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While astrophysical and cosmological probes provide a remarkably precise and consistent picture of 
the quantity and general properties of dark matter, its fundamental nature remains one of the most 
significant open questions in physics. Obtaining a more comprehensive understanding of dark matter 
within the next decade will require overcoming a number of theoretical challenges: the groundwork for 
these strides is being laid now, yet much remains to be done. Chief among the upcoming challenges 
is establishing the theoretical foundation needed to harness the full potential of new observables in the 
astrophysical and cosmological domains, spanning the early Universe to the inner portions of galaxies and 
the stars therein. Identifying the nature of dark matter will also entail repurposing and implementing 
a wide range of theoretical techniques from outside the typical toolkit of astrophysics, ranging from 
effective field theory to the dramatically evolving world of machine learning and artificial-intelligence-
based statistical inference. Through this work, the theory frontier will be at the heart of dark matter 
discoveries in the upcoming decade.

 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1 Editors.

1. Introduction

Astrophysical and cosmological observations have historically 
played a critical role in the study of dark matter, underpin-
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ning our confidence that there is a missing mass component 
of the Universe. The evidence that observational measurements 
provide for dark matter is collected across many length scales. 
The earliest hints for dark matter arose from its gravitational 
effects on galaxies, explaining the observed flatness of rotation 
curves (Rubin and Ford, 1970; Roberts and Whitehurst, 1975; 
Rubin et al., 1980; Bosma, 1981). Gravitational lensing has also 
detected dark matter surrounding galaxy clusters (Clowe et al., 
2006). On yet larger scales, the cosmic web of large-scale sur-
veys (Springel et al., 2006), as well as the fluctuations of the 
cosmic microwave background (CMB) (Planck Collaboration et al., 
2020a), have both been integral in the development of the cold 
dark matter (CDM) paradigm, where 85% of the Universe’s matter 
budget is dark.

A complete theory of particle dark matter2 will ultimately de-
scribe how it interacts with visible matter, as well as whether it 
interacts with other dark states in its own separate sector. More-
over, any such theory will be successful on both the largest scales 
of the Universe as well as the smallest (i.e., sub-galactic) scales. 
Over the next decade, astrophysical and cosmological probes will 
provide powerful tests of fundamental questions about dark mat-
ter, playing a unique and complementary role to the terrestrial 
dark matter experimental program. This review will focus on five 
specific theory questions where concrete advancements are antici-
pated during this time period:

• Is the Cold Dark Matter paradigm correct?
In the CDM paradigm, dark matter is collision-less and non-
relativistic during structure formation. A natural consequence 
of this is the prediction of an abundance of low-mass dark 
matter halos down to ∼ 10−6 M$ (Diemand et al., 2005). 
Observations that provide information on the matter power 
spectrum at small scales and various redshifts, therefore, will 
play a pivotal role in confirming the CDM hypothesis. Evidence 
of small-scale power suppression could, for example, suggest 
that dark matter is warmer (i.e., not non-relativistic) during 
structure formation (e.g. Lovell et al., 2014), is not collision-
less (e.g. Boddy et al., 2016), is wave-like rather than particle-
like (e.g. Hu et al., 2000), or underwent non-trivial phase tran-
sitions in the early Universe (e.g. Arvanitaki et al., 2020). As we 
will discuss, upcoming astrophysical surveys have the poten-
tial to start probing halo masses to much lower values and/or 
higher redshifts than previously accessible, opening the oppor-
tunity of definitively testing the CDM hypothesis.

• Is dark matter production in the early Universe thermal?
The observed relic abundance of dark matter can be explained 
through a thermal freeze-out mechanism (see (e.g. Lisanti, 
2017; Lin, 2019) for recent reviews). In this picture, dark mat-
ter is kept in thermal equilibrium with the photon bath at 
high temperatures through weak annihilation processes. Once 
dark matter becomes non-relativistic, dark matter is still al-
lowed to annihilate, but the reverse process is kinematically 
forbidden. The continued annihilation of dark matter causes 
its comoving number density to be Boltzmann suppressed, 
until it freezes out due to Hubble expansion overcoming the 
annihilation rate. This process sets the present-day dark mat-
ter abundance. Importantly, the predicted abundance is sensi-
tive to the detailed dark matter physics, including its particle 
mass as well as its specific interactions with the Standard 
Model. Weakly Interacting Massive Particles (WIMPs) provide 
a classic example of the freeze-out paradigm. In this case, a 

2 In this white paper, we focus on the general class of particle dark matter can-
didates and refer the reader to other Snowmass contributions for a description of 
primordial black holes (PBHs) as a dark matter candidate.

O(GeV–TeV) mass particle that is weakly interacting yields 
the correct relic abundance. As we will demonstrate, upcoming 
astrophysical surveys will have the opportunity to definitively 
test key aspects of the WIMP hypothesis by searching for the 
rare dark matter annihilation and decay products that arise 
from the same interactions that set its abundance in the early 
Universe. A combination of improved instruments and the so-
far non-observation of WIMPs has also led to the exploration 
of probing dark matter candidates that are lighter or heav-
ier than the canonical WIMP window, and which often have 
a non-thermal origin in the early Universe. This broadening of 
the possible dark matter candidates that one can search for 
in indirect detection will continue to be driven by the theory 
community.

• Is dark matter fundamentally wave-like or particle-like?
Model-independent arguments that rely on the phase-space 
packing of dark matter in galaxies have been used to set 
generic bounds on its minimum allowed mass. In particular, 
a fermionic dark matter candidate can have a minimum mass 
of ∼ keV (Horiuchi et al., 2014), while a bosonic candidate 
can have a minimum mass of ∼ 10−23 eV (Hu et al., 2000). 
Moreover, when the dark matter mass is much less than ∼ eV, 
its number density in a galaxy is so large that it can effec-
tively be treated as a classical field. Oftentimes referred to 
as “axions” or “axion-like particles” (ALPs), these ultra-light 
bosonic states can have distinctive signatures due to their 
wave-like nature. The QCD axion (Peccei and Quinn, 1977a,b; 
Weinberg, 1978; Wilczek, 1978), originally introduced to ad-
dress the strong CP problem, is a particularly well-motivated 
dark matter candidate for which there are clear mechanisms 
for how to generate the correct abundance today (Preskill et 
al., 1983; Abbott and Sikivie, 1983; Dine and Fischler, 1983; 
Di Luzio et al., 2020). In this framework, the axion mass and 
coupling are fundamentally related to each other through the 
symmetry-breaking scale of the theory. As we show, upcom-
ing searches for astrophysical axions will have the sensitivity 
reach to probe highly-motivated mass ranges for the QCD ax-
ion.

• Is there a dark sector containing other new particles and/or forces?
In a generic and well-motivated theory framework, dark mat-
ter can exist in a “dark sector” that communicates with the 
Standard Model through specific portal interactions. Within 
the dark sector, there can be multiple new states, as well as 
new forces that mediate interactions between the dark par-
ticles. Recent theory work has demonstrated classes of dark 
sector models that yield the correct dark matter abundance 
(see (e.g. Battaglieri et al., 2017) for a review), oftentimes 
for lower dark matter masses than expected for WIMPs. Dark 
sector models can lead to a rich phenomenology for both as-
trophysical and terrestrial dark matter searches, as we will 
discuss. Two properties of the dark sector where upcoming 
astrophysical surveys will be able to make decisive statements 
are the presence of self interactions between dark matter par-
ticles (Spergel and Steinhardt, 2000) and new light degrees of 
freedom.

• How will the development of numerical methods progress dark mat-
ter searches?
Given the sheer volume and complexity of data expected from 
astrophysical surveys in the upcoming decade, the develop-
ment of effective observational and data analysis strategies is 
imperative. Novel machine learning and statistical tools will 
play an important role in maximizing the utility of these 
datasets. In particular, scalable inference techniques and deep 
learning methods have the potential to open new dark mat-
ter discovery potential across several frontiers. Another criti-
cal numerical component to harness the anticipated flood of 
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astrophysical data in the next decade is the further devel-
opment of cosmological and zoom-in simulations needed to 
interpret the survey results. We will comment on how such 
simulations are essential for understanding the implications of 
particular dark matter models on small-scale structure forma-
tion.

This list is not intended to be comprehensive, but rather to provide 
well-motivated examples of areas where fundamental advance-
ments are expected with upcoming astrophysical and cosmological 
probes. We have divided this white paper into two separate dis-
cussions reflecting what we can learn about dark matter from its 
interactions with visible matter in astrophysical systems (Sec. 2) 
as well as its early-Universe behavior and its role in the forma-
tion of structure (Sec. 3). Each section briefly reviews some of the 
most promising observational probes for tackling the specific the-
ory questions delineated above. Sec. 4 is dedicated to the exciting 
advancements expected in applications of statistics and machine 
learning to astrophysical studies of dark matter. We conclude in 
Sec. 5.

Complementarity with additional White Papers: We note that 
there are a number of white papers which contain results comple-
mentary to the discussion we provide here. A non-exhaustive list 
includes Cosmological Simulations for Dark Matter Physics (Banerjee 
et al., 2022), Data-Driven Cosmology (Amin et al., 2022), Dark Mat-
ter Physics from Halo Measurements (Bechtol et al., 2022), Ultra-heavy 
Particle Dark Matter (Carney et al., 2022), Puzzling Excesses and How 
to Resolve Them (Leane et al., 2022), and Detection of Early-Universe 
Gravitational Wave Signatures and Fundamental Physics (Caldwell et 
al., 2022). We encourage interested readers to look to these re-
lated white papers for further details of how the search for dark 
matter will proceed in the coming decade.

2. Dark matter interactions with visible matter

Historically, a strong motivation for the existence of an inter-
action between dark and visible matter arises from the simple 
and compelling cosmologies described by the WIMP miracle or 
freeze-in production of sterile neutrinos. These scenarios have also 
long motivated indirect detection searches: the same interactions 
that generate dark matter could also be occurring today and allow 
it to decay or annihilate into detectable signatures arising from 
astrophysical sources. However, in the past decade, a substantial 
portion—although certainly not all—of the well-motivated param-
eter space for these models has been excluded (see (e.g. Leane et 
al., 2018; Foster et al., 2021)). Astrophysical searches for dark mat-
ter have broadened in perspective as the theoretical community 
has realized that the potential mass and interactions dark matter 
could have are much, much broader. In this section, we will high-
light this paradigm shift, demonstrating that while conventional 
searches continue, ideas to probe significantly heavier and lighter 
dark matter are appearing and will continue to be developed in 
the coming years.

2.1. X-ray and γ -ray dark matter signatures

If the dark matter of our Universe can decay or annihilate, then 
one of the most promising channels for determining its particle 
nature is the detection of high-energy photons. In the past decade, 
considerable progress has been made in photon-based indirect de-
tection for dark matter with masses O(keV–TeV), which we will 
predominantly focus on in this section. This improvement has not 
been solely driven by the experimental observatories: often theo-
retical insights have led to dramatic leaps forward in our ability 
to probe dark matter. This bidirectional approach to progress must 
continue in the coming years.

