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ABSTRACT
Longitudinal item response data are common in social science, educational science, and psychology, among
other disciplines. Studying the time-varying relationships between items is crucial for educational assess-
ment or designing marketing strategies from survey questions. Although dynamic network models have
been widely developed, we cannot apply them directly to item response data because there are multiple
systems of nodes with various types of local interactions among items, resulting in multiplex network
structures. We propose a new model to study these temporal interactions among items by embedding the
functional parameters within the exponential random graph model framework. Inference on such models
is difficult because the likelihood functions contain intractable normalizing constants. Furthermore, the
number of functional parameters grows exponentially as the number of items increases. Variable selection
for such models is not trivial because standard shrinkage approaches do not consider temporal trends in
functional parameters. To overcome these challenges, we develop a novel Bayes approach by combining
an auxiliary variable MCMC algorithm and a recently developed functional shrinkage method. We apply our
algorithm to survey and review datasets, illustrating that the proposed approach can avoid the evaluation of
intractable normalizing constants as well as the detection of significant temporal interactions among items.
Through a simulation study under different scenarios, we examine the performance of our algorithm. Our
method is, to our knowledge, the first attempt to select functional variables for models with intractable
normalizing constants. Supplementary materials for this article are available online.
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1. Introduction
In many disciplines, including epidemiology, psychometrics,
political science, and text mining, longitudinal item response
model is widely used to analyze responses to test items collected
over time. Examples include changes in the relationships among
various attributes of hotel text review data (Han et al. 2016), and
longitudinal survey data for reporting the experiences of par-
ticipants in psychology (Geschwind et al. 2011). This has prac-
tical implications; for instance, studying how the relationships
among the sentiment keywords of hotel reviews change over
time can be useful for designing marketing strategies. Network-
based approaches are natural to describe the change in local
interactions among items. However, it is not trivial to recover
such interactions because the resulting network has multiple
systems of nodes with various types of local interactions.

In this article, we propose a new model to directly interpret
the temporal interactions among items for longitudinal network
data. We embed time-varying (or functional) interaction
parameters within well-established exponential random graph
model (ERGM) frameworks. Such models face several computa-
tional and inferential challenges: (i) the models include doubly-
intractable normalizing constants, and (ii) with an increasing
number of items, the number of functional parameters grows
exponentially. It is challenging to identify significant interaction

CONTACT Ick Hoon Jin ijin@yonsei.ac.kr Department of Applied Statistics, Yonsei University, 421 Daewoo Hall, 50 Yonsei-ro, Seodaemun, Seoul 03722 Korea.
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parameters using standard variable selection approaches
because those methods do not consider temporal trends in
functional parameters. To address these challenges, we develop
a novel Bayes approach based on the functional shrinkage
method (Shin, Bhattacharya, and Johnson 2021) combined
with an auxiliary variable Markov chain Monte Carlo (MCMC)
algorithm (Murray, Ghahramani, and MacKay 2006; Liang
2010). Our method can automatically detect strong temporal
interactions among items, while avoiding the direct evaluation
of the intractable normalizing constants included in the model.

Exponential random graph models (ERGMs) (Robins et al.
2007) are widely used to study the global structure of static
networks. Bayesian approaches (Caimo and Friel 2011, 2012)
are useful for ERGMs because they can alleviate the model
degeneracy issue (Handcock 2003); for some parameter region,
ERGMs have high probability mass on either very dense or
very sparse networks. Furthermore, the Bayesian framework
is convenient for providing uncertainties from posterior sam-
ples. Caimo and Friel (2013) explored Bayesian model selection
for ERGMs based on reversible jump MCMC. Bouranis, Friel,
and Maire (2017) developed a correction method for pseudo-
posterior samples to address computational issues for fitting
large ERGMs. Recently, Bouranis, Friel, and Maire (2018) pro-
posed a fast Bayesian model selection in the ERGMs context
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by adjusting pseudolikelihood approximation. In the context
of ERGMs, we focus here on a Bayesian approach to detect
significant temporal interactions.

