

1 **Implementing 1.5 millimeter Internal Diameter Columns into Analytical Workflows**

2
3 Benjamin P. Libert^{1,2}, Justin M. Godinho^{1,‡}, Samuel W. Foster², James P. Grinias^{2,*}, Barry E.
4 Boyes^{1,*}

5 ¹ Advanced Materials Technology, Inc., 3521 Silverside Road, Wilmington, DE, 19810, USA

6 ² Rowan University, Department of Chemistry & Biochemistry, 201 Mullica Hill Rd., Glassboro,
7 NJ 08028, USA

8
9 *Corresponding authors: BBoyes@Advanced-Materials-Tech.com, grinias@rowan.edu

10 [‡]Current address: CMC Analytical, GlaxoSmithKline, King of Prussia, PA 19406, USA

11
12 **Abstract**

13 The use of smaller column diameters in liquid chromatography (LC) is often associated
14 with capillary LC. Although there are many analytical benefits gained by adapting this format,
15 routine use continues to be challenging due to column fragility and extra column dispersion.
16 Bridging the gap between routinely used 2.1 mm columns and capillary bore columns allows for
17 a sequential but far from insignificant increase in performance without the need for specialized
18 equipment associated with very low dispersion LC systems. Moreover, an incremental decrease in
19 column internal diameter (i.d.) allows for similar mass load (avoiding column overload that may
20 be observed in much larger decreases in i.d. without trapping) and thus an increase in measured
21 signal. As such, 1.5 mm i.d. columns provide an alternative intermediate dimension between the
22 more regularly used 2.1 mm i.d. columns and 1 mm i.d. columns. These columns balance an
23 increase in sensitivity compared to 2.1 mm i.d. columns (theoretically doubling the time-domain
24 peak area in mass sensitive detectors for the same mass load), while mitigating the efficiency losses
25 due to extra-column dispersion effects that are commonly observed with 1.0 mm i.d. columns.
26 Here, the use of 1.5 mm i.d. columns was applied to LC/UV analysis of small molecules and
27 LC/MS methods for the analysis of monoclonal antibodies. With equivalent mass load on column,
28 the 1.5 mm i.d. columns provide two-to-threelfold improvement in analyte peak area signal for
29 small molecules as well as intact, subunit, and peptide levels of antibody analysis. Peak height
30 was also increased using the 1.5 mm i.d. column, although the scale of increase varies between

31 isocratic and gradient modes, likely due to differences in system dispersion effects and variation
32 in electrospray ionization efficiency at different flow rates.

33

34 **Keywords**

35 Narrow-bore columns; Superficially porous particles; Monoclonal antibody analysis; Multi-
36 attribute monitoring; UHPLC-MS

37

38 **1. Introduction**

39 Coupling liquid chromatography (LC) separations to electrospray ionization (ESI) sources
40 for mass spectrometry (MS) detection without flow splitting requires columns with inner diameters
41 (i.d.s) \leq 2.1 mm [1]. In the regime of analytical-scale LC/MS separations, 1.0 mm i.d. columns are
42 often used as an alternative to 2.1 mm i.d. These columns, due to their smaller i.d., require lower
43 flow rates to achieve optimal linear velocity. Moreover, they generate higher sensitivity (more
44 concentrated bands - *assuming identical mass load*) than can be achieved with larger diameters
45 [2]. However, these columns often suffer from reduced chromatographic performance due to
46 poorly packed beds [3,4] and the enhanced contribution of extra-column dispersion relative to
47 intrinsically generated peak dispersion [5,6]. Recently, an intermediate column i.d., 1.5 mm, was
48 shown to provide similar efficiency to 2.1 mm i.d. columns on currently available instrumentation
49 [7]. As predicted theoretically, 1.5 mm i.d. columns exhibit optimal chromatographic performance
50 (based on linear velocity) at half the flow rate of a 2.1 mm i.d. column. This has a twofold benefit
51 in that it reduces solvent consumption and provides more favorable ESI conditions for desolvation
52 and ionization for LC/MS analysis [8].

53 A common application for LC/MS in the biopharmaceutical industry is the characterization
54 of monoclonal antibodies (mAbs) and measurement of various critical quality attributes (CQAs),
55 such as post-translational modifications that can arise in the upstream and downstream processing
56 of the mAb drug substance [9,10]. Controlling mAb drug products is critical to a mAb's biological
57 half-life, activity, and immunogenicity, and consequently affect pre-clinical and clinical mAb
58 efficacy [11].

59 Apart from using bottom-up LC/MS for mAb therapeutic process control, bottom-up
60 approaches have been used to monitor the clearance of mAbs in animal and human serum via
61 surrogate peptides. The pharmacokinetic study of mAbs and their surrogate peptides that are

62 present in pre-clinical and clinical serum samples provides guidance on how to dose mAbs
63 efficiently and safely. However, the surrogate peptide monitoring approach continues to
64 experience significant challenges, including low analyte sensitivity, which can negatively affect
65 the lower limit of quantitation [12–14].

66 Analyte signal inherently increases with higher concentration in absorbance detection [8].
67 Thus, with use of a 1.5 mm i.d. column in which linear velocity is maintained at approximately
68 half the flow rate of that with a 2.1 mm i.d. column, peaks of similar width will contain twice the
69 concentration of analyte in the smaller diameter column if the same analyte mass is loaded onto
70 column. This enhancement in sensitivity was explored in this study on two separate UHPLC
71 instrument platforms. 1.5 and 2.1 mm i.d. columns were then compared by reverse phase LC/MS
72 separations, demonstrating that an increase in MS area counts is achieved at the intact mAb, mAb
73 subunit, and peptide levels when using the smaller diameter column under identical sample load
74 conditions, as MS signal using ESI also increases with higher analyte concentration [15]. This
75 enables bottom-up and top-down mAb LC/MS monitoring approaches with higher sensitivity
76 while requiring no change in the LC/MS instrument configuration.

77

78 **2. Experimental Methods**

79 *2.1 Absorbance Detection of Small Molecule Test Mixture*

80 Uracil, phenol, 1-chloro-4-nitrobenzene, and naphthalene were obtained from
81 MilliporeSigma (St. Louis, MO) for use in a small molecule test mixture. Comparison of detector
82 signal using absorbance detection between the 1.5 mm i.d. and 2.1 mm i.d. columns (both 100 mm
83 in length with Halo 2.7 μ m 90 \AA C18 particles) was performed under isocratic conditions of 60:40
84 v/v acetonitrile:water. Analysis was performed on two distinct UHPLC platforms: Nexera X2
85 UHPLC (Shimadzu, Columbia, MD) and Vanquish Horizon UHPLC (Thermo Fisher Scientific,
86 Germering, Germany). The 1.5 mm i.d. columns were operated at 0.2 mL/min and the 2.1 mm i.d.
87 columns were operated at 0.4 mL/min. For both columns on both instruments, the column oven
88 was set to 30°C and 0.5 μ L of the sample mixture was injected. The Nexera instrument was
89 operated with 0.075 x 300 mm tubing to connect from the injector to the column inlet, 0.060 x 700
90 mm tubing to connect from the column outlet to the detector flow cell, and a reported detector cell
91 volume of 1 μ L, with an overall calculated extra-column volume of 5 μ L at this injection volume.
92 The average system dispersion at these flow rates, as recorded by replacing the column with a

93 ZDV fitting and recording peak variance, was $1.2 \mu\text{L}^2$. The Vanquish instrument was operated
94 with 0.100×350 mm tubing to connect from the injector to the column inlet, 0.100×445 mm
95 tubing to connect from the column outlet to the detector flow cell (which contained an additional
96 $1 \mu\text{L}$ post-column cooler built into the tubing), and a reported detector cell volume of $0.8 \mu\text{L}$, with
97 an overall calculated extra-column volume of $8.6 \mu\text{L}$ at the same injection volume. Using the same
98 approach as described for the Nexera, the average system dispersion observed on the Vanquish
99 was $4.3 \mu\text{L}^2$.

100

101 *2.2 Intact mAb Sample Preparation*

102 100 mM ammonium bicarbonate pH 8.0 (Sigma, St. Louis, MO) was prepared in deionized
103 water obtained from an in-house source (also used for all other aqueous solutions in this study).
104 The concentration of intact trastuzumab drug product (21 mg/mL injectable formulation
105 (Herceptin, Roche), from a pharmaceutical supplier) was confirmed spectrophotometrically
106 ($\epsilon_{280\text{nm}} = 225,000 \text{ M}^{-1} \text{ cm}^{-1}$). The sample was buffer exchanged into the ammonium bicarbonate
107 using a Microcon Ultracel PL-30s centrifugal filter (MilliporeSigma, Burlington, MA) spun at
108 $10,000 \text{ rpm}$ until most of the drug product excipients were eliminated (3-4 replicates at 5 min each)
109 and then checked for concentration spectrophotometrically. The buffer exchanged sample was then
110 analyzed by LC/MS with a total on-column mAb mass of $2.8 \mu\text{g}$.

111

112 *2.3 Reduced mAb Sample Preparation*

113 Trastuzumab drug product was denatured with 6 M guanidine hydrochloride (Thermo
114 Fisher Scientific, Waltham, MA) in 100 mM Tris HCl at pH 7.8 (Sigma, St Louis, MO) and
115 reduced with 12.5 mM dithiothreitol (DTT, Thermo Fisher Scientific, Waltham, MA) for 45 min
116 at 60°C . The sample was alkylated with 20 mM iodoacetamide (Thermo Fisher Scientific,
117 Rockford, IL) in the dark for 30 min at room temperature. Excess iodoacetamide was quenched
118 with 20 mM DTT. The solution was diluted with 100 mM Tris pH 7.8 to 1.5 M guanidine HCl.
119 The reduced and alkylated mAb was buffer exchanged into 0.1% TFA (Thermo Fisher Scientific,
120 Rockford, IL) using a 5,000 MWCO Vivaspin 2 centrifuge filter (Sartorius, Bohemia, NY) spun
121 at $4,200 \text{ rpm}$. For LC/MS analysis, $1.6 \mu\text{g}$ were injected on-column.

