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Abstract

Learning analytics, referring to the measurement, collection, analysis, and reporting of data
about learners and their contexts in order to optimize learning and the environments in
which it occurs, is proving to be a powerful approach for understanding and improving
science learning. However, few studies focused on leveraging learning analytics to assess
hands-on laboratory skills in K-12 science classrooms. This study demonstrated the feasi-
bility of gauging laboratory skills based on students’ process data logged by a mobile aug-
mented reality (AR) application for conducting science experiments. Students can use the
mobile AR technology to investigate a variety of science phenomena that involve concepts
central to physics understanding. Seventy-two students from a suburban middle school in
the Northeastern United States participated in this study. They conducted experiments in
pairs. Mining process data using Bayesian networks showed that most students who par-
ticipated in this study demonstrated some degree of proficiency in laboratory skills. Also,
findings indicated a positive correlation between laboratory skills and conceptual learn-
ing. The results suggested that learning analytics provides a possible solution to measure
hands-on laboratory learning in real-time and at scale.

Keywords Laboratory skills - Bayesian networks - Science education - Learning analytics -
Mobile application

Introduction

Improving and assessing hands-on laboratory skills is one of the top priorities in science
education (Hensiek et al., 2016; Hofstein, 2017; NRC, 2006; Zhang et al., 2020). The
laboratory skill is students’ ability to perform scientific practices in science labs. Stu-
dents could minimize the errors in measurement and data collection, and successfully
observe and analyze scientific phenomena when mastering the essential laboratory skills
(Prichard, 2003). In addition, obtaining hands-on laboratory skills can help secondary

D4 Shiyan Jiang
sjiang24 @ncsu.edu

Department of Teacher Education and Learning Sciences, North Carolina State University, Poe
Hall, 208, 2310 Stinson Dr, Raleigh, NC 27695, USA

2 Institute for Future Intelligence, Natick, MA, USA

Published online: 09 July 2022 ) Springer


http://orcid.org/0000-0003-4781-846X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11165-022-10061-x&domain=pdf

Research in Science Education

school students be well prepared for college-level science courses (Leggett et al., 2004).
Therefore, it is vital to explore alternative (Doran et al., 1993) ways of assessing and
supporting the development of laboratory skills in K-12 science education.

Learning analytics, the core idea of which is that decision-making regarding
the administration of learning should be guided by data, is proving to be a powerful
approach for understanding and improving science education (Jiang et al., 2022; Geden
et al., 2021; Zhai et al., 2020). For instance, researchers have developed Ing-ITS to
assess scientific inquiry skills through mining log data of students’ interactions with sci-
ence simulations in the system (Gobert et al., 2013). Most log data in science learning
settings, in particular, laboratories, were obtained from virtual environments. Such vir-
tual laboratories offer a low-cost opportunity for student inquiry (Li et al., 2018). How-
ever, simulated experiments cannot replace the role of hands-on experiments. Its nature
of virtuality sometimes led to low responsibility, as some students viewed learning in
a virtual environment as playing a video game that nothing wrong could happen (Pot-
konjak et al., 2016). To our knowledge, few studies have focused on assessing hands-on
laboratory skills using learning analytics in physical labs, in particular, in K-12 learning
settings.

Adopting mobile devices in the physical lab provides educators an opportunity to
mine educational data and apply learning analytics to capture dynamic scientific prac-
tices. We could investigate students’ hands-on laboratory learning leveraging log data
captured by the sensing technology in mobile devices. Such log data has great research
potential as it could be used for fine-grained analysis. This approach is similar to how
log data generated by a virtual learning system could be utilized to enhance learning
(Park & Jo, 2017). The logs collected by mobile devices have been used to identify
meaningful learning patterns. For example, Chiang et al. (2014) designed a mobile
application for elementary school students’ ecology field trip. During the trip, the appli-
cation recorded students’ actions on tablets such as capturing images, adding comments,
sharing data, and posting questions. Then the researchers identified students who had a
high-level knowledge construction through mining the log data of student-application
interactions. Collectively, the literature shows that mining mobile log data provides a
unique opportunity to automate the analysis of physical learning activities.

