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1  |  INTRODUC TION

Quantifying gene expression patterns in order to understand how an 
organism interacts with its environment has become common place 
in ecological research. In particular, gene expression is well suited to 
understand the mechanisms organisms use to respond to the types 
of stress which are associated with climate change (Kelly, 2019; 
Logan & Cox, 2020; Rivera et al., 2021). It is also clear that investigat-
ing gene expression patterns across multiple species exposed to the 
same type of stress is important to predict how the community will 

be reshaped by that particular stressor (Avila-Magaña et al., 2021; 
Bernal et al., 2020; Dixon et al., 2020; Fuess et al., 2017; Traylor-
Knowles et al., 2021). However, multispecies gene expression exper-
iments present a suite of challenges, the first of which is obtaining 
a comparable list of homologous transcripts for use in downstream 
analysis (Rey et al., 2019). This barrier is commonly resolved through 
the identification of one-to-one orthologues across species (Bernal 
et al., 2020; Foissac et al., 2019; Hao et al., 2019; Huerlimann et al., 
2020; Khan et al., 2013). However, this framework necessitates re-
moving all transcripts that do not display this type of one-to-one 
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Abstract
Gene expression, especially in multispecies experiments, is used to gain insight into 
the genetic basis of how organisms adapt and respond to changing environments. 
However, evolutionary processes that can influence gene expression patterns be-
tween species such as the presence of paralogues which arise from gene duplication 
events are rarely accounted for. Paralogous transcripts can alter the transcriptional 
output of a gene, and thus exclusion of these transcripts can obscure important bio-
logical differences between species. To address this issue, we investigated how differ-
ences in transcript family size are associated with divergent gene expression patterns 
in five species of Caribbean reef-building corals. We demonstrate that transcript fami-
lies that are rapidly evolving in terms of size have increased levels of expression diver-
gence. Additionally, these rapidly evolving transcript families are enriched for multiple 
biological processes, with genes involved in the coral innate immune system demon-
strating pronounced variation in homologue number between species. Overall, this 
investigation demonstrates the importance of incorporating paralogous transcripts 
when comparing gene expression across species by influencing both transcriptional 
output and the number of transcripts within biological processes. As this investigation 
was based on transcriptome assemblies, additional insights into the relationship be-
tween gene duplications and expression patterns will probably emergence once more 
genome assemblies are available for study.
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conservation, consequently excluding paralogues (Tekaia, 2016) and 
limiting the biological inferences that can be drawn. Additionally, 
as the number of species investigated or the phylogenetic distance 
between species increases, the number of one-to-one homologous 
transcripts declines. One solution to this problem is to group tran-
scripts into homologous transcript families (HTFs) which include 
both orthologues and paralogues (Emms & Kelly, 2019), removing 
the requirement of the one-to-one relationship.

Confidently identifying orthologues and paralogues based on 
transcriptome data can be challenging given the technical limitations 
inherent in transcriptome assemblies. However, incorporating paral-
ogues through the identification of HTFs may be particularly rele-
vant to studies which investigate adaptation. Gene gains and losses, 
which dictate the number of paralogues within an HTF, can become 
fixed in populations due to both neutral and adaptive processes 
(Force et al., 1999; Lynch, 2000; Ohno, 1970). While expansion and 
contraction of HTF size may occur due to neutral processes, there is 
mounting evidence that some gene families gain and lose genes more 
rapidly than can be explained by a neutral model (Demuth & Hahn, 
2009; Kondrashov, 2012). The most widely accepted explanations 
for gene family expansion are that it promotes neofunctionalization 
and subfunctionalization by reducing pleiotropic constraints (Des 
Marais & Rausher, 2008; Stearns, 2010), or simply increases the gene 
dose, thereby increasing the potential transcriptional output (Force 
et al., 1999; Ohno, 1970). Gene losses can also be adaptive through 
promoting genetic efficiency or removing genes whose costs are not 
outweighed by their benefits (Albalat & Cañestro, 2016). Numerous 
recent studies have described how changes in gene family size can 
promote adaptation and the diversification of organismal traits 
(Chain et al., 2014; Ronco et al., 2021; Tejada-Martinez et al., 2021). 
Thus, the exclusion of paralogues from comparative gene expression 
studies may obscure important biological differences.

In homologous gene families, adaptive changes in copy num-
ber vs. nonadaptive changes which arise over evolutionary time 
can be identified through describing the background rate of gene 
family turnover, followed by the identification of gene families 
which have significant deviations from this rate (De Bie et al., 2006; 
Hahn, 2005). As the background rate of gene turnover represents a 
genome-wide average, changes that have adaptive significance will 
demonstrate increased rates of change and can be described as rap-
idly evolving. This type of rapid gene evolution is particularly com-
mon in gene families involved in arms races such as immune genes 
(Machado & Ottolini, 2015; Malmstrøm et al., 2016). However, other 
types of ecologically relevant adaptation have been shown to fol-
low this pattern of rapid changes in copy number such as expansions 
in hypoxia-related genes in high-altitude yaks (Qiu et al., 2012) and 
chemoreception and vision genes for predator responses in Daphnia 
(Zhang et al., 2021).