122

123 *2.4 FabRICATOR (IdeS) Digestion*

124 Trastuzumab was buffer exchanged into 100mM Tris HCl pH 7.8 using a Microcon
125 Ultracel PL-30 centrifugal filter. FabRICATOR (Genovis, Cambridge, MA) was combined (33
126 units) with trastuzumab (42 μ g) according to the supplier's directions (post-exchange), then
127 incubated for 30 minutes at 37°C. The sample was diluted into 0.1%TFA and then analyzed by
128 LC/MS with a total on-column IdeS-digested mAb mass of 2 μ g.

129

130 *2.5 Trypsin Digestion*

131 Trypsin Gold MS grade (Promega, Madison, WI) was prepared at 2 μ g/ μ L in 100 mM Tris
132 HCl pH 7.8 and combined with reduced/alkylated trastuzumab (through the quenching and dilution
133 steps as described in Section 2.3) in a 1:20 enzyme:protein ratio, then incubated at 37°C for 16 h.
134 The tryptic digest was acidified with 0.5% formic acid (Sigma, St. Louis, MO) prior to LC/MS
135 analysis of 0.3 μ g of on-column digest mass.

136

137 *2.6 LC/MS Analysis Conditions*

138 Separations for the intact, reduced, and IdeS-digested samples were performed with a
139 Shimadzu Nexera X2 UHPLC system (Columbia, MD) equipped with a Halo 2.7 μ m 1000 \AA
140 diphenyl column (Advanced Materials Technology, Wilmington, DE). The column temperature
141 was maintained at 60 °C and the flow rate was set at either 0.4 mL/min (2.1 x 150 mm), 0.2 mL/min
142 (1.5 x 150 mm), or 0.1 mL/min (1.0 x 150 mm). Mobile phase A was composed of 0.1%
143 difluoroacetic acid, DFA, (Sigma, St. Louis, MO) in water and mobile phase B was composed of
144 0.1% DFA in acetonitrile:n-propanol (1:1, both LC/MS grade from Sigma, St. Louis, MO). DFA
145 was selected as the mobile phase additive based on its balance between chromatographic efficiency
146 and enhanced ionization compared to formic acid and trifluoroacetic acid, respectively [16]. For
147 the 1.0 mm i.d. column, the gradient started at 27%B and was programmed as follows: 0.01 min -
148 27% B, 40.0 min - 36% B, 40.5 min - 80% B, 44.5 min - 80% B, 45.0 min - 27% B, 55.0 min -
149 27% B. For the 1.5 mm i.d. column, the gradient started at 27%B and was programmed as follows:
150 0.5 min - 27% B, 40.5 min - 36% B, 41 min - 80% B, 45 min - 80% B, 45.5 min - 27% B, 50 min
151 - 27% B. For the 2.1 mm i.d. column, the gradient started at 27%B and was programmed as follows
152 to adjust for system dwell volume (478 μ L): 1.7 min - 27% B, 41.7 min - 36% B, 42.2 min - 80%
153 B, 46.2 min - 80% B, 46.7 min - 27% B, 51.2 min - 27% B. Mass analysis was carried out on a Q
154 Exactive HF (Thermo Fisher Scientific, San Jose, CA) operating in full scan mode. The scan range

155 was set to 800 to 4000 m/z at 15,000 resolution, with an automatic gain control (AGC) target of
156 1e6 and a max ion fill time of 250 ms. HESI II (ESI source) probe depth D was used for all
157 columns. To minimize efficiency loss due to post-column connections [17], the column outlet was
158 connected to the HESI source inlet with 50 μ m i.d. x 600 mm length tubing (MarvelXACT, IDEX,
159 Oak Harbor, WA).

160 Analysis of the tryptic digest was conducted with the same LC/MS system equipped with
161 a Halo 2.7 μ m 160 \AA ES-C18 column maintained at 60 $^{\circ}$ C and operated with a flow rate of either
162 0.4 mL/min (2.1 x 150 mm), 0.2 mL/min (1.5 x 150 mm), or 0.1 mL/min (1.0 x 150 mm). Mobile
163 phase A was composed of 0.1% DFA in water and mobile phase B was composed of 0.1% DFA
164 in acetonitrile. For the 1.0 mm i.d. column, the gradient started at 2% B and was programmed as
165 follows: 0.01 min - 2% B, 60.0 min - 50% B, 60.5 min - 80% B, 64.5 min - 80% B, 65.0 min - 2%
166 B, 75 min - 2% B. For the 1.5 mm i.d. column, the gradient started at 2% B and was programmed
167 as follows: 0.5 min - 2% B, 60.5 min - 50% B, 61 min - 80% B, 65 min - 80% B, 65.5 min - 2%
168 B, 70 min - 2% B. For the 2.1 mm i.d. column, the gradient started at 2% B and was programmed
169 as follows to adjust for system dwell volume: 1.7 min - 2% B, 61.7 min - 50% B, 62.2 min - 80%
170 B, 66.2 min - 80% B, 66.7 min - 2% B, 71.2 min - 2% B. Here, the scan range for the MS was set
171 to 300 to 2000 m/z at 120,000 resolution, with an AGC target of 3e6 and a max ion fill time of 50
172 ms. HESI II probe depth D was used for both columns here as well.

173

174 3. Results and Discussion

175 A recent study comparing the use of 1.5 and 2.1 mm i.d. columns described a small
176 decrease in peak MS signal for analyses using the 1.5 mm i.d. column when the injected sample
177 volumes were scaled to account for the smaller internal diameter compared to the 2.1 mm i.d.
178 column [7]. This observation was attributed to the slightly wider peaks observed on 1.5 mm i.d.
179 columns, which arise due to the larger impact of extra-column dispersion when using an identical
180 instrument for both column types. The focus of this study is to compare the measured signal
181 between these two column types when injecting identical sample volumes. In an initial test of a
182 simpler mixture with absorbance detection, simply swapping the column and decreasing the flow
183 rate by half (to maintain similar linear velocity) yielded a two-fold increase in area counts on two
184 separate instruments (**Figure 1**). This increase arises from the same sample mass being contained
185 within a smaller diluent volume (lower flow rate and lower inter- and intraparticle volumes

186 normalized for column length). Thus, the sample is less diluted on the 1.5 mm i.d. column, leading
187 to higher concentrations and consequently higher absorbance peak area signal.

188 The two-fold increase in peak area signal did not necessarily lead to an equivalent increase
189 in peak height in **Figure 1**, as observed changes in peak width between the two column diameters
190 must be considered. In comparing the change in apparent plate count with retention factor for the
191 four peaks shown in Figure 1 (see **Figure S1**), the expected increase in efficiency in more retained
192 compounds was observed in both instruments [8]. However, the lower extra-column dispersion of
193 $1.2 \mu\text{L}^2$ on the Nexera instrument equipped with smaller i.d. connecting tubing provided closer
194 performance between the diameters than was observed on the Vanquish instrument using standard
195 connections that had a higher extra-column dispersion value of $4.3 \mu\text{L}^2$. Specifically, for the
196 naphthalene peak ($k' \sim 3.3$), the plate counts dropped 15% with the lower dispersion system
197 between the 2.1 and 1.5 mm i.d. columns, while there was a 24% drop on the higher dispersion
198 system. A van Deemter plot showing similar performance for the naphthalene peak between the
199 two columns across a range of linear velocities is shown in **Figure S2**. In the previous study where
200 injection volumes were scaled relative to the column diameter [7], the losses were not as
201 significant, but this is because the extra-column effect decreases in the smaller i.d. column with
202 the lower injection volume. In those comparisons, the measured efficiencies of the 1.5 and 2.1 mm
203 i.d. columns began to overlap at k' values above 5, and so a similar effect would be expected here
204 at slightly higher retention factors due to the identical injection volumes. In terms of impact on
205 quantitative analysis, most analytical calibrations of chromatographic methods use peak area as
206 the measured signal. However, in terms of calculating detection limits in relation to the signal
207 above the baseline noise, the peak height is also relevant. For less retained analytes, the peak height
208 is only slightly higher on the 1.5 mm i.d. columns due to the wider peaks. However, at $k' \sim 3.3$,
209 the peak height ratio between the columns is 1.7 on the Nexera system and 1.6 on the Vanquish,
210 thus providing a commensurate increase in sensitivity as related to peak signal. All of these
211 calculations on isocratic performance focus specifically on 100 mm length columns packed with
212 $2.7 \mu\text{m}$ superficially porous particles, as those were the focus on the previous and current work
213 under these operating conditions. In previous work, the column volume of the $1.5 \times 100 \text{ mm}$
214 column used here was determined to be $100 \mu\text{L}$, so the column can most effectively be used on
215 systems with extra-column volumes less than $10 \mu\text{L}$ [7]. The $2.1 \times 100 \text{ mm}$ column volume was
216 determined to be $173 \mu\text{L}$, thus increasing the range of acceptable system volume to $17 \mu\text{L}$ [7]. The

217 effects of extra-column dispersion are related to their variance contribution relative to the column
218 variance contribution, so factors that would lead to lower overall column volume such as smaller
219 particle diameters and shorter column lengths would further increase the efficiency differences
220 between the column diameters. For example, if the columns used in this comparison were
221 decreased to 50 mm lengths, the 1.5 mm i.d. column may exceed the acceptable 10% extra-column
222 volume limit [18] on a system with 8 μ L of extra column volume, while the shorter 2.1 mm i.d.
223 column would not. Alternatively, increasing the column volume with fully porous particle
224 morphologies and longer column lengths would reduce the overall impact of extra-column
225 dispersion.