However, few studies involving mobile log data were carried out in K-12 laborato-
ries; a laboratory is commonplace in schools to help students link theories to practice
and build practical skills though (Beaumont-Walters & Soyibo, 2001). In particular,
using mobile log data to understand hands-on laboratory learning was not thoroughly
investigated in the literature (Chang et al., 2020). This is an underexplored area as it
is difficult to develop applications to capture and record scientific activities in physical
laboratories. It is even more challenging to design automated analysis tools to analyze
student interactions with mobile devices because of the variety of scientific practices
(e.g., manipulating laboratory equipment and taking measurements) that could be cap-
tured. This study serves as a first step in developing and studying automated analysis
tools for physical laboratory learning by leveraging learning analytics to automati-
cally assess hands-on laboratory skills. Specifically, we examine the following research
questions:

e How could mobile log data be used to automatically measure students’ hands-on labora-

tory skills?
e What is the relationship between students’ laboratory skills and conceptual understanding?
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Literature Review

In science labs, practices related to making observation and gathering evidence are recom-
mended as the priority of science teaching (National Science Teachers Association, 2007).
The typical ones include correct setup of equipment, appropriate use of tools, accurate
measurement of variables, actualization of experimental operations, and complete gath-
ering of experimental data (Gobaw & Atagana, 2016; Jou & Wang, 2013). Developing
hands-on laboratory skills are crucial to prepare secondary students for advanced study of
science in colleges and for employment in careers related to science, technology, engineer-
ing, and mathematics in the future.

The indirect way of assessing laboratory skills is to score written tests or lab reports and
the direct way is to rate how students actually perform in the laboratory (e.g., Hunt et al.,
2012). Researchers showed that the direct rating was a better index of laboratory skills to
supplement or replace the traditional writing tests (Lunetta et al., 2007). Specifically, direct
rating can be conducted in two levels: the holistic scoring for overall performance and the
analytic scoring for specific skills (Chabalengula et al., 2009). The holistic scoring treats
the activity as a whole and gives one single score (i.e., the completion of an experiment),
while the analytic approach focuses on various skills and assigns scores for each skill (e.g.,
tool setup, data collection). Compared to assigning either holistic or analytic scores, it is
better to use both (Harsch & Martin, 2013). Following this approach, our study assessed
both individual skills and overall performance.

Even though direct ratings are “authentic” and “sensitive” (Hofstein & Lunetta, 2003,
p. 43-44), they are not widely adopted in the classroom due to several challenges, such
as challenges in observing and rating each experimenter in a large-size class. Therefore,
many teachers tend to use summative lab reports to understand students’ laboratory expe-
rience, and the research about direct ratings becomes less visible in the twenty-first cen-
tury (Lunetta et al., 2007). Meanwhile, many students were not prepared well for hands-on
laboratory learning. For instance, manipulative errors in laboratory learning were common
among secondary and undergraduate students (Gobaw & Atagana, 2016; Minalisa, 2019).
A major reason for the low performance in laboratory learning is the lack of real-time feed-
back (Beaumont-Walters & Soyibo, 2001). Real-time feedback at scale requires automating
the analysis of hands-on laboratory lab skills (Zhang et al., 2020).

The fast adoption of smartphones to science laboratories and recent emergence of learn-
ing analytics in assessment provide a unique opportunity to automate the analysis of mobile
log data to measure lab skills (Zhai et al., 2020). One challenge that researchers face
when approaching automatic behavior modeling is the high level of uncertainty (Conati
et al., 2002). This challenge is even more prominent in a real-world lab where uncertainty
abounds. Various learning analytics approaches have emerged to address uncertainties in
the learning settings, and among those, the Bayesian network modeling is an important one
(Fan et al., 2021). The Bayesian network approach could be utilized to model the interde-
pendencies of variables in a real-world scenario and deal with uncertainties. Also, it allows
the incorporation of expert judgments to improve inference accuracy (Zhou et al., 2014).
Such customization can help a Bayesian network achieve a high prediction accuracy even
with small data samples (Zhou et al., 2014). Furthermore, Bayesian networks’ probabilistic
inferences can happen in real-time. Therefore, educators and students can receive dynamic
feedback based on results from Bayesian networks (Tadlaoui et al., 2016).

One more advantage that makes Bayesian networks especially suitable to meas-
ure laboratory skill is its ability to follow the scoring method recommended by the
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literature—combining analytic scores into a holistic score (Harsch & Martin, 2013). Bayes-
ian networks can realize this approach by using a standard format—the tree structure. The
tree’s root nodes are the observable features (e.g., taking images). A level above them is
the nodes representing individual skills (e.g., complete data gathering). Sitting above these
two layers is the top-level node presenting the overall lab performance. In this way, we can
understand the lab practices from both sub-skill and overall perspectives. In this study, we
utilized a Bayesian network to analyze students’ process data logged by a mobile applica-
tion in science experiments.