The rapid evolution of gene families is generally investigated 
from genome-derived gene models (Hahn, 2005). However, a similar 
approach can be applied to transcriptome assemblies, as the paral-
ogues that result from gene duplication events will generate novel 
transcripts within HTFs (Chen et al., 2021). Using transcriptome 

assemblies to assess the evolution of gene families has several im-
portant limitations (Ungaro et al., 2017). Transcriptome assemblies 
generally have more missing genes than genomes, as the com-
pleteness of a transcriptome is dependent on the cell types and 
conditions under which a sample was taken (Moreton et al., 2016). 
Transcriptome completeness influences the reliability of estimat-
ing the rate of background turnover as genes that were not tran-
scriptionally active would be incorrectly identified as gene losses. 
Additionally, for transcriptomes derived from short-read sequencing 
it can be challenging to disentangle genuine paralogues from iso-
forms or assembly artefacts. While computational approaches exist 
to remove isoforms (Haas et al., 2013) and limit the number of arte-
facts, these approaches increase the likelihood of collapsing recent 
paralogues (Huang et al., 2010), making rapidly evolving HTFs more 
difficult to identify. Despite these limitations to using transcriptomic 
data compared to genomic data, transcriptomes are substantially 
easier and more cost effective to produce, especially in organisms 
where high-quality genomes are difficult to generate and yet un-
available. Therefore, there is value in developing a framework for 
using transcriptomes for preliminary investigations into the evolu-
tion of HTFs.

The number of transcripts within HTFs is an important consider-
ation when comparing expression across species, since in principle 
larger transcript family size results in more spatially or temporally 
specialized expression (Duarte et al., 2006; Guschanski et al., 2017). 
The increased transcriptional output associated with increased gene 
dose is often deleterious and will be quickly resolved through mech-
anisms such as epigenetic silencing (Huang & Chain, 2021) or func-
tional subdivision of the two gene copies (Smet et al., 2017). The 
transcriptional activity of paralogues can be assessed through quan-
tifying global gene expression (Song et al., 2020), which shows that 
expression levels are subject to selection (Veitia & Birchler, 2021), 
and can result in the generation of new expression patterns across 
species (Gillard et al., 2021). These types of species-level changes 
can be identified by comparing how much the expression of a gene 
varies between vs. within species (Rohlfs & Nielsen, 2015). This ap-
proach has proved successful in identifying divergent transcriptional 
responses to a heatwave in five species of coral reef fish (Bernal 
et al., 2020) and the unique expression of detoxification genes in 
Poecilia Mexicana which inhabit sulphide springs (Greenway et al., 
2020). Importantly, this framework can be used to investigate if the 
rapid evolution of transcript families is associated with expression 
divergence.

Reef-building corals are an intriguing system to study how 
variation in the number of paralogues within HTFs influences ex-
pression divergence given the focus on using gene expression to 
investigate coral adaptation (Bay & Palumbi, 2015, 2017; Kenkel & 
Matz, 2017; Traylor-Knowles et al., 2021). Despite the importance 
and significance of gene expression data, those studies which 
investigate expression across multiple species either do so in a 
qualitative way (Fuess et al., 2017; Traylor-Knowles et al., 2021) 
or employ closely related species allowing reads to be mapped to 
a common reference assembly (Dixon et al., 2020). To date, only 
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one published study in coral has quantitatively compared expres-
sion across species from different genera (Avila-Magaña et al., 
2021), but this study excluded paralogues from their analysis. 
Whole tissue homogenates provide a good sampling of coral cell 
types (Levy et al., 2021) due to their relatively simply body plan. 
Demographically, corals have historically possessed large effec-
tive population sizes (Matz et al., 2018; Prada et al., 2016) and high 
genetic connectivity (Davies et al., 2015), conditions which fa-
vour efficient selection. Further, adult corals are sessile, meaning 
that they cannot track favourable environmental conditions and 
instead must be able to dynamically adjust gene expression pro-
files in order to persist during unfavourable conditions. Adaptive 
changes in gene copy number have been demonstrated to accom-
modate this sessile life-history strategy in plants (Prunier et al., 
2017) and thus there may be substantial variation in HTFs within 
corals. In support of this, some investigations have reported vari-
ation in multicopy gene families between coral species (Dimos 
et al., 2019; Hamada et al., 2013; Shinzato et al., 2020), but a sys-
tematic evaluation of this process between species from different 
genera and how this influences expression patterns has not been 
performed.

Anthropogenic impacts on the environment have caused wide-
spread coral loss across the globe (Maynard et al., 2015; Stuart-
Smith et al., 2018), prompting numerous investigations which seek 
to understand the stress responses and adaptive capacity of reef-
building corals. In particular, Caribbean coral reefs have been se-
verely depleted (Gardner, 2003), owing to the combined effects of 
thermally induced coral bleaching and the emergence of diseases af-
fecting reef-building corals (Smith et al., 2013; van Woesik & Randall, 
2017). The coral loss in the Caribbean has changed these communi-
ties by reducing coral cover and reshaping existing species assem-
blages (McWilliam et al., 2020). As an example, the once dominant 
branching corals in the genus Acropora have been functionally extir-
pated from most of their historical range due to white band disease 
(Aronson & Precht, 2001; Miller et al., 2009), and the emergence of 
white plague disease has led to substantial reductions in the abun-
dance of corals in the genus Orbicella (Miller et al., 2009). The loss 
of these once dominant species has led to the increased relative 
abundance of species in other genera such as Porites and Siderastrea 
(Green et al., 2008; McWilliam et al., 2020). Studies focusing on 
comparable aspects of species biology, such as growth rate, immune 
activity and Symbiodiniaceae communities, have sought to draw 
links between species differences and the heterogenous responses 
these species show during environmental stress (Baumann et al., 
2018; Bove et al., 2019; MacKnight et al., 2021; Pinzón et al., 2014). 
However, the genetic component and interspecies differences in ex-
pression have not been investigated in a quantitative way.