226 Upon confirming this expected outcome using absorbance detection, the primary focus of
227 this investigation was to measure differences in MS signal between 1.5 mm and 2.1 mm i.d.
228 columns, specifically for mAb analysis with identical mass loads on column. When compared to
229 the 2.1 mm i.d. column, the 1.5 mm column exhibited an approximately two-to-threelfold increase
230 in total ion current (TIC, 800 – 4000 m/z) integrated area counts for intact trastuzumab (G0/G0F
231 average mass: 147,910 Da, **Figures 2a** and **S3a**), light chain (23,446 Da, corrected for
232 iodoacetamide groups) and heavy chain (G0F: 50,613 Da, corrected for iodoacetamide groups)
233 trastuzumab subunits (**Figures 2b** and **S3b**), and F_c (G0F: 25,230 Da) and F_{ab} (97,628 Da)
234 trastuzumab subunits (**Figures 2c** and **S3c**). The deconvoluted masses were nearly identical
235 between the column diameters, with an average Δm of 0.7 Da for all peaks. The TIC area ratio
236 (TIC Area Ratio = TIC Area_{1.5mm}/TIC Area_{2.1mm}) for intact trastuzumab was 3.3; for light and
237 heavy chain subunits, the ratios were 2.4 and 2.1, respectively; and for the crystallizable (F_c) and
238 antigen-binding (F_{ab}) region subunits, the ratios were 3.1 and 2.7, respectively. Due to the
239 similarity between the inter-column charge state envelopes observed (**Figures S4-S6**), the full scan
240 range (800 – 4000 m/z) was used for the quantitative comparison of intact and subunit TIC
241 chromatograms. The deconvoluted masses based on these data were the same on both column
242 dimensions.

243 Considering extra-column dispersion effects for these gradient separations primarily
244 focuses on post-column effects, as some peak focusing that reduces the broadening caused by
245 injection and inlet connecting tubing is expected to occur [17]. Here, the outlet tubing volume was
246 reduced to 1.2 μ L to further minimize peak broadening between the column outlet and the detector.
247 In terms of comparing the height ratio in the context of wider bands on the 1.5 mm i.d. column

248 due to instrument broadening under gradient conditions, the F_{ab} peak can be used for comparison
249 as it elutes far enough into the gradient separation window that differences due to delays in the
250 gradient timetable to account for dwell volume are minimized [19]. In this instance, the peak height
251 ratio between the 1.5 mm i.d. and 2.1 mm i.d. columns was 2.0 for the F_{ab} peak. As with the
252 isocratic measurements, it is slightly lower than the area ratio because of the post-column
253 broadening effects, as the peak width at half-height for the F_{ab} fragment was 0.22 min on the 2.1
254 mm i.d. column and 0.27 min on the 1.5 mm i.d. column. However, this calculation is more
255 complex when MS detection is used compared to UV absorbance detection. Enhanced area ratios
256 above the expected value of 2 (and less than 2 for height ratios due to broadening) can likely be
257 attributed to the lower flow rates that are used with the 1.5 mm i.d. column, as this parameter
258 provides a more favorable desolvation condition for ESI in which ion formation can proceed via
259 an ion evaporation-like mechanism [20,21]. In **Figure S7**, the F_{ab} on a 1.0 mm i.d. column with
260 identical sample concentration and injection volume is shown. Again, the flow rate is reduced by
261 half to 0.1 mL/min, but the peak height ratio is only 1.3 for the F_{ab} peak when compared to the 1.5
262 mm i.d. column, as its peak width at half-height is increased to 0.52 min. In this example
263 comparison, and similarly for other peaks shown on all three columns in **Figure 2**, peak height
264 increases moving from 2.1 mm i.d. down to 1.0 mm i.d., although the trend diminishes moving to
265 1.0 mm i.d. columns, partially because of post-column dispersion effects. In practice, it is likely
266 that further optimization to enhance spray efficiency would be performed when moving from a 2.1
267 mm i.d. column to a 1.0 mm i.d. column, but these results demonstrate that more immediate
268 benefits can be observed without instrument tuning simply by reducing the column diameter to 1.5
269 mm i.d. and decreasing the flow rate by half.

270 Comparing the TIC chromatograms obtained for mAb tryptic peptides when using columns
271 with different diameters was more challenging due to the complexity of the sample mixture. The
272 MS full scan tryptic digest chromatograms obtained using 1.5 mm i.d. and 2.1 mm i.d. columns
273 (**Figure 3**, 300 – 2000 m/z, 1.0 mm i.d. chromatogram also shown for reference) contained
274 numerous peptides of varying sizes, many of which were not chromatographically resolved during
275 the analysis. To simplify the comparison, inter-column peptide area ratios were calculated using
276 extracted ion current (XIC) chromatograms. For a single given charge state and m/z value, the XIC
277 area ratio (XIC Area Ratio = XIC Area_{1.5mm}/XIC Area_{2.1mm}) provided an initial comparison.
278 However, as charge state distribution differed between each column diameter, the peak areas of

279 the two most intense observed charge states were added to calculate a summed area ratio for several
280 peptides from the trastuzumab tryptic digest. Of the peptides that exhibited multiple charge states
281 ($M+nH$) $^{n+}$, the 1.5 mm i.d. column often yielded tryptic peptide species with increased relative
282 signal intensity at higher charge state occupancies (light chain peptides **Table S1** and **Figure S8**;
283 heavy chain peptides **Table S2** and **Figure S9**). For example, as shown in **Figure 4**, the XIC area
284 ratio obtained for both of the heavy chain (HC) peptides HC06 and HC07 was 1.3 when $Z=2$ (*i.e.*
285 $[M+2H]^{2+}$). The value increased to 8.2 and 4.9, respectively, for HC06 and HC07 when $Z=3$ (*i.e.*
286 $[M+3H]^{3+}$). The summed area ratios for HC06 and HC07 were then calculated as 1.6 and 1.5,
287 respectively. Peptide HC11 had an XIC area ratio of 0.9 at $Z = 2$, exhibiting similar signal on both
288 column diameters. At the higher charge state of $Z = 3$, the value increased to 1.9, for an overall
289 summed area ratio of 1.7 (**Figure 4b**). In general, the 1.5 mm i.d. column yielded peptides with
290 1.7-fold higher signal and modest increases in relative signal at higher charge state occupancies
291 compared to the 2.1 mm i.d. column. As previously mentioned, differences in ESI at different flow
292 rates likely play a role in this observation. Similarly to the larger molecules in Figure 2, the height
293 increase observed going from 2.1 mm i.d. down to 1.5 mm i.d. is diminished when moving to 1.0
294 mm i.d. even with larger area, as the bands tend to broaden more here (**Figure 4**).

295 The value in producing peptide ions with greater intensity and at higher charge states on
296 the 1.5 mm i.d. column may lie in the utility of performing fragmentation experiments on these
297 higher-charge-state species. Peptide ions with $Z \geq 2$ provide structurally informative fragmentation
298 spectra when they are collisionally-activated [22], for example, by CID or HCD. Fragmentation of
299 peptide ions ($Z \geq 3$) by ETD also produces informative spectra [23], which can be useful in the
300 assignment of PTM positions.

301

302 4. Conclusions

303 By solely reducing the column i.d. from 2.1 mm to 1.5 mm and scaling the mobile phase
304 flow rate to the column's optimal linear mobile phase velocity, maintaining all other system
305 settings and instrument connections the same, a two-fold increase in UV area count for a selection
306 of small molecule standards as well as a two-fold or greater increase in TIC area counts was
307 observed for intact mAb and mAb subunits (light chain, heavy chain, F_c , and F_{ab}). The peak heights
308 do not necessarily scale to the same two-fold factor, as slight differences in broadening with lower
309 volume columns due to system dispersion and benefits to ionization signal at lower flow rates both

310 occur. To fully realize the highest performance of 1.5 mm i.d. columns, care should be taken to
311 minimize system dispersion, although the requirements are not as stringent as may be required for
312 1.0 mm i.d. columns. A two-fold average increase in the XIC peak area was also observed for
313 tryptic peptides when the contribution from the two highest peptide charge states was used to
314 calculate a summed area ratio. By reducing the column internal diameter to 1.5 mm, and
315 consequently reducing the mobile phase flow rate required for operation at the optimal linear
316 mobile phase velocity, solvent consumption decreased by half. The ease of implementing 1.5 mm
317 columns into analytical workflows to gain a two-fold or greater increase in UV peak area signal or
318 XIC/TIC for bottom-up and top-down LC/MS, can address the challenges of establishing sensitive
319 methods for clinical and industrial analyses.

320

321 **Acknowledgements**

322 The authors would like to thank Tiffany Jones and Jason Lawhorn for column preparation.
323 Andrew Harron is also thanked for insightful discussions regarding mass spectrometry ionization.
324 This work was supported in part by the NIH/NIGMS [GM116224 to BEB]. The content is solely
325 the responsibility of the authors and does not necessarily represent the official views, or imply
326 endorsement, of the National Institute of Health. The Grinias Lab would like to thank Thermo
327 Fisher Scientific for the loan of the Vanquish Horizon UHPLC system and acknowledges funding
328 in part from the Chemical Measurement and Imaging Program in the National Science Foundation
329 Division of Chemistry under Grant CHE-2045023.