Method
Learning Technology and Context

In this study, students used Infrared Explorer, a mobile AR (augmented reality) applica-
tion developed by the research team, together with an infrared (IR) camera attached to
a smartphone to explore thermal phenomena in the science laboratory (Fig. 1). Infrared
Explorer is an application that facilitates both lab investigation and educational research. In
the application, users could add thermometers on the points of interest to measure instant
temperature, turn on the temperature—time T(t) graph to analyze temperature changes over
time, and capture screenshots of thermal phenomena. On the research side, the application

Fig.1 The experiment set up: a —
smartphone, the mobile applica- T,
tion, a plug-in IR camera, and SAmMSunG
experimental materials L L STy

>
7
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logs students’ interactions with it and records MP4 files of what students see through the
infrared camera. The MP4 recordings provide a nuanced view of students’ processes of
conducting experiments, similar to video recordings for classroom activities but with a par-
ticular angle.

Before project implementation, we offered a professional development workshop for
Eric (all names are pseudonyms), the science teacher, to learn a five-day curricular unit.
The experiments covered concepts of radiation, natural convection, forced convection, con-
duction, and latent heat (Sung et al., 2021; Xie, 2011). These scientific concepts were cov-
ered before the inception of the lab. Students had one science class (approximately one
hour) per day. The instructor only spent the first 10 min of the class introducing the main
concepts of the lab and the rest of the class time was for students to conduct lab experi-
ments with Infrared Explorer. When implementing the project, Eric placed students in
pairs to conduct five science experiments in the curriculum and he circulated among the
lab groups to monitor the progress of each group, provided feedback, and answered stu-
dents’ questions. The heat conduction experiment was selected to measure laboratory skills
because it contained the most steps compared to other experiments in the curricular unit.
Specifically, it included nine steps and the main activity was to compare the conductivity
of metal and wood (Fig. 2). While Fig. 2 shows a linear sequence of steps, students went
through these steps recursively in the lab.

Participants

A total of 72 seventh graders (female 32, male 37, prefer not to answer 3; American Indian
or Alaskan Native 3; Asian/Pacific Islander 4; Latinx 1; Multiple ethnicity 6; White 53;

Steps Laboratory skills Phone logs

Place two rulers parallelly on a foamcore board and wait until Setting up experiment No
the residual heat by grabbing rulers dissipates.

.

‘ Add 6 thermometers: three on each ruler; two inches apart. Setting up experiment Yes
¥
‘ Take an IR image of the rulers. Evidence Recording Yes
!
‘ Turn on the time series graph for thermometer reading. Observing Yes
l Touch two rulers with two thumbs for 1 minute. Observing Partial
Observe from phone screen the color changes, temperature Observing Partial
readings, and the graph curves; may adjust x or y axes for a
L better view of the graph. S -
| Take an image of the scene after 1 minute. Evidence Recording Yes
v
Move the thumbs away from the rulers, take an image of the Evidence Recording Yes

rulers and an image of two thumbs.

‘ Save the time series graph to an image. | Evidence Recording Yes

Fig.2 The heat conduction experiment: steps, laboratory skills, and whether the mobile application cap-
tures logs or not
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Prefer not to answer 5) from four classes (n=16~20 in each class) who returned paren-
tal consents to participate in this study. They were from a suburban middle school in the
Northeastern United States and taught by the same science instructor, Eric. Students con-
ducted experiments in pairs (or a team of three when there was one left) based on whether
students provided full consents (pairing those who missed their consent forms in the same
groups) and formed 34 teams. After removing students missing parental consent or log
files, the data of 30 teams were used for analysis.