In this investigation we use gene expression data to investi-
gate the evolution of HTFs, in five ecologically important species 
of Caribbean corals: Orbicella faveolata, Montastraea cavernosa, 
Colpophyllia natans, Porites astreoides and Siderastrea siderea. Our 
analysis demonstrates that HTFs which are rapidly evolving are en-
riched in numerous biological processes in each species and these 

transcript families have higher levels of expression divergence. 
These results highlight variation in transcript families which are 
linked to important immune mechanisms. Given the limitations of 
transcriptomic analysis noted in the introduction, it is possible that 
additional processes are experiencing rapid evolution that our anal-
ysis is not able to detect. Future work incorporating assembled ge-
nomes will improve the resolution of our findings and the robustness 
of the patterns observed. Overall, our study provides support for the 
association between rapid evolution of the number of paralogues 
within HTFs and its influence on gene expression patterns by pro-
viding a framework which allows quantitative comparison of gene 
expression patterns even among highly divergent species.

2  |  METHODS

2.1  |  Coral collection

Fragments of five colonies of each species, Orbicella faveolata, 
Montastraea cavernosa, Colpophyllia natans, Porites astreoides and 
Siderastrea sidereal, were collected via SCUBA from Brewer's Bay St. 
Thomas (18.34403, −64.98435) from ~35 ft of depth in June 2017 
under the Indigenous Species Research and Export Permit number 
CZM17010T. After removal from the parent colony, coral fragments 
were placed in individual sealed bags and transported to the Center 
for Marine and Environmental Studies in coolers with seawater. 
Fragments were held in large flow-through seawater tables fed 
with filtered sea water from the bay which received natural sunlight 
under a neutral density shade cloth. After an acclimation period of 
2 weeks, the corals were fragmented into 5 × 5-cm fragments with a 
sterilized chop saw or bandsaw, given identification numbers, photo-
graphed, then placed back into running seawater tables under shade 
to heal for a further 9 days. The temperature in the flow-through 
tanks approximates the temperature in the bay reaching a daily 
high of ~28.3°C and average of 27.71 ± 0.033°C, measured using an 
Onset HOBO U22-001 Water Temperature Data Logger. To further 
confirm the environmental conditions were comparable between 
each coral fragment from each species before collection for this 
analysis, each coral fragment was placed into individual mesocosms 
made from 5-L plastic multipurpose mixing buckets and each meso-
cosm was aerated with an airstone attached to the central air line. 
The containers were randomly placed in another large holding tank 
where the water line was below the top of the container to ensure 
that temperature remained constant among all samples, but that no 
water was exchanged between containers. All coral fragments from 
each species were randomized in the water table and held in these 
individual containers for 6 h. The environmental conditions in the 
water table were the same for each coral fragment both during the 
experiment and during the acclimation-healing period. After the ex-
periment, the coral fragments were flash frozen in liquid nitrogen 
and transported back to the University of Texas at Arlington in a dry 
shipper. Samples were flash frozen in random order and the entire 
collection period lasted ~90 min.
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2.2  |  RNA extraction and sequencing

Coral tissue was removed from the frozen samples by excising 
~1  cm2 of tissue using bone cutters from the surface of the frag-
ment while avoiding the underlying skeleton and homogenized in 
lysis buffer. Total RNA was extracted from coral fragments using 
the Ambion RNAeasy kit with DNase according to manufacturer's 
protocol and eluted in 100 μl of elution buffer. RNA integrity and 
concentration were checked with an Agilent Bioanalyzer 2100 using 
the RNA 6000 Nano kit, and all samples with a RIN >7.0 and >1 µg 
of total RNA were used for sequencing. Samples were sequenced 
through the Novagene company and mRNA libraries were prepared 
with the Illumina TruSeq RNA library prep kit, which uses Poly-A tail 
enrichment to purify mRNA. After library preparation, samples were 
sequenced on an Illumina HiSeqX at Novagene. Five colonies of each 
M. cavernosa and C. natans were sequenced, while four colonies of 
O. faveolata, P. astreoides and S. siderea were sequenced. Raw reads 
from this experiment can be found on the NCBI short read archive 
(PRJNA723585).

2.3  |  Transcriptome assembly and cleaning

Transcriptome assemblies were generated with trinity version 
2.5.1 (Grabherr et al., 2011; Haas et al., 2013) with parameters 
(--normalize_reads --seqType fq --SS_lib_type FR) after removing 
adapters and low-quality reads with trimmomatic version 0.32 (Bolger 
et al., 2014) using default parameters. Since transcriptome assem-
blies derived from adult corals contain transcripts originating from 
their symbiotic algae, we used a previously described in silico ap-
proach to remove symbiont transcripts (Davies et al., 2016). In short, 
multiple coral assemblies consisting of both genome-derived pre-
dicted gene models and transcriptomes covering a diversity of coral 
families (Davies et al., 2016; Kirk et al., 2018; Moya et al., 2012; van 
de Water et al., 2018) were combined to create a coral database. 
A symbiont database was constructed from the genome-derived 
predicted gene models from multiple genera of symbionts (Aranda 
et al., 2016; Liu et al., 2018; Parkinson et al., 2016; Shoguchi et al., 
2021). Transcripts from each of our coral assemblies were then 
queried using blastn 2.2.27 against each database and a transcript 
was retained only if it had >80% identity over at least 100 bp to the 
coral database and that transcript did not have a lower e-value when 
blasted against the symbiont database.