330

331

332

333 **Declaration of Competing Interest**

334 BPL and BEB are employed by a company that manufactures some of the materials
335 referenced in this article.

336

337

338 **References**

- 339 [1] K. Sandra, I. Vandenheede, P. Sandra, Modern chromatographic and mass spectrometric
340 techniques for protein biopharmaceutical characterization, *J. Chromatogr. A.* 1335 (2014)
341 81–103. <https://doi.org/10.1016/J.CHROMA.2013.11.057>.
- 342 [2] S.R. Bakalyar, C. Phipps, B. Spruce, K. Olsen, Choosing sample volume to achieve
343 maximum detection sensitivity and resolution with high-performance liquid
344 chromatography columns of 1.0, 2.1 and 4.6 mm I.D., *J. Chromatogr. A.* 762 (1997) 167–
345 185. [https://doi.org/10.1016/S0021-9673\(96\)00851-5](https://doi.org/10.1016/S0021-9673(96)00851-5).
- 346 [3] F. Gritti, A stochastic view on column efficiency, *J. Chromatogr. A.* 1540 (2018) 55–67.
347 <https://doi.org/10.1016/j.chroma.2018.02.005>.
- 348 [4] F. Gritti, M.F. Wahab, Understanding the science behind packing high-efficiency columns
349 and capillaries: Facts, fundamentals, challenges, and future directions, *LC-GC North Am.*
350 36 (2018) 82–98.
- 351 [5] F. Lestremau, D. Wu, R. Szücs, Evaluation of 1.0mm i.d. column performances on ultra
352 high pressure liquid chromatography instrumentation, *J. Chromatogr. A.* 1217 (2010)
353 4925–4933. <https://doi.org/10.1016/j.chroma.2010.05.044>.
- 354 [6] N. Wu, A.C. Bradley, C.J. Welch, L. Zhang, Effect of extra-column volume on practical
355 chromatographic parameters of sub-2-m particle-packed columns in ultra-high pressure
356 liquid chromatography, *J. Sep. Sci.* 35 (2012) 2018–2025.
357 <https://doi.org/10.1002/jssc.201200074>.
- 358 [7] S. Fekete, A. Murisier, G.L. Losacco, J. Lawhorn, J.M. Godinho, H. Ritchie, B.E. Boyes,
359 D. Guillarme, Using 1.5 mm internal diameter columns for optimal compatibility with
360 current liquid chromatographic systems, *J. Chromatogr. A.* 1650 (2021) 462258.
361 <https://doi.org/10.1016/j.chroma.2021.462258>.
- 362 [8] L.R. Snyder, J.J. Kirkland, J.W. Dolan, *Introduction to Modern Liquid Chromatography*,
363 3rd ed., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010.
364 <https://doi.org/10.1002/9780470508183>.
- 365 [9] R.S. Rogers, M. Abernathy, D.D. Richardson, J.C. Rouse, J.B. Sperry, P. Swann, J.
366 Wypych, C. Yu, L. Zang, R. Deshpande, A View on the Importance of “Multi-Attribute
367 Method” for Measuring Purity of Biopharmaceuticals and Improving Overall Control
368 Strategy, *AAPS J.* 20 (2018) 7. <https://doi.org/10.1208/s12248-017-0168-3>.
- 369 [10] S. Rogstad, H. Yan, X. Wang, D. Powers, K. Brorson, B. Damdinsuren, S. Lee, Multi-
370 Attribute Method for Quality Control of Therapeutic Proteins, *Anal. Chem.* 91 (2019)
371 14170–14177. <https://doi.org/10.1021/acs.analchem.9b03808>.
- 372 [11] Y. Huang, R. Molden, M. Hu, H. Qiu, N. Li, Toward unbiased identification and
373 comparative quantification of host cell protein impurities by automated iterative LC–
374 MS/MS (HCP-AIMS) for therapeutic protein development, *J. Pharm. Biomed. Anal.* 200
375 (2021) 114069. <https://doi.org/10.1016/j.jpba.2021.114069>.

- 376 [12] M.T. Furlong, Z. Ouyang, S. Wu, J. Tamura, T. Olah, A. Tymiak, M. Jemal, A universal
 377 surrogate peptide to enable LC-MS/MS bioanalysis of a diversity of human monoclonal
 378 antibody and human Fc-fusion protein drug candidates in pre-clinical animal studies,
 379 *Biomed. Chromatogr.* 26 (2012) 1024–1032. <https://doi.org/10.1002/bmc.2759>.
- 380 [13] C. Gong, N. Zheng, J. Zeng, A.F. Aubry, M.E. Arnold, Post-pellet-digestion precipitation
 381 and solid phase extraction: A practical and efficient workflow to extract surrogate peptides
 382 for ultra-high performance liquid chromatography - tandem mass spectrometry bioanalysis
 383 of a therapeutic antibody in the low n, *J. Chromatogr. A.* 1424 (2015) 27–36.
 384 <https://doi.org/10.1016/j.chroma.2015.10.049>.
- 385 [14] L. Qiaozhen, Z. Xiaoyang, T. McIntosh, H. Davis, J.F. Nemeth, C. Pendley, S.L. Wu,
 386 W.S. Hancock, Development of different analysis platforms with LC-MS for
 387 pharmacokinetic studies of protein drugs, *Anal. Chem.* 81 (2009) 8715–8723.
 388 <https://doi.org/10.1021/ac901991x>.
- 389 [15] P.L. Urban, Clarifying Misconceptions about Mass and Concentration Sensitivity, *J.
 390 Chem. Educ.* 93 (2016) 984–987. <https://doi.org/10.1021/acs.jchemed.5b00986>.
- 391 [16] M.W. Dong, B.E. Boyes, Modern trends and best practices in mobile-phase selection in
 392 reversed-phase chromatography, *LC-GC North Am.* 36 (2018) 752–768.
- 393 [17] K. Vanderlinden, K. Broeckhoven, Y. Vanderheyden, G. Desmet, Effect of pre- and post-
 394 column band broadening on the performance of high-speed chromatography columns
 395 under isocratic and gradient conditions, *J. Chromatogr. A.* 1442 (2016) 73–82.
 396 <https://doi.org/10.1016/j.chroma.2016.03.016>.
- 397 [18] S. Fekete, I. Kohler, S. Rudaz, D. Guillarme, Importance of instrumentation for fast liquid
 398 chromatography in pharmaceutical analysis, *J. Pharm. Biomed. Anal.* 87 (2014) 105–119.
 399 <https://doi.org/10.1016/j.jpba.2013.03.012>.
- 400 [19] U.D. Neue, D.H. Marchand, L.R. Snyder, Peak compression in reversed-phase gradient
 401 elution, *J. Chromatogr. A.* 1111 (2006) 32–39.
 402 <https://doi.org/10.1016/j.chroma.2006.01.104>.
- 403 [20] J. V. Iribarne, B.A. Thomson, On the evaporation of small ions from charged droplets, *J.
 404 Chem. Phys.* 64 (1976) 2287–2294. <https://doi.org/10.1063/1.432536>.
- 405 [21] J. V. Iribarne, B.A. Thomson, Field induced ion evaporation from liquid surfaces at
 406 atmospheric pressure, *J. Chem. Phys.* 71 (1979) 4451–4463.
 407 <https://doi.org/10.1063/1.438198>.
- 408 [22] K.M. Downard, K. Biemann, The effect of charge state and the localization of charge on
 409 the collision-induced dissociation of peptide ions, *J. Am. Soc. Mass Spectrom.* 5 (1994)
 410 966–975. [https://doi.org/10.1016/1044-0305\(94\)80015-4](https://doi.org/10.1016/1044-0305(94)80015-4).
- 411 [23] T.Y. Huang, S.A. McLuckey, Gas-phase chemistry of multiply charged bioions in
 412 analytical mass spectrometry, *Annu. Rev. Anal. Chem.* 3 (2010) 365–385.
 413 <https://doi.org/10.1146/annurev.anchem.111808.073725>.

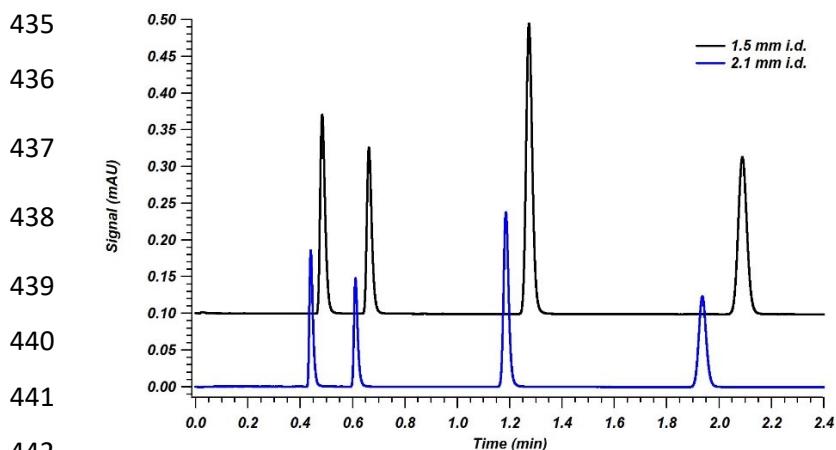
414 **Figure Captions**

415 **Figure 1.** Comparison of 1.5 mm i.d. (black trace) and 2.1 mm i.d. (blue trace) columns for the
416 separation of uracil, phenol, 1-chloro-4-nitrobenzene, and naphthalene under isocratic conditions
417 using a Nexera X2 UHPLC instrument (top) and Vanquish Horizon UHPLC instrument (bottom).

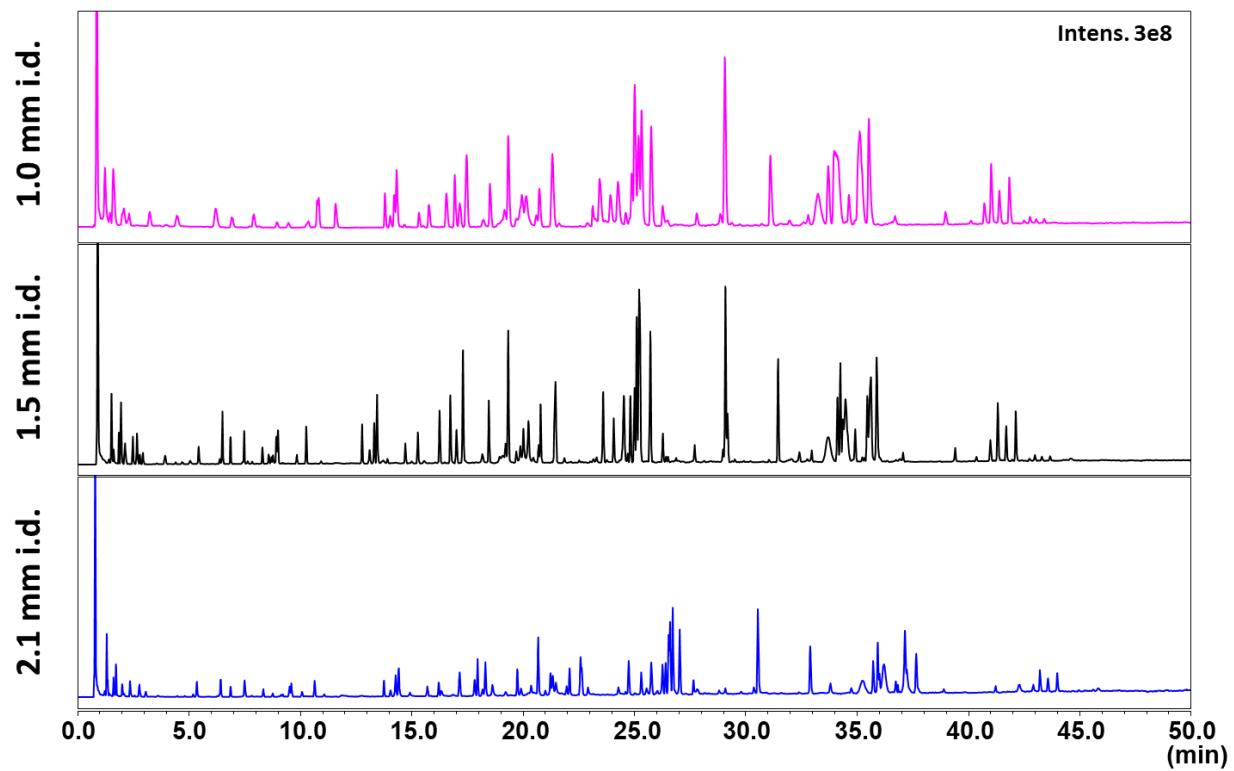
418

419 **Figure 2.** The 1.0 x 150 mm (top, pink traces), 1.5 x 150 mm (middle, black traces), and 2.1 x 150
420 mm (bottom, blue traces) Halo 1000 Å Diphenyl 2.7 μ m columns showing MS full scan [800-4000
421 m/z, 3-point moving average smoothing applied] chromatograms. 2.8 μ g of intact trastuzumab (a),
422 1.6 μ g reduced and alkylated trastuzumab and inset of light-chain peak (b), and 2 μ g of IdES-
423 digested trastuzumab (c) were analyzed on each column.

