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Abstract: Perovskite offers a framework that boasts various functionalities and physical properties of
interest such as ferroelectricity, magnetic orderings, multiferroicity, superconductivity, semiconductor,
and optoelectronic properties owing to their rich compositional diversity. These properties are also
uniquely tied to their crystal distortion which is directly affected by lattice strain. Therefore, many
important properties of perovskite can be further tuned through strain engineering which can be
accomplished by chemical doping or simply element substitution, interface engineering in epitaxial
thin films, and special architectures such as nanocomposites. In this review, we focus on and highlight
the structure–property relationships of perovskite metal oxide films and elucidate the principles to
manipulate the functionalities through different modalities of strain engineering approaches.

Keywords: perovskite; metal oxides; lattice strain

1. Introduction

Perovskite has emerged as an important class of material in technologically important
sectors. The research interests and application development of such materials have grown
exponentially. Since many elements from the periodic table can be fitted into such a unique
crystal structure [1], it is not an overstatement for us to envision that perovskite can be used
as a framework to study a wide range of properties and functionalities including ferroic
orderings, superconductivity, colossal magnetoresistance, optoelectronics, etc. [2]. Oxide
perovskite thin films have been of particular interest in terms of both fundamental research
and technological applications for oxide electronics [3]. Since the physical properties of such
materials can be further affected by the chemical doping [4–7] and epitaxial strain [8–13],
one can strain the materials to tune the properties of the materials towards specific applica-
tions. Recently, more approaches for strain engineering have come to the fore. Examples
include mechanically straining free-standing single-crystalline membranes [8,14] grown
on the buffered substrate where the buffer layer can be etched off thereafter, and the ion
implantation of species such as helium [15] and nitrogen [16] to strain the lattice. Perovskite
materials have also garnered interest in a wide range of applications such as solar cells,
photo/electrocatalysis, photopolymerization, thermoelectrics, resistive switching devices,
etc. [17–25]. In this review, we will focus on the role of chemical pressure and epitaxial
strain in perovskite metal oxide films, superlattices, and vertically aligned nanocomposites.

The ideal structure of perovskite with a chemical formula ABO3 is cubic, as shown in
Figure 1a, and composed of a three-dimensional network of corner-sharing [BO6] octahedra,
where the A cation sits in the cubo-octahedral site between adjacent octahedra. However,
the structures of most perovskite materials exhibit a lower symmetry, such as rhombohedral,
orthorhombic, or tetragonal [2]. The geometry and symmetry of the crystal structure are
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directly affected by the relative size of the comprising ions and often viewed through the
proxy of Goldschmidt tolerance factor, t:

t =
RA + RX√
2(RB + RX)

(1)
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of the order of several percent [27,28]. Such epitaxial thin films have a rich history in per-
ovskite metal oxides facilitated by the advances in thin-film growth techniques such as 
molecular beam epitaxy, pulse laser deposition, sputtering, metal–organic chemical vapor 
deposition, and chemical solution deposition. Biaxial strains in perovskite metal oxide 
films can be used as a lever to tune physical properties such as electric polarization, mag-
netoresistance and magnetic anisotropy, and stabilize metastable phases [9]. Strain can 
distort the perovskite structure by tilting, rotating, and elongating the oxygen octahedra, 
and therefore significantly affect the properties of given materials such as Curie tempera-
ture (TC) [10,29–31], magnetic anisotropy [32–37], and magnetotransport properties of fer-
romagnetic materials [38–41]. In ferroelectric perovskite oxides, for example, the epitaxial 

Figure 1. (a) The ideal ABO3 perovskite crystal structure showing tilt in all three directions.
(b) Distortion of [BO6] octahedra along various directions, lowering the symmetry of the cubic
structure and forming other crystal structures. The positive sign indicates in-phase rotation (c+) and
the negative sign shows out-of-phase rotation (c−), both about z-axis. Reprinted with permission
from ref. [26]. Copyright 2011, Wiley.

For the ideal cubic aristotype, t = 1. As t lowers further, the structures distort via
octahedral tilts and rotations, as shown in Figure 1b, to lower the symmetry until the
perovskite phase stops being stable [2,26]. From the viewpoint of chemical compositions,
the structure can therefore be distorted by doping isovalent elements of different sizes to
exert a chemical pressure on the lattice.

Another way to affect the crystal structure is through epitaxial strain. While bulk crys-
tals are brittle and fragile to mechanical strain, epitaxial thin films can tolerate strains of the
order of several percent [27,28]. Such epitaxial thin films have a rich history in perovskite
metal oxides facilitated by the advances in thin-film growth techniques such as molecular
beam epitaxy, pulse laser deposition, sputtering, metal–organic chemical vapor deposition,
and chemical solution deposition. Biaxial strains in perovskite metal oxide films can be used
as a lever to tune physical properties such as electric polarization, magnetoresistance and
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magnetic anisotropy, and stabilize metastable phases [9]. Strain can distort the perovskite
structure by tilting, rotating, and elongating the oxygen octahedra, and therefore signifi-
cantly affect the properties of given materials such as Curie temperature (TC) [10,29–31],
magnetic anisotropy [32–37], and magnetotransport properties of ferromagnetic materi-
als [38–41]. In ferroelectric perovskite oxides, for example, the epitaxial strain can enhance
the TC for several hundreds of degrees [11,42–45]. One of the best illustrations is probably
SrTiO3, where the lattice strain can make SrTiO3 ferroelectric at room temperature, despite
the unstrained SrTiO3 being paraelectric throughout all temperatures [13]. Similarly, epi-
taxial strain-engineering can also be leveraged in multilayer epitaxial heterostructures, i.e.,
epitaxial layered structures, superlattices, and vertically aligned nanocomposites (VANs).
For example, ferroelectric SrTiO3 has been experimentally demonstrated in fully strained
SrTiO3 films [13], superlattices SrTiO3/BaZrO3 [45] and SrTiO3/BaTiO3 [11], and vertically
aligned epitaxial SrTiO3:MgO and SrTiO3:Sm2O3 nanocomposite films [46,47].