Measures

Conceptual Understanding Students’ conceptual understanding was measured by coding
their written scientific explanations in the lab report. Following the POE pedagogy (Pre-
diction-Observation-Explanation; Gunstone, 1990), students described their understanding
of the concept (conductivity in this case) before and after conducting the laboratory experi-
ment by answering open-ended questions (e.g., “when you touch the two rulers, which one
will feel cooler? Explain why.”). Their answers were scored by two independent research-
ers. Both coders were researchers (one female and one male) on the project in their first
and second year, the second author led the training process until they reached 0.84 inter-
rater reliability in the second round of coding, and the scores range from 1 to 3. Specifi-
cally, the answer was coded as 1, 2, and 3 when it contains an error or is off-topic, does not
contain an error but has no or partial explanation, and is correct and has a detailed explana-
tion respectively. The intercoder reliability was 0.84.

Learning Gain Learning gain refers to the score difference between post-lab and prior-lab
conceptual understanding. As the prediction phase had three questions, and the explana-
tion phase had four, we normalized the total scores before making the pre-post compari-
son (i.e., normalized total score=total score/maximum total score). For example, one
student’s total score in prediction is six (e.g., 2+2+2), and the maximum total score is
nine (i.e., 3+3+3), and then her normalized total score in prediction is 0.67, (2+2+2)/
(3+3+3). Following the same conversion, her normalized total score in explanation is
0.83, 2+3+3+2)/(3+3+3+3). Then, this student’s learning gain is 0.16. Note that each
pair submitted one report, so the learning gain is considered a team-level outcome.

Laboratory Skill Analysis Using Bayesian Network Modeling

We used GeNle v3.0.6 to construct and fit the Bayesian network due to its robustness on
Bayesian modeling and flexibility on switching between a graphical user interface and pro-
gramming interface (BayesFusion, 2017). The graph-structure Bayesian network to model
laboratory skills is illustrated in Fig. 3. The figure illustrates the initial probabilities of dif-
ferent nodes. For example, before the model was fit, the initial probability of taking a mile-
stone image was 0.25. Likewise, students, in general, were modeled to have a probability
of 0.3068 to demonstrate laboratory skills before model fit (calculated with expert-defined
conditional probabilities and dependencies’ joint probabilities). Details of how initial prob-
abilities were selected can be found in the next few paragraphs.

In this model, laboratory skills contain three major dimensions: experiment setup,
observation, and evidence recording (National Science Teachers Association, 2007).
The first one is experiment setup, which captures if students prepare thermometers cor-
rectly to aid observation and keep devices and thermometers stable to guarantee desired
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Fig. 3 Initially constructed Bayesian network to measure laboratory skills

temperature trends to be observed. The second one is observation, which indicates if
students manage to use the required feature, temperature—time T(t) graph, and wait
enough time to observe the intended phenomena. The observation step is operationally
defined as no additional actions are logged when the sensor orientation is stabilized for
at least 60 s. The last one is evidence recording, which registers if students record mile-
stone screencasts (see Fig. 8 in the “Results” section) along the experiment process and
generate a final T(t) graph to assist future analysis in the lab report. The hierarchies of
the model allow us to understand both the sub-skills and the overall skill performance.
From the perspective of Bayesian statistics, the probability of a joint distribution with
a set of random variables could be represented using the chain rule, as shown in Eq. (1).

P(x, ... ,xn) = 1_[?:1P()cl-|xi_l csX;) (1)

A Bayesian network model satisfies the conditional independence assumption (Pearl,
1988); Eq. (1) could then be simplified as Eq. (2).

P(xy,.oox,) = [, PCxlParents(x)) )

The first step to run a Bayesian network is setting the initial probabili-
ties of all the nodes in the network. In our case, the initial probability distribu-
tions for root nodes (i.e., observable features such as adding how many thermom-
eters) were calculated from real data. For example, since among all the groups,
the proportion of whom took a milestone image was 25%, then we set the dis-
crete probability distribution (e.g., a Bernoulli distribution) of Milestone Image as
P itestone_image = %) = PE(1 = p)'=*, where p = 0.25,k € {0, 1}. Note that the initial prob-
ability will be adjusted as the Bayesian network learns to fit the evidence.

For the other nodes (i.e., the internal nodes representing individual skills and the top-
level node representing the overall skill level), their conditional probability distributions
were initially specified by a subject matter expert from our research group. The values
were agreed upon by other research members in the team to ensure the current model
well represents the reality for laboratory-skill inference. This process of determining
initial probabilities is also known as informative prior setup, which is a valuable feature
of Bayesian models to incorporate individual perspectives and has been widely adopted
(Levy, 2016). Specifically, the subject matter expert was assigned to fill in conditional
probability tables for each internal and top-level node. In the case of evidence record-
ing node, for example, if a table entry had both taken a milestone image and generated
a final graph, the expert assigned a relatively high probability (e.g., 0.8) that the entry
had shown a desirable skill level of evidence recording. This entry can be recorded as
“l (whether a milestone image was taken), 1 (whether a final graph was generated), 1
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(whether a student showed evidence recording skill), and 0.8 (a probability value to be
filled by the expert)”.