424

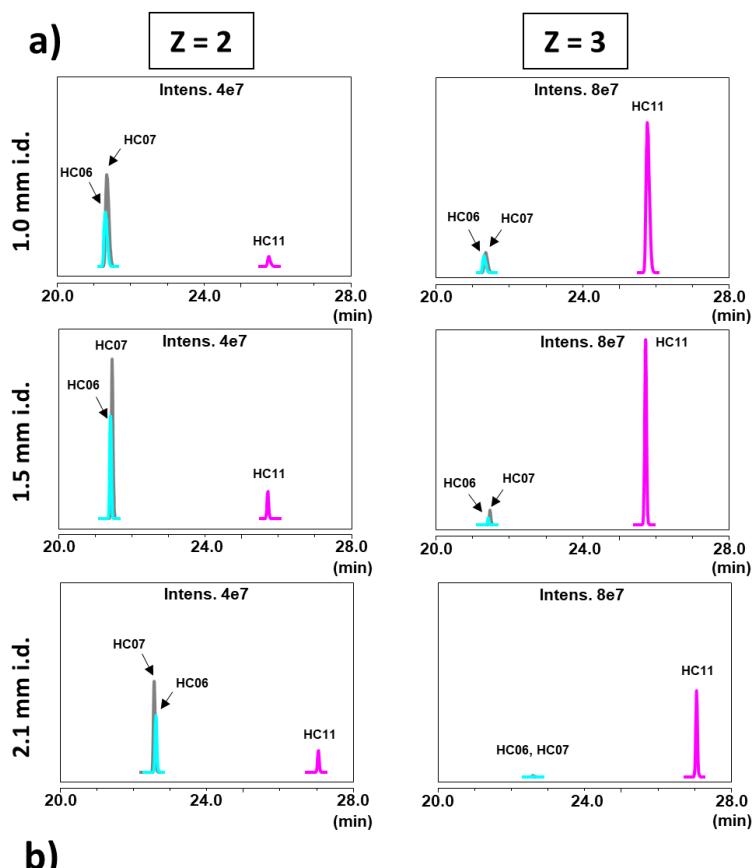
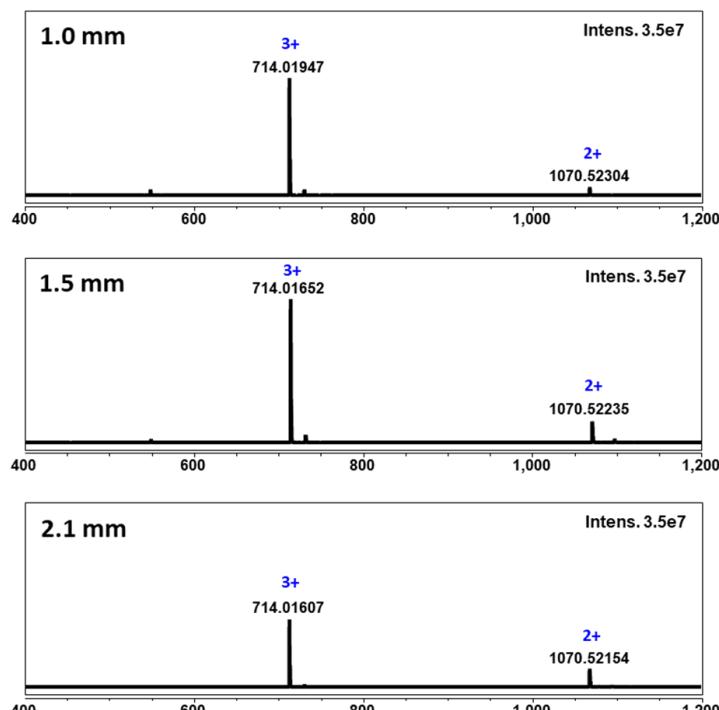

425 **Figure 3.** Separation of 1 μ g of trastuzumab tryptic digest on 1.0 x 150 mm (top, pink) 1.5 x 150
426 mm (middle, black) and 2.1 x 150 mm (bottom, blue) Halo 160 Å ES-C18 2.7 μ m columns with
427 MS detection (full scan [300-2000 m/z]).

428


429 **Figure 4.** (a). The extracted ion currents (XIC) of peptides HC06, HC07, and HC11 from a
430 trastuzumab tryptic digest, (**Table S2**). The XIC for Z=2 (left panels) and Z=3 (right panels) for
431 1.0, 1.5, and 2.1 mm i.d. columns are shown. (b) Charge envelope comparison of heavy chain
432 peptide HC11 observed using the 1.0, 1.5, and 2.1 mm i.d. columns.

433

434 **Figure 1.**



454 **Figure 3.**

455

456

457

458 **Figure 4.****b)**

460 **Implementing 1.5 mm Internal Diameter Columns into mAb Analytical Workflows**

461

462 Benjamin P. Libert¹, Justin M. Godinho^{1,‡}, Samuel W. Foster², James P. Grinias^{2,*}, Barry E.
463 Boyes^{1,*}

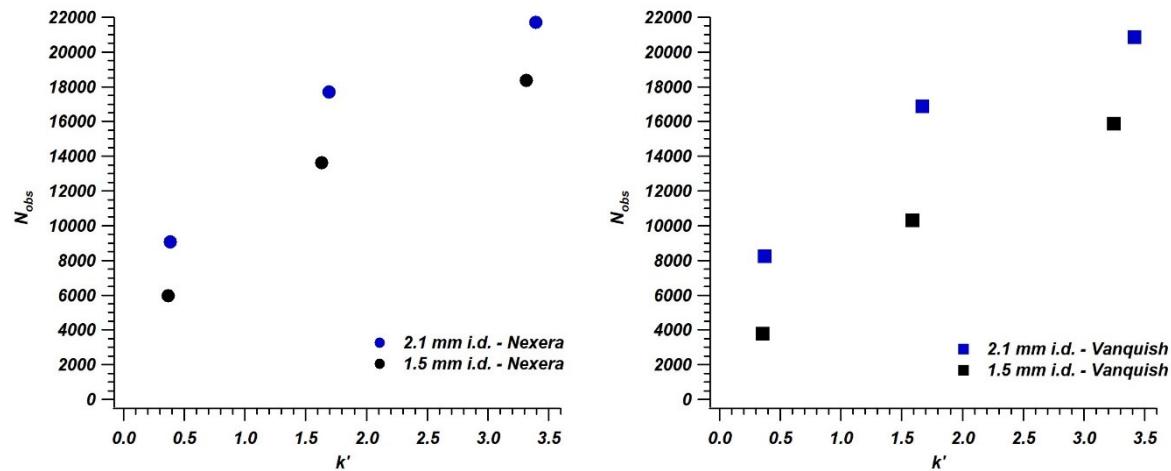
464 ¹ Advanced Materials Technology, Inc., 3521 Silverside Road, Wilmington, DE, 19810, USA

465 ² Rowan University, Department of Chemistry & Biochemistry, 201 Mullica Hill Rd., Glassboro,
466 NJ 08028, USA

467 *Corresponding authors: BBoyes@Advanced-Materials-Tech.com, grinias@rowan.edu

468 [‡]Current address: CMC Analytical, GlaxoSmithKline, King of Prussia, PA 19406, USA