The fundamental ingredient for indirect searches is observa-
tional datasets. A partial summary of the present and future 
landscape is provided in Fig. 1. At the highest energies, sig-
nificant progress will be achieved beyond the existing reach of 
H.E.S.S. (de Naurois and Rolland, 2009), HAWC (Abeysekara et 
al., 2017), and similar observatories, through a combination of 
CTA (CTA Consortium Collaboration et al., 2018), SWGO (Abreu 
et al., 2019), and LHAASO (Bai et al., 2019a) (the last of which 
is already in operation, see (e.g. LHAASO Collaboration et al., 
2021)). The combined dark matter discovery potential of these 
telescopes is significant. CTA has the possibility to discover the 
higgsino (Rinchiuso et al., 2021), one of the most well-motivated 
WIMP candidates. However, its ability to do so will depend on 
whether or not the broad program to understand electroweak ef-
fects for TeV scale dark matter can determine its annihilation 
spectrum and cross section with sufficient accuracy (Bauer et 
al., 2015; Ovanesyan et al., 2015; Baumgart et al., 2015; Baum-
gart and Vaidya, 2016; Ovanesyan et al., 2017; Baumgart et al., 
2018; Beneke et al., 2018; Baumgart et al., 2019; Beneke et al., 
2019, 2020). Observations at these energies further open the path 
to probing dark matter with masses above the unitarity limit, 
mχ ! 100 TeV (Griest and Kamionkowski, 1990). The space of 
models, cosmologies, and production mechanisms for such ultra-
heavy dark matter is being actively developed, see (e.g. Carney 
et al., 2022). Discovering these models requires a detailed un-
derstanding of the spectrum of particles that emerge from their 
annihilation or decay, and how those states propagate to Earth. 
In recent years, public codes have been developed for the propa-
gation of high-energy states (Murase and Beacom, 2012; Murase 
et al., 2015; Alves Batista et al., 2016; Heiter et al., 2018; Blanco, 
2019). For the spectra, the most widely used approach exploits 
an analogy with colliders so that Pythia (Sjostrand et al., 2006, 
2008; Sjöstrand et al., 2015) can be used for the calculation, as 
in PPPC4DMID (Ciafaloni et al., 2011; Cirelli et al., 2011). This 
analogy breaks down at higher energies—indeed, existing LHAASO 
projections simply end at mχ = 100 TeV due to an absence of the-
oretical calculations available above that scale (He et al., 2020). 
The first steps towards reliable spectra at higher masses have re-
cently been taken in Bauer et al. (2021), although there remains 
significant work. The importance of these developments for γ -
ray searches has been considered in Ishiwata et al. (2020); Chi-
anese et al. (2021a); Esmaili and Serpico (2021); Maity et al. 
(2021).

In the O(keV–GeV) band, observations must be made from 
space as the interaction of photons with the atmosphere does not 
produce a sufficiently detectable signature on the Earth’s surface. 
This sets a fundamental limitation: a 1 m2 instrument operating 
for a decade has an exposure of ∼1012.5 cm2 s. At keV and GeV 
energies, this is roughly the sensitivity already achieved by XMM-
Newton (Turner et al., 2001; Struder et al., 2001) and Fermi (Fermi-
LAT Collaboration et al., 2009, 2021), with smaller exposures 
achieved for the intervening energies with NuSTAR (NuSTAR Col-
laboration et al., 2013; Madsen et al., 2015), INTEGRAL (Sizun 
et al., 2004), and COMPTEL (den Herder et al., 1992). In the 
longer term, instruments such as Athena (Barcons et al., 2015), 
AMEGO (AMEGO Team Collaboration and Kierans, 2020), and e-
ASTROGAM (e-ASTROGAM Collaboration et al., 2018) can improve 
our sensitivity, but at many energies, the best anticipated datasets 
are already on disk. Progress will therefore be critically reliant 
on new insights for how to exploit the data. This is happening 
on many fronts, including identifying new objects in which to 
search for dark matter signals, such as newly discovered Milky Way 
dwarfs (DES Collaboration et al., 2015a,b; Koposov et al., 2015; 
Fermi-LAT, DES Collaboration et al., 2017; DES Collaboration et al., 
2020; Ando et al., 2019), galaxy catalogs (Lisanti et al., 2018a,b), 
or dark substructure (Kuhlen et al., 2008; Buckley and Hooper, 
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Fig. 1. The exposure of existing and upcoming X-ray and γ -ray instruments which can search for the decay or annihilation of dark matter. Significant progress in the coming 
years is expected at O(TeV–PeV) energies, a full exploitation of which will require theoretical developments in the models and spectra of heavy dark matter. Such work 
will also complement instruments searching for even higher energy photons, such as PAO (The Pierre Auger Observatory, 2015; Pierre Auger Collaboration et al., 2017). At 
O(keV–GeV) energies, the expected observational progress is far more modest at the level of exposure. Exposure—the product of effective area, E , and observation time, 
T —partially controls how many photons an instrument will detect on average for a given dark matter flux. We caution that this is just one metric by which instruments 
can be compared: for certain dark matter searches, the field of view or energy resolution can be critical, and then the improvements made at lower energies will be more 
substantial. Regardless, improved analysis strategies will be crucial to further enhance the dark matter reach for this lower band. At the top of the figure, we highlight the 
approximate mass range of several canonical particle dark matter (DM) scenarios; one can roughly associate this mass range with the corresponding energy range of probes, 
although this connection is only approximate.

2010; Belikov et al., 2012; Fermi-LAT Collaboration et al., 2012; 
Zechlin and Horns, 2012; Berlin and Hooper, 2014; Bertoni et al., 
2015; Schoonenberg et al., 2016; Bertoni et al., 2016; Mirabal et 
al., 2016; Hooper and Witte, 2017; Calore et al., 2017; Hütten et 
al., 2019; H.E.S.S. Collaboration et al., 2021; Calore et al., 2019; 
Coronado-Blázquez et al., 2019; Coronado-Blázquez and Sánchez-
Conde, 2019; Facchinetti et al., 2020; Di Mauro et al., 2020; So-
malwar et al., 2021), as well as the development of techniques 
such as cross correlation with different datasets (Xia et al., 2011; 
Ando, 2014; Ando et al., 2014; Xia et al., 2015; Regis et al., 2015; 
Cuoco et al., 2015; Ando and Ishiwata, 2016; Shirasaki et al., 2020), 
improvements in our modeling of diffuse backgrounds (Macias et 
al., 2018, 2019; Buschmann et al., 2020; Siegert et al., 2022), the 
extension to axion searches as we describe in Sec. 2.4, and the 
exploitation of the dark matter brightness of the ambient Milky 
Way (Foster et al., 2021; Cohen et al., 2017; Chang et al., 2018a; 
Dessert et al., 2020a). To expand on a single example, in Dessert 
et al. (2020a) it was demonstrated that the roughly twenty years 
of X-ray images collected by XMM-Newton, when combined with 
the insight that all of these observations occur through a column 
density of the Milky Way, allowed for a search for dark matter 
decay that was more than an order of magnitude stronger than 
previous analyses. The results were strong enough to considerably 
disfavor the longstanding 3.5 keV line dark matter anomaly (Bul-
bul et al., 2014; Boyarsky et al., 2014) (although see also (Boyarsky 
et al., 2020; Dessert et al., 2020b)). More generally, there remains 
several unexplained dark matter anomalies in this energy window 
whose resolution will depend on further insights from the theory 
community; for an extended discussion, we refer to Leane et al. 
(2022).

An additional strategy that has been developed recently con-
siders dark matter that scatters and becomes captured within ce-
lestial bodies. The dark matter can then annihilate, generating a 
signal that depends on the mediator between the dark and visible 
sectors. If the mediator is short-lived (or insufficiently boosted), 

the annihilation products will remain within the celestial ob-
ject, raising its temperature. Instead, a long-lived (or sufficiently 
boosted) mediator leads to annihilation products outside the body, 
which can then be searched for by telescopes. The strongest con-
straints on long-lived or boosted mediator models are due to γ -ray 
searches, as the γ -ray backgrounds for celestial objects are very 
low. An excellent candidate is the Sun, and solar γ -ray searches 
have been performed using both Fermi (Abdo et al., 2011; Ng 
et al., 2016; Linden et al., 2018, 2020) and HAWC (HAWC Col-
laboration et al., 2018a), yielding strong constraints on GeV-TeV 
dark matter (Leane et al., 2017; HAWC Collaboration et al., 2018b; 
Nisa et al., 2019). Optimizing for both proximity and size, the 
next best celestial body is Jupiter, and Fermi observations have 
been used to constrain sub-GeV dark matter (Leane and Linden, 
2021). More broadly, analogous emission from the full popula-
tion of brown dwarfs and neutron stars can constrain sub-GeV 
to TeV dark matter (Leane et al., 2021) (see also (Bose et al., 
2021)). These searches are inherently multimessenger: solar dark 
matter searches for neutrinos have been performed with Super-
Kamiokande (Super-Kamiokande Collaboration et al., 2015), Ice-
Cube (IceCube Collaboration et al., 2017), and ANTARES (ANTARES 
Collaboration et al., 2016). Above O(100) GeV, the neutrinos will 
be attenuated as they exit the Sun, and a long-lived mediator again 
improves detectability (Leane et al., 2017; Bell and Petraki, 2011). 
The scenario involving short-lived mediators can be studied with 
optical and infrared telescopes, including Hubble, JWST, and Ro-
man observations of neutron stars (Goldman and Nussinov, 1989; 
Bertone and Fairbairn, 2008; Baryakhtar et al., 2017a; Acevedo et 
al., 2020; Bell et al., 2020), white dwarfs (Bertone and Fairbairn, 
2008; Bell et al., 2021), population III stars (Freese et al., 2009; 
Taoso et al., 2008; Ilie et al., 2020a,b), and brown dwarfs and exo-
planets (Leane and Smirnov, 2021).
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2.2. Indirect searches with astrophysical neutrinos

While searches for dark matter in the electromagnetic spectrum 
may be more extensively developed, there is no fundamental rea-
son that the first discovery could not happen through a different 
channel. If that channel is neutrinos, then the coming decade will 
be particularly exciting.

Already the possibility of dark matter decaying or annihilat-
ing to neutrinos can be probed from MeV to PeV masses through 
a combination of instruments ranging from Borexino to IceCube. 
For a recent review, see Argüelles et al. (2021). The detection 
of O(TeV − PeV) neutrinos at IceCube is particularly tantalizing. 
While the experimental collaboration has produced limits under 
the assumption that the observed flux does not originate from 
dark matter (IceCube Collaboration et al., 2018, 2020), a complete 
understanding of where these neutrinos originate is lacking. (Al-
though in 2017, a ∼ 300 TeV neutrino event was shown to be 
coincident with a flaring γ -ray blazar (IceCube, Fermi-LAT, MAGIC, 
AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, 
Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403 
Collaboration et al., 2018), which would make this the third ex-
traterrestrial source ever detected in neutrinos after the Sun and 
Supernova 1987A.) There has been considerable work by theorists 
to determine whether the IceCube flux could have a component 
with a dark matter origin, see (e.g. Murase et al., 2015; Esmaili 
and Serpico, 2013; Feldstein et al., 2013; Rott et al., 2015; Bhat-
tacharya et al., 2014; El Aisati et al., 2015; Anchordoqui et al., 
2015; Chianese et al., 2017, 2019; Bhattacharya et al., 2019), and 
the question remains open.

