be too general to form cohesive topics. To select the set of
seeds, we calculate the pairwise NPMI scores for each pair of seeds
in each individual summary review. We then attempt to optimize
the set of seeds by removing the bottom n-th percentile of the seeds
(seeding words which share the lowest average pairwise similarity
with other seeds). The main assumption is that by removing these
potentially unrelated words we can produce a more focused set of
seeds, and thus, better topics. For example, Table 2 shows the aver-
age NPMI score for a group of words sampled from the summary
reviews of the Food Delivery corpus. Words such as refuse, first,
and add can be removed due to their low average pairwise simi-
larity to other words in the group. To determine how many seeds
to consider, we include four model configurations in our analysis:
n = {0,5,15,25}. keyATM_n refers to keyATM being trained after
the n% of seeds at the lower end of NPMI score are removed. Each
keyATM configuration is then trained for different values of K to
determine the optimal (n, K) configuration for the review corpus.

4.4 Evaluation Results

To answer our research question, we trained an LDA model and
each configuration of keyATM over our two domains of app reviews
for various K values. The coherence scores for the trained models
are shown in Fig. 3. For each K, we compared the mean topic
coherence scores by performing an independent two-tailed t-test
between LDA and each configuration of keyATM. To measure the
effect size, Cohen’s d was computed for 10-40 topics and Hedges’
g was calculated for 50-100 topics [27]. For the two-sample means
test, the d values of 0.2, 0.5, and 0.8 are typically interpreted as

Shttps://pypi.org/project/gensim/
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Table 2: The pairwise NPMI scores for an example keyword
set sampled from the Food Delivery domain. “refuse” is re-
moved at the bottom 5th percentile, “first” is removed at the
bottom 15th percentile, and “add” is removed at the bottom
25th percentile.

§ & o & g = 5 8 S

> =) <

§ : : k] g = 3 ; 3
service | 1 |0.10 | 0.14 | 0.07 | 0.08 | 0.06 | 0.13 | 0.05 | 0.01

e
—-
o
—

charge 0.32 | 0.08 | 0.08 | 0.09 | 0.05 | 0.07 | 0.10
fee 0.14 1032 | 1 |[0.13]0.09|0.15]|0.06 | 0.04 | 0.24
large 0.07 | 0.08 [0.13 | 1 |0.11|0.20 | 0.06 | 0.10 | 0.10
make | 0.08 | 0.08 | 0.09 | 0.11 1 ]0.06|0.07 | 0.08 | 0.08
flat 0.06 | 0.09 | 0.15 [ 0.20 | 0.06 | 1 | 0.01 |0.02| 0.09
use 0.13 | 0.05 | 0.06 | 0.06 | 0.07 | 0.01 1 ]0.05| 0.03
place 0.05 | 0.07 | 0.04 | 0.10 | 0.08 | 0.02 | 0.05 | 1 0.06
add 0.01 | 0.10 | 0.24 | 0.10 | 0.08 | 0.09 | 0.03 | 0.06 1

small, medium, and large effect sizes respectively. The results of
our analysis are presented in Tables 3 and 4.

The results show that our approach outperforms LDA in terms
of extrinsic and intrinsic coherence scores for both domains over
all values of K, with minor exceptions. For the Investing domain,
LDA’s topic quality declines sharply after 20 topics, while our ap-
proach maintains a relatively flat coherence curve over the whole
range of K. In terms of significance of the obtained results, our ap-
proach performs significantly better when the number of topics is
high (K > 50). For K = 10, our approach significantly outperforms
LDA in terms of intrinsic coherence, suggesting that our approach
infers the topics from the underlying Investing dataset better. For
the Food Delivery domain, we observe a similar trend, with LDA’s
topic coherence dropping more sharply after the K = 30 mark, thus,
every keyATM configuration significantly outperforms LDA for
K > 50. Furthermore, some configurations, such as keyATM-15
and keyATM-25 significantly outperform LDA across all K > 20 in
terms of extrinsic coherence. In terms of effect size, our approach
consistently outperforms LDA with the medium effect size, espe-
cially for the Food Delivery dataset. Such effect sizes suggest that
69% or more of the topics produced by our approach are of higher
quality than that of LDA.