469

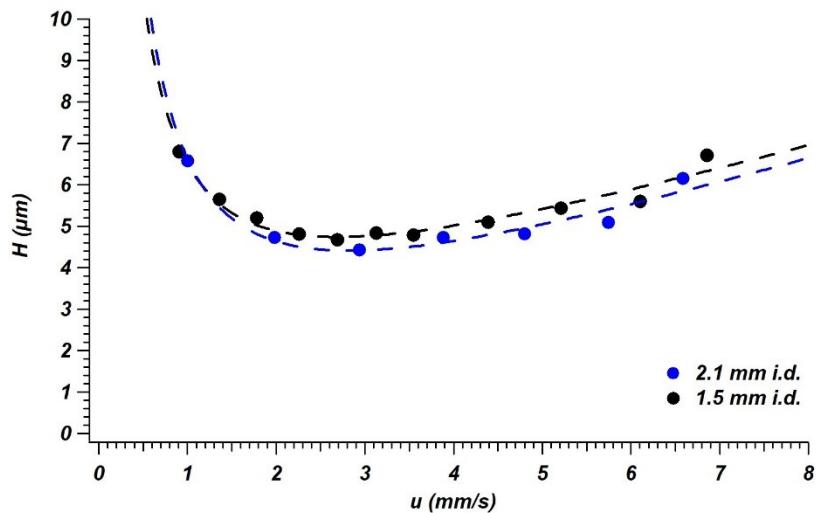

470 **Supporting Information**

471

472 **SI.1. Separation Efficiency for Isocratic Separations**

473

474



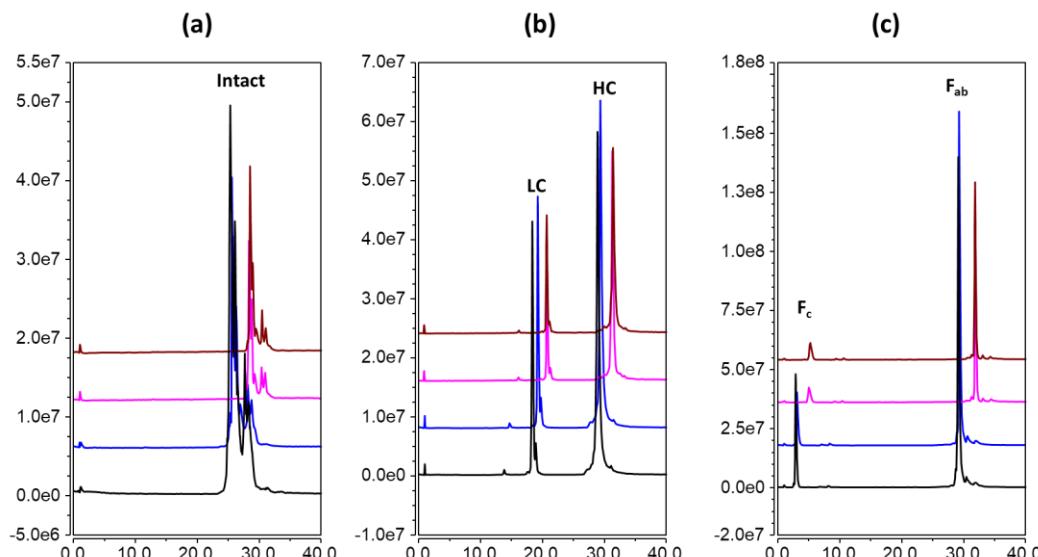
475

476

477 **Figure S1.** Relationship between observed plate count (N_{obs}) and retention factor (k') for
478 separations shown in Figure 1. The left panel represents separations performed on the Nexera
479 instrument and the right panel represents separations performed on the Vanquish instrument.

480

481

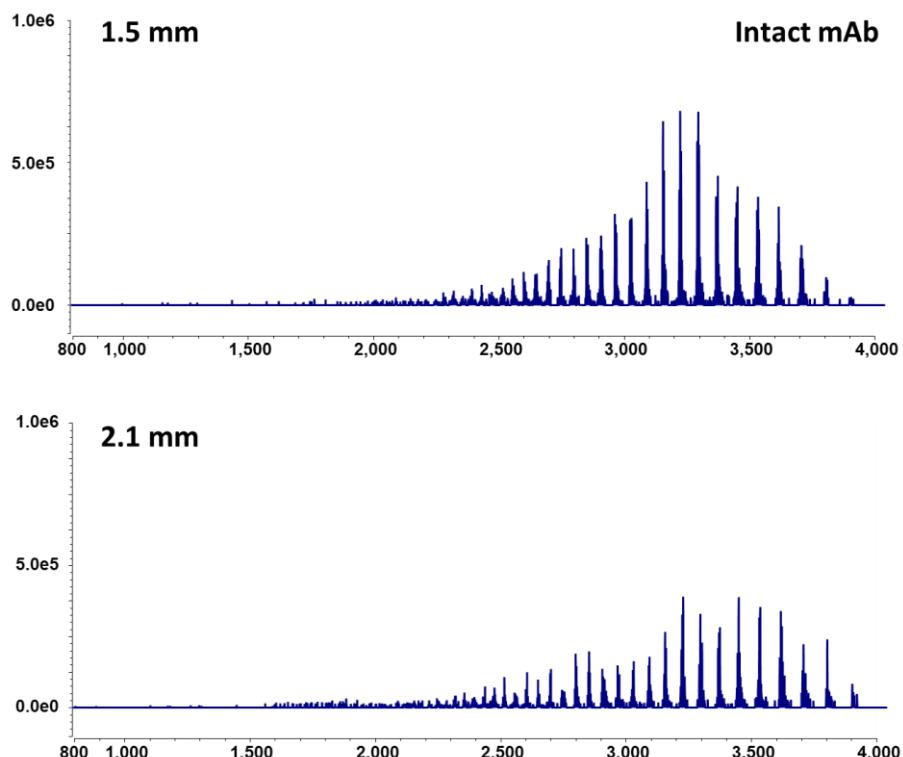

482

483 **Figure S2.** Comparison of van Deemter plots for naphthalene peak ($k' \sim 3.3$) on 1.5 mm and 2.1
 484 mm i.d. columns on Nexera instrument. The H values are experimentally observed and not
 485 corrected for extra-column effects.