To confidently identify HTFs, it is important to remove tran-
scripts which are probably derived from alternative splice vari-
ants and isoforms to approximate a one-to-one correspondence 
between transcripts and genes. We took several steps to ensure 
these relationships held before conducting subsequent analyses. 
First, each assembly was filtered for the longest isoform to at-
tempt to remove extraneous transcripts in our assemblies which 
derive from splice-variants of a gene using the get longest iso-
form script available through trinity version 2.5.1 (Grabherr et al., 
2011). Next the program transdecoder version 5.5.0 (Haas et al., 

2013) was used to extract the longest open reading frame of each 
transcript and this reading frame was utilized to generate a pre-
dicted peptide sequence. The predicted proteomes for all species 
were then collapsed for sequence similarity using the program cd-
hit version 4.8.1 (Huang et al., 2010) at a similarity level of 0.9 to 
further exclude transcripts which are probably derived from alter-
native splice-variants of a gene. To ascertain the quality of these 
assemblies after transcript filtration, we employed several metrics 
of transcriptome completeness including Benchmarking Universal 
Single Copy Orthologs (busco) version 5.2.2-0 (Simão et al., 2015) 
against the core metazoan database, dogma version 3.6 against the 
eukaryote protein domain database, N50 and total transcriptome 
assembly length. While we employed extensive efforts to remove 
splice isoforms and assembly artefacts inherent to transcriptome 
assemblies, it is likely that these efforts additionally removed re-
cent paralogues and that future analysis would benefit from the 
inclusion of complete genome assemblies. To generate Gene 
Ontology (GO) annotations from our transcriptome assemblies we 
utilized the annotation software eggnog-mapper version 2 (Huerta-
Cepas et al., 2017, 2019) through the online web portal against the 
eukaryote database.

2.4  |  Orthogroup assignment

To identify homologous transcripts across our species and group 
them into HTFs we utilized the program orthofinder version 2.5.4 
(Emms & Kelly, 2015, 2019). This software groups protein sequences 
predicted from the transcripts into groups containing both ortho-
logues and paralogues, which we refer to as HTFs. A species tree 
was generated through the program Species Tree From All Genes 
(stag) version 1.0.0 (Emms & Kelly, 2018) as implemented within or-
thofinder where branch lengths are measured in amino acid substitu-
tions. We then converted the calculated branch lengths into time 
based on the estimated divergence times between these coral spe-
cies (Pinzón et al., 2014).

2.5  |  Transcript family evolution

To quantify the rate of gene family evolution we employed the pro-
gram café version 4.2.1 (Han et al., 2013). This program utilizes an 
ultrametric species tree with a set of gene families to determine the 
background rate of gene gain and loss per gene per unit time across 
the provided species tree. This background rate of gene turnover is 
then used as a null model to test for gene families which are experi-
encing significant deviations from this rate. For our analysis the spe-
cies tree generated through stag was converted into an ultrametric 
tree using phytools version 0.7.70 (Revell, 2012) with the option “ex-
tend.” We ran this analysis on the HTFs that contained at least one 
transcript in all species, which encompassed 4,904 HTFs. To account 
for the role that errors in our assemblies may have played in over-
inflating our estimate of gene turnover, we utilized the error model 
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script included in the café package (Han et al., 2013). This script itera-
tively searches a priori defined error distributions to identify which 
distribution maximizes the probability of observing the data. The 
error term with the highest probability of observation, 0.1 (which 
represents a predicted error in 10% of HTFs), was then used to run 
café. To account for the possibility that assembly completeness may 
have influenced the estimates of transcript family evolution, we 
constructed a linear model to regress transcript number, number of 
complete and single-copy BUSCOs and number of identified protein 
domains against the number of rapidly evolving HTFs in each spe-
cies. We also performed an additional regression using these same 
metrics against the number of transcripts within rapidly evolving 
HTFs in each species.

2.6  |  Gene Ontology enrichment

To understand the processes which are undergoing rapid evolu-
tion in these species, we utilized the R script Gene Ontology with 
Mann–Whitney U test (GO_MWU) (Wright et al., 2015), to perform 
a Fisher's exact test where transcripts in rapidly evolving HTFs were 
assigned a value of 1 while all other contigs were assigned a value of 
0. The enrichments were run against species-specific backgrounds. 
This method was employed separately for the transcripts in ex-
panded vs. contracted HTFs. For each species identical parameters 
were used for biological processes with the smallest category set to 
50, largest to 0.1 and clusterCutHeight to 0.25.

2.7  |  Expression divergence

To determine which HTFs demonstrate species-specific expres-
sion shifts, we mapped reads from each coral colony to its respec-
tive species transcriptome with the read mapping program salmon 
version 1.5.2 (Patro et al., 2017) using a k-mer index size of 31 in 
each species. Read counts were then extracted and summarized to 
transcript family level with the R package TXimport version 1.16.1 
(Soneson et al., 2015) using the “salmon” option. These expression 
profiles were then combined across species and filtered for low 
abundance expression with less than an average of 10 counts. The 
HTFs above this cutoff were rlog normalized by species in the R 
package DESeq2 version 1.28.1 (Love et al., 2014). Species-level 

expression shifts were quantified using the R package evemodel 
version 0.0.0.9005 using a β shared test (Gillard et al., 2021; Rohlfs 
& Nielsen, 2015). The rlog-normalized counts of each HTF as well 
our generated phylogenetic tree were used as input files. This pro-
gram compares expression variance within and across species to 
generate β values, where low β values represent HTFs with high 
levels of between-species variance and high β values represent 
HTFs with high within-species variance. The β values were −log10-
transformed to generate our expression divergence metric. All sta-
tistical analysis were carried out in the R programing language (R 
Core Team (2020)).