2. Strain Engineering through Chemical Substitution or Chemical Pressure

The substitution of ions via chemical pressure is one of the common approaches to
strain the crystal structure. As the A-site cations prefer to form close-shelled electronic
configurations with fixed valency, they largely play a structural role. The cation size
influences lattice constants, bond lengths and angles, and octahedral rotations and tilts.
In other words, a distortion of the central [BO6] octahedra can directly affect the material
properties. Both the mean size and the size mismatch of the cations on the A-site affect the
electronic and structural phase transitions [48–50].

To illustrate strain engineering to tune the functionalities of perovskites through
chemical substitution or chemical pressure, we use AMnO3 manganates as the model
system. Mixed-valent perovskite manganates, AMnO3, are one of the most widely studied
systems for their colossal magnetoresistance (CMR) property. The Curie temperature of
these materials, TC, is very sensitive to the change in chemical pressure which can be
introduced via the substitution of trivalent rare earth metals of different sizes. For example,
as the atomic radius of the A cation changes from a relatively larger to a smaller size in
the case of La, Pr, Nd and Eu, and the Neel temperature, TN, for the antiferromagnetic
insulator phase is lowered with the change in the B-O-B angle away from 180◦, as shown in
Figure 2a [51]. In Ln1−xMxMnO3 systems, where Ln = trivalent lanthanide (La, Pr, Nd, . . . ),
M = divalent cation (Ca, Sr, Ba, . . . ), the disorder due to size disparity between the two
A-site cations plays a role in determining and tuning their electronic properties. This is
evident from the fact that different Ln1−xMxMnO3 perovskites with the same doping level
and tolerance factor can have quite different metal-to-insulator transition temperatures [48].
As the x value increases, the hole doping increases linearly. The average A cation size
also changes linearly with x value, but the change in disorder is non-linear, with it being
minimum at x = 0 and 1, and maximum at x = 0.5. The statistical variance between the
distribution of the radii can be considered as the quantity to parametrize this disorder [48].
La1−xSrxMnO3 is the most well studied material in this class. Here, the bond lengths
and angles are lowered with an increase in Sr content. The effect of Sr content on lattice
parameters and bond angle is depicted in Figure 2b [52]. The change here is even more
dramatic compared to the prior example of switching trivalent rare-earth metals. As shown
in Figure 2c [52], the TN first begins to decrease until a transition to a ferromagnetic insulator
phase, and eventually to a ferromagnetic metal with TC of the ferromagnetic phase well
above room temperature. The pressure exerted in the lattice modifies local parameters such
as the Mn-O bond length and the O-Mn-O bond angle which, in turn, affects the balance
between the co-existing metallic and insulating states, and thus their CMR properties [53].
Mixed-valent perovskite manganates also exhibit many charge-ordered phases that are
affected by factors such as the size of the A cations as well as isotopic and chemical
substitutions [54–56].
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Figure 2. (a) The isovalent phase diagrams of rare-earth manganites with A-site composition exhibit
changes in the octahedral connectivity (B-O-B bond angles, upper panels) and symmetry. Changes
to the octahedral connectivity (horizontal arrows) affect the temperatures associated with magnetic
and charge-ordering phase transitions, whereas periodic orderings of the octahedral shape and size
(vertical arrows) occur at the orbital-ordering transition. Reprinted with permission from ref. [51].
Copyright © 2022, The Materials Research Society. (b) Lattice parameters for La1−xSrxMnO3 crystals
at room temperature. (c) Electronic phase diagram of La1−xSrxMnO3. Open circles and filled triangles
are the Neel (TN) and Curie (TC) temperatures, respectively. The abbreviations mean paramagnetic
insulator (P.I.), paramagnetic metal (P.M.), spin-canted insulator (CN.I.), ferromagnetic insulator (FI),
and ferromagnetic metal (FM). Reprinted with permission from ref. [52]. Copyright 1995, American
Institute of Physics.

Another well studied system is the titanate, ATiO3 (A = Ba, Sr, Ca), where the ferroelec-
tric Curie temperature, TC, was seen to be manipulatable by the size variance of the A-site
cation mixture [57]. Ba1−xSrxTiO3 shows a decrease in TC with an increase in Sr2+ as the
smaller cation stabilizes the more symmetric cubic phase with tolerance factor decreasing
from that of the ferroelectric BaTiO3, which has a tolerance factor of 1.06. However, in
Ba1−xCaxTiO3, the size mismatch between the A cations is bigger and only x up to 0.24 is
stable without phase segregation. The TC rises to x = 0.08 from 403 K to 410 K, and then
decreases to the solution limit. This behavior cannot be explained by simple size arguments,
where the initial increase has been rationalized by the strain effect due to the mismatch
between the two cations and the subsequent decrease due to the size effect [49,57].

One of the major limitations of chemical substitution to exert chemical pressure over
epitaxial strain engineering is the introduction of disorder and heterogeneity associated
with chemical substitution in such films. Disorder, for example, can broaden the phase
transition by hundreds of degrees [58–60]. We will discuss the epitaxial control of strain in
the following sections.