Then, the Bayesian network could perform reasoning tasks by feeding the nodes with
new evidence. In our case, students’ skill levels could be inferred via feeding the Bayes-
ian network with extracted lab behaviors and reading the updated posterior probability
(i.e., the probability of an event happening after all evidence is taken into account). Then,
we used the Bayesian network algorithm to calculate the performance of individuals and
inspected the overall pattern across all individuals. The calculated results were presented in
the “Results” section.

Next, we discussed representative student pairs based on their average skill perfor-
mance and performance in each dimension of laboratory skills. These student pairs were
selected as they instantiate maximum variation (Flyvbjerg, 2006) in terms of laboratory
skills. The selection was also what Flyvbjerg (2006) called an informed-oriented selection:
From review of their lab reports and recordings of what students saw through the infrared
camera, we expected these student pairs to contain rich examples of scaling and assem-
bling comparisons in laboratory learning. In the “Results” section, we also presented how
log analysis of laboratory skills was related to students’ conceptual understanding using a
Pearson correlation analysis.

Results
Average Performance on Laboratory Skills

Table 1 shows the laboratory skill level across all students in terms of probabilities. An
overall value of 71.0% is reported. A higher probability indicates a higher certainty of
demonstrating desired laboratory skills. This probability is posterior probability and is cal-
culated after taking into account all skill-related behaviors. In other words, the better a
student acted in conformity with lab procedures (according to the observable evidence),
the higher the probability reasoned by the model to indicate her or his ability to demon-
strate the skill. This may be explained that practical lab abilities such as effectively execut-
ing lab procedures can be an important indicator on students’ lab skills (see the review of
Hofstein & Lunetta, 1982; Hofstein, 2017). Table 1 also lists the overall values of three
sub-categories: experiment setup, observation, and evidence recording. The probabilities
of 79.3%, 66.7%, and 71.1% indicate a satisfactory level of competency in these skills,
where students are more likely to demonstrate these skills than not showing these skills.
This table could serve as a reference to compare individual performance with the sample
average. As the experiment was conducted by a pair of students, individual data comes
from two participants.

Table 1 The average performance on laboratory skills and three sub-categories as reasoned by a Bayesian
network in terms of posterior probabilities

Overall skill level Sub-categories
Experiment setup Observation Evidence recording
71.0% 79.3% 66.7% 71.1%
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Fig.4 A comprehensive view of individuals’ performance on the overall skill level and the sub-categories

Table2 A case of deficient experiment setup and its skill levels compared with the sample average

Overall skill level Sub-categories
Experiment setup Observation Evidence
recording
Deficient setup 52.5% 18.2% 90.0% 80.0%
Average 71.0% 79.3% 66.7% 71.1%

We also provide a comprehensive view of how individuals performed in each sub-cate-
gory, together with their overall skill levels in Fig. 4. Each bar in the graphs represents the
result derived from one pair of lab partners. In the following sections, we will elaborate on
the sub-categories of laboratory skills using representative cases.

Experiment Setup
Table 2 shows a case with a deficient experiment-setup skill. This pair of students per-

formed lower-than-average in terms of overall laboratory skills (i.e., 52.5%) despite
the greater-than-average level achieved on observation (90.0%) and evidence recording
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(80.0%). The reason why lab performance was underachieved is that the students did
not finish the experiment setup. Screenshots during its lab process (Fig. 5) reveal that
instead of placing a total of six thermometers on both rulers with three on each, they
only positioned three thermometers on one ruler. Besides, the students added a ther-
mometer on the top left corner of the screen to compare the ambient temperature with
the thermometer readings on the right ruler. Such a problematic experiment setup due to
likely fallacious reasoning would adversely affect the experiment process. The collected
evidence has a gap as necessary data was missing for a quantitative comparison between
two rulers. Admittedly, the students did keep the camera steady, as well as the position
of the thermometers fixed. They also turned on the T(t) graph to observe temperature
change over time (right screenshot of Fig. 5) while watching heat conduction for at least
60 s. They recorded milestone images along the observation to complete the lab report.
However, observations and the evidence recording based on a defective experiment
setup made the collected data a futile effort to achieve expected experiment results.