486

487 **SI.2. Replicate Injections of Various Trastuzumab Samples**

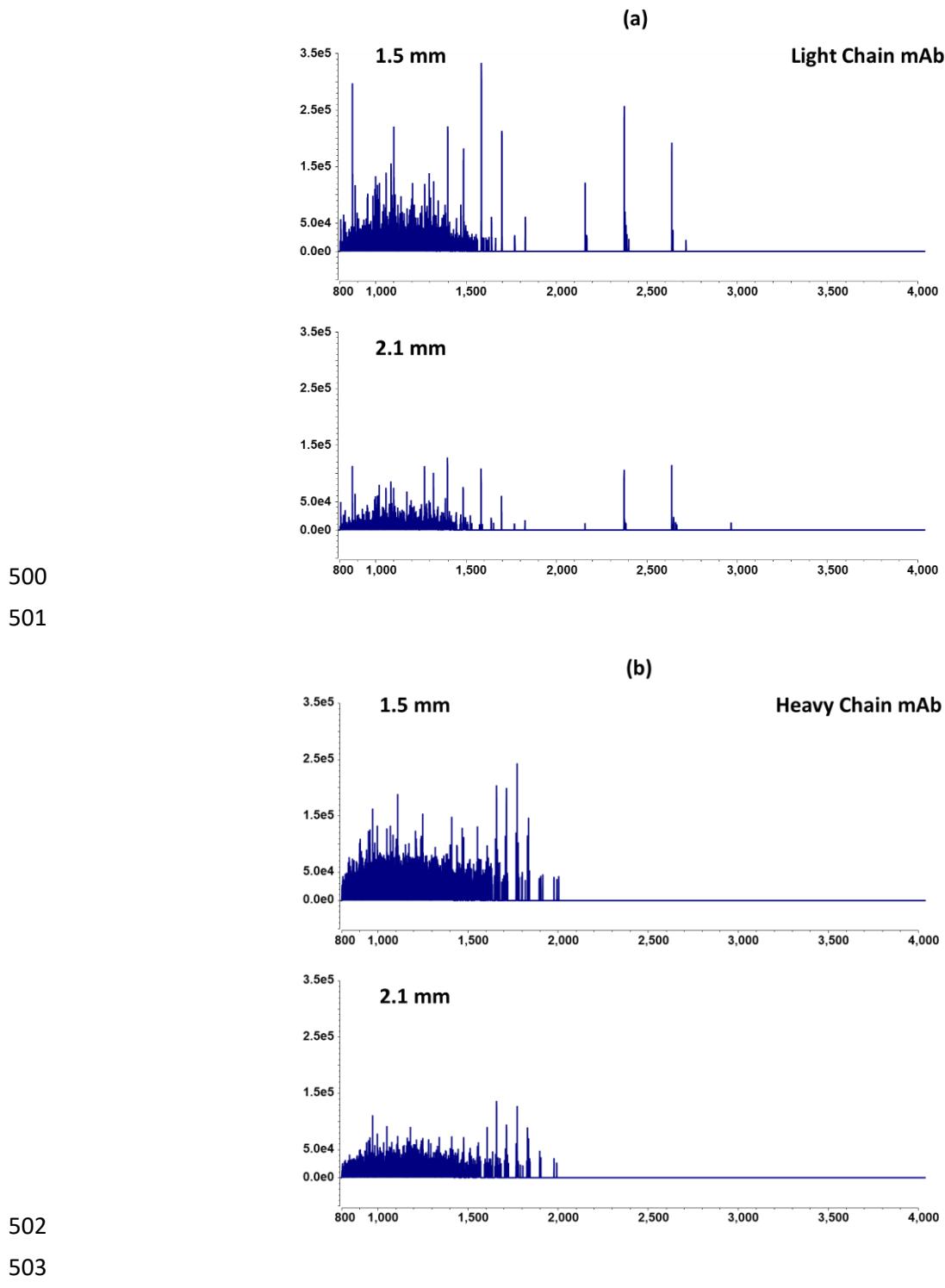
488



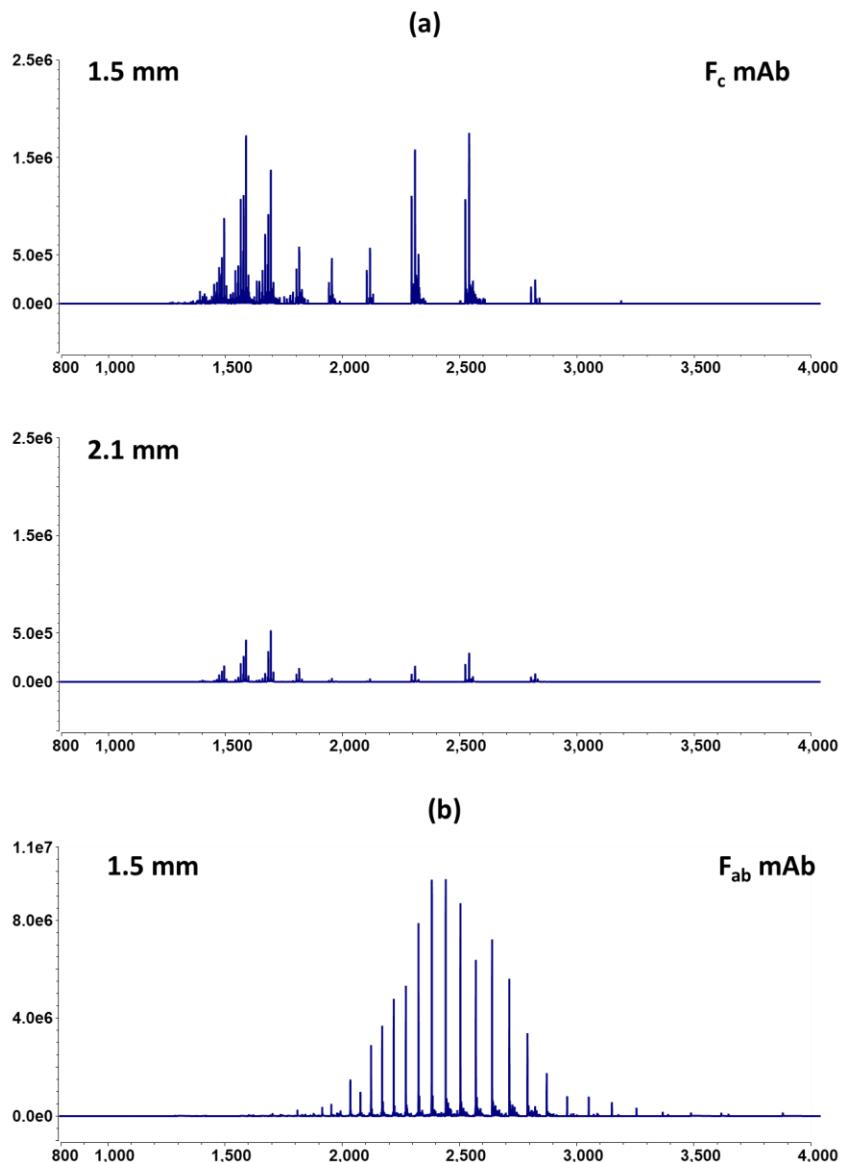
489

490 **Figure S3.** (a) Replicate injections of intact mAb on 1.5 mm i.d. column (blue/black) and 2.1 mm
 491 i.d. column (pink/brown), (b) replicate injections of reduced and alkylated mAb on 1.5 mm i.d.
 492 column (blue/black) and 2.1 mm i.d. column (pink/brown), and (c) replicate injections of IdeS-
 493 digested mAb on 1.5 mm i.d. column (blue/black) and 2.1 mm i.d. column (pink/brown).

494 **SI.3. Charge State Envelope Comparison**


495

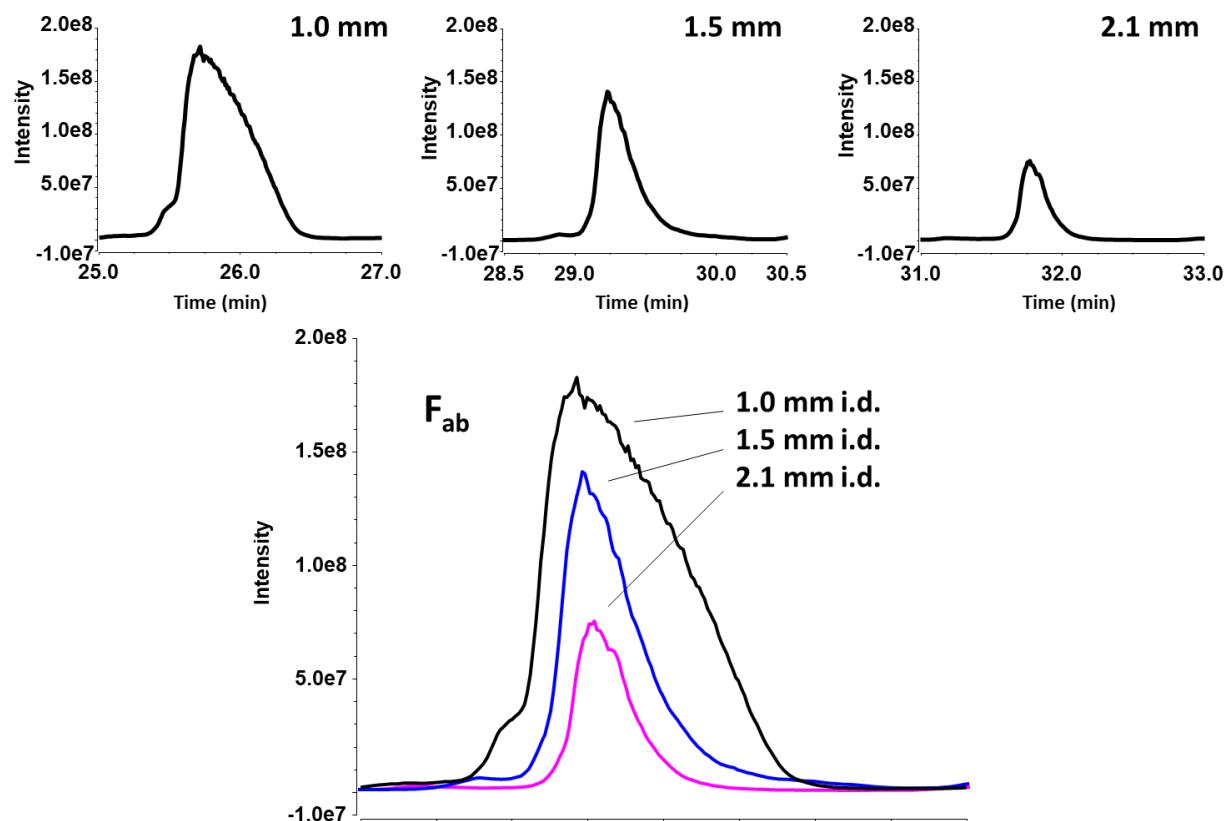
496


497 **Figure S4.** Comparison of charge state envelope for intact sample following elution on 1.5 mm
498 i.d. column (top) and 2.1 mm i.d. column (bottom).

499

Figure S5. Comparison of charge state envelope for reduced and alkylated sample (a) light-chain and (b) heavy-chain trastuzumab following elution on 1.5 mm i.d. column and 2.1 mm i.d. column.

507



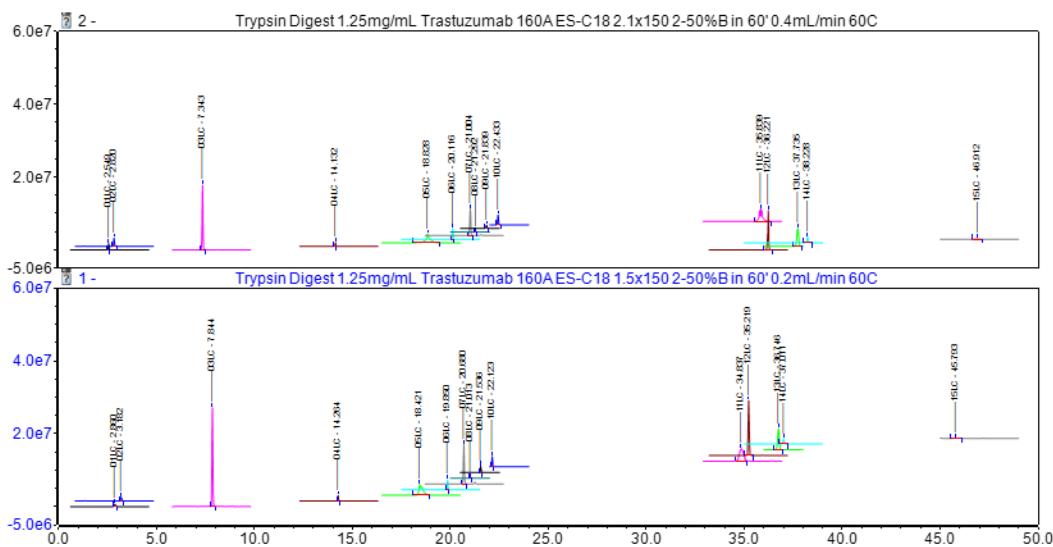
508

509 **Figure S6.** Comparison of charge state envelope for IdeS-digested sample with (a) F_c and (b) F_{ab}
510 regions following elution on 1.5 mm i.d. column and 2.1 mm i.d. column.

511

512

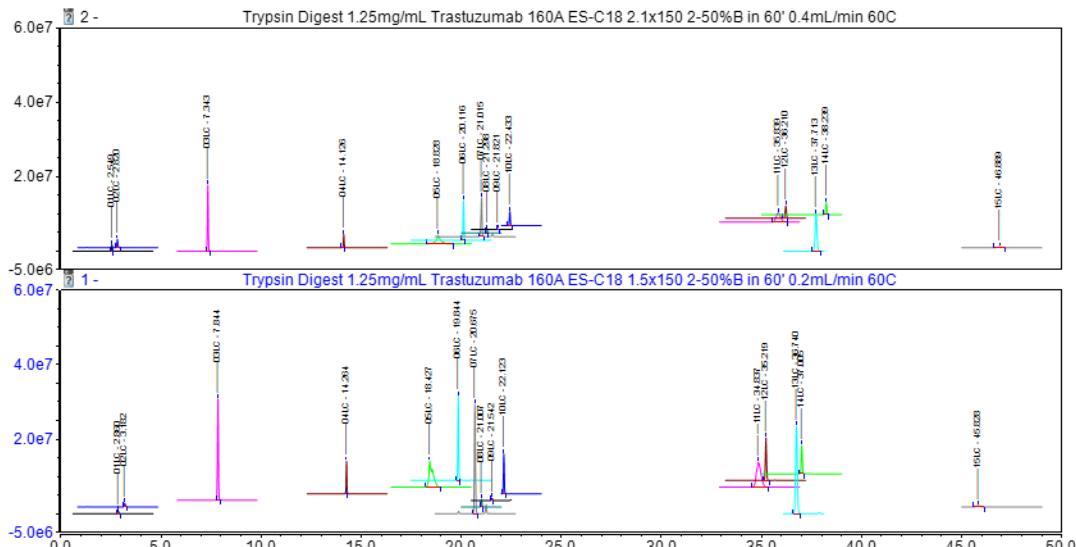
513


514

515 **Figure S7.** Total ion current chromatograms of F_{ab} region peak from trastuzumab IdeS digest on
516 Halo Diphenyl 1000 Å 150 mm 2.7 μ m columns of 1.0, 1.5, and 2.1 mm inner diameters. The
517 bottom trace aligns the peaks to demonstrate differences in peak height and peak width.