3. Epitaxial Strain Engineering

A range of commercially available single-crystal substrates with different lattice pa-
rameters makes it possible to epitaxially grow perovskite oxide thin films with different
strain states. The lattice mismatch and the strain between the substrate and the film can
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then be designed by selecting an appropriate substrate. Other considerations besides the
lattice parameters are chemical and thermal expansion compatibility. The most commonly
used and commercially available substrates and thin-film materials of interest are shown
in the lower part of Figure 3d. Lots of materials of interest (top part of Figure 3d) can be
epitaxially grown on these substrates with certain lattice mismatches.
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Figure 3. (a) Crystal structure of an unstrained perovskite. (b,c) Schematic illustration of an epitaxial
perovskite film grown on a perovskite single-crystal substrate showing: (b) biaxiall compression,
(c) biaxial tension, (d) the a-axis lattice constant in angstroms of some perovskites and perovskite-
related materials of interest. The substrates can be cubic, pseudotetragonal or pseudocubic. Reprinted
with permission from ref. [9]. Copyright 2014, Cambridge University Press.

For a simple cubic lattice, the lattice mismatch, f, between the substrate and the film
can be defined as:

f =
as − a0

a0
(2)

where as and a0 are the lattice parameters of the substrate and film in an unstrained state,
respectively. In a fully strained epitaxial film, the in-plane lattice parameters of the film are
constrained to the lattice of the substrate. However, as the thickness of the film increases
above a critical film thickness, defects such as misfit dislocations become energetically
favorable, and the lattice strain relaxes.

For isotropic films, the biaxial strain is:

εxx = εyy =
a‖ − a0

a0
(3)

and the out-of-plane strain is:

εzz =
a⊥ − a0

a0
(4)
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where a‖ and a⊥ are the in-plane and out-of-plane lattice parameters of the strained epitaxial
film. A substantial portion of the change in lattice parameters due to epitaxial strain is
through changes in the relative magnitude of the [BO6] octahedral rotations and the B–O
bond lengths [51,61].

The strain on the film evolves with the increase in thickness of the film, as the top of
the film starts to relax with dislocation defects and the strained in-plane lattice parameter
starts to converge to the relaxed bulk value, deviating from that of the film–substrate
interface, eventually reaching full relaxation [62]. The strain in the film leads to the storage
of elastic energy and at the critical thickness, this energy equals the formation energy for
misfit dislocation defects in the People–Bean model [62]. Critical thickness, therefore, is
inversely correlated with the lattice mismatch [63]. However, the critical thickness can
also differ depending on experimental growth conditions such as growth temperature,
post growth annealing, stoichiometry, etc., due to the influence of thermal strains and
defect formation. Thermal strains arise due to a mismatch between the in-plane thermal
expansion coefficients between the two lattices during the cool-down process [64–66]. In
cases of post-growth annealing, which are often used to decrease the number of oxygen
vacancies and improve the crystallinity of the film, the detailed annealing protocol could
also change the strain state in the as-deposited films. For instance, in the deposition of
epitaxial films of La0.7Sr0.3MnO3 on Al2O3/MgO substrate–buffer platform, it has been
reported that the post-growth annealing temperature beyond the deposition temperature of
~900 ◦C could create an irreversible strain relaxation and degrade the magnetic saturation
of the films. The properties of the films were only partially recovered by a second annealing
step at 700 ◦C [67].

Vailionis et al. studied the strain accommodation in the rhombohedral La0.67Sr0.33MnO3
(LSMO) via lattice modulations and rotations [38,68]. Under compressive strain, LSMO
has an (110) out-of-plane-oriented monoclinic unit cell with space group P21/m (No. 11),
while under tensile strain it exhibits an (001) out-of-plane-oriented tetragonal unit cell with
space group Cmcm (No. 63). Under compressive strain, out-of-phase octahedral rotation
around the (001) direction occurs, while under tensile strain these rotations are absent. The
octahedra are rotated in phase around the (100)-axis of the pseudocubic unit cell and out of
phase around the (010) direction in both cases (Figure 4a–d). The additional strain along
the (100)-direction is accommodated by periodic lattice modulations, as shown in Figure 4f.
The changes in octahedral rotations owing to stress and the dissimilar in-plane rotational
patterns affect the in-plane magnetic anisotropy in LSMO films. Similar results were seen
for the orthorhombic SrRuO3, and the authors argued that this could be extrapolated
to other rhombohedral and orthorhombic perovskite oxides [38]. Strain accommodation
via similar lattice modulations has also been experimentally observed by high-resolution
transmission electron microscopy in epitaxial YBa2Cu3O7−δ with the presence of twin
boundaries and intergrowths [69,70]. High-resolution transmission electron microscopy
has emerged as a powerful tool towards enabling the direct observation of such structural
changes [71]. In ultrathin La2/3Sr1/3MnO3 films grown on NdGaO3 substrates, strong
oxygen octahedral coupling is found to transfer the octahedral rotation in the perovskite
substrate to the perovskite thin film near the interface [72]. An unexpected realignment of
the magnetic easy axis along the short axis of the unit cell as well as the presence of a giant
anisotropic transport in these ultrathin La2/3Sr1/3MnO3/ NdGaO3 films was observed.
Similar control over octahedral tilts was also demonstrated in SrRuO3 by using a 0–4 unit
cell thick Ca0.5Sr0.5TiO3 buffer layer on GdScO3 substrates [73]. The Ru–O–Ti and the
Ru–O–Ru bond angles at the interface could be tuned via changing the thickness of the
buffer layer, along with affecting magnetic anisotropy in the entire SrRuO3 layer.
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compressive stress. (c,d) Under tensile stress. (a,c) are the side view and (b,d) are the top view
of the unit cells. Reprinted with permission from ref. [68]. Copyright 2015, Elsevier Ltd. Lattice
modulations: (e) Observed (blue) and simulated (red) XRD profiles around LSMO (220) reflections
for films grown on (La, Sr)(Al, Ta)O3 (LSAT) and NdGaO3 (NGO) substrates. (f) Schematic drawing
of the lattice modulations used in calculations. (g) Schematic picture of a reciprocal space showing
the substrate peak (red) together with the LSMO (220) peak and its first-order satellites (blue). Here,
Q‖ = 4πsin(θ/λ), where θ is the Bragg angle and λ= 1.540598 Å. Reprinted with permission from
ref. [38]. Copyright 2011, American Physical Society.