A deficient experiment setup may happen in various forms, and the Bayesian net-
work can easily handle such discrepancy. Figure 6 shows a worse example captured
by the Bayesian network, as indicated by a mere 9.05% probability of competency on
the experiment setup. The students deployed an insufficient number of thermometers
(two with one on each ruler) and changed the positions of both thermometers during the
experiment process. Such behavior would cause inconsistency in temperature readings
and hence obscure the intended trend to be observed and reported.

(MRl <4 SN N F 24 93% @ 8:29 AM @@ R8P SN T491% @832 AM

SmartliR ;"Z»\‘ SmartIR 4 &

® ~ B I

Disable View Graph Photo Disable

Fig.5 Screenshots of the experiment setup (left) and the experiment process (right) of a case of deficient
experiment setup
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Fig.6 Screenshots of the initial thermometer position (left) and their change during the experiment (right)
of an even worse case of experiment setup

Observation

Table 3 shows the performance of an example who had a lower-than-average performance
on observing. The students in this example did a relatively good job in setting up the exper-
iment (87.0%) and recording evidence (80.0%), which indicates competency in utilizing
instruments as well as recording required milestone images during the experiment. How-
ever, failure in turning on the graph showing temperature trend (Fig. 7 right) would greatly
weaken the explanation on how fast and in what patterns heat conducts in different mate-
rials, while that explanation is required in the lab report. Their answers in the lab report

Table 3 A case of deficient observation and its skill levels compared with the sample average

Overall skill level Sub-categories
Experiment setup Observation Evidence
recording
Deficient observa-  71.2% 87.0% 50.0% 80.0%
tion
Average 71.0% 79.3% 66.7% 71.1%
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Fig. 7 Screenshots of the experiment setup (left) and the experiment process (right) of an example of defi-
cient observation

confirmed this issue. To predict what would happen to the two rulers after the thumbs
touched for 1 min, they did not mention there would be a difference between two materi-
als and anticipated that the same pattern would happen to both rulers: “The part that your
thumb is on will become warmer.” Such a knowledge gap remains after the observation.
They still did not realize the difference and described two rulers as a whole: “The ther-
mometers near the bottom are warmer as that is the part of the ruler we are touching.”

Evidence Recording

Table 4 shows an example that performed excellently on evidence recording and other
skills. The students set up the experiment well (96.5%), observed both the phenomenon
and the temperature trend (90.0%), and performed a superior job in recording required
evidence (99.0%). Such maneuvers were manifest in the milestone images extracted from
the lab report (Fig. 8). As shown in those images, the students positioned thermometers
according to the given diagram (Fig. 8a) and observed how heat conducts along a metal
ruler as opposed to a wood ruler (Fig. 8b, c¢). They took pictures of the two thumbs with the
visible pattern right after the experiment (Fig. 8d) and saved the T(t) graph registering the
temperature trend over time (Fig. 8e).
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Table 4 A case of excellent evidence recording and its skill levels compared with the sample average

Opverall skill level Sub-categories
Experiment setup Observation Evidence
recording
Excellent evidence 94.2% 96.5% 90.0% 99.0%
recording
Average 71.0% 79.3% 66.7% 71.1%

(d) (e)

Fig.8 An example of correctly preparing all required milestone images in the lab report. a Initial state. b
State after 60 s. ¢ State after thumbs removal. d State of thumbs. e Final T(t) graph

Laboratory Skills and Students’ Conceptual Understanding

We explored how laboratory skills are related to students’ conceptual understanding
using a Pearson correlation analysis. The two variables involved are skill performance
and conceptual learning gain. Fourteen of the 30 teams completed both the prediction
and explanation questions (prediction score M =0.65, SD=0.13; explanation score
M=0.70, SD=0.18). There was a lot of missing data from the POE lab report, and
many groups only provided prediction data. The lack of explanation data was due to
the fact that the POE lab report served as a self-paced guideline for students to navigate
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their lab. Many groups did not complete the explanation question because they either
ran out of time at the end of the lab or were not as motivated to provide their reasoning
on the lab report as interacting with the Infrared Explorer technology. Even with small
sample size, results demonstrated a significant positive correlation (r=0.582, p=0.029)
between skill performance and learning gain (see Table 5). The analysis was not causal,
and the sample size was small, but it implies the potential positive effect of laboratory
skills on conceptual understanding: A better laboratory skill may be the reason for an
improved conceptual understanding after the lab implementation, while poor skill may
contribute to low-level scientific learning.