There is an extensive literature on temporal network mod-
eling. These approaches can be broadly classified into two cate-
gories: (i) exponential random graph models (ERGMs) (Hanneke
et al. 2010; Krivitsky and Handcock 2014; Lee, Li, and Wilson
2020) which describe the change in the topological structure of
the networks, and (ii) latent space models (LSMs) (Sewell and
Chen 2015; Friel et al. 2016; Loyal and Chen 2020) which embed
change in transitive tendencies of nodes into low-dimensional
latent space. In addition, dynamic network data may be clas-
sified as unipartite or bipartite networks. Unipartite dynamic
networks have one set of nodes observed through T time points,
which result in x ∈ RT×n×n binary matrix. For all l, j, xtlj = 1
if the lth node and jth node are connected at time t; otherwise
xtlj = 0. On the other hand, bipartite dynamic networks have
two types of nodes; one set of nodes consists of the n actors
and the other sets have p actors. These bipartite networks are
observed over T times resulting in x ∈ RT×n×p binary matrix;
for all l, j, xtlj = 1 if the lth actor in node type 1 connects to j-th
actor in node type 2 at time t; otherwise xtlj = 0.

An item response data can be regarded as a bipartite network;
we have n respondents (node type 1) and p items (node type 2).
In this case, xtlj = 1 if respondent l answers correctly (positively)
to item j; otherwise xtlj = 0 at time t. It is challenging to
apply existing dynamic network models to longitudinal item
response data because most of them have been developed for
unipartite networks. Furthermore, we have to consider various
types of local interactions among items carefully. For instance,
pairwise interactions between two items can be different from
that of the other two items; therefore, assuming only one type
of interaction between items (i.e., a single two-star statistics)
is unrealistic. In this context, there have been several recent
proposals for network psychometrics to study cross-sectional
item response datasets (van Borkulo et al. 2014; Jin and Jeon
2019; Park, Jin, and Schweinberger 2022). These provide an
elegant approach to detect interactions among p items from
n respondents. By extending these approaches, we focus on
studying the temporal network structures among p items for
longitudinal item response data.

We propose functional inhomogeneous exponential random
graph models (FI-ERGMs) that can detect significant temporal
interactions between items. There are several inferential
and computational challenges for FI-ERGMs. The likelihood
functions involve intractable normalizing constants, which
result in doubly intractable distributions (Murray, Ghahramani,
and MacKay 2006) in Bayesian analysis. Furthermore, with an
increasing number of items (p), the number of model parame-
ters grows at order p2. Since these parameters are time-varying
functional objects, the conventional variable selection method
can not be directly applicable. Even in static networks, relatively
few approaches have been developed for variable selection.
Recently, van Borkulo et al. (2014) imposed an l1-penalty on
Ising graphical models (Ravikumar et al. 2010). However, this
method cannot quantify the uncertainty about the estimated
interaction and is not robust to model misspecification. To
address this, Park, Jin, and Schweinberger (2022) developed
a Bayesian model selection approach for item response data.

Table 1. Comparison between dynamic network models.

Network types Purpose of modeling

ERGM TERGM Unipartite Prevalence of ties
STERGM Unipartite Incidence and duration of ties
VCERGM Unipartite Time-varying topological features

LSM DLSM Unipartite Latent positions
DLSM-B Bipartite Latent positions
HDP-LPCM Unipartite Time-varying community structures

However, to our knowledge, no existing approaches provide
a variable selection procedure for longitudinal networks.
Furthermore, applying existing dynamic network models to
longitudinal item response data is still limited. This motivates
the development of new methods that allow shrinkage for
time-varying local interactions. To address these challenges, we
adopt two methods: (i) a double Metropolis–Hastings (Liang
2010), an auxiliary variable MCMC method that cancels out the
intractable normalizing constants in the acceptance probability,
and (ii) a functional horseshoe prior (Shin, Bhattacharya, and
Johnson 2021) that encourages shrinkage toward the zero
function for weak signals. We show that our methods can
recover the dependence structure of longitudinal networks as
well as detect strong time-varying interactions.

The rest of this article is organized as follows. In Section 2, we
describe existing dynamic network models and motivate a new
model. Then, we propose functional inhomogeneous exponen-
tial random graph models (FI-ERGMs) and discuss their com-
putational and inferential challenges. In Section 3, we describe
the functional horseshoe double Metropolis-Hastings (FHS-
DMH) to make an inference for the FI-ERGMs and describe
the implementation details. We provide a guideline to shrink
the functional parameters, which can automatically detect the
significant temporal interactions. In Section 4, we apply the
FHS-DMH to three real datasets: Korea youth panel survey data,
motivation to succeed survey data, hotel review data. In Sec-
tion 5, we investigate the performance of the proposed method
through simulation studies. We conclude with a discussion in
Section 6.

2. Model

2.1. Dynamic Network Models

In this section, we describe existing dynamic network models
and point out the motivation for a new network model for
analyzing longitudinal item response data. There have been a
number of the recent proposals for dynamic network modeling,
summarized in Table 1.