We further observed that some keyATM configurations outper-
form each other for different K values. For example, in the Investing
domain, keyATM-25 performs the best when K = {10, 40, 80, 100},
but produces slightly worse results for the rest of the Ks. To com-
pare the performance of various keyATM configurations, we used
an independent t-test for every pair of configurations. The gen-
eral trend suggests that removing some percentile of unrelated
keywords somewhat helps the model to produce more coherent
topics for certain K values. However, not all improvements were
statistically significant. In what follows, we discuss these trends
along with their potential implications in greater detail.

5 DISCUSSION AND IMPACT

Based on our results, the main implication of our study suggests
that it is possible to avoid a costly tagging process of a ground truth
dataset and still outperform a traditional topic modeling technique
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Figure 3: Topic intrinsic and extrinsic coherence scores calculated for our two datasets of app reviews across all tested model
configurations and K. For example, keyATM-5 is a keyATM model with the bottom 5th percentile of keywords (seeds) removed

from each summary.

Table 3: Independent t-test results (t-values) for the difference of means of extrinsic (Ext) and intrinsic (Int) coherence of the
baseline (LDA) and the various keyATM model configurations over the dataset of Investing app reviews. Significant values
are shown in bold font (p<0.05). Effect size was calculated using Cohen’s d for n>50 and Hedges’ g for n<50. Effect size can be
interpreted as follows: s - small (d<0.2), m - medium (0.2<d<0.8), 1 - large (d>0.8).

keyATM-0 keyATM-5 keyATM-15 keyATM-25
# of topics | Ext Int Ext Int Ext Int Ext Int

10 079 2.60' | 097 1.90 1.43 2.86! | 1.53 3.22!
20 047  0.74 012 088 0.21 1.62 -0.08  -0.10
30 1.84  0.68 0.76  0.20 131 0.38 0.86 0.65
40 143 1.64 1.63  3.54™ | 0.98 1.78 2235 177
50 2.42° 154 2.13°  2.13°% | 3.02™ 045 2.64™ 047
60 1.01 191 1.01  3.21™ | 154 2.93™ | 150 3.62m
70 2.09° 3.50™ | 1.90 2.18° | 2.88° 2.23° | 2.01° 181
80 140  4.33™ | 2245 192 1.63 2.72° | 3.03° 3.91™
90 0.98  2.36° | 1.28  2.17° | 2.45° 156 1.95 3.48™
100 2.47% 4.58™ | 3.05° 2.70° | 3.17° 3.25° | 4.45™ 249°

Table 4: Independent t-test results (t-values) for the difference of means of extrinsic (Ext) and intrinsic (Int) coherence of the
baseline (LDA) and the various keyATM model configurations over the dataset of Food Delivery app reviews. Significant values
are shown in bold font (p<0.05). Effect size was calculated using Cohen’s d for n>50 and Hedges’ g for n<50. Effect size can be

interpreted as follows: s - small (d<0.2), m - medium (0.2<d<0.8), 1 - large (d>0.8).

keyATM-0 keyATM-5 keyATM-15 keyATM-25
# of topics | Ext Int Ext Int Ext Int Ext Int

10 -0.06  0.00 0.51 0.34 0.43 0.09 0.75 -0.19
20 1.75 0.62 1.58 1.08 2.32m 068 2.15™ 032
30 1.66 0.07 174  -0.73 | 2.28™ -057 | 2.38™ -0.26
40 237 1.69 2.48™ 172 2.42™ 180 2.39™ 176
50 3.58M  2.69M | 376™ 272M | 4.03™ 277 | 3.87m 2.80™
60 3.61™  3.40™ | 3.83™ 3.22™ | 388™ 3.30™ | 4.08™ 3.48M
70 4.22™ 385M | 436™ 3.86™ | 4.29™ 3.93™ | 4.37™ 3.80™
80 3.76™  3.42M | 3.80™ 3.57M | 4.08™ 3.56™ | 3.74™ 3.34m
90 4.26™ 3.95M | 4.44™ 4.11™ | 4.50™ 4.10™ | 4.64™ 4.04™
100 5751 584! | 606! 581 | 5990 545m | 6170 588!
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over app review data. With only a handful of hyperparameters to
consider, our study outlines a first-of-its-kind approach for inferring
meaningful latent topics from a semantically-restricted corpus of
user reviews.