A fundamental aspect of high-energy neutrino searches, and of 
high-energy indirect detection more generally, is its multimessen-
ger nature: generically, a signal of heavy dark matter annihila-
tion or decay will appear in multiple channels. If PeV scale dark 
matter decays to neutrinos, there will be a significant probabil-
ity for the hard neutrinos to emit a W or Z boson and thereby 
produce additional Standard Model final states, including pho-
tons. As a consequence, γ -ray datasets provide important context 
for dark matter interpretations of the IceCube dataset (see (e.g. 
Murase and Beacom, 2012; Cohen et al., 2017; Ahlers et al., 
2016)).

This multimessenger strategy will continue to future instru-
ments that will probe neutrinos at ever higher energies. Already, 
there are tools available that make a partial accounting of the un-
derlying physics of the unbroken Standard Model (Bauer et al., 
2021; Liu et al., 2020a), which build on the observation that 
electroweak effects are generically relevant for heavy dark mat-
ter (Ciafaloni et al., 2011; Cirelli et al., 2011). As discussed for 
the corresponding photon signals, work remains to fully under-
stand these processes. The importance of such exploration is em-
phasized by the wide array of upcoming observatories such as 
ARIANNA, RNA-G, POEMMA, Grand, IceCube-Gen2, and KM3NET, 
which have the potential to probe dark matter with masses up 
to the GUT scale of 1015 GeV (Ishiwata et al., 2020; Esmaili et 
al., 2012; Ng et al., 2020; Guépin et al., 2021; Chianese et al., 
2021b).

2.3. Dark matter signals from charged cosmic-rays

High-energy cosmic-rays have long been a probe of new phys-
ical phenomena in the Milky Way. This is particularly true for 
antimatter cosmic-rays, a field which PAMELA and AMS-02 have 
brought into a precision era, providing a challenge to our un-
derstanding of the antimatter sources and generating claims of a 
possible dark matter contribution.

In antiprotons, there are claims of an excess in the AMS-02 data 
peaking near 10 GeV (Cuoco et al., 2017a; Cui et al., 2017). The ex-

cess appears robust to systematic uncertainties on the production 
cross sections, cosmic-ray injection rates, and the effects of propa-
gation through the interstellar medium and heliosphere (Cholis et 
al., 2019; Cuoco et al., 2019). The anomaly has a local significance 
of 3–5 σ and is consistent with the possibility that it is gener-
ated by the same dark matter models which could be generating 
the Galactic center γ -ray excess (Cuoco et al., 2017a; Cholis et al., 
2019; Cuoco et al., 2019, 2017b) (a compelling possibility given 
the astrophysical uncertainties for the two signals would be un-
correlated, although see Winkler, 2017). The results at present do 
not account for the full correlation matrix of the dataset, although 
attempts to estimate the covariance suggest that it can signifi-
cantly reduce the significance of the excess (Boudaud et al., 2020; 
Heisig et al., 2020; Kahlhoefer et al., 2021). At present, the AMS-
02 collaboration has not released their correlation matrix, which 
will be critical in establishing or repudiating the antiproton excess. 
Looking forward, the GAPS experiment will provide an alternative 
measurement of low-energy antiprotons (Aramaki et al., 2016) that 
will improve the modeling of the propagation of antinuclei in the 
interstellar medium and heliosphere (Cholis et al., 2020a). More 
broadly, the combination of high-precision measurements of mul-
tiple cosmic-ray species and the observation of cosmic-ray protons 
and electrons from different time periods will further reduce the 
astrophysical uncertainties.

For sufficiently massive dark matter, any flux of antiprotons 
is expected to be accompanied by heavier anti-nuclei cosmic-
rays (Korsmeier et al., 2018; Lin et al., 2018; Cholis et al., 2020b). 
While dark matter can only provide at most a small excess over 
the astrophysical backgrounds in antiprotons, the backgrounds are 
highly suppressed for more massive anti-nuclei (Donato et al., 
2000; Baer and Profumo, 2005; Ibarra and Wild, 2013; Fornengo 
et al., 2013; Dal and Raklev, 2014; Ding et al., 2019), making 
them a potential smoking gun signal of new physics. Tantalizingly, 
the AMS-02 collaboration has presented results of the detection 
of several antihelium events (Sam, 2018), where essentially no 
background events were expected. While tentative, if confirmed, 
this result could revolutionize cosmic-ray and high-energy physics. 
Heavier anti-nuclei are, however, plagued by a number of uncer-
tainties, particularly as related to their productions (see (e.g. Do-
nato et al., 2017; Winkler and Linden, 2021)). At present, these 
uncertainties imply their predicted fluxes can vary by orders of 
magnitude (Korsmeier et al., 2018; Cholis et al., 2020b). Future 
low-energy collider measurements will be instrumental in reduc-
ing those uncertainties (Donato et al., 2017), and the first such 
measurements have recently been provided (ALICE Collaboration 
et al., 2018; LHCb Collaboration et al., 2018).

Cosmic-ray positrons are another potential dark matter probe. 
Given that positrons quickly lose their energy as they propagate 
in the interstellar medium, the sources must be increasingly lo-
calized to produce higher energy cosmic-rays. The rising positron 
fraction measured by PAMELA (PAMELA Collaboration et al., 2009), 
Fermi (Ackermann et al., 2012), and AMS-02 (AMS Collaboration et 
al., 2013) has been widely discussed as a putative signal of dark 
matter annihilation or, alternatively, of nearby pulsars or super-
nova remnants (see (e.g. Bergstrom et al., 2008; Arkani-Hamed et 
al., 2009; Cholis et al., 2009; Fox and Poppitz, 2009; Kopp, 2013; 
Blasi, 2009; Mertsch and Sarkar, 2009; Cholis and Hooper, 2013; 
Ahlers et al., 2009; Mertsch and Sarkar, 2014; Cholis et al., 2017; 
Di Mauro et al., 2014)). Dark matter explanations are particularly 
challenged by Planck measurements of the CMB temperature and 
polarization power spectra (Planck Collaboration et al., 2016; Mad-
havacheril et al., 2014; Slatyer, 2016) and have become increas-
ingly fine-tuned although not entirely ruled out (see (e.g. Dienes 
et al., 2013; Baek et al., 2014)). Regardless, AMS-02 measurements 
remain a highly sensitive probe of dark matter annihilation (AMS 
Collaboration et al., 2019); for instance, one can search for spec-
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Fig. 2. Recent constraints derived on the axion-photon coupling using radio observations of the Galactic Center obtained with the Green Bank Telescope (Foster et al., 2022) 
(solid red, labeled “GBT”); shown for comparison is the 10σ discovery limit for SKA in the same frequency band (transparent red). These results are compared with the 
expected QCD axion parameter space (yellow), two benchmark QCD axion models (brown, dot-dashed), existing constraints from haloscopes (blue) (HAYSTAC Collaboration 
et al., 2018, 2021; ADMX Collaboration et al., 2020; Crisosto et al., 2020; ADMX Collaboration et al., 2021) and CAST (CAST Collaboration et al., 2017) (grey), and indirect 
searches using magnetic white dwarfs (MWDs) (Dessert et al., 2022a,b).

tral features associated with the dark matter mass (Bergstrom et 
al., 2013; John and Linden, 2021), although these must be inter-
preted carefully as astrophysical sources can also generate such 
features (Malyshev et al., 2009; Profumo, 2011). Existing and up-
coming cosmic-ray and electromagnetic observations will be used 
to develop a deeper understanding of the properties of positron 
sources (Hooper et al., 2017; Linden et al., 2017; Mertsch, 2018; 
Cholis and Krommydas, 2022; Mukhopadhyay and Linden, 2021), 
which will further advance the program of probing dark matter 
with cosmic-rays.

2.4. Axion indirect detection

Recent years have seen significant development in indirect 
probes of axion dark matter. A common strategy is to exploit a 
putative axion-photon coupling. This coupling could be detected 
through the decay of axions to photons (which can be stimu-
lated (Caputo et al., 2018, 2019; Battye et al., 2020; Ghosh et al., 
2020; Arza and Todarello, 2022; Sun et al., 2021; Buen-Abad et al., 
2021a; Arza and Todarello, 2021) or resonantly enhanced (Tkachev, 
1987; Arza, 2019; Hertzberg and Schiappacasse, 2018; Sigl and 
Trivedi, 2019; Alonso-Álvarez et al., 2020; Arza et al., 2020; Ikeda 
et al., 2019; Blas and Witte, 2020a; Prabhu, 2020)), axion-photon 
mixing in an external magnetic field (Raffelt and Stodolsky, 1988) 
(which can notably also imprint an asymmetry on the polariza-
tion spectrum, see (e.g. Dessert et al., 2022a)), birefringence (Harari 
and Sikivie, 1992; Plascencia and Urbano, 2018; Fujita et al., 2019; 
Ivanov et al., 2019; McDonald and Ventura, 2020; Fedderke et al., 
2019; Chen et al., 2020; Mcdonald and Ventura, 2020; Castillo et 
al., 2022), or the production of axions from non-orthogonal elec-
tric and magnetic fields (Prabhu, 2021). Axions could also cou-
ple to matter and thereby be produced abundantly in stars via 
bremsstrahlung emission (Raffelt, 2008). This process would pro-
duce anomalous cooling in these objects, which can then be used 
to constrain axion-nucleon and axion-electron interactions (Raffelt 
and Weiss, 1995; Corsico et al., 2001; Isern et al., 2008; Sedrakian, 
2016; Hamaguchi et al., 2018; Buschmann et al., 2021); alterna-
tively, these axions may convert back into photons in the mag-
netic fields outside of the star, generating anomalous high-energy 
emission (Dessert et al., 2022b). An example of recent progress is 
shown in Fig. 2.

Radio searches: The mixing of axions and photons is greatly en-
hanced in the magnetospheres of neutron stars, owing to the large 
ambient magnetic fields and the resonant amplification possible 
due to the ambient plasma (Battye et al., 2020; Foster et al., 2022; 
Pshirkov and Popov, 2009; Huang et al., 2018; Hook et al., 2018; 
Safdi et al., 2019; Leroy et al., 2020; Witte et al., 2021; Battye et 
al., 2021) (see also (Sen and Sivertsen, 2022)). The characteristic 
plasma mass near typical pulsars spans ∼ 0.1 − 100 µeV (Gol-
dreich and Julian, 1969), which roughly corresponds to the range 
of masses for which axions can simultaneously solve the strong 
CP problem and constitute dark matter (Irastorza and Redondo, 
2018), and further to the frequency band of modern radio tele-
scopes. The radio signal is expected to appear as a forest of spectral 
lines centered about the axion mass, with each line arising from a 
single neutron star in the Galactic population (Foster et al., 2022; 
Safdi et al., 2019). If dark matter is predominantly in miniclusters 
rather than smoothly distributed, the events will instead appear as 
transients spanning hours to weeks (Edwards et al., 2021a). Ini-
tial estimates indicate that near-future radio interferometers like 
the Square Kilometer Array may be capable of discovering the QCD 
axion (Hook et al., 2018; Edwards et al., 2021a). Searches using ex-
isting infrastructure (including the Effelsberg 100-m telescope, the 
Green Bank Telescope, and the Very Large Array) are already un-
derway and have leading limits on the axion-photon coupling in 
the mass range 1 " ma " 20 GHz (Foster et al., 2022, 2020; Battye 
et al., 2022) (see Fig. 2 for the most recent analysis).