In (001) LSMO, the resistivity of thin films has been shown to be controlled via epitaxial
strain. The effect on the temperature dependence of resistivity can be seen in Figure 5a [30].
Metal-to-insulator transition can be lowered considerably by using substrates that can
lead to a higher tensile strain. This can be clearly seen from a systematic comparison
of the resistivity vs. temperature characteristics of films on different substrates such as
SrTiO3 (0.5%), DyScO3 (1.6%) GdScO3 (2.3%), SmScO3 (2.7%) and NdScO3 (3.2%). The
Curie temperature and magnetization were also seen to be dependent on substrate choice
(Figure 5b). In accordance with theoretical predictions by Mills et al. [74], a best-fit plane
of the Curie temperature’s dependence on the bulk compressive strain εB (which tends to
increase electron hopping probability and reduce the effects of electron–phonon coupling)
and biaxial distortion ε* (which increases the Jahn–Teller splitting in the eg orbitals and
acts only to reduce TC) is shown in Figure 5c.

Interestingly, in lightly doped manganites, the in-plane compressive strain has been
found to increase the TC significantly and produce metal-insulator-transition (MIT) in the
compounds that are supposed to be ferromagnetic insulators (FMI) [60]. For example,
Bulk La0.9Sr0.1MnO3 is a ferromagnetic insulator with a Curie temperature (TC) of 145 K.
When grown epitaxially on LAO, thinner La0.9Sr0.1MnO3 (~15 nm) films are metallic with a
greatly enhanced TC, which is 97 K higher than the bulk value. In-plane compressive strain
(−1.5%) was reported to be partially responsible for the TC enhancement. Strain-induced
stoichiometry modification also plays a role in modulating the TC and strain relaxation in
these thin films, accommodated both by misfit dislocations and La deficiency.
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The best fit plane to the data is also shown. Reprinted with permission from ref. [30]. Copyright 2009,
American Institute of Physics.

The opposite effect of compressive in-plane strain on optimally doped and lightly
doped manganites is not surprising. In optimally doped manganites, the in-plane com-
pressive strain induces the change in the O–Mn–O bond angle and length away from the
ideal case. This, therefore, reduces TC and MIT. It is noted that this strain in lightly doped
manganites induces oxygen octahedral tilt and straightens the out-of-plane O–Mn–O chain
which promotes MIT.

Lattice strain has also been implicated in oxygen vacancy formation which can lead to
radical changes in the physical properties of these films. For instance, oxygen vacancies may
act as pinning sites for ferroelectric and magnetic domain wall movements, create structural
disorder and introduce electronic defects [75–77]. In the prototypical ferroelectric perovskite
system, PbTiO3, ab initio study showed that oxygen vacancies that act as strong domain
pinning centers can be modulated to a non-pinning center via compressive misfit strain
by changing the formation energies of the various types of oxygen vacancies, as shown in
Figure 6a,b [78]. Ferroelectric distortion stabilized in SrTiO3 by epitaxial strain has also
been shown to promote the formation of oxygen vacancies [79]. In half-doped manganite,
La0.5Sr0.5MnO3, the epitaxial strain was shown to modulate ferromagnetic and antiferro-
magnetic phase proportions by manipulating the oxygen nonstochiometry as evidenced
by the change in Mn3+ and Mn4+ ratio with the increase in thickness (Figure 6d). This was
seen to lead to depressed magnetization and enhanced exchange bias (Figure 6c) [80]. In
La0.67Ca0.33MnO3, the epitaxial strain was implicated in the formation of a dead layer near
the interface with a higher concentration of oxygen vacancies with reduced Mn valence
and the unidirectional displacement of Mn ions [81].

The tuning of TC in ferroelectric systems via epitaxial strain can be well illustrated in
the titanates. The much enhanced ferroelectric property is most explicitly demonstrated
by the case of SrTiO3, which is normally not ferroelectric at any temperature without
any lattice strain. However, when SrTiO3 is grown epitaxially on DyScO3, with an in-
plane tensile strain of ~0.94%, fully strained SrTiO3 film shows a TC as high as 293 K [13].
This strained SrTiO3 film was later demonstrated to be an orthorhombic phase [82], and
showed an antiferrodistortive phase transition that exhibited ferroelastic–ferroelectric
multiferroicity [83]. The strain vs. Curie temperature phase diagram of SrTiO3 predicted
from thermodynamic principles using a Landau–Ginsburg–Devonshire-type theory by
Persev et al. is shown in Figure 7a. It illustrates the complex interconnection between the
Curie temperature and the lattice strain [13,84].
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substrate with the thickness of 8 and 40 nm (d) The thickness dependence of Mn4+/(Mn3+ + Mn4+)
ratio in La0.5Sr0.5MnO3 films grown on the SrTiO3 substrate. The red dots correspond to the data of
La0.5Sr0.5MnO3 films grown on the LaAlO3 substrate for comparison. Reprinted with permission
from ref. [67]. Copyright 2016, Materials Research Society.