2.2. Exponential Random Graph Models

Exponential random graph models (ERGMs) (Robins et al.
2007) are widely used to study static networks. By extending
ERGMs, dynamic models have been developed for unipartite
networks. These models mainly focus on explaining the global
structure with the network statistics g(x). Here, we introduce
three models as follows.
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1. TERGMs (Hanneke et al. 2010) can account for temporal
changes of networks by assuming a Markov-dependent struc-
ture on two time-adjacent networks. Let xt be the n × n
unipartite network observed at time t. TERGMs use tran-
sition statistics g(xt , xt−1) to describe the temporal change
of the global structure of sequential networks. For instance,
one can explain how the number of clusterings changes using
triangle statistics; the positive model parameters indicate that
it is more likely to have triangles in the observed network.
Note that TERGMs can be generalized to a higher-order time
dependence structure.

2. TERGMs focus on modeling the prevalence of the network
at the current time point, such as the total number of con-
nections (ties) at time t. However, it is also essential to study
the incidence and duration of ties in dynamic networks.
Furthermore, in many social science applications, factors
that result in the incidence of ties and their duration are
different. To make such interpretation, STERGMs (Krivitsky
and Handcock 2014) introduce the formation and dissolution
terms separately in the transition statistics. Compared to
TERGMs, which use a single parameter to describe the cross-
sectional properties of a network, STERGMs use formation
and duration parameters to consider longitudinal properties
of dynamic networks.

3. Recently, proposed varying-coefficient ERGM (VCERGM)
(Lee, Li, and Wilson 2020) can parameterize the time-
varying topological structure of networks in continuous
time. Similar to TERGMs or STERGMs, VCERGMs use
transition statistics to account for the change in the network
structures. However, VCERGMs represent the corresponding
model parameters as basis expansion, allowing to study the
temporal heterogeneity of dynamic networks. Furthermore,
VCERGMs can interpolate for unobserved networks because
model parameters are smooth functions over continuous
time.

2.3. Latent Space Models

Another common approach to study networks is the latent
space model (LSM) (Hoff, Raftery, and Handcock 2002). Such
models embed network information into the low-dimensional
Euclidean space the so-called latent space. The closer two nodes
in this latent space are, the more likely they are connected
in the network. By modeling the evolution of latent positions
over time, we can understand the change of local and global
structures of dynamic networks. We introduce three recent
approaches as follows.

1. Dynamic latent space model (DLSM) (Sewell and Chen
2015) allows each node to have a temporal trajectory in the
Euclidean latent space. DLSM describes the formation of ties
based on the distance between latent positions by modeling
them as a hidden Markov process. The closer latent positions
for two nodes are, the more likely they are connected in
the observed dynamic network. Note that DLSM can be
applicable to both undirected and directed networks by
modeling sender and receiver in the formation of ties.

2. While DLSM focuses on studying unipartite networks, Friel
et al. (2016) developed a dynamic latent space model for the

bipartite networks, referred as DLSM-B. DLSM-B models the
formation and duration of ties based on the latent distances
from two different node types. Friel et al. (2016) applied
their model to dynamic bipartite networks consisting of n
companies (node type 1) and p directors (node type 2), and
capture the heterogeneity of dynamic bipartite networks.

3. Hierarchical Dirichlet process latent position clustering
model (HDP-LPCM) (Loyal and Chen 2020) can describe
the time-varying community structures such as deletions,
splits, or merges of groups in dynamic networks. Similar to
other latent space-based models, HPD-LPCM assigns the
nodes’ information into the latent space. In addition, HDP-
LPCM can cluster the latent positions by incorporating the
hierarchical Dirichlet process prior. From this, HDP can
describe both the local and global structures in dynamic
unipartite networks.

2.4. Motivation

In item response theory, detecting significant interactions
among items is crucial for designing or analyzing ques-
tionnaires. For instance, in clinical trial surveys, recovered
interactions among symptoms can be used to diagnose patient
groups for clinical intervention. Note that such interactions arise
locally; interactions between two items can be different from
that of the other two items. Therefore, a network model for item
response data should allow such inhomogeneous dependence
structures.