Recently, there has been significant theoretical progress in our 
understanding of the radio signal, including a careful treatment of 
photon refraction, resonant cyclotron absorption, plasma-induced 
line broadening, anisotropic response of the medium in the pho-
ton production process, and general relativistic effects (Foster et 
al., 2022; Witte et al., 2021; Battye et al., 2021; Millar et al., 2021). 
Yet many open questions remain, including how axions and pho-
tons mix in a highly magnetized inhomogeneous plasma, how do 
charge distributions in active pulsars and magnetars impact the ra-
dio flux, what are the properties and distributions of neutron stars 
in dense dark matter environments, do we expect strong devia-
tions from dipolar magnetic fields (and if so how does this impact 
the radio signal), how are axions distributed on astrophysical scales 
(i.e., do they reside in tidally disrupted axion miniclusters, and if 
so what are the properties of these objects in the Galactic Center), 
and how can we exploit the spatio-temporal properties of the ra-
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dio signal to improve analyses. These are questions to be answered 
in the next decade, and the answers have the potential to estab-
lish radio searches as a powerful and robust probe of axion dark 
matter.

X-ray and γ -ray searches: High-energy photons emitted from 
astrophysical sources (including galaxies, blazars, supernovae, and 
quasars) may convert to axions in galactic- and cluster-scale mag-
netic fields (axions could also be produced in stellar cores (Dessert 
et al., 2020c)). The conversion probability depends on the mag-
netic field strength and configuration along the photon trajectory, 
as well as the plasma frequency. At sufficiently large photon en-
ergies, the photon-to-axion conversion probability becomes O(1)
and is thus capable of generating large absorption features in the 
electromagnetic spectrum. The efficiency of this conversion pro-
cess decreases at lower energies (at a fixed axion mass), generat-
ing small oscillatory features in the observed spectrum. Using this 
idea, constraints on the axion-photon coupling have been set us-
ing X-ray (Wouters and Brun, 2013; Marsh et al., 2017; Reynolds et 
al., 2019; Xiao et al., 2021; Reynés et al., 2021) and γ -ray (Fermi-
LAT Collaboration et al., 2016; Meyer et al., 2017; Li et al., 2021a; 
Meyer and Petrushevska, 2020; Calore et al., 2021; H.E.S.S. Collab-
oration et al., 2013) telescopes for masses m " 0.1 µeV (excluding 
couplings gaγ γ ! 10−12 GeV−1 for ma " 10−11 eV), and they apply 
regardless of whether or not axions contribute to dark matter. Fu-
ture progress will be aided by improved high-energy observations 
and by further understanding of galactic and cluster-scale magnetic 
fields.

2.5. Emission of dark sector states from compact objects

Standard Model particles in high-density environments, such as 
stars and supernovae, can emit new weakly-coupled states that 
might exist beyond the Standard Model. The particles emitted 
could either be dark matter themselves or, alternatively, part of 
a broader weakly-coupled “dark sector,” which is potentially nec-
essary to endow sub-GeV dark matter with the correct relic abun-
dance. The emission process can result in either observable devi-
ations from the Standard Model predictions on short timescales 
or long-term global changes to the evolution of the compact ob-
ject, both of which can be constrained. The theory frontier has 
long played a crucial role in bridging the gap between astrophys-
ical probes, complex multi-body Standard Model calculations, and 
inference on new particle properties.

The paradigmatic example of “short-term” constraints comes 
from the successful explosion of Supernova 1987A and the de-
tection of neutrinos for the predicted ∼ 10-second-long cooling 
phase (Kamiokande-II Collaboration et al., 1987; IMB Collaboration 
et al., 1988). The qualitative agreement of this observation with 
Standard Model-only numerical simulations (Burrows and Lattimer, 
1986, 1987) has been used to constrain the properties of the 
QCD axion with ever-increasing fidelity and sophistication (Raffelt, 
2008; Turner, 1988; Raffelt and Seckel, 1988; Burrows et al., 1989, 
1990; Keil et al., 1997; Raffelt, 1996; Chang et al., 2018b). The 
theory frontier is still grappling with these calculations. Upcoming 
challenges will be centered on application of effective field theory 
techniques, which promise important changes in expected rates 
for Standard-Model-only processes (such as nuclear and neutrino 
matrix elements and scattering rates), as well as for beyond-the-
Standard-Model rates.

A successful explosion of Supernova 1987A could also have 
been inhibited by a large dark sector (Chang et al., 2018b; Rrapaj 
and Reddy, 2016; Chang et al., 2017; Hardy and Lasenby, 2017). 
Broadly, Supernova 1987A provides the strongest bounds for any 
number of new particles in the O(1–100 MeV) mass range, be-
ing cut off at high masses by Boltzmann suppression from ther-
mal production in the core, which attains temperatures between 

30–100 MeV (Burrows and Lattimer, 1986; Bollig et al., 2017). 
The power of these bounds at larger couplings is generally lim-
ited by the existence of a “trapping” limit. At couplings above the 
trapping limit, the new particles are more tightly coupled than 
the Standard Model neutrinos and thus are unable to drain the 
energy the neutrinos were observed to have taken away. Never-
theless, with the increasing fidelity of numerical simulations (Bur-
rows and Vartanyan, 2021), the region beyond the trapping limit 
is a clear avenue for future theoretical and numerical investiga-
tions.

A second type of stellar constraint pertains most relevantly 
to particles that are substantially lighter and more weakly cou-
pled than the MeV range in which supernova limits excel. In this 
mass range, dark matter must generally be non-thermal in order 
to avoid constraints on the number of new radiation degrees of 
freedom in the early Universe. Thus, such limits typically focus 
on bosonic particles such as the QCD axion, axion-like particles, 
Higgs-portal scalars, and the dark photon. A powerful approach 
is to require new particle emission to be subdominant to photon 
emission in stars (Hardy and Lasenby, 2017; Gondolo and Raffelt, 
2009; An et al., 2013; Redondo and Raffelt, 2013; Viaux et al., 
2013), analogous to the supernova bound wherein the new emis-
sion is limited by the neutrino emission. If this rule were to be 
violated, stellar lifetimes would be unacceptably short or other 
emission properties would change beyond measured values. A dif-
ferent method of constraining light particle emission from stars 
has been made possible recently by LIGO-Virgo Collaboration ob-
servations of gravitational waves and the corresponding mass cen-
sus enabled by these observations, which are revealing the char-
acteristics of Pop-III stellar progenitors for the first time (LIGO 
Scientific, Virgo Collaboration et al., 2021; LIGO Scientific, VIRGO, 
KAGRA Collaboration et al., 2021). One qualitative prediction of 
Standard Model-only astrophysics is the existence of a “black hole 
mass gap” formed from these objects at a characteristic mass scale 
slightly below 50 M$ (Farmer et al., 2019; Mehta et al., 2022). 
New particle emission, gravitational trapping of dark matter, or 
dark matter coevolution all could change this mass scale (Croon 
et al., 2020a, 2021a; Sakstein et al., 2020; Ziegler and Freese, 
2021; Baxter et al., 2021; Ellis, 2021). Theory frontier activities 
in the stellar domain promise to illuminate new, weakly-coupled 
particles that are not probed by other mechanisms (Dolan et al., 
2021).

A different route by which dark matter could impact a “long-
term” observable of compact objects is via the formation of a 
super-radiant cloud that extracts angular momentum from a cen-
tral black hole (Dicke, 1954; Penrose and Floyd, 1971; Zel’Dovich, 
1971; Misner, 1972; Starobinsky, 1973). For a sufficiently low-mass 
dark matter particle, this could lead to detectable changes in the 
observed black hole spin distribution (Ikeda et al., 2019; Cardoso 
et al., 2004; Arvanitaki et al., 2010; Bredberg et al., 2010; Cardoso 
and Pani, 2013; Herdeiro et al., 2013; East et al., 2014; Degol-
lado and Herdeiro, 2014; Brito et al., 2014; Arvanitaki et al., 2015; 
Rosa, 2015; Cardoso et al., 2015; Wang and Herdeiro, 2016; Brito 
et al., 2015; Endlich and Penco, 2017; Rosa, 2017; Baryakhtar et 
al., 2017b; East and Pretorius, 2017; Cardoso et al., 2017; Rosa and 
Kephart, 2018; Frolov et al., 2018; Sen, 2018; Cardoso et al., 2018; 
Barack et al., 2019; Degollado et al., 2018; Ficarra et al., 2019; Bau-
mann et al., 2019; Cardoso et al., 2020; Dima and Barausse, 2020; 
Brito et al., 2020; Stott, 2020; Blas and Witte, 2020b; Mehta et 
al., 2020; Baryakhtar et al., 2021; Ünal et al., 2021; Franzin et al., 
2021; Caputo et al., 2021; Mehta et al., 2021; Cannizzaro et al., 
2021; Jiang et al., 2021a; Karmakar and Maity, 2021; Khodadi and 
Pourkhodabakhshi, 2021). Future theoretical explorations will lead 
to a more comprehensive understanding of the impacts of backre-
action of the superradiance on the conditions necessary to support 
the superradiant instability.
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Fig. 3. Schematic representation of the coverage of current and future probes of dark matter physics across various ranges of redshift z (i.e., eras that observable photons 
or signals primarily originate from), wave number k, and the corresponding halo mass Mhalo. The ranges of individual probes are approximate. Note that some of the listed 
probes are well-established observationally, while some are still in nascent phases of observational development, but they all represent complementary probes of dark matter. 
We do not include probes that only affect background evolution and thus do not have an associated scale k to display in this figure. Similar figures can be found in (e.g. 
Buckley and Peter, 2018; Gluscevic et al., 2019; Sabti et al., 2021).

3. Dark matter origins and structure formation

Traditional methods of dark matter indirect detection are cen-
tered around the idea of detecting the Standard Model byproducts 
of dark matter interactions within astrophysical systems. New dark 
matter physics can also be indirectly observed through its impact 
in the early Universe and on the subsequent formation and evolu-
tion of collapsed structures of matter (see Fig. 3). Using such de-
tection methods can cover regions of dark matter parameter space 
that are complementary to regions probed by traditional meth-
ods. Crucially, gravitational indirect detection is necessary to probe 
certain classes of dark matter theories that require the extreme 
conditions of the early Universe or dark sector theories that have 
rich phenomenology but do not couple to known physics except 
through gravity. In this section, we explore the theoretical progress 
made in this area, often going hand-in-hand with advancements in 
numerical simulations, and discuss the importance of continued 
theory efforts to take full advantage of the influx of cosmological 
and astrophysical data expected over the next decade.