Our results provide evidence that it is possible to significantly
improve the quality of the inferred topics by supplementing a topic
model with a small set (3-20) of representative keywords. In fact,
even when the supplied keyword set is incomplete, the model is
still able to correctly infer latent topics and provide interpretable
results. For example, Table 5 presents the top-5 topics in terms
of coherence generated for the reviews in our datasets. Topic 3
of the Investing app reviews is about losing money due to price
fluctuations on a trading day. However, only a handful of words
hinting toward that specific topic were provided to the model: sell,
stock, and lose. Nevertheless, the model correctly identified the
main idea of the topic and discovered new related words. Another
example is Topic 1 in the Food Delivery review corpus, which seems
to be discussing a problem with customer service. Interestingly, the
keywords customer and service were never supplied to this topic.
Nevertheless, the model was still able to create a topic with a high
coherence score. An interesting case is Topic 2 from the Investing
domain - none of the keywords appeared in the top-10 words of the
topic, however, the topic’s theme is interpretable, pointing out to
user interface (UI) problems. In fact, this topic which was obtained
with K = 10 does not appear in LDA’s topics at all for the similar
values of K = {10, 20,30}. This shows that our approach is able
to extract underrepresented topics from a semantically-restricted
corpus where LDA typically fails.

As expected, smaller sets of focused keywords (seeds) produced
the highest-quality topics. A large number of general keywords
still managed to produce coherent topics, although such keywords
are less likely to appear in the top-10 list of the topic. This suggests
that the quality of the resulting model is influenced by the quality
of the supplied keywords, therefore the main effort should be fo-
cused on the process of improving the seeding words for the topics.
This process, in turn, is dependent on the underlying dataset. For
example, using different summarization parameters can produce
different seeds. As such, these parameters should be tuned along
with the rest of the hyperparameters, such as K, @, and f.

In terms of specific model configurations, our results show a
general trend toward higher coherence score produced by the con-
figurations with a higher percentile removed keywords (n). This
suggests that there is no one-size-fits-all approach when it comes
to deriving an optimal model: each document corpus requires a
comprehensive hyperparameter tuning strategy to create the best-
performing model. For instance, in terms of coherence, we found
that keyATM-15 performed the best when K was set to 10 for the
Investing dataset and K = 50 for the Food Delivery dataset. This
difference in K can be explained by the difference in dataset size;
the Food Delivery dataset has about 6.5 times more reviews than
the Investing dataset.

In terms of impact, our expectation is that our approach would
advance the state of the art by enabling further empirical investi-
gations related to using topic modeling in software engineering
tasks. In particular, LDA has long been used to provide support
for basic Software Engineering activities, such as requirements
traceability [29], bug localization [78], code retrieval [50], and most
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recently mobile app review analysis. However, LDA’s performance
has always been hindered by the limited semantic and syntactic
nature of software artifacts, whether source code, bug reports, re-
quirements specifications, or software user reviews [17, 29, 54, 84].
Our proposed approach aims to address these challenges by as-
sessing LDA to produce more cohesive topics that can be pointed
out by a few important words extracted from the corpus. Such
words can be automatically determined using basic text summa-
rization techniques that have been shown to achieve high levels of
agreements with human generated summaries over collections of
software user feedback [36, 68, 83]. This relatively simple method-
ology can overcome the limitations often associated with other
expensive solutions, such as using machine learning to tune LDA’s
parameters [64], thus, enabling the development of more practical
software engineering tools.

In terms of practical impact, our results highlight the need for a
more nuanced and domain-aware approach for extracting informa-
tion from user reviews. Similar to existing topic modeling and text
classification algorithms, our approach can facilitate a transition
from domain knowledge to requirements specifications. However,
the key advantage of our approach over existing techniques is that
it can provide more fine-grained requirements information and
avoid the need to manually label a subset of reviews. The informa-
tion obtained from keyATM can then be effectively used by app
developers. For instance, developers of Investing apps may observe
that UI (Topic 2) is a major concern of Investing app users, thus,
concentrate their development efforts to improve user experience
by extracting reviews where the UI topic has a high probability, and
maybe even derive a more nuanced set of keywords (e.g., screen,
color, graphs, etc.) to split the topic into any level of detail required.
After the release of their app, developers can further monitor user
feedback and reallocate their resources more efficiently to quickly
address any emerging user concerns.