A closer look at student argument examples provided additional details. The team
with the highest skill score (92.5%) improved their understanding of the concept after
the lab (learning gain=0.25). Their prediction on what would happen to two rulers was
correct but abstract (“after touching them for 1 min, the metal ruler will lose the heat
faster than the wooden one because the wooden one is a better insulator”). After obser-
vation, they expanded the explanation with a detailed description of the visual evidence
they saw: “The heat was being conducted better in the metal ruler than in the wood
ruler, so the metal ruler had the heat farther up on the ruler, and the wood ruler had the
heat more centered on the thumb. The distance on the rulers shows the conductivity of
each ruler.”

As a comparison, the team with the lowest laboratory skills (31.7%) had a nega-
tive learning gain (—0.33) and replaced their correct prediction with misconceptions
in the post-lab explanation. They predicted correctly that “the metal will feel colder
because your hands will transfer the heat to the metal ruler better.” After the errone-
ous operations, they switched the answer to a popular misconception—believing that
metals conduct coldness (rather than heat) better than other objects (e.g., Pathare
& Pradhan, 2010). They wrote that “the metal ruler felt cooler to touch because the
coolness transfers to your hand faster.” Such decreased conceptual understanding
might be caused by problematic observation and insufficient evidence recording, as
this pair’s individual lab skills—experiment setup, observation, and evidence record-
ing—are 96.6%, 10.0%, and 27.5%, respectively. The last two scores are extremely
low.

As a reference, we also list the scores of conceptual understandings for the three
examples we introduced in previous sections (see Table 6). Because the team with
excellent evidence recording did not complete their lab report, their scores are not
available. For the rest two examples that have deficient lab operations, one team’s
scores only reached the group average, and the other had a negative learning gain.
Their performance generally fits the trend we found from the correlation analysis.

Table 5 The Pearson correlation between laboratory skills and conceptual learning gain

Value range n M SD r R2
Laboratory skills Oto1 14 0.75 0.16 0.582%* 0.339
Conceptual learning gain —1tol 14 0.05 0.15

* indicates p <0.05
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Discussion and Implications

A unique and significant contribution of this study is that we demonstrated an automated
analysis of laboratory skills leveraging learning analytics, specifically, mining smartphone
logs using Bayesian network modeling. This study fills the literature gap of automatically
assessing hands-on laboratory practices (Beaumont-Walters & Soyibo, 2001). Automated
analysis of laboratory skills is a first step of developing and studying intelligent tools for
supporting physical laboratory learning, which is one area that is relatively understudied.
Findings from this study show the potential capacity that mobile logs have to inform on
hands-on laboratory learning.

We analyzed the lab process with a Bayesian network. A Bayesian network is a “white-
box” in which the prediction process is explicit, compared with a black-box model in
which variables’ contribution is unclear (Conati et al., 2002). Therefore, we can mimic the
actual lab process in the Bayesian network by defining which actions represent a laboratory
skill. This straightforward structure allows future researchers to easily understand the logic
and quickly adapt the model to their study. Besides, using a Bayesian network provides an
opportunity to develop real-time feedback systems, as it can instantly update results (in the
form of probabilities) when being fed new evidence (Fan et al., 2021). As long as the log
captures new data, the reasoning process of the Bayesian network is triggered immediately
to provide updated posterior probabilities for the nodes representing the variables of inter-
est. For example, in the thermal conduction activity of this study, there should be six vir-
tual thermometers, with three on each ruler. The probability of the correct setup increases
when more thermometers are added to the rulers. It peaks when all six thermometers are
added during the experiment. But if the addition stops in the middle (e.g., only adding
two thermometers), the probability will stay at a lower value. Investigating the learning
effect of a Bayesian network-based real-time feedback system for hands-on lab activities is
a fruitful area for future exploration.