3.1. Early-Universe evolution

The present-day abundance of dark matter may have been es-
tablished after a period in which dark matter particles were in 
thermal and chemical equilibrium with some larger thermal reser-
voir, or it may have been established despite never attaining ther-
mal equilibrium with its environment. The former case, which we 
refer to as “thermal” dark matter, whether that thermal equilib-
rium is attained with the Standard Model itself or with a secluded 
thermal bath, is commonly considered to be UV-insensitive: the 
initial conditions of the dark matter abundance will be erased by 
the thermal equilibrium condition. The latter case of “non-thermal” 
dark matter leads to a large number of observables that can poten-
tially persist from the earliest moments of dark matter genesis.

One exception to the rule that thermal dark matter is insen-
sitive to early-Universe microphysics could be if the dark sector 
underwent a first-order phase transition. This could generate a 
gravitational wave signal (e.g. Schwaller, 2015; Croon et al., 2018; 
Breitbach et al., 2019; Fairbairn et al., 2019; Bertone et al., 2020), 

which would remain thermally decoupled, even if dark matter par-
ticles were in thermal equilibrium. In fact, the occurrence of the 
first-order phase transition requires the dark sector to be at least 
self-formalized. The most widely studied example of this kind is a 
dark sector Higgs mechanism, resulting in a phase transition that 
can be first order if the sector contains a number of bosonic de-
grees of freedom (Croon et al., 2018). Dark sector confinement may 
also lead to the generation of a gravitational wave signal, if the 
global symmetry is large enough at the time of breaking (e.g. Bai 
et al., 2019b; Helmboldt et al., 2019; Croon et al., 2019; Reichert et 
al., 2022). Such scenarios have been studied in the context of ax-
ion models (Croon et al., 2019) and bound state formation such as 
dark quark nuggets (Bai et al., 2019b). Theoretical progress is nec-
essary before the gravitational wave phenomenology of first-order 
phase transitions can be studied reliably: it has been demonstrated 
that even in perturbative models, two-loop thermal effects must be 
included to achieve better than O (1) numerical accuracy (Kainu-
lainen et al., 2019; Croon et al., 2021b; Gould and Tenkanen, 2021). 
Estimations of the gravitational wave spectrum in non-perturbative 
hidden sector models have used low- or high-energy effective field 
theories (see (Helmboldt et al., 2019) for a comparison), but their 
validity breaks down in the vicinity of the phase transition. Future 
theory frontier efforts will be critical in understanding this break 
down and extending the range of reliable predictions for models of 
new physics.

Non-thermal dark matter may produce gravitational wave sig-
nals, but more generally leads to a multitude of other tests of 
early-Universe physics. For instance, the evolution of the post-
inflationary axion can result in an abundance of axion mini-
clusters (Kolb and Tkachev, 1994a; Zurek et al., 2007; Kolb and 
Tkachev, 1994b; Hardy, 2017; Davidson and Schwetz, 2016; Enan-
der et al., 2017), which can potentially be discovered with ded-
icated search strategies (Kolb and Tkachev, 1996; Tkachev, 2015; 
Pshirkov, 2017; Fairbairn et al., 2018; Katz et al., 2018; Dai 
and Miralda-Escudé, 2020a; Croon et al., 2020b; Edwards et al., 
2021b). Accurate predictions for the spectrum and abundance of 
such miniclusters require early-Universe simulations of the post-
inflationary axion, which are inherently difficult to perform due to 
a separation of scales and large systematic uncertainties. Therefore, 
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additional large-scale simulations and systematic tests are needed 
in the future to improve results.

Lastly, we note that the abundances of thermal and non-
thermal dark matter are both affected by the evolution of the 
Universe between the end of inflation and the onset of Big Bang 
nucleosysthesis (BBN), and we cannot assume that the Universe 
was radiation dominated throughout this period (Kawasaki et al., 
1999, 2000; Allahverdi et al., 2020). If dark matter chemically de-
couples while the Universe is not radiation dominated, the larger 
Hubble rate at a given temperature causes an earlier freeze-out and 
an enhanced relic abundance (Kamionkowski and Turner, 1990; 
Profumo and Ullio, 2003; Pallis, 2005; D’Eramo et al., 2017; Red-
mond and Erickcek, 2017). If the subsequent transition to radiation 
domination involves the creation of new Standard Matter particles, 
as occurs after an early matter-dominated era, then the relic abun-
dance of dark matter is diluted (Kamionkowski and Turner, 1990; 
Giudice et al., 2001; Gelmini and Gondolo, 2006; Kane et al., 2016; 
Drees and Hajkarim, 2018). An early matter-dominated era also en-
hances dark matter density perturbations on scales that enter the 
horizon prior to the onset of the final radiation-dominated epoch 
(Erickcek and Sigurdson, 2011). Significant progress has been made 
in understanding the impact this has on the abundance of sub-
Earth-mass microhalos (Erickcek and Sigurdson, 2011; Erickcek, 
2015) and how the minimum halo mass depends on the properties 
of dark matter (Fan et al., 2014; Gelmini and Gondolo, 2008; Erick-
cek et al., 2016; Waldstein et al., 2017), as well as the properties of 
the particle responsible for the early matter-dominated era (Blanco 
et al., 2019; Erickcek et al., 2021, 2022; Barenboim et al., 2021). 
These microhalos provide a new observational probe of the early 
Universe; their impact on the dark matter annihilation rate can 
be constrained using the isotropic gamma-ray background (Erick-
cek et al., 2016; Blanco et al., 2019; Delos et al., 2019), and they 
can be detected gravitationally using pulsar timing arrays (Dror et 
al., 2019; Ramani et al., 2020; Lee et al., 2021; Delos and Linden, 
2021) and observations of stellar microlensing events in galaxy 
clusters (Dai and Miralda-Escudé, 2020b; Blinov et al., 2021). Fur-
ther study is needed to understand whether the CMB and the 
21 cm background could further constrain dark matter annihila-
tion in early-forming microhalos.

3.2. Early-Universe structure formation

The standard cosmological model of $CDM describes the large-
scale structure of the Universe extremely well. The presence of 
CDM is crucial through its contribution to the overall energy den-
sity and through its density perturbations at early times. Compris-
ing about 84% of the matter content in the Universe (Planck Col-
laboration et al., 2020b), the gravitational influence of dark matter 
is key in the formation of structure. Thus, cosmological observa-
tions provide important and unique insight into new dark matter 
physics that disturb the predictions of CDM.

Light degrees of freedom: A wide variety of dark matter mod-
els introduce new light degrees of freedom in the Universe at early 
times. In particular, dark sectors may contain light or massless 
force carriers, such as dark photons, that thermalize dark matter at 
a temperature that generally differs from the Standard Model bath. 
The introduction of new relativistic species alters the expansion 
rate of the Universe during radiation domination, in turn affecting 
CMB anisotropies (e.g. Brust et al., 2013) and predictions of the 
abundances of light elements created during BBN (e.g. Kawasaki 
et al., 2005; Iocco et al., 2009; Pospelov and Pradler, 2010). Stan-
dard contributions to the energy density of radiation during the 
BBN and CMB eras include photons and neutrinos, assuming their 
masses are not too large; however, neutrinos decouple from the 
photon bath at temperatures ∼ 1 MeV, and their energy den-
sity contribution is encoded in the parameter Neff. For the three 

active neutrinos of the Standard Model, recent calculations yield 
NSM

eff = 3.044 (de Salas and Pastor, 2016; Akita and Yamaguchi, 
2020; Bennett et al., 2021; Froustey et al., 2020), and deviations 
%Neff ≡ Neff − NSM

eff from this value could imply the existence of 
non-standard physics. Current CMB and BBN observations con-
strain Neff to be close to its Standard Model value (e.g. Planck 
Collaboration et al., 2020b); therefore, in order to incorporate new 
massless species in a cosmological model, the dark sector tem-
perature has to be lower than that of the photon bath to avoid 
contributing too much to the relativistic energy budget.

Thermal dark matter itself can contribute to the relativistic en-
ergy density during BBN if its mass is " 20 MeV. Additionally, if 
the dark matter relic abundance is set through a standard freeze-
out process, dark matter may annihilate into neutrinos or visible 
particles, which in turn alter weak interaction rates that deter-
mine primordial abundances. Dark matter coupled to neutrinos 
or charged particles generates a positive or negative contribution, 
respectively, to Neff. Thus, cosmological observations can provide 
robust bounds on the mass of dark matter, for a given spin and 
annihilation channel (Boehm et al., 2013; Nollett and Steigman, 
2015,?; Steigman and Nollett, 2014; Escudero, 2019; Giovanetti 
et al., 2021; An et al., 2022). In the future, CMB-S4 will ob-
tain a sensitivity to new thermalized, light relics corresponding to 
%Neff < 0.06 at 2σ (Abazajian et al., 2019). Dedicated theory work 
will be needed to understand the implications of CMB and BBN 
constraints across a variety of dark sector models.

CMB spectral distortions: Measurements of the CMB energy 
spectrum provide an opportunity to search for new physics that 
impacts the thermal history of the Universe. Deviations of the CMB 
spectrum from a perfect blackbody, referred to as spectral distor-
tions, are sensitive to processes that inject energy into (or extract 
energy from) the photon-baryon plasma at redshifts z " 2 × 106. 
Current measurements of the CMB spectrum show that it is ex-
tremely close to a blackbody with a present-day temperature T0 =
2.72548 ± 0.00057 K (Fixsen et al., 1996; Fixsen, 2009), with spec-
tral distortions smaller than a few parts in 105 (Fixsen et al., 1996). 
Proposed experimental concepts could probe spectral distortions at 
least three orders of magnitude smaller (Kogut et al., 2011), thus 
opening new windows into exotic physics in the early Universe. 
Several known processes within the standard $CDM cosmologi-
cal model generate spectral distortions (Chluba, 2016). In addition, 
spectral distortions may be generated through dark matter interac-
tions with Standard Model particles.

Dark matter annihilating or decaying into photons or electri-
cally charged particles would inject energy into the photon-baryon 
plasma, hence distorting the CMB energy spectrum (McDonald 
et al., 2000). CMB anisotropies are significantly more sensitive 
to s-wave annihilations than spectral distortions (McDonald et 
al., 2000); however, spectral distortions could be more sensitive 
to p-wave annihilations (Ali-Haïmoud, 2021), depending on the 
specifics of the dark matter model. In addition, spectral distor-
tions can constrain decaying particles with lifetimes 106 sec "
τ " 1012 sec, to which CMB anisotropies are insensitive. For 
such short lifetimes, the decaying particle could only comprise a 
small fraction of the total dark matter abundance (Bolliet et al., 
2021).