2.8  |  Comparison to genome-based approach

As both O. faveolata and M. cavernosa have genome resources avail-
able, we performed the previously described analysis again, incor-
porating the genome resources to determine if our results were 
robust to the increased completeness which genomes provide. 
Genome-derived predicted gene models were obtained from the 
O. faveolata assembly on NCBI (assembly ofav_dov_v1) (Prada et al., 
2016), while for M. cavernosa a draft genome assembly is available 
(Rippe et al., 2021), and we chose to use this genome assembly to 
generate a genome-guided transcriptome assembly for M. cavern-
osa. Reads from our five M. cavernosa colonies were mapped to the 
draft genome with the read mapping program tophat2 (Kim et al., 
2013) using default parameters. The merged bam files were then 
used in the trinity genome-guided approach to generate our M. cav-
ernosa transcriptome. We performed all the computational proto-
cols described (isoform filtering, transdecoder, cd-hit, orthofinder, 
café, salmon, evemodel) above with the exception of the in silico sym-
biont filtration as the genome assemblies are already free of sym-
biont sequences.

3  |  RESULTS

3.1  |  HTF assignment

Assembly metrics including transcript number, N50 values, BUSCO 
scores and dogma results can be found in Table 1. Collectively we 
identified 47,170 HTFs, of which 4,904 were represented by at least 

TA B L E  1  Metrics of assembly completeness

Species Source
Predicted 
peptides

No. of transcripts 
used in café

Complete 
single copy Fragmented

Complete 
and 
duplicated Missing N50

Protein 
domains

O. faveolata de novo 47,678 7,986 698 39 84 157 11,934 1,091

M. cavernosa de novo 57,740 9,978 757 34 78 109 13,783 1,186

C. natans de novo 50,582 9,266 652 134 57 135 12,255 952

P. astreiodes de novo 37,167 9,048 787 73 49 69 6,457 1,197

S. siderea de novo 16,635 7,707 761 74 23 120 4,921 1,126
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one transcript in all species, and 1,629 were single copy in all spe-
cies. The frequency of the size class distribution was similar across 
all species (Figure 1a); most transcripts are in HTFs with a single 
transcript and as the number of transcripts in an HTF increases the 
frequency of that size class decreases. HTFs with a single transcript 
are the most common size class in each species followed by HTFs 
with two transcripts, while HTFs with more than five transcripts are 
uncommon. The phylogenetic tree produced from these HTFs reca-
pitulates the known phylogenetic relationship between these spe-
cies of coral (Figure 1b).

3.2  |  HTF evolution

By evaluating the evolution of the number of homologues within 
a transcript family we identified a background rate of turnover of 
0.000854 homologue gains/losses per transcript family per million 
years (Myr) (Figure 1b) and 236 HTFs which are evolving significantly 
faster than this background rate of turnover. Given that these data 
are based on transcriptome assemblies, the background rate of HTF 
turnover is probably an overestimate as transcripts which were not 
sampled by our approach would be interpreted as a change in the 

F I G U R E  1  Quantifying HTF evolution. 
(a) Distribution of the number of 
transcripts contained in each transcript 
family size class separated by species. (b) 
Species tree generated from stag for the 
five species of coral, with the number 
of expanded (green) and contracted 
(blue) transcript families as well as the 
background rate of transcript family 
turnover (8.54 e−4) superimposed on the 
tree. The number of expanded/contracted 
transcript families in a particular species 
is given on the branch leading to that 
species [Colour figure can be viewed at 
wileyonlinelibrary.com] 30 MYA
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size of an HTF leading to a higher estimate of background turno-
ver. The consequence of potentially overestimating the background 
rate of turnover is reduced power to detect rapidly evolving HTFs, 
which suggests that the 236 rapidly evolving HTFs we identified 
is likely to be an underestimate. The number of HTFs with adap-
tive variations in size differed by species: 104 in Orbicella faveolata, 
105 in Montastraea cavernosa, 50 in Colpophyllia natans, 62 in Porites 
astreoides and 59 in Siderastrea siderea (Figure 1b). The number of 
rapidly evolving HTFs in a species was not significantly associated 
with standard metrics of transcriptome assembly completeness, in-
cluding the percentage of complete single copy BUSCOs, number 
of transcripts in the assembly or the number of inferred protein do-
mains in a linear regression (p =  .357) (Figure S1). Additionally, the 
number of transcripts within these rapidly evolving HTFs was also 
not associated with these same metrics (p = .379) according to the 
linear regression (Figure S1). While neither of these relationships 
was significant, it should be noted that with only five species our 
power to detect such associations is low and therefore it is not pos-
sible to rule out assembly completeness as influencing our results. 
The number of transcripts within these rapidly evolving HTFs as 
well as the number of GO enrichments broken down by expansions 
vs. contractions of the number of homologues within a transcript 
family are given in Table 2. A subset of select GO term enrichments 
are visualized (Figure 2) based on terms commonly observed in coral 
gene expression studies including terms related to stress responses, 
metabolism and tissue formation. A full list of all enriched GO terms 
broken down by species can be found in Table S1.

3.3  |  Expression divergence

To test if the rapidly evolving HTFs demonstrate species-specific ex-
pression shifts, we quantified gene expression patterns and tested 
for expression divergence across the 4,277 HTFs which were ex-
pressed across all species. The rapidly evolving HTFs had higher av-
erage expression divergence than the single-copy HTFs (0.830 vs. 
0.447, p = 2.2e−16 two-sided t-test) (Figure 3). This elevated expres-
sion divergence among the rapidly evolving HTFs was also higher 
than a size-matched random down-sampling of genes (0.830 vs. 
0.623, p = 5.11e−06 two-sided t test).