6 RELATED WORK

The problem of extracting valuable information from app reviews
has received significant attention in the literature [14, 25, 26, 36, 44,
47,49,53,58,72,73, 80, 82, 84, 86]. A wide variety of supervised and
unsupervised techniques have been used to mine such reviews for
different categories of feedback. For example, Guo and Singh [24]
proposed Caspar - an approach for extracting user stories from
informative app reviews. A user story is an “action-problem” pair
of events where a problem with an app is triggered by a user’s ac-
tion. The authors applied dependency parsing to extract temporally-
related user stories from app reviews and train a bidirectional LSTM
network for classification. Panichella et al. [66] proposed a tool for
classifying user reviews into useful software maintenance cate-
gories. The approach uses NLP heuristics, such as common linguis-
tic patterns, to formulate features for the classifier. The authors
found that the structure of a review and its sentiment can predict
the maintenance category with high precision and recall. Williams
et al. [84] proposed a methodology to extract domain-specific user
feedback from app reviews and tweets. The authors utilized Hybrid
TF.IDF to identify important words from app reviews and then used
PMI to derive relationships between them to form specific user
concerns in a given app domain.
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Table 5: The top-5 generated topics for the Investing and Food Delivery domains by the best performing model configurations.
keyATM-15 with K=10 was used for the Investing domain, and keyATM-15 with K=50 was used for Food Delivery. Seeds are

highlighted in bold. Example reviews are selected from the top-10 reviews of each topic.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Domain Topics | Most probable words Example review

Topic 1 | trade, day, money, trad- | ...price could swing $.10-$.30/share easily between the time you’ve submitted a purchase
ing, stock, time, market, | and when it actually submits. Trading hours open up at 8am and only last until 5pm, the
platform, service, like worst trading hours by far

Topic 2 | see, update, change, new, | Please change the color and font of new Robinhood, it’s hard to focus and it hurt my eyes
stock, like, screen, look, | if Ilook into app for while, not impress with this update.
show, view

Topic 3 | money, sell, stock, lose, | When I decided to sell my shares my orders were not executed at my price and the stock

Investing price, market, time, buy, | kept going down. Lost of hundred dollars.
trade, trading

Topic 4 | account, money, email, | The customer service is HORRIBLE!!!!!!!!... Contacted customer service 2 or 3 times and
customer, bank, time, ser- | after 24 hours... They say it takes about 10 days to close and get money transferred back
vice, day, say, support to my bank.

Topic 5 | money, account, take, | Reason for me giving a low rating is due to the fact that all it seems the app is doing is
bank, invest, fee, charge, | taking my money. 'm getting over drafts, I STILL don’t see where my $700 in roundups
back, day, transfer went

Topic 1 | help, problem, would, | Customer service is really bad. 2 days in a row they canceled my orders
service, could, customer,
app, great, able, order

Topic 2 | app, work, address, or- | When I type in my address and zip code and then hit Find Restaurants, it says "State is
der, try, time, use, update, | UNSET should be VALID"
even, get

Topic 3 | drive, driver, food, minute, | Watched the driver drive to the next town over before delivering our food.

Food delivery around, house, away,
street, go, car

Topic 4 | app, order, time, second, | Over the past few days the app has been crashing every single time I open it.
crash, try, twice, open,
use, every

Topic 5 | app, ever, number, use, | I can’t even log in. It asks for my phone number...
bad, give, account, sign,
one, star

Along the lines of our work, active learning was proposed to
reduce the manual effort required to classify app reviews. Active
learning algorithms learn the data incrementally by selecting a
small sample of reviews for manual labeling and predicting the
remaining labels. The steps are repeated until the desired accuracy
is reached. For example, Dhinakaran et. al. [19] evaluated an active
learning pipeline for app review classification. The authors classi-
fied reviews into four categories: feature request, bug report, user
experience, and rating. Several uncertainty sampling metrics were
proposed and evaluated, such as Least Confident Prediction, Small-
est Margin, and Highest Entropy. The experiment was conducted
on Maalej et al’s labeled datasets [52]. The authors showed that
active learners that employ binary classifiers were more effective
for review classification tasks than passive learners.