Alternatively, dark matter particles may extract energy from 
the photon-baryon plasma if they scatter elastically with pho-
tons, electrons, or nuclei (Ali-Haïmoud, 2021; Ali-Haïmoud et al., 
2015). Indeed, if dark matter is heavier than ∼ 1 keV, it is non-
relativistic by z ∼ 2 × 106 and therefore cools down adiabatically 
faster than the thermalized photon-baryon plasma. Elastic scatter-
ing would therefore lead to a systematic transfer of heat from the 
plasma to the dark matter fluid. This effect is increasingly large 
for light, thus more abundant, dark matter particles. While current 
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spectral distortion limits only constrain elastically-scattering dark 
matter particles with masses mχ " 100 keV, proposed experiments 
could extend this sensitivity to ∼ GeV masses. Continued theoreti-
cal work is needed to ensure robust predictions (e.g. Ali-Haïmoud, 
2019).

CMB anisotropies and dark matter annihilation/decay: Dark 
matter annihilation or decay via electromagnetic channels injects 
energy into the photon-baryon plasma, which increases the free-
electron fraction xe around and after cosmological recombination 
at z " 1100. The increase in xe delays the last scattering epoch 
and affects the photon diffusion scale (and hence the damping of 
CMB anisotropies at small scales). Additionally, an increased xe in 
the low-redshift tail of recombination suppresses CMB anisotropies 
on small scales and increases large-scale polarization fluctuations, 
an effect qualitatively similar to an increase in the reionization op-
tical depth (Green et al., 2019).

Through these effects, CMB anisotropies are sensitive to very 
rare dark matter annihilation or decay processes (Slatyer, 2016; 
Chen and Kamionkowski, 2004), since as little energy as ∼ 1 eV 
per baryon suffices to significantly alter the ionization history. In 
particular, even for dark matter produced in a standard freeze-out 
scenario, residual annihilation at z " 1100 may have a signifi-
cant impact on CMB anisotropies, long after they no longer change 
the dark matter abundance. Planck data constrain the dark matter 
s-wave annihilation cross section to 〈σ v〉 " 3 × 10−28(mχ/GeV), 
ruling out a standard freeze-out production of dark matter for 
mχ " 10 GeV (Planck Collaboration et al., 2020a). Planck data also 
constrain the lifetime of decaying dark matter to τ ! 1024–1025

sec, depending on the decay channel (Slatyer and Wu, 2017; Poulin 
et al., 2017a), orders of magnitude larger than the age of the 
Universe. Near-future and planned CMB-anisotropy missions could 
achieve a factor of ∼ 30 improvement in the sensitivity over cur-
rent Planck limits on dark matter annihilation and decay (Cang et 
al., 2020).

More exotic dark matter candidates, such as PHBs, can be 
probed by CMB anisotropies through similar effects. PBHs can in-
ject energy in the photon-baryon plasma through either Hawking 
radiation for masses M " 1017 g (Poulin et al., 2017a) or accretion-
powered radiation for masses M ! M$ (Ricotti et al., 2008; Ali-
Haïmoud and Kamionkowski, 2017; Poulin et al., 2017b). In con-
trast with the rather clean and well-understood physics involved in 
dark matter annihilation or decay (Slatyer, 2016; Liu et al., 2020b), 
the complex physics of accretion is highly uncertain and much 
theory work remains to be done to make existing limits more ro-
bust.

While the effects described above arise from changes to the av-
erage free-electron fraction, inhomogeneous energy injection from 
dark matter would also lead to spatial fluctuations in xe (Dvorkin 
et al., 2013; Jensen and Ali-Haïmoud, 2021). These fluctuations 
would induce non-Gaussianities in CMB anisotropies, which could 
be a complementary avenue to probe energy injection from dark 
matter.

CMB anisotropies and dark matter scattering: Elastic scatter-
ing between dark matter and Standard Model particles in the early 
Universe can alter the evolution of perturbations, impacting CMB 
temperature, polarization, and lensing anisotropies. Scattering pro-
cesses heat the dark matter fluid and induce a drag force from the 
exchange of momentum. The primary effect of the scattering is in-
hibiting the clustering capabilities of dark matter, thus washing out 
structure on a variety of observable scales. As a result, the CMB 
power spectra experience damping at large multipoles ', corre-
sponding to small angular scales on the sky, for models where dark 
matter decouples from baryons prior to matter-radiation equality 
(Chen et al., 2002; Dvorkin et al., 2014; Gluscevic and Boddy, 2018; 
Boddy and Gluscevic, 2018; Xu et al., 2018; Slatyer and Wu, 2018; 

Boddy et al., 2018). For models such as millicharged dark matter, 
scattering takes place at later times, and CMB anisotropy currently 
provides some of the best observational bounds on such mod-
els (e.g. Boddy and Gluscevic, 2018; Kovetz et al., 2018; Dvorkin et 
al., 2021). The theoretical developments and numerical implemen-
tation into Boltzmann codes, such as CAMB and CLASS, have en-
abled CMB searches of dark matter scattering with baryons (Chen 
et al., 2002; Dvorkin et al., 2014; Gluscevic and Boddy, 2018; 
Boddy and Gluscevic, 2018; Xu et al., 2018; Slatyer and Wu, 2018; 
Boddy et al., 2018), electrons (Nguyen et al., 2021; Buen-Abad et 
al., 2021b), photons (Boehm et al., 2002; Wilkinson et al., 2014a; 
Stadler and Bœhm, 2018), and neutrinos (Wilkinson et al., 2014b; 
Olivares-Del Campo et al., 2018). The strength of the interaction is 
a key parameter that controls the amount of power suppression in 
the CMB primary anisotropy, but including an energy or velocity 
dependence of the interaction influences the shape of the suppres-
sion, potentially allowing a way to distinguish between various 
scattering models. Even in the case of dark sectors, dark matter 
scattering with dark radiation (Cyr-Racine et al., 2016; Archidi-
acono et al., 2017, 2019) produces features in the CMB power 
spectra that can be differentiated from other models (Becker et al., 
2021). Changing Neff can have a similar effect of suppressing the 
CMB damping tail, but possible degeneracies can be broken using 
CMB lensing anisotropies (Li et al., 2018).

Upcoming ground-based instruments, such as the Simons Ob-
servatory (Simons Observatory Collaboration et al., 2019) and CMB-
S4 (Abazajian et al., 2019), will measure the CMB with better pre-
cision at high ' and a much higher angular resolution than current 
experiments, allowing for greater sensitivity to dark matter inter-
actions. In terms of theoretical development, most investigations 
have focused on thermal relic models, while future investigations 
of models where dark matter is produced non-thermally will also 
be of high interest in context of CMB probes. Furthermore, there 
is a notable synergy between the CMB primary anisotropy and 
other probes of the structure growth in the Universe, which can 
be further exploited in self-consistent analyses of CMB with other 
observables, for specific dark matter models.

21-cm line at high redshifts: The redshifted 21-cm line of neu-
tral hydrogen presents a unique probe of the post-recombination 
Universe, prior to the birth of the first stars (cosmic dark ages, 
z = 30–100) and right after it (cosmic dawn, z = 5–30)—see (e.g. 
Furlanetto et al., 2006; Pritchard and Loeb, 2012) for reviews. The 
corresponding absorption signal imprinted on the CMB backlight 
during cosmic dawn (Hirata, 2006) captures the state of hydro-
gen gas and various microphysical processes that control it at this 
early epoch; mapping the absorption signal provides a (3D) view 
of the Universe at epochs that no other probes can reach. Many 
dark matter processes can affect the temperature of baryons during 
cosmic dawn, in turn affecting the 21-cm signal. The experiments 
targeting this era can use this connection to probe dark matter in-
teractions with the visible sector.

A well-motivated model that can affect the 21-cm signal in-
volves dark matter scattering with baryons through a light me-
diator (Slatyer and Wu, 2018; Kovetz et al., 2018; Tashiro et al., 
2014; Muñoz et al., 2015; Muñoz and Loeb, 2018; Berlin et al., 
2018; Barkana et al., 2018; Muñoz et al., 2018; Liu et al., 2019). 
For millicharged dark matter, current 21-cm measurements (e.g., 
from EDGES in the global signal (Bowman et al., 2018) or HERA 
for fluctuations (HERA Collaboration et al., 2022)) exclude mil-
licharges as low as qχ ∼ 10−6 e (Muñoz and Loeb, 2018) (where 
e is the electron charge), even if less than a percent of dark matter 
is millicharged. Alternatively, models of dark photons that kinet-
ically mix with Standard Model photons, with mixing parameter 
ε ∼ 10−7 (Pospelov et al., 2018), can create a radio background 
that affects the 21-cm signal (Pospelov et al., 2018; Ewall-Wice 
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et al., 2018; Fraser et al., 2018). Additionally, a classical WIMP, 
for instance, can heat gas through annihilations (Lopez-Honorez 
et al., 2016; Liu and Slatyer, 2018), and similar effects occur in 
case of decaying dark matter and dark-photon dark matter (Evoli 
et al., 2014; Kovetz et al., 2019); each in turn can affect the ther-
mal properties of baryons during cosmic dawn. Even more exotic 
models, such as evaporating or accreting PBHs, can produce heat-
ing (Ali-Haïmoud et al., 2017; Clark et al., 2018).

The 21-cm signal during cosmic dawn is sensitive to structure 
formation because the first galaxies emit photons that produce 
Wouthuysen-Field coupling (Hirata, 2006), critical for the 21-cm 
absorption feature to arise. Those first galaxies were hosted in ha-
los with masses ∼ 106 M$ (Tegmark et al., 1997; Abel et al., 2002; 
Mirocha et al., 2015; Muñoz et al., 2021a), which correspond to 
fluctuations with wavenumbers as large as k ≈ 100–200 Mpc−1. As 
a consequence, altering the corresponding scales in the linear mat-
ter power spectrum affects the abundance of the first galaxies and 
the timing of the 21-cm signal (Muñoz et al., 2020). Small scales 
are often very sensitive to dark matter microphysics and can be 
used to probe warm dark matter and other beyond–CDM models.

While there are claims that the global (sky-averaged) signal has 
already been detected (Bowman et al., 2018), the tomographic sig-
nal is yet to be measured (HERA Collaboration et al., 2022) from 
interferometers such as HERA (DeBoer et al., 2017), LOFAR, MWA, 
or SKA (Mellema et al., 2013). However, it is expected that these 
observatories can yield constraints on the matter power spectrum 
up to k = 100 Mpc−1 at the ∼ 10% level (Muñoz et al., 2020), 
which can place powerful constraints on specific dark matter can-
didates such as ETHOS models (Muñoz et al., 2021b), warm dark 
matter (Sitwell et al., 2014), or fuzzy dark matter (Jones et al., 
2021).

High-redshift galaxy luminosity function: The luminosity func-
tion (i.e., counting the number of galaxies versus their luminosity) 
provides a tracer of the abundance of dark matter halos at the 
redshifts of measurement. UV luminosity functions are constructed 
from the HST Ultra Deep Fields (HUDF), where the UV light from 
the most massive galaxies at z = 4–10 is detected by the visi-
ble/IR filters at the HST (Finkelstein et al., 2015; Bouwens et al., 
2015). JWST observations will significantly contribute to constrain-
ing the population of early galaxies in the coming decade. There 
measurements can be used to determine the matter power spec-
trum during reionization up to k = 10 Mpc−1 (Sabti et al., 2021, 
2022; Yoshiura et al., 2020) and can provide probes of warm 
dark matter (Schultz et al., 2014; Dayal et al., 2015; Menci et al., 
2017; Rudakovskyi et al., 2021), fuzzy dark matter (Bozek et al., 
2015; Corasaniti et al., 2017), and ETHOS models (Lovell et al., 
2018).