3.4  |  Genome comparison

By performing the same analysis with the inclusion of the genomic 
data from O. faveolata and M. cavernosa, our results differed slightly, 
but our main conclusions were still supported. We identified more 
single-copy HTFs as well as more HTFs with at least one transcript 
present in all species with the genome-based assemblies, 2,009 and 
6,324 respectively (Figure S2). This difference resulted in a slightly 
higher rate of background transcript family turnover (0.00088 
transcript gains/losses per transcript family per Myr) and a greater 
number of rapidly evolving transcript families (354). The patterns of 

transcript family evolution were similar between the two analysis, 
as O. faveolata possessed the most rapidly contracting transcript 
families and M. cavernosa possessed the most rapidly expanding 
transcript families (Figure S2). Our observation of higher expression 
divergence within rapidly evolving transcript families compared to 
either single-copy transcript families (0.543  single copy vs. 0.718 
rapidly evolving, p = 7.687e−07, t test) (Figure S2) or a downsampled 
number of transcript families was likewise supported with the inclu-
sion of genomic data (0.599 downsampled vs. 0.718 rapidly evolving, 
p = 7.77e−03, t test). Overall, this additional analysis demonstrates 
that the primary findings of this study are robust even when differ-
ent methods were used to generate the assemblies. The inclusion of 
genomic data from two coral species increased the number of identi-
fied HTFs that are rapidly evolving, indicating that similar analyses 
should continue to improve the resolution of rapidly evolving HTFs 
as genome assemblies become available for more species.

4  |  DISCUSSION

Our investigation utilizes a framework to integrate paralogous tran-
scripts into multispecies gene expression studies, and demonstrates 
that rapidly evolving HTFs affect numerous biological processes 
and are associated with divergent gene expression patterns in five 
species of Caribbean coral. These findings provide support that the 
evolution of the number of transcripts within an HTF, a proxy for 
gene family size, is associated with divergent expression patterns (Li 
et al., 2005; Taylor & Raes, 2004) and these processes are active in 
Caribbean corals. As these conclusions are based on our ability to 
estimate gene family size from transcriptome data, some caution in 
interpreting the data is warranted until genome assemblies become 
available for these species, allowing for a more thorough investiga-
tion of gene family expansion/contraction. However, these findings 
highlight both the evolution of HTFs and their resulting expression 
patterns as an understudied aspect of coral biology which has the 
potential to influence how these species responses to a changing 
climate.

4.1  |  Feasibility

Our study focused on variation in the number of homologous tran-
scripts within transcript families, which ideally should represent gene 
family size, and we employed extensive efforts to establish a one-to-
one correspondence between transcripts and genes; however, some 
considerations need to be addressed. First, without genome assem-
blies available for all species it is not possible to confidently say that 
each unique transcript arises from a unique gene. However, using 
the genomes available for Orbicella faveolata and Montastraea cav-
ernosa did not substantially change our main findings. Additionally, 
as the corals were only sampled under a single condition, there are 
probably genes which were not expressed and thus not sampled 
by our approach, leading to incomplete gene sampling, which has 
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the potential to result in inflated estimates of gene family turnover. 
However, incomplete sampling of transcripts should only be prob-
lematic for our interpretations if it is biased among species, which we 
have no reason to suspect. Indeed, if genes are missed stochastically 
across species, it should only serve to inflate the background (i.e., 
neutral) rate of gene family turnover, making detection of rapidly 
(i.e., adaptively) expanding or contracting families more difficult. To 
this point, our calculated rate of gene family turnover approximates 
the observed rate among species of Drosophila (Han et al., 2013) 
and is lower than that of mammals (Matthew W. Hahn et al., 2007), 
which is interesting given our reduced ability to detect recent paral-
ogues in transcriptomes. Overall, this demonstrates that by employ-
ing stringent filtering approaches and including an error term in the 
café model, issues common to transcriptome assemblies can be re-
duced or accounted for to a level which allows investigation of the 
evolution of HTFs. Thus, by following the computational framework 
outlined here, other investigations can incorporate the evolution 
of HTFs in species currently lacking genome assemblies, as long as 
whole organism homogenates can be acquired.

4.2  |  The benefit of incorporating paralogues

By incorporating paralogues into our analysis we were able to in-
crease the number of HTFs used for multispecies comparisons by 
more than three-fold compared to only using only single-copy HTFs. 
This includes the additional 254 rapidly evolving HTFs, indicating 
an adaptive role of this variation (De Bie et al., 2006; Hahn, 2005). 
While it is not possible to ascertain from these data the selective 
benefit of this rapid evolution in particular HTFs, these transcript 
families were enriched for GO terms in all five species, consistent 
with a role in species-level adaptation. Population-level data cou-
pled to fitness effects would be required to conclusively determine 
the adaptive significance of this variation and associated GO en-
richments. Despite this limitation some of the enriched terms do 
qualitatively correspond to host biology. For example, O. faveolata, 
the species which can attain the largest colony diameter (Madin 
et al., 2016), is enriched for “regulation of anatomical structure size” 
among the rapidly contracting HTFs, which may represent a loss 
of negative regulators of growth and could potentially underly the 
large colony size this species can attain. Similarly, Siderastrea siderea 

is enriched for “response to pH” among the rapidly expanding HTFs, 
which may be linked to the exceptional ability of this species to han-
dle highly acidified water (Castillo et al., 2014). While such connec-
tions between species biology and the rapid evolution of HTFs are 
speculative, these examples underline how variation of HTFs could 
influence each species biology. These results also highlight potential 
new avenues of study such as the rapid evolution of HTFs involved 
in carbohydrate and lipid metabolism. These changes in metabolic 
processes may have important consequences for a coral's ability to 
efficiently assimilate symbiont-derived carbohydrates or potentially 
store nutrients, both of which have been associated with corals’ abil-
ity to withstand periods of temperature stress (Rädecker et al., 2021; 
Roach et al., 2021). Thus, the observed differences in the number of 
homologues within these transcript families may play an important 
role in each species biology.