Recently, unsupervised techniques have been used to discover
latent topics in user reviews. Most of these techniques modify and
extend LDA to increase its effectiveness for user generated feed-
back [12, 13, 59, 62, 69]. For instance, Mehrotra et al. [59] proposed
grouping related short user tweets based on hashtags before sup-
plying them to the LDA model. Qiao et al. [69] introduced the

Latent Product Defect Mining Model (LPDM) for collecting domain-
specific product defects from customer reviews. This approach
augments LDA by including latent product components and their
descriptions. While these techniques share the same goal of improv-
ing topic cohesiveness, to the best of our knowledge, our proposed
approach is the first to utilize keyATM as well as text summarization
techniques to generate more cohesive topics of user reviews.

7 THREATS TO VALIDITY

The study conducted in this paper suffers from several methodologi-
cal constraints that might jeopardize the validity of our results. One
major external validity threat stems from the fact that our results
might not be generalizable to other application domains of mobile
apps. In an attempt to overcome this threat, we performed our anal-
ysis on two different domains of apps, Investing and Food Delivery.
Furthermore, our datasets have drastically different sizes to ensure
that our approach is able to produce coherent topics regardless of
the amount of data available.

An internal validity threat might arise from the fact that we
removed a large amount of reviews during our informative review
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extracting step in order to increase the quality of the review cor-
pus. Therefore, some of the latent topics from the removed reviews
might have been missed. However, performing review filtering is
a standard practice for any supervised or unsupervised machine
learning task. These methodologies have been shown to remove
high percentage of uninformative reviews in review corpora with
high levels of precision [24, 38]. Furthermore, the hyperparame-
ter settings used to tune LDA might affect the internal validity of
the study. However, there are no robust optimization methodology
available for every parameter for every scenario. Therefore, we ap-
plied a standard procedure of training several models with various
K parameter values until the best results were obtained.

Another internal validity threat might stem from the apps se-
lected for each domain. While we acknowledge that there are
dozens, if not hundreds, of apps available under the Investing and
Food Delivery domains, most of these apps do not have a sufficient
number of reviews. Including such less popular apps would be
problematic as the generated topics would be biased toward apps
with more reviews. Nonetheless, we acknowledge the fact that the
results of our analysis might not necessarily generalize over other
apps in our domains or over other domains.

Construct validity is the degree to which the various perfor-
mance measures used in the study accurately capture the concepts
they purport to measure. A construct validity threat might be raised
about the reliability of the coherence measures used to evaluate
the quality of generated topics. To address these threats, we used
two types of intrinsic and extrinsic coherence measures that are
based on the semantic relatedness of topic words. These measures
have been extensively used in the literature and have been shown
to achieve high correlation levels with human judgment [71]. Gen-
erally speaking, topic models are often utilized as a means to an
end, where generated topics are used to enable other tasks, such as
information retrieval, or even used as input for machine learning
algorithms, thus, they are better evaluated in that context. Nonethe-
less, further evaluation using human judges is necessary to paint a
full picture of topic quality.

8 CONCLUSIONS

In this paper, we proposed an approach for analyzing mobile app
user feedback using keyword-assisted topic models. The proposed
approach relies on a set of seeding words (keywords) extracted
from the corpus to generate more cohesive topics. We showed that
these keywords can be automatically extracted from the corpus
using general-purpose extractive summarization techniques. The
proposed approach was evaluated using two datasets of user re-
views, sampled from the domains of Investing and Food Delivery
apps. The results showed that our proposed keyword assisted topic
modeling approach was able to significantly outperform LDA on
both intrinsic and extrinsic measures of topic cohesiveness. Fur-
thermore, our approach was able to model topics that are often
overlooked by LDA. Our findings in this paper are intended to
advance the state-of-the-art in mobile app review analysis as well
as enable further empirical investigations into topic modeling for
software user feedback. To achieve these goals, our work in this
paper will be extended along two main directions:
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e Automatic tuning: we will continue to evaluate the proposed
approach over larger datasets of mobile app reviews and
across more application domains. Our objective is to devise
automated optimization strategies for tuning the different
parameters of our underlying topic modeling approach in
different settings.

e Tool support: a working prototype which will implement
our findings in this paper will be implemented and made
publicly available. Such a prototype will enable us to examine
the applicability and usability of our approach as well as its
overall effectiveness in practical settings.
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