The coupling between the lattice strain and the ferroelectric properties such as Curie
temperature is common in perovskite metal oxides. For instance, the Curie temperature and
the ferroelectric polarization of the classical ferroelectric perovskites BaTiO3 and PbTiO3
can also be influenced by lattice strain. BaTiO3 thin films coherently grown on GdScO3 and
DyScO3 substrates with a misfit strain of about−1.0% and−1.7%, respectively, show a large
increase in ferroelectric transition temperature with a TC 400 ◦C on GdScO3 and 540 ◦C
on DyScO3. In comparison, the TC is only 120 ◦C for bulk BaTiO3. It was also observed
that the strained thin film had a remnant polarization 250% higher than bulk BaTiO3 single
crystals (Figure 7b) [11]. These results are comparable to unstrained Pb(ZrxTi1−x)O3, but
with a lead-free composition, which is preferable due to environmental and human health
implications of the processing and disposal of the toxic element. Theoretical studies also
suggest that there are temperature and strain regions, in particular, under tensile strain,
where the system decomposes into multi-domain structures [85–87]. Despite both BaTiO3
and PbTiO3 being titanates, the primary drivers of ferroelectric polarization differ. For
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BaTiO3, the polarization arises from the off-centering of the Ti+4 cation, while the 6s2 lone
pair on Pb2+ in PbTiO3 is stereoactive and contributes to the ferroelectric polarization too.
Different approximations and assumptions about domain configurations in thermodynamic
analysis and phase-field simulations of strain-phase diagrams of PbTiO3 lead to markedly
different phase diagrams, as shown in Figure 8. All the diagrams involve the paraelectric
phase, the tetragonal c-phase, and are under the assumption of a single-domain film.
The orthorhombic aa-phase exists at higher in-plane strains with a “monoclinic gap” r-
phase between the tetragonal and orthorhombic phases (Figure 8a). However, real films
always have more than one type of domain and extended phase diagrams that account for
two-dimensional domains are subsequently derived from thermodynamic calculations of
Pertsev et al. (Figure 8b,c) [88,89]. Subsequently, phase-field models, which could predict
multi-domain states without making assumptions about domain wall orientation, were
used to derive the three-dimensional phase diagram shown in Figure 8d. Experimental and
theoretical calculations concur that the TC can be increased via both tensile and compressive
strains. It is noted that the TC is also evidently affected by the film thickness. The increase
in TC with film thickness indicates that the ferroelectric property is further affected by grain
size in addition to the lattice strain [90,91].
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fully constrained (commensurate) to the lattice constants of LSAT and (110) DyScO3 substrates are
indicated by the positions of the corresponding arrows. The cross shows the observed TC shift of a
500 Å thick SrTiO3 film epitaxially grown on (110) DyScO3. Adapted with permission from ref. [13].
Copyright 2004, Springer Nature. (b) Expected TC of (001) BaTiO3 under biaxial in-plane strain
(εs), based on thermodynamic analysis. The green region represents the range (error bars) in the
predicted TC resulting from the spread in reported property coefficients for BaTiO3 that enter into the
thermodynamic analysis. The data points show the observed εs and TC values of coherent BaTiO3

films grown by MBE on GdScO3 (blue circle) and DyScO3 (red circle) substrates and by PLD on
GdScO3 (blue square) and DyScO3 (red square) substrates. Adapted with permission from ref. [11].
Copyright 2004, AAAS.
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of superlattices and their unique interplay with strain is seen in the system of (SrTiO3)/(Ba-
TiO3)/(CaTiO3), where the BaTiO3 layer shows strain-induced ferroelectric polarization 
with 50% enhancement of the superlattice global polarization compared to a pure BaTiO3 
layer grown similarly (Figure 9) [94]. The BaTiO3 layer remains fully strained as long as 
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Figure 8. Four strain-phase diagrams of (001) pseudocubic-oriented PbTiO3 calculated using thermo-
dynamic analysis or phase-field simulations and different assumptions of the ferroelectric domain
states. (a) Single domain for all ferroelectric states. Adapted with permission from ref. [92]. Copyright
1998, American Physical Society. (b) Either single- or double-domain states with domain–wall orien-
tations restricted to be 45◦ from the film/substrate interface. Adapted with permission from ref. [88].
Copyright 2000, American Physical Society. (c) Single- or double-domain states with domain–wall
orientations restricted to be either 45◦ or 90◦ from the film/substrate interface. Adapted with per-
mission from ref. [89]. Copyright 2001, American Physical Society. First-order phase transitions are
shown by thick lines in (a–c). (d) From three-dimensional phase-field simulations that automatically
predict the possible multidomain states without assuming the domain–wall orientations. Adapted
with permission from ref. [93]. Copyright 2008, American Institute of Physics.

4. Superlattices

In layered structures and superlattices, strain relaxation behaviors are different from
single-layer systems. The lattice mismatch between the layers and their thicknesses can
all contribute to the strain state of the whole structure. For instance, strain engineering
of superlattices such as BaTiO3/SrRuO3 can be achieved by choosing suitable substrates
and controlling the thickness of each component layer [63]. One of the remarkable ex-
amples of superlattices and their unique interplay with strain is seen in the system of
(SrTiO3)/(BaTiO3)/(CaTiO3), where the BaTiO3 layer shows strain-induced ferroelectric
polarization with 50% enhancement of the superlattice global polarization compared to a
pure BaTiO3 layer grown similarly (Figure 9) [94]. The BaTiO3 layer remains fully strained
as long as the number of unit cells does not exceed that of the combined SrTiO3 and
CaTiO3. Figure 9c shows how the lattice parameter of the superlattice shifts as a func-
tion of the stacking sequence. Their polarization is depicted in Figure 9d. Polarization
is strongest when the BaTiO3 layer is thin enough to be fully strained but thick enough