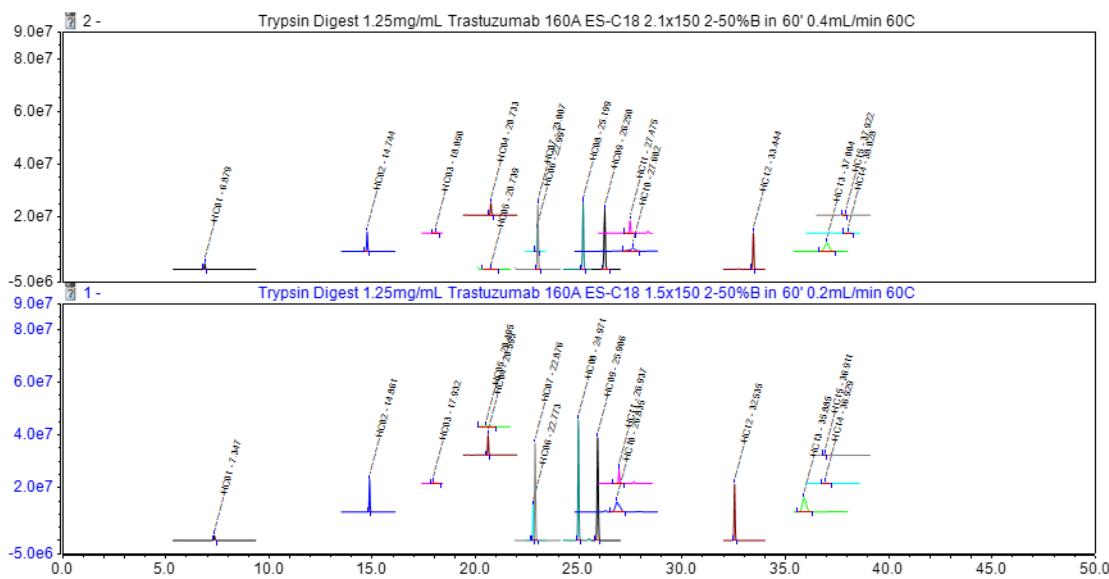
518

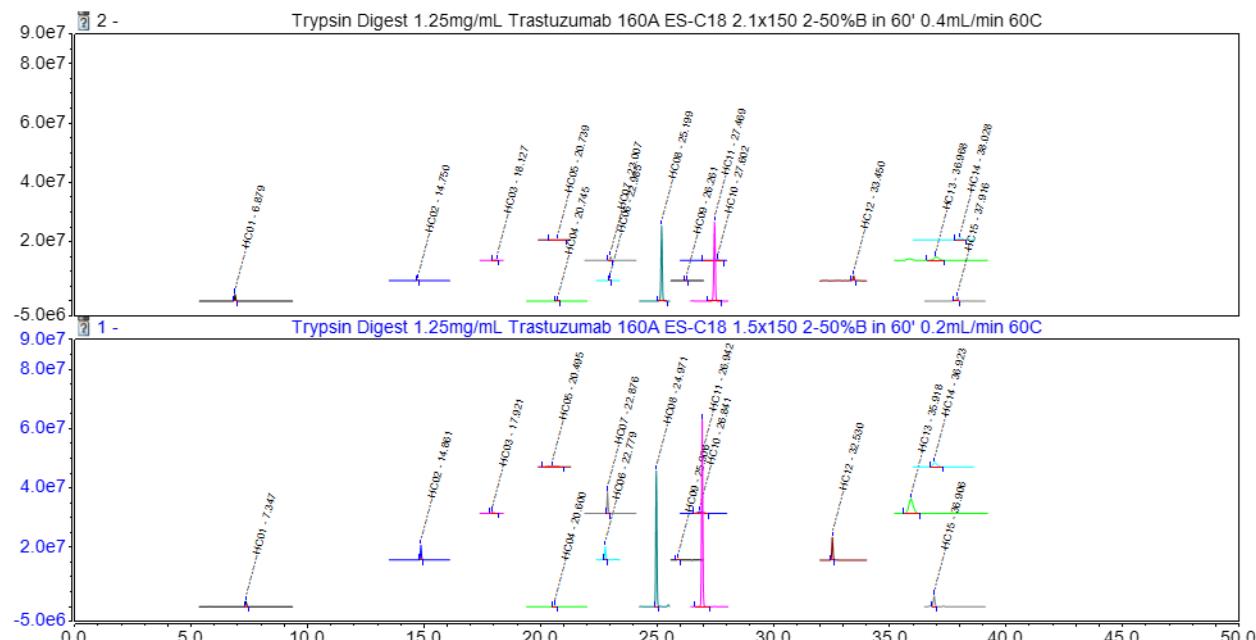
519 **SI.4. Peptide Monitoring for Trypsin-Digested Samples**


520

521

522 **Figure S8a.** Extracted ion chromatograms for light-chain peptides with a charge number of Z,
 523 identified in trypsin-digested sample elution on 1.5 mm i.d. column (bottom) and 2.1 mm i.d.
 524 column (top). Peptide sequences are found in Table 1.


525


526

527 **Figure S8b.** Extracted ion chromatograms for light-chain peptides with a charge number of Z+1,
 528 identified in trypsin-digested sample elution on 1.5 mm i.d. column (bottom) and 2.1 mm i.d.
 529 column (top) with the following exceptions: peptides 01LC, 02LC, and 03LC exhibited only Z.
 530 Peptide sequences are found in Table 1.

531

532
533 **Figure S9a.** Extracted ion chromatograms for heavy-chain peptides with a charge number of Z,
534 identified in trypsin-digested sample elution on 1.5 mm i.d. column (bottom) and 2.1 mm i.d.
535 column (top). Peptide sequences are found in Table 1.

536
537
538 **Figure S9b.** Extracted ion chromatograms for heavy-chain peptides with a charge number of Z+1,
539 identified in trypsin-digested sample elution on 1.5 mm i.d. column (bottom) and 2.1 mm i.d.
540 column (top) with the following exceptions: peptides HC01, HC05, and HC08 exhibited only Z.
541 Peptide sequences are found in Table 1.

543 **Table S1.** Trastuzumab Tryptic Peptides from Light Chain

544

Light Chain Tryptic Peptide	XIC Area Ratio	Charge State (Z, Z+1)	XIC m/z (Z, Z+1)
(K)ADYEK(H)	0.7	1+	625.28, n/a
(R)FSGSR(S)	0.6	1+	553.27, n/a
(K)SFNRGEC(Carbamidomethyl)(-)	1.7	2+	435.18, n/a
(K)VDNALQSGNSQESVTEQDSK(D)	1.9	2+,3+	1068.48, 712.65
(K)HKVYAC(Carbamidomethyl)EVTHQGLSSPVTK(S)	1.8	3+,4+	714.69, 536.27
(K)VYAC(Carbamidomethyl)EVTHQGLSSPVTK(S)	1.6	2+,3+	938.47, 625.98
(R)ASQDVNTAVAWYQQKPGKAPK(L)	2.0	3+,4+	763.07, 572.55
(R)ASQDVNTAVAWYQQKPGK(A)	2.0	2+,3+	996.00, 664.32
(K)VQWKVDNALQSGNSQESVTEQDSK(D)	1.9	3+,4+	893.09, 670.06
(-)DIQMTQSPSSLSASVGDR(V)	1.9	2+,3+	939.93, 626.95
(R)TVAAPSVFIFPPSDEQLK(S)	2.3	2+,3+	973.51, 649.34
(K)LLIYSASFLYSGVPSR(F)	2.3	2+,3+	886.97, 591.65
(K)SGTASVVC(Carbamidomethyl)LLNNFYPR(E)	2.0	2+,3+	899.44, 599.96
(R)SGTDFTLTSSLQPEDFATYYC(Carbamidomethyl)QQHYTTPPTFGQGTK(V)	1.7	3+,4+	1396.62, 1047.72
(R)TVAAPSVFIFPPSDEQLKSGTASVVC(Carbamidomethyl)LLNNFYPR(E)	1.7	3+,4+	1242.29, 931.97

545

546 Z = charge number. Peptides are identified by increasing number, from top to bottom, 01LC-

547 15LC.

548 **Table S2.** Trastuzumab Tryptic Peptides from Heavy Chain

549

Peptide Sequence	XIC Area Ratio	Charge State (Z, Z+1)	XIC m/z (Z, Z+1)
(R)YADSVK(G)	0.9	1+	682.34, n/a
(R)AEDTAVYYC(Carbamidomethyl)SR(W)	1.9	2+,3+	667.78, 445.52
(K)NTAYLQMNSLR(A) oxidation	2.0	2+,3+	663.8, 442.88
(R)LSC(Carbamidomethyl)AASGFNIK(D)	1.5	2+,3+	584.30, 389.86
(R)EPQVYTLPPSR(E)	1.3	2+	643.84, n/a
¹ (K)NTAYLQMNSLR(A)	1.6	2+,3+	655.84, 437.54
² (K)STSGGTAALGC(Carbamidomethyl)LVK(D)	1.5	2+,3+	661.34, 441.22
(K)NQVSLTC(Carbamidomethyl)LVK(G)	1.6	2+	581.32, n/a
(K)GPSVFPLAPSSK(S)	1.5	2+,3+	593.83, 396.20
(R)WQQGNVFSC(Carbamidomethyl)SVMHEALHNHYTQK(S)	2.8	4+,5+	701.07, 561.05
³ (R)TPEVTC(Carbamidomethyl)VVVDVSHEDEPK(F)	1.7	2+,3+	1070.02, 713.66
(K)TPPPVLDSDGSFFLYSK(L)	1.6	2+,3+	937.47, 625.30
(K)SC(Carbamidomethyl)DKTHTC(Carbamidomethyl)PPC (Carbamidomethyl)PAPELLGGPSVFLFPPKPK(D)	2.1	4+,5+	834.40, 667.70
(K)THTC(Carbamidomethyl)PPC(Carbamidomethyl) PAPELLGGPSVFLFPPKPK(D)	1.8	3+,4+	948.80, 711.86
(R)VVSVLTVLHQDWLNGK(E)	1.9	2+,3+	904.50, 603.30

550

551 Z = charge number. ¹HC06. ²HC07. ³HC11. Peptides are identified by increasing number, from
552 top to bottom, HC01-HC15.

553