Lyman-α forest: The clustering of matter at intermediate red-
shifts traced by the redshifted forest of Lyman-α absorption lines 
is a sensitive probe of dark matter physics. Several authors have 
forward-modeled the Lyman-α forest to place lower limits on the 
thermal relic warm dark matter mass of O(3–5) keV (Viel et al., 
2013; Baur et al., 2016; Iršič et al., 2017; Palanque-Delabrouille et 
al., 2020), where the details of the constraints depend on astro-
physical assumptions about the temperature, density, and redshift 
evolution of baryons in the intergalactic medium (Garzilli et al., 
2017, 2019). Other dark matter models such as those with dark 
matter–baryon interactions, ultra-light axions, and PBHs have also 
been constrained using similar methods (Kobayashi et al., 2017; 
Murgia et al., 2019; Rogers and Peiris, 2021a; Rogers et al., 2021), 
although there are dark matter-related modeling challenges in 
some cases (e.g. Zhang et al., 2018a). From a theoretical stand-
point, the development of Lyman-α forest emulators (e.g. Rogers 
and Peiris, 2021b) has contributed to recent advances and will be-
come increasingly important to enable robust, joint inference of 

cosmological, astrophysical, and dark matter physics in the com-
ing decade. From an observational standpoint, dark matter analyses 
have generally been performed using ∼ 10 s of high-resolution 
spectra (e.g., VLT, HIRES/KECK; (Viel et al., 2013)), ∼ 100 s of 
intermediate-resolution spectra (e.g., XQ-100; (Iršič et al., 2017)), 
or ∼ 1000 s of low-resolution spectra (e.g., SDSS/BOSS; (Palanque-
Delabrouille et al., 2020)). Ongoing spectroscopic surveys including 
DESI will significantly enhance the number and redshift coverage 
of available high-resolution quasar spectra, potentially allowing for 
percent-level measurements of the Lyman-α flux power spectrum 
on small scales (Karaçaylı et al., 2020).

3.3. Present-day structure

Probes of small-scale structure at low redshifts have recently 
emerged as a key means to test a variety of dark matter proper-
ties, including its production mechanism, primordial temperature, 
self- and Standard Model-interactions, and minimum particle mass. 
These probes can broadly be categorized according to whether they 
rely on observations of the baryonic contents of low-mass halos or 
not. Here, we summarize the current status and future prospects 
for each of these probes, along with key theoretical considera-
tions. In particular, we emphasize that connecting theoretically 
motivated predictions for dark matter’s gravitational imprints to 
precise analytic and simulation-based predictions for small-scale 
structure distributions is a critical area for work over the next 
decade.

Massive galaxy clusters provide a unique opportunity to strin-
gently test the CDM paradigm of structure formation. Combining 
strong and weak gravitational lensing detected in high-resolution 
images of massive clusters has revealed that the dark matter 
subhalos of cluster galaxies are less massive and less spatially 
extended compared to those hosting equivalent luminosity field 
galaxies, indicating that tidal stripping of dark matter is effi-
cient in these dense, violent environments—see review by (Kneib 
and Natarajan, 2011) and, for a critical analysis of the range of 
lens modeling methodologies, see (Meneghetti et al., 2017) and 
(Niemiec et al., 2020) for recent developments. Comparison of the 
derived subhalo mass function from observed cluster lenses with 
CDM simulations has revealed that while the abundance and mass 
function of substructures was well reproduced, the radial distribu-
tion of subhalos was discrepant (Natarajan et al., 2017). Subhalos 
are more concentrated in the inner regions of observed clusters 
than predicted by CDM simulations.

A recent study of Galaxy-Galaxy Strong Lensing (GGSL) in clus-
ters found that observed small-scale cluster substructures (on ∼
5–10 kpc scales) are more efficient strong lenses than predicted by 
CDM simulations by more than an order of magnitude (Meneghetti 
et al., 2020). Further theoretical investigation will be needed to 
evaluate if this large discrepancy arises from hitherto undiagnosed 
systematic issues within simulations, or if in fact this serves as 
a hint for deviations from the CDM paradigm. Numerical effects 
arising from the resolution limits of simulations that lead to ar-
tificial subhalo disruption (van den Bosch et al., 2018) cannot ac-
count for the order of magnitude GGSL gap, as they are at most 
a 20% effect (Green et al., 2021). Importantly, baryonic feedback 
processes must be carefully investigated as a potential culprit for 
the discrepancy, as it is well understood that they alter the inter-
nal structure of cluster galaxies. This motivates a comparison of 
simulated galaxy clusters across several independent CDM simula-
tions.

The GGSL discrepancy could potentially be revealing that dark 
matter might not be collisionless, especially in the extremely dense 
cluster environments. For elastic self-interactions that are velocity 
dependent (with large interaction cross sections), halos can un-
dergo gravo-thermal collapse just as stellar systems. When this 
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occurs, the inner halo develops a negative heat capacity due to 
outward transfer of energy (Balberg et al., 2002), resulting in a 
significant enhancement of the concentration of the inner den-
sity profile—precisely in the direction needed to address the GGSL 
discrepancy (Yang and Yu, 2021). The transformation produced by 
core-collapse motivates the investigation of this particular class 
of self-interacting models more deeply. Moreover, totally inelas-
tic self-interactions can result in a collapse time-scale up to two 
orders of magnitude shorter than for the elastic case (Huo et 
al., 2020), for smaller interaction cross sections. Further theoreti-
cal study is needed to map out the space of self-interacting dark 
matter models that can potentially account for the GGSL discrep-
ancy.

Dwarf galaxies are the smallest dark matter-dominated bary-
onic systems in the Universe and form in halos with Mhalo "
1010 M$ , down to the galaxy formation threshold of Mhalo ∼
108 M$ (Jethwa et al., 2018; Nadler et al., 2020). Thus, the small-
est “ultra-faint” dwarf galaxies (Simon, 2019) are a particularly 
sensitive probe of low-mass halo abundances, which reflect dark 
matter’s small-scale gravitational clustering. To date, ultra-faints 
have exclusively been detected within the virial radius of the Milky 
Way as satellite galaxies; recent wide-field photometric surveys, 
including the Sloan Digital Sky Survey, Pan-STARRS1, and the Dark 
Energy Survey, have increased the number of known Milky Way 
satellites to roughly 60 systems (see (Drlica-Wagner et al., 2020) 
for a recent census of the Milky Way satellite population). These 
observations have been used to constrain the warm dark matter 
particle mass at the level of 6.5 keV, the particle mass of fuzzy 
dark matter at the level of 2.9 × 10−21 eV, and the dark matter–
proton interaction cross section at the level of 10−29 cm2 (Nadler 
et al., 2021) (also see (Jethwa et al., 2018; Kim et al., 2018; New-
ton et al., 2021; Dekker et al., 2021; Nadler et al., 2019; Maamari 
et al., 2021)). Over the next decade, observational facilities, includ-
ing the Vera C. Rubin Observatory and the Nancy Grace Roman 
Space Telescope, are expected to significantly improve upon cur-
rent dwarf galaxy discovery power, both within and well beyond 
the virial radius of the Milky Way (e.g. Mutlu-Pakdil et al., 2021; 
Drlica-Wagner et al., 2019). With these upcoming improvements, 
continued theoretical developments are key to properly interpret-
ing possible deviations of halo abundances from the CDM expecta-
tion.

In addition to their mass abundances, the individual proper-
ties and population statistics of dwarf galaxies are also sensi-
tive to dark matter microphysics. For example, dark matter self-
interactions can both suppress the inner densities of halos in a 
mass-dependent fashion (Vogelsberger et al., 2012; Zavala et al., 
2013; Rocha et al., 2013; Peter et al., 2013; Kaplinghat et al., 
2014) and eventually drive these systems towards gravothermal 
core collapse (Balberg et al., 2002; Koda and Shapiro, 2011; Elbert 
et al., 2015; Essig et al., 2019; Nishikawa et al., 2020; Kahlhoe-
fer et al., 2019; Sameie et al., 2020; Turner et al., 2020; Zeng 
et al., 2021). These effects provide a mechanism for explaining 
the observed diversity of galactic rotation curves (Kamada et al., 
2017; Creasey et al., 2017; Ren et al., 2019; Kaplinghat et al., 
2020), although current observations are not yet sufficient to dis-
tinguish this scenario from feedback-affected CDM halos (Zentner 
et al., 2022). Conservative constraints based on the observed inner-
most densities of dwarf galaxies such as Draco (e.g. Read et al., 
2018), coupled with constraints from galaxy clusters (e.g. Sagunski 
et al., 2021), demonstrate that self-interacting dark matter models 
with velocity-dependent interactions must undergo some degree of 
gravothermal collapse (Jiang et al., 2021b). This observation may 
provide a mechanism to explain observations suggesting that the 
most centrally-dense Milky Way dwarfs also have the smallest 
orbital pericenters (Kaplinghat et al., 2019). Improved theoretical 

modeling of dwarf properties and populations will be needed to 
harness the full potential of current and upcoming surveys that 
are amassing information on dwarf galaxies of Milky Way-like sys-
tems (Carlsten et al., 2020; Mao et al., 2021), as well as improved 
stellar kinematic data on the Milky Way’s dwarfs from observato-
ries like Gaia (Fritz et al., 2018).

Strong gravitational lensing allows us to detect low-mass halos 
within lens galaxies and along the line of sight via their effect on 
the observed multiple images of a background source. This process 
is purely gravitational and independent of whether these low-mass 
halos contain any baryons. It thus provides a unique approach to 
test dark matter models by probing the low-mass end of the halo 
and subhalo mass functions beyond the local Universe. The de-
tection of low-mass halos with strongly lensed quasars is mainly 
based on so-called flux ratio anomalies—that is, changes induced 
to the relative flux of the multiple images (e.g. Mao and Schnei-
der, 1998; Dalal and Kochanek, 2002; Nierenberg et al., 2017). In 
images of strongly lensed galaxies, a local change of the surface 
brightness distribution of the data, reflecting a change in the rela-
tive position of the images, is the tell-tale signature of the presence 
of low-mass halos (e.g. Koopmans, 2005; Vegetti and Koopmans, 
2009; Vegetti et al., 2012; Hezaveh et al., 2016; Despali et al., 
2018). This method is often referred to as the gravitational imaging 
technique.