Nanomaterials 2022, 12, 835 12 of 23

to contain enough non-interfacial TiO6 octahedra. The advantage of such superlattices is
the possibility of breaking inversion symmetry that persists with most two-component or
symmetric superlattices [95], and provides additional freedom in tuning the average lattice
parameter [94]. The interrogation of ε(E) curves shown in Figure 9b illustrates asymmetric
response due to compositionally broken symmetry.
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1000 kV cm−1. (Note that this electric field is higher than that applied to measure the polariza-
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requires a higher electric field (∼700 kV cm−1)). (b), ε(E) curves of S2B4C2 (black line), S2B6C2 (red
line), S4B2C2 (green line) and S10B10C10 (light blue line) showing differing degrees of asymmetry.
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5. Vertically Aligned Nanocomposites

As discussed above, epitaxial strain provides an alternative pathway to chemical
doping for manipulating the physical properties of a range of perovskite metal oxide films.
Experimental results have indeed demonstrated that much improved physical properties
and/or emergent behaviors could be accomplished by growing lattice-strained epitaxial
perovskite metal oxide thin films [11,13,94,96–98]. However, enhanced functionalities are
typically achieved in such epitaxial metal oxide films with a thickness of less than a few
tens of nanometers at which the lattice strain could be maintained [11,13,97–99].

For many technological applications, lattice-strained thick epitaxial perovskite metal
oxide films (in the range of ~µm or above) are needed. In a conventional lattice strain
framework, heteroepitaxial strain resulting from the lattice mismatch between the film and
the substrate exists only below a critical film thickness. In other words, films are strained
to the substrate lattice up to a critical thickness, hc. Above hc, the strain energy becomes so
large that the nucleation of misfit dislocations at the interface is then energetically favorable
to relieve the strain. The critical thickness, hc, at which the formation of dislocations
becomes favorable, can be expressed as:

hc =
b

4πf(1 + v)

[
ln(

hc

b
) + 1

]
(5)
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where v is the Poisson ratio, b is the magnitude of the Burgers vector, and f is the lattice mis-
match between the film and the substrate. As can be seen from Equation (5), reducing the
lattice mismatch could circumvent the upper limit of critical film thickness to some extent.

Great success in the lattice strain of much thicker films has been demonstrated in
the vertically aligned nanocomposite, where the lattice strain is predominantly controlled
by the vertical interface between the two individual constituents instead of the lateral
interface between the film and the substrate. As shown in Figure 10a, vertically aligned
nanocomposite film is composed of a regularly arranged A:B network from an array of
vertically aligned nanopillar-like material A with a feature size d entrenched in a matrix of
material B. Since both constituents A and B are laterally coupled across the vertical interface
through the whole film thickness, as shown in Figure 10b, the vertical strain can exist in
thick films. For example, lead-free, self-assembled BaTiO3:Sm2O3 nanocomposite films
(up to 1.25 µm thick) were grown that exhibited tetragonality up to at least 800 ◦C and
strong remanent polarization to at least 330 ◦C [100]. Similar nanocomposites, such as
Ba0,6Sr0.4TiO3:Sm2O3, with film thickness in the range of 1.0 µm were also demonstrated
that showed tetragonality up to at least 400 ◦C [101].
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Figure 10. Schematic illustration (not to scale) of a vertically aligned epitaxial nanocomposite film
on a substrate: (a) an array of vertically aligned nanopillar-like material A with a feature size d
entrenched in a matrix of material B and (b) the lattice–strain interactions across the vertical interface.
For simplicity, both phases are shown to be strained equally, but in different strain states (compression
or tension).

Characteristics of lateral epitaxial strain are well studied. However, the relationship be-
tween vertical strain and microstructure in vertically aligned nanocomposites is less known.
It is important to know the parameters that control the vertical strain and microstructure
of the nanocomposites. The final microstructure (pillar size, shape, and lateral spacing)
of a vertically aligned nanocomposite film is determined by the minimization of the total
free energy, which includes the elastic and interfacial energies of the system composed of
the two individual phases (A and B) and the substrate. At the given growth conditions,
both the size and volume of pillars predominantly determine the interfacial area at the
vertical interface. It is accepted that the pillar size d, the density of the nanopillars, as well
as the defects along the vertical interface determine the overall strain state of vertically
aligned nanocomposites [32]. Figure 11 shows the general relationship between the vertical
strain, the pillar feature size, and the volume of pillars [102]. Figure 11 also shows the
general correlation among the growth temperature, pillar size, and strain state. In a system
with a fixed second-phase volume, a higher growth temperature will generally produce
a larger pillar size. This will result in a smaller interface area, which usually leads to a
lower vertical strain. On the other hand, a lower growth temperature generally results in a
smaller pillar size and larger interface area, which can lead to a larger vertical strain. In
a system with a fixed pillar size, the increase in the pillar density can increase the total
vertical interface area and thus lead to a larger strain. It was reported that the vertical strain
in vertically aligned nanocomposites is ultimately related to the vertical interfacial area
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and interfacial dislocation density [12,32]. This can be understood by the following. In a
nanocomposite with uniform nanopillars embedded in the film matrix, the total volume
of nanopillar phase is V = n × πd2/4 × h, where n is the number of nanopillars, and h
is the film thickness or pillar height. The total vertical surface area can be expressed as
S = n × πd × h = πd × 4V/(πd2) = 4V/d. Since Figure 11 shows strain ε is proportional to
1/d and V then, ultimately, strain is directly controlled by the vertical interface area. The
efficiency of the vertical interface coupling is related to the coherence of the interface.
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V is below 20–30 percent. (c) Illustrations of growth temperature, pillar size and strain state in the
nanocomposites. Reprinted with permission from ref. [102]. Copyright 2021, Springer Nature.