4.3  |  Rapidly evolving HTFs have increased 
expression divergence

Rapidly evolving HTFs have an overall higher level of expression 
divergence, demonstrating an association between the processes 
of gene duplication and gene expression. This finding is in line with 
previous work showing that gene copy number influences transcrip-
tional output, although this may be modified by dosage compensa-
tion mechanisms (Jiang & Assis, 2019). While our findings are based 
on transcripts, rather than genome-derived gene models, the asso-
ciation between the rapid change in HTF size and expression diver-
gence provides support for the idea that gene expression is often 
modified among paralogues in response to gene duplication or loss 
(Des Marais & Rausher, 2008; Stearns, 2010). Note that gene ex-
pression divergence can arise from other processes which are not 
dependent on paralogues. However, the substantially higher levels 
of expression divergence within the rapidly evolving HTFs suggest 
that variation in the number of paralogues may be an important con-
tributor to the development of divergent expression patterns. To our 
knowledge this is the first investigation to link the rate of transcript 
family evolution with divergent expression patterns.

Importantly, the association between the variation in the 
number of HTFs and expression divergence may be an important 
mechanism of adaptation. If the new paralogues arise from a gene 

TA B L E  2  Transcript family evolution results

Species
Expanding 
HTFs

Transcripts in 
expanding HTFs

Biological Process 
enrichments expanded

Contracting 
HTFs

Transcripts in 
contracting HTFs

BP 
enrichments 
contracted

O. faveolata 8 265 16 95 239 33

M. cavernosa 110 1,550 229 0 0 0

C. natans 35 606 13 15 31 0

P. astreiodes 52 721 199 10 29 0

S. siderea 22 291 16 35 99 2

Abbreviation: HTF, homologous transcript family.
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duplication event, this can relax pleiotropic constraints, promot-
ing the processes of neofunctionalization and subfunctionalization 
(J. Zhang, 2003). Gene neofunctionalization in newly arisen paral-
ogues has been demonstrated to promote evolutionary innovation 
and adaptation in several systems (Deng et al., 2010; Zimmer et al., 
2018). Gene subfunctionalization can also function as an adaptive 
mechanism (Abascal et al., 2013; Spady et al., 2006) though there are 
fewer examples of this processes. While our data do not explicitly 
demonstrate either of these processes per se, they do highlight that 
rapidly evolving HTFs whose paralogues are candidates for neofunc-
tionalization and subfunctionalization have acquired new expression 
patterns consistent with changing function. These findings thus 
highlight that as more coral genome assemblies are produced and 

sequencing technology capable of detecting gene copy number vari-
ation becomes more accessible, investigating the processes of gene 
neofunctionalization and subfunctionalization may yield important 
insights.

4.4  |  Rapid evolution of immunity

We find that HTFs which have immune-related annotations are 
common among the rapidly evolving transcript families leading to 
immune-related enrichments in several species (Figure 4). This re-
flects findings from other systems which have characterized the 
rapid evolution and subsequent change in copy number of immune 

F I G U R E  2  Selected subset of GO enrichments among the expanded and contracted transcript families. Bubble plot visualizing selected 
GO term enrichments in each species. Size of the circle corresponds to the significance (−log10-transformed p-value) after false discovery 
rate correction, and colour denotes if the term enrichment is in expanded (green) or contracted (blue) transcript families, or grey if the term 
is nonsignificant after false discovery rate correction. GO enrichments were selected for visualization based on their potential involvement 
in either stress responses, metabolism or tissue formation. A table containing all of the GO enrichments can be found in Table S1 [Colour 
figure can be viewed at wileyonlinelibrary.com]
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genes (Evans et al., 2006; Sackton et al., 2007, 2017; Waterhouse 
et al., 2007). This common pattern is thought to be due to the propen-
sity of immune genes to engage in evolutionary arms races through 
their ability to mediate interactions with other organisms (Lazzaro 
& Clark, 2012). This process is probably important in reef-building 
corals that live in a microbe-rich environment (van Oppen & Blackall, 

2019). The immune system of corals functions to both regulate com-
mensal microbes (beneficial bacteria and the algal Symbiodiniaceae) 
as well as defend against pathogenic ones (Kvennefors et al., 2010; 
Mansfield & Gilmore, 2019; Mydlarz et al., 2006; Wu et al., 2019). 
Thus, the rapid evolution of immune transcript families indicates 
that these interactions may have played an important role in shaping 

F I G U R E  3  Rapidly evolving transcript 
families have increased expression 
divergence. (a) The number of transcripts 
contained within the rapidly evolving 
transcript families as well as the 
expression of those transcript families. 
The left heatmap visualizes transcript 
number where transcript families with 
more than 25 transcripts were reduced 
to 25 for visualization purposes. The 
right heatmap shows the corresponding 
z-score normalized expression value 
of each transcript family in the left 
heatmap. (b) Violin plot showing the 
expression divergence of the rapidly 
evolving transcript families compared to 
the single-copy transcript families. The 
thick line shows the mean of each group. 
The difference in expression divergence 
is significant between the two groups 
(0.830 vs. 0.447, p = 2.2e−16 two-sided 
t test) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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the evolutionary history of these coral species. Other investigations 
have found similar trends, including phylosymbiosis between coral 
species and bacterial communities on the Great Barrier Reef (Pollock 
et al., 2018), as well as highly stable host–microbe associations in the 
Red Sea (Ziegler et al., 2019). Overall, this indicates that interactions 
with microbes may broadly play a role in shaping the evolution of 
corals.