Flux ratio anomalies and the gravitational imaging technique 
are complementary approaches that are subject to individual and 
shared sources of systematic errors (Hsueh et al., 2020; Enzi et 
al., 2021). The two techniques can also differ in their sensitivity to 
low-mass haloes. Depending on the size of the background source, 
flux ratio anomalies typically probe the halo and subhalo mass 
functions down to masses as low as ∼ 107 M$ and potentially 
below. The number of available lens systems and the precision 
of the flux measurement then set the precision with which one 
can constrain the halo and subhalo mass functions (Gilman et al., 
2019). For example, (Gilman et al., 2020) and (Hsueh et al., 2020) 
constrain the warm dark matter particle mass at 5.2 (5.5) keV 
at the 95% confidence level using eight (seven) quadruply imaged 
quasars.

The sensitivity to low-mass halos reached by the gravitational 
imaging technique is highly dependent on the angular resolution of 
the observations (Despali et al., 2022). At present, only a handful 
of systems for which Very Long Baseline Interferometry observa-
tions are available can probe the halo mass function down to ∼
106 M$ (McKean et al., 2015). From a sample of 20 HST-observed 
galaxy-galaxy lensed systems (sensitivity ∼ 1010 M$), (Enzi et al., 
2021) infer a limit on the warm dark matter particle mass of 
1.02 keV using both detections (Vegetti et al., 2010) and non-
detections (Vegetti et al., 2014; Ritondale et al., 2019).

At present, the relatively low number of gravitational lens sys-
tems with high-enough data quality significantly limits the con-
straints on dark matter from both flux-ratio anomalies and the 
gravitational imaging technique. Luckily, ongoing and future sur-
veys with instruments such as Euclid, the Vera Rubin, and SKA 
will increase the number of known gravitational lens systems by 
several orders of magnitudes (Oguri and Marshall, 2010; Collett, 
2015; Weiner et al., 2020). This data, coupled with follow-up ob-
servations with, e.g., the ELT, TMT, and JWST, is projected to deliver 
tight constraints on the halo and subhalo mass function (Gilman et 
al., 2019; He et al., 2022).

Stellar streams are the tidally disrupted remnants of dwarf 
galaxies and globular clusters. Recently, the combination of astro-
metric, photometric, and spectroscopic observations has led to the 
discovery of a plethora of new streams orbiting the Milky Way 
(Shipp et al., 2018; Ibata et al., 2019; Li et al., 2021b) and in-
triguing structure in the density profiles of nearby streams like 
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Fig. 4. Simplified comparison of likelihood-based and simulation-based algorithms in the space of number of required/affordable simulations vs. number of model parameters 
(including parameters of interests, uncertain parameters, and random states of the simulator). In general, the simulation requirements of likelihood-based techniques grow 
significantly with the number of model parameters. Instead, simulation-based inference techniques can—in principle—directly focus on estimating marginal posteriors for 
parameters of interest, independently of the total number of parameters. This reduces the need for parameter reduction techniques and enables the comparison of complex 
simulation results with complex data.

GD-1 (Price-Whelan and Bonaca, 2018) and ATLAS–Aliqa Uma (Li 
et al., 2021c). These substructured streams—and particularly the 
gaps in stream density profiles and other unexpected, off-stream 
features—have been modeled to place constraints on the properties 
of individual perturbers and candidate dark matter subhalos that 
may have gravitationally perturbed these streams (Bonaca et al., 
2019), as well as the population statistics of subhalo perturbers in 
cold and warm dark matter contexts (Banik et al., 2021a,b). Deeper 
photometric measurements from upcoming facilities will continue 
to increase the population of known streams and reveal their fine-
grained density structure, with potential sensitivity to subhalos as 
small as ∼ 106 M$ , regardless of their baryonic content (Drlica-
Wagner et al., 2019; Banik et al., 2018).

4. Machine learning and statistics

Over the next decade, astrophysical data relevant for the study 
of the nature of dark matter will increase not only in volume, 
but also in complexity and detail. Upcoming gamma-ray and ra-
dio observatories like the Cherenkov Telescope Array (CTA) (CTA 
Consortium Collaboration et al., 2018) and the Square Kilome-
ter Array (SKA) (Carilli and Rawlings, 2004; Braun et al., 2015) 
will produce petabytes of data (Alves Batista et al., 2016). Fully 
exploiting this data for scientific purposes will require increas-
ingly detailed and complex physical models, which bring along 
higher computational costs for simulations, as well as a larger 
number of uncertain parameters, including those characterizing 
signal and background systematics. Established algorithms for pa-
rameter inference, like Markov Chain Monte Carlo (MCMC), nested 
sampling (Skilling, 2004; Handley et al., 2015), and Approximate 
Bayesian Computation (ABC) often requires a very large number 
of simulation runs, which often grow significantly as the number 
of model parameters increases; see Fig. 4 for an illustration. In 
many settings, it becomes impractical to compare physical mod-
els in their full complexity and detail with the data. As a result, 
analyses are often limited by the inference tools rather than statis-
tics (Alves Batista et al., 2021; Trotta, 2017). Modern statistical 
algorithms based on deep learning and differentiable programming 
techniques can overcome the limitations of established techniques. 
Recent reviews can be found in Alves Batista et al. (2021); Algeri 
et al. (2018); Feigelson et al. (2021), and we will provide a brief 

overview of promising techniques and suggest necessary develop-
ments here.

Scalable inference techniques: Stochastic variational infer-
ence (SVI) (Hoffman et al., 2013; Zhang et al., 2018b) approaches 
inference of the posterior as an optimization problem, circumvent-
ing the need to sample from high-dimensional parameter spaces. 
The most commonly employed optimization target is here the 
evidence lower bound (ELBO) (Hoffman et al., 2013). It can be 
conveniently optimized using stochastic gradient descent (SGD), 
provided the physical simulator is fully differentiable with re-
spect to all model parameters. This approach can scale to very 
high dimensional inference problems. Example applications are de-
blending starfields (Liu et al., 2021), disentangling the components 
of gamma-ray emission (Leike et al., 2020; Mishra-Sharma and 
Cranmer, 2020), and strong gravitational lensing (Coogan et al., 
2020; Karchev et al., 2021). One challenge with SVI is that through 
the mode-seeking nature of the reverse KL divergence (Goodfellow, 
2017), it tends to underestimate the posterior variance, poten-
tially leading to over-confident posteriors. An important theoretical 
development front is the construction of differentiable forward 
models and simulators (e.g. Modi et al., 2021a,b), which is eas-
ily admitted using modern automatic differentiation tools (Brad-
bury et al., 2018; Paszke et al., 2019), or the use of differentiable 
surrogate models when this is not feasible (Himes et al., 2020; 
Shirobokov et al., 2020).

The use of differentiable models also allow for inference via 
gradient-assisted Monte Carlo methods like Hamiltonian Monte 
Carlo, which have higher sample efficiency and scale better 
with parameter dimension than traditional Monte Carlo tech-
niques.

Methods based on deep learning: The likelihood function, 
which is a fundamental input to most established techniques in-
cluding SVI, can be extremely difficult to compute, due to required 
marginalization over various unobserved instrumental and physical 
parameters (see Fig. 4 for an illustration). Simulation-based infer-
ence (SBI) methods (see (Cranmer et al., 2020; Lueckmann et al., 
2021)) circumvent the evaluation of likelihoods by directly map-
ping observations and simulations onto summary statistics that 
are subsequently statistically interpreted. A classical SBI technique 
is ABC (Sisson et al., 2020). Various recently developed neural SBI 
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methods use the training of deep neural networks both to generate 
informative summary statistics as well as performing estimation of 
posteriors, likelihoods (e.g. Papamakarios et al., 2021; Bond-Taylor 
et al., 2021), or likelihood-to-evidence ratios (e.g. Hermans et al., 
2020a). This procedure can require orders of magnitude fewer sim-
ulations than established techniques (Alsing et al., 2019; Miller et 
al., 2020), see Fig. 4. Neural SBI has been used, for instance, for 
dark matter substructure inference (Coogan et al., 2020; Hermans 
et al., 2020b; Brehmer et al., 2019; Mishra-Sharma, 2022), dark 
matter indirect detection with gamma-ray data (Mishra-Sharma 
and Cranmer, 2021; List et al., 2020, 2021), and binary microlens-
ing (Zhang et al., 2021). Fronts where still significant theoretical 
development is required are neural network architectures tailored 
to the structure of typical astrophysical data, which can signif-
icantly reduce simulation costs for simulation-based algorithms, 
and simulation-efficient training algorithms. This includes, for ex-
ample, efforts to develop interpretable and/or explainable architec-
tures for astrophysical data processing and the use of inference 
algorithms that produce statistically sound results for the pur-
poses of scientific discovery and hypothesis testing (Hermans et 
al., 2021). These developments will also help foster community 
trust in results relying on deep learning methods, which have his-
torically seen reluctance in adoption due to their reputation as 
black boxes.

In general, deep learning-based techniques enable more infor-
mation to be extracted from data without requiring the use of 
simplified data representations and low-dimensional summary ob-
servables. Although this has the potential to significantly enhance 
the sensitivity of astrophysical dark matter searches, it can make 
typical methods more sensitive to how specific features in the data 
are modeled. This underscores the need for increased attention to 
accurately modeling the data.

Infrastructure and workforce: Realizing these goals will re-
quire development of both software and human resources. Given 
the potentially steep theoretical learning curve associated with the 
aforementioned statistical methods, the development of easy-to-
use inference tools (e.g. Miller et al., 2020; Tejero-Cantero et al., 
2020) adopting good documentation practices with end practition-
ers in mind is crucial.

Finally, given the necessity of cross-disciplinary expertise in de-
veloping these methods and tools, we recommend, through appro-
priate hiring practices and promotion options, viable career trajec-
tories at the intersection of statistical methods and astrophysical 
data analysis for new physics. A concerted effort in this direction 
has demonstrated success in certain fields of cosmological (The 
LSSTC Data Science Fellowship Program, 2021) and collider (IRIS-
HEP Fellows Program, 2021) data analysis. At the training stage, 
the existence of Ph.D. schools as well as curriculum-based learning 
of data analysis techniques is encouraged.

5. Conclusions

We are entering an era which holds the promise of resolving 
many of the most basic questions we have about dark matter. How 
was dark matter produced in the early Universe? Is dark matter 
a single missing piece or part of a broader dark sector? Is dark 
matter cold, warm, or better thought of as a wave? And above all 
else: what is dark matter?

A central source for optimism that the answer to these ques-
tions may be within our grasp is the upcoming advancements in 
instruments and observations. Yet, as we have outlined, the role 
of the theory community is not to simply wait for the experimen-
tal program to provide the answers to these questions, but instead 
to work with, extend, and optimize dark matter searches. Indeed, 
there is considerable work ahead for theorists to determine the 

behavior of dark matter and how this would manifest in our ob-
servations, and further in the development of techniques such as 
machine learning that could be required to confidently detect an 
eventual signal. While there are many challenges to overcome, as 
we have reviewed, there are clear paths for doing so. Viewed as 
a whole, there is every reason to be confident that in the coming 
years we will finally tease apart the mysteries of dark matter and 
move into a future where rather than wondering what dark matter 
is, we are instead asking how its particle nature modifies galaxies, 
cosmology, and possibly even opens a path towards understand-
ing the broader world of physics that exists beyond the Standard 
Model.
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