Tables 1 and 2 have summarized some vertically aligned nanocomposite films with
the inclusion of perovskite metal oxides reported in the literature [32]. For most material
systems, the assembly occurs as a result of nucleation and growth, with embedded pil-
lars of the elastically stiffer phase in the matrix of the softer phase or the perovskite
oxides. Pseudospinodal decomposition is the other growth mode which can lead to
a checkerboard configuration which is associated with symmetry-lifting crystal lattice
rearrangement [103,104].
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Table 1. Summary of vertical lattice strain reported in different material systems with direct lattice-
matching between the constituents A and B. For the direct lattice-matching of strained lattices, m
lattices of phase A match with K lattices of phase B (m and k are positive integer numbers). The data
was taken with permission from [32]. Copyright 2016, American Association for the Advancement
of Science.

System abulk [Å] K |f| [%] |εzz| [%] Reference

LSMO:MgO 3.87:4.21 1 8.41 2.0 [32]
LCMO:MgO 3.86:4.21 1 8.67 2.1 [105]

BFO:CFO 3.96:8.39 2 5.76 1.0 [106]
BTO:CFO 4.04:8.39 2 3.76 1.6 [107]

BFO:LSMO 3.96:3.87 1 2.29 1.3 [108]
BZO:YBCO 11.679:4.193 3 7.70 1.0 [109]

Table 2. Summary of vertical lattice strain reported in different materials systems with domain-
matching between the constituents A and B. The data was taken with permission from [32]. Copyright
2016, American Association for the Advancement of Science.

System abulk [Å] m m:m + 1 |f| [%] |εzz| [%] Reference

LSMO (001):ZnO (110) 3.87:3.24 5.14 5:6 0.46 ≈0.5, 1.0 [110,111]
LSMO (111):ZnO (0001) 6.70:5.21 3.50 3:4 + 4:5 8.5 × 10−3 0 [112,113]

CeO2:LSMO * 5.41:3.87 2.51 2:3 + 3:4 0.13 <0.1 [114]
SrZrO3:Gd2O3 ** 4.09:2.70 1.94 2:3 0.98 0.9 [115]

BTO:Sm2O3 4.04:2.73 2.08 2:3 1.17 2.35 [116]
BFO:Sm2O3 3.96:2.73 2.22 2:3 + 2:3 + 3:4 1.71 ≈1.4 [110]
STO:Sm2O3 3.905:2.73 2.32 2:3 + 2:3 + 3:4 0.31 – [117]

* The calculated m value is 2.51 for CeO2:LSMO; therefore, m can be valued as 2 or 3. Therefore, both 2:3 and
3:4 matchings exist and align alternatively (50%:50%). In the STO:Sm2O3 system, m is 2.32. m can be either 2 or
3. Both 2:3 and 3:4 matchings exist with a frequency of 66% 2:3 and 34% 3:4. In the SrZrO3:Gd2O3 system, the
calculated m is 1.94; therefore, the m is set to 2 for domain-matching. ** Bulk lattice constant of Gd2O3 is 10.80 Å.
The plane spacing for Gd2O3 (004) is 10.80 Å/4 = 2.7 Å.

Such vertical interface strain has been used to tune functional properties in oxides.
Room-temperature ferroelectricity in vertically strained SrTiO3 nanocomposite with MgO
nanopillars embedded in the strained SrTiO3 matrix has been demonstrated [46]. An
out-of-plane strain of ~1.5% was observed in the film matrix. Elastic coupling between
MgO and SrTiO3 can be confirmed by etching away the MgO pillars, after which the lattice
parameter of the SrTiO3 relaxes to 3.911 Å, as shown in Figure 12 [12]. The measured
strain was corroborated by phase-field modeling to explore the spatial distribution of the
strain and the resultant polarization. The TC was extracted from optical second-harmonic
generation (SHG) measurements. The phase transition was found to be very broad, which
was consistent with the non-uniform strain distribution and the non-uniformity shown in
the piezoelectric force microscopy measurement.

A multiferroic epitaxial nanocomposite of CoFe2O4 nanopillars in a matrix of BaTiO3
was demonstrated [118]. The CoFe2O4 nanopillars experienced an out-of-plane compres-
sive strain of 0.8%. The coupling between the ferroelectric perovskite BaTiO3 and the
ferrimagnetic spinel CoFe2O4 allowed the interconversion of energies stored in electric and
magnetic fields to create an emergent ferroelectromagnet. The magnetoelectric coupling
could be explained by the strong elastic interactions between the two phases by thermody-
namic analyses, which was also further supported by the fact that the coupling could not
be reproduced in multilayer structures due to the substrate clamping effect.
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Figure 12. X-ray diffraction θ–2θ scans of SrTiO3:MgO vertically aligned nanocomposite films de-
posited on SrTiO3 substrate before and after etching off MgO nanopillars. Reprinted with permission
from ref. [11]. Copyright 2019, Wiley.

Chen et al. explored the vertical strain engineering of the La0.7Sr0.3MnO3 system via
incorporating nanopillars of ZnO and MgO in the nanocomposites [32]. The strain in the
La0.7Sr0.3MnO3:MgO nanocomposites was much larger than that in the La0.7Sr0.3MnO3:ZnO
with the same volume of the second phase due to the larger lattice mismatch and elas-
tic modulus mismatch. Figure 13 shows the comparative studies of the nanocomposites
with different second-phase materials and volume ratios. The rise in resistivity for the
La0.7Sr0.3MnO3:ZnO at ~50% of second-phase (ZnO) volume can be explained by a second-
phase-induced volume effect. On the other hand, the sharp drop of over 10 times in resistiv-
ity of La0.7Sr0.3MnO3:MgO happens at only 20% second-phase (MgO) volume which is quite
below the volume-induced percolation threshold. The experimental results, therefore, could
predominantly be explained by the vertical strain effects. Vertical strain effects could also
be the cause of the large drop in the metal-to-insulator transition temperature from 350 K
of the bulk value of La0.7Sr0.3MnO3 to 150 K in the La0.7Sr0.3MnO3:MgO nanocomposite.