Of particular interest is the interaction formed with 
Symbiodiniaceae as this relationship requires the modulation of host 
immune processes (Mansfield & Gilmore, 2019; Matthews et al., 
2017; Neubauer et al., 2017) in order to receive a supply of translo-
cated carbohydrates from their symbionts. Different species of coral 
are known to preferentially associate with one or a few species of 
Symbiodiniaceae (Thornhill et al., 2006), although the mechanism by 
which hosts distinguish between these different symbionts is un-
known. The rapid evolution of immune transcripts by the host may 
be one mechanism to facilitate this relationship through neofunc-
tionalization of immune genes, but this hypothesis would need to 
be functionally confirmed. One interesting trend in our data is that 
O. faveolata, which demonstrates flexibility in its symbiont associa-
tions (Edmunds et al., 2014), has reduced numbers of homologues in 
rapidly evolving transcript families which are involved in immunity 
while Porites astreoides, which transmits its symbionts vertically and 
demonstrates tight control of its symbiotic association (Chornesky 
& Peters, 1987; Kenkel et al., 2013), has an expanded number of ho-
mologues in rapidly evolving immune transcript families. This pat-
tern raises the possibility that symbiont fidelity could be related to 
the size of immune transcript families as species with larger immune 
transcript repertoires may have an improved ability to select for 

preferred symbiotic partners. The cellular mechanisms that corals 
use to detect different strains of symbionts is still an ongoing area 
of research (Jacobovitz et al., 2021), though immune specificity is 
thought to play a critical role. In particular, scavenger receptors and 
thrombospondin (Neubauer et al., 2016; Neubauer et al., 2017) have 
been demonstrated to influence symbiont recognition and density, 
and we observe rapid evolution of transcripts matching these anno-
tations. Thus, the changes observed between species within these 
and other immune-related rapidly evolving HTFs could potentially 
be an evolved mechanism to distinguish between different strains 
of Symbiodiniaceae.

In addition to modulating the relationship with beneficial mi-
croorganisms, corals must also defend themselves against disease-
causing microbes. This is particularly pressing in the Caribbean as 
disease outbreaks affecting reef-building corals have reshaped com-
munities (Aronson & Precht, 2001; Gardner, 2003; Miller et al., 2009; 
Mydlarz et al., 2006) and continue to be among the most pressing 
selective forces these organisms face (Vega Thurber et al., 2020). In 
response to disease, corals utilize a complex innate immune system 
involving pattern recognition receptors including Toll-like receptors 
(TLRs) (Poole & Weis, 2014; Williams et al., 2018) and C-type lectins 
(Emery et al., 2021; Kvennefors et al., 2008) to sense threats and 
initiate immune responses including the complement cascade (Poole 
et al., 2016). Interestingly, we observe that M. cavernosa, Colpophyllia 
natans and P. astreoides have an expanded number of homologues 
within rapidly evolving transcript families matching these annota-
tions, while O. faveolata has a contracted number of homologues 
within these transcript families. This variation may influence disease-
susceptibility as O. faveolata is highly susceptible to several coral 

F I G U R E  4  Rapid evolution of immune genes. The number of transcripts contained within the immune-related rapidly evolving transcript 
families as well as the expression of those transcript families. Immune transcript families were selected based on the transcripts within 
that family possessing either the GO annotation “Immune system process, GO: 0002376” or “Innate immune response GO: 0002226.” 
The left heatmap visualizes transcript number while the right heatmap shows the corresponding z-score normalized expression value of 
each transcript family. The transcript family names were assigned based on the lowest seed orthologue evalue from eggnog-mapper of all 
transcripts contained within the given transcript family [Colour figure can be viewed at wileyonlinelibrary.com]
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diseases whereas M. cavernosa and P. astreoides are considered more 
resilient to disease (Aeby et al., 2019; Smith et al., 2013; Williams 
et al., 2020). In support of this, species-level variation in immune ac-
tivity is widespread in Caribbean corals (Palmer et al., 2011; Pinzón 
et al., 2014; Rosales et al., 2020), which may be the result of the 
variation of immune transcript repertoires we observe. However, C. 
natans is also considered to be susceptible to disease (Aeby et al., 
2019; MacKnight et al., 2021; Sutherland et al., 2004) and demon-
strates expansions in immune-related transcript families. Thus, the 
relationship between an expanded immune transcript repertoire may 
not always lead to resistance to a particular disease in situ.

Together, these data indicate that the immune system is a major 
target of evolution in Caribbean coral. As coral diseases are cur-
rently among the strongest selective forces acting on Caribbean 
reefs (Vega Thurber et al., 2020), understanding the differing im-
mune repertoires each species possesses and how this relates to 
disease resilience may be an important determinant of which corals 
will persist on the reef. Indeed, in the Caribbean, coral species that 
have historically dominated stable forereef environments such as O. 
faveolata have been declining in abundance (Gardner, 2003) while 
corals such as P. astreoides that have traditionally been found in the 
variable environment of the reef edge are rising in abundance (Green 
et al., 2008; McWilliam et al., 2020) with disease playing a major role 
in these shifts.

5  |  CONCLUSION

We found that by expanding our analysis of multispecies gene ex-
pression through the identification of HTFs, we were able to identify 
adaptive variation in homologue number within transcript families, 
which is associated with divergent expression patterns. However, 
given the inherent limitations in using transcriptome assemblies 
to assess gene family evolution, these conclusions should be con-
sidered preliminary and that follow-up work based on genome as-
semblies will probably yield additional insights not captured by this 
study. Despite this, we identified numerous biological processes 
influenced by this variation, which notably include several families 
of immune genes previously linked to both symbiont recognition 
and pathogen defence. These findings highlight the role that inter-
actions with microbes have played in the evolution of these coral 
species and how this may influence species’ ability to persist as coral 
diseases become an increasingly pressing threat in the Caribbean. 
Therefore, further work towards linking variation within HTFs that 
arise through changes in gene copy number to adaptive capacity 
may help predict which coral species will be able to adapt and which 
are likely to face extirpation.
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