To further investigate why students do not place the expected number of thermome-
ters, teachers can orchestrate with Bayesian model’s insights to intervene with students and
qualitatively understand their rationales (e.g., unclear instructions, carelessness, trial-and-
error). Bayesian models, including Bayesian network, can be dynamically updated (Marcot
& Penman, 2019). The dynamic feature of Bayesian network means that we can rapidly
iterate the existing model when more data has been collected to provide potentially more
accurate inferences. Moreover, researchers who are interested in modeling students’ scien-
tific inquiry with Bayesian network can build their models based on our posterior probabil-
ities, which can be helpful when no informative initial probabilities can be defined (e.g., by
subject matter experts) (Levy, 2016).

Moreover, our results describe in detail the skill level of participating middle schoolers.
In general, they could implement all desired experiment steps with a probability of 71%.
Aligning with results in other studies (e.g., Kapici et al., 2020; Viegas et al., 2018), we
found that individuals were diverse in their skill levels. Their probability of performing a
skill ranged from as low as 10% to as high as 100%. Furthermore, some skills (e.g., proper
observation) had more low-performers than the others (e.g., many students forgot to turn on
the T(t) graph to observe the temperature change over time). Such findings imply a growing
need for personalized intervention in laboratory learning, such as notifying these students of
turning on the T(t) function during the observation stage. While the focus of this study is not
using the Bayesian network to provide feedback to students, we expect that these custom-
ized interventions potentially can be provided by a teacher in no time using the feedback
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from the Bayesian network. Potentially, such a feedback system can relieve teachers from
the labor-intensive work of simultaneously monitoring a large number of students in the
class, and grants them more time to focus on the task of implementing tailored instruction to
address differential learning demands. However, automated feedback systems might create
instructional challenges for teachers when they perceive feedback as misaligned to instruc-
tion (Wilson et al., 2021). Future studies should pay close attention to challenges and oppor-
tunities in bringing real-time feedback systems into laboratory teaching and learning.

Besides, we found that a well-performed lab was related to a gain of conceptual under-
standing, while a low performance was associated with a loss of understanding. This finding
challenges the results of several other studies (e.g., Colorado DOHE, 2012), which showed
that physics labs had limited influence on students’ conceptual learning. In this study, we
assessed lab skills and learning performance for teams, not individual students in each team.
A fruitful area for future exploration is using learning analytics to mine lab skills for indi-
vidual students in collaborative learning environments and investigating the impact of group
dynamics in shaping the development of lab skills and conceptual learning.

Furthermore, we found that some low-skilled performers exhibited misconceptions that
possibly came from observational errors. This finding again emphasizes the need to help the
students with low laboratory skills, as such low performance may lead to worse conceptual
learning. For instance, insufficient observation time may lead to an incomplete observation
of the thermal process and thus lead to a problematic explanation. To meet such demands,
an automatic approach supported by educational technology has unique advantages. It can
monitor a large population simultaneously and promptly identify targets. Thus, it would be
worthwhile to further investigate explicit and direct connections between lab performance
and conceptual understanding towards supporting effective laboratory learning at scale.

In summary, the present study provides preliminary evidence for the feasibility of mod-
eling students’ performance in laboratory learning with a Bayesian network. To the best of
our knowledge, this is the first study to automatically analyze and assess the students’ labora-
tory performances in physical settings. We hope this study could set an exciting first step for
developing and studying automated analysis tools for hands-on laboratory skills.

Limitations

There are limitations to this study. First, the findings for the second research question about
the relationship between laboratory skills and learning performance can be biased due to
the fact that many students did not have time to answer questions in the explanation phase.
The interpretation of the positive correlation between laboratory skills and learning per-
formance should be contextualized within the limitation of the small sample and the sam-
ple of students who had time or were willing to finish questions in the explanation phase.
Second, although smartphone log data is enough to reconstruct the lab process, additional
data can provide rich details about student learning. Future studies could apply computer
vision to analyze the content of images and natural language processing techniques to mine
student communications for enriching the evidence for understanding laboratory practices.
Third, this study utilized specific devices to realize the logging in the physical space, such
as various phone sensors and the plug-in IR camera. In the future, more phone sensors and
plug-in devices (e.g., detecting students’ gestures using Kinect sensors) could be integrated
into science classrooms and harness such power to help both instruction and research.
Meanwhile, we should be aware of ethics and bias issues in capturing data through sensors
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and building models to automate the analysis of laboratory skills. Overall, more research
utilizing the logs from mobile devices and sensors are needed to identify meaningful pat-
terns in secondary laboratory learning.
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