It is also noted that the strain on the LSMO matrix could be tuned via the density and
size of the MgO nanopillars [32]. This, consequently, will affect the magnetic properties of
the LSMO. For example, the LSMO:MgO nanocomposite with 5% MgO inclusion showed an
in-plane easy axis. With increasing the density of MgO nanopillars (15% MgO inclusion), the
easy axis switches to the out-of-plane direction. This switching of the magnetic anisotropy
is correlated by the strain on the LSMO matrix exerted by the MgO nanopillars.
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Figure 13. (a) A cross-sectional STEM image of an LSMO:MgO nanocomposite with phase-separated
LSMO (white) and MgO (dark) phases. Inset: A top-view STEM image of the LSMO:MgO film with
MgO nanopillars in the LSMO matrix. The MgO volume is 22%. (b) The strain distribution in the
LSMO matrix and MgO nanopillars (MgO volume: 41%) calculated by phase-field simulation. (c) The
second-phase volume-dependent vertical strain in the LSMO matrix. The red (dot) data represent
the LSMO:MgO system, and the blue (square) data set represent the LSMO:ZnO system. (d) The
second-phase volume-dependent resistance at 100 K (red dataset) and saturated magnetization (blue
dataset) at 20 K for the LSMO:MgO (solid curve) and LSMO:ZnO (dashed curves) nanocomposite
films. Reprinted with permission from ref. [32]. Copyright 2016, AAAS.

6. Future Prospects

As discussed above, perovskite metal oxides have been considered as an extremely
important class of materials for technological applications due to their versatile and tunable
physical properties. At the same time, the unique interplay between the charge, spin,
orbital and lattice degrees of freedom across similar energy scales also makes the physical
properties of such materials very sensitive to both microstructural and compositional varia-
tions. This is understandable considering that the distortions of crystal structure resulting
from the change in chemistry and/or the eight corner-shared [BO6] octahedra will lead
to the change in the electronic structure of the materials. Over the years, tremendous
progress in controlled synthesis, advanced characterization at different length and time
scales, and sophisticated modeling/simulation have helped us to fundamentally under-
stand the processing–structure–property–performance relationship of perovskite metal
oxides. Even so, more effort is much needed to further explore and design perovskites with
desired properties, given their rich compositional diversity where the properties are closely
tied to the crystal distortion such as the lattice strain. Below are some interesting and yet
challenging research activities for the development of perovskite materials with enhanced,
desired, and/or emergent properties.

(1) An in-depth and quantitative understanding of the role of interface and defect on
the properties is critical for the rational design of novel perovskite materials. This is
especially important where superlattice and/or vertically aligned nanocomposite are
the building blocks [11];
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(2) Substitution of ions via chemical pressure is one of the common approaches to strain
the crystal structure. Much improved properteis could be achieved by forming
multicomponent or high entropy perovskite oxides [119];

(3) Epitaxial strain resulting from the lattice mismatch between the substrate and the
film has been widely investigated for a range of perovskite metal oxide films. The
exploration of dynamic strain by laminating freestanding perovskite metal oxide
films or membranes onto a stretchable substrate could provide possibilities for strain-
tunable devices [8];

(4) Quantitative analysis of oxygen vacancies on the structural and physical properties of
perovskite metal oxides is much needed. This is especially important for perovskites
that are composed of cations with multiple valance states at the B site [120];

(5) The formation of nanocomposite represents an attractive strategy to achieve tunable
properties. More effort is needed to address the challenges related to the controlled
synthesis to achieve long-range ordered structures [97];

(6) While the most commonly studied perovskites are complex metal oxides, other per-
ovskite materials, namely the halide perovskite [121], chalcogenide perovskite [122],
and nitride perovskite [123], have attracted much attention lately. Halide perovskites,
in particular, have attracted quite a lot of attention due to their potential applications
for optoelectronic devices such as solar cells. However, the strain analysis and en-
gineering in these thin films and devices have significantly different considerations
than that of metal oxide perovskites, due to the soft ionic nature of the crystal lattice,
generally non-epitaxial, and the complex interfaces of different charge transport lay-
ers [124–128]. While many studies has been undertaken and tremendous progress
has been made in the synthesis and application of such materials, there are still many
open questions related to the roles of strain, defect, interface, microstructure, and
heterogeneity at different length scales on the physical properties of the materials. The
recent review article published by Liu et al. summarizes the progress and challenges
on this front admirably [129].

7. Conclusions

Perovskite metal oxides exhibit a multitude of important physical properties, such
as metal-to-insulator transitions, superconductivity, ferroelectric, ferromagnetic, and mag-
netoresistive properties. As these properties are intimately linked with the structure of
the perovskite, factors such as octahedral rotations, tilts and distortions, and chemical
substitution with different sized cations can be also used to exert a chemical pressure to
tailor these properties. Epitaxial strain is another lever that can be used to tune these
properties in thin films by choosing an appropriate substrate with an appropriate lattice
mismatch. Multilayers and/or superlattices take the advantage of layer thickness and
multiple lateral interfaces to control the strain state of the assembly. Vertically aligned
nanocomposites are an exciting way to construct strained thick films that is not possible in
lateral heterostructures. Importantly, novel or improved functionalities, often not accessible
from the individual constituents, could be produced through synergistic coupling interac-
tions of known materials and lattice strain along the vertical directions. In the vertically
aligned nanocomposite, it is possible to select one constituent as the active phase (typically
perovskite metal oxide) with targeted functionality, and another as the passive phase (usu-
ally binary metal oxide), where the passive constituent is used to improve and/or tune
the functionalities of the active phase. Such a strategy makes it possible to choose a much
broader range of materials with targeted electrical, magnetic, optical, thermal, and/or
mechanical properties for specific applications.
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