Although numerous dynamic network models are well estab-
lished, direct application of these methods to longitudinal item
response dataset is challenging. Most of the existing models
have been developed for unipartite networks. Bipartite networks
commonly arise in psychology and educational sciences. Item
response data comprise complex network structures with two
node types. For instance, we have survey data from n respon-
dents (node type 1) for p items (node type 2) observed through
T time points. A notable exception is DLSM-B (Friel et al. 2016),
which can embed bipartite network information into latent
space. Based on the latent positions of items, DLSM-B describes
both local and global structures of networks. The closer latent
positions are, the more likely items have positive interactions.

DLSM-B can provide useful insights of these item interac-
tions; however, it is not trivial to assess whether such interac-
tions are significant or not: how much should latent positions
become closer to have statistically significant interactions? Our
model can rule out weak interactions among items using the
functional shrinkage (Shin, Bhattacharya, and Johnson 2021).
Furthermore, our method can quantify temporal interactions
through estimated model parameters, which is challenging for
DLSM-B; we can only observe the change in interactions based
on the relative distances between latent positions. In Section 4,
we compare our model with DLSM-B to point out such differ-
ences. Our model belongs to ERGM class and has similarities
to VCERGM (Lee, Li, and Wilson 2020) in that we use a func-
tional representation of model parameters. However, we focus
on modeling the change in local interactions among items rather
than the evolution of the connectivity pattern of networks as in
the standard ERGMs. Furthermore, FI-ERGM is proposed for
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bipartite networks from longitudinal item response data sets,
while VCERGM is applicable to unipartite networks. We pro-
vide details about the difference between the standard ERGMs
and I-ERGMs in Section 2.2.

2.5. Functional Inhomogeneous Exponential Random
Graph Models

Let x ∈ R
T×n×p denote data with n responses to p binary items

observed through T time points. For all l, j, xtlj = 1 if the lth
individual responses jth item positively (or correctly) at time
t; otherwise xtlj = 0. To account for the pairwise temporal
interactions among items, we propose the functional version of
I-ERGMs (Frank and Strauss 1986) as follows:

f (x|θ) =
T∏

t=1

1
κ(θ t•)

exp

⎧⎨⎩
p∑
∀j

αtj

n∑
l=1

xtlj+
p∑

∀j<k
γtjk

n∑
l=1

xtljxtlk

⎫⎬⎭ ,

θ t• = {{αtj}∀j, {γtjk}∀j<k}. (1)

For time t, αtj is an item easiness parameter, which acts as the
intercept term for item j and γtjk is the pairwise interaction
among j, k items. Consider the model parameter θ ∈ R

T×q

, where q = p + p(p − 1)/2. We can define θ t• and θ•i as
denoting the tth row of θ and ith column of θ , respectively.
Then, θ t• ∈ R

q is the parameter for time t and θ•i ∈ R
T is

the ith functional parameter over time. Our models assume that
xt (the observed binary response at time t) is only dependent on
θ t•. In Section 3, we introduce functional priors to account for
the temporal trends within each functional parameter θ•i.

The standard ERGMs are applicable to the single network,
which assumes only one type of interaction between nodes. For
instance, when we use edge and two-star statistics, standard
ERGMs assume that these statistics have equal probabilities of
being occurred across different nodes. Therefore, all the nodes’
information is incorporated into a network statistic to explain
the global structure of a single network (e.g., overall connectivity
patterns). However, such an assumption is not realistic for item
response data sets, which have multiplex network structures
(van Borkulo et al. 2014; Park, Jin, and Schweinberger 2022).
Here, a network is represented as multiple systems of a set
of nodes, and there can be various types of local interactions
among nodes. Especially in item response data, we have two
node types: n respondents (node type 1) and p items (node type
2). Furthermore, there are complex local interactions among
items. For instance, pairwise interactions between j, k items can
be different from that of j′, k′ items (j �= j′, k �= k′). I-ERGMs are
applicable to such multiplex networks by modeling γtjk and γtj′k′
separately. From this, I-ERGMs allow the different probability
of occurrences for network statistics. Therefore I-ERGMs are
useful to explain the local behaviors of networks and are suitable
for item response data.

Generally, the standard ERGMs suffer from model degen-
eracy and projectivity issues (Shalizi and Rinaldo 2013). This
phenomenon occurs when a single change of a dyad status
significantly impacts the dyadic-dependent statistics in the stan-
dard ERGMs. Here, highly impacted dyadic dependent statistics
are dominant in Monte Carlo simulations of networks, and it
causes model degeneracy. Similarly, the standard ERGM cannot

guarantee the projectivity (Shalizi and Rinaldo 2013). It is very
rare to observe the entire network of interest; we can fit ERGMs
to the observed sub-network (sample), and then infer the entire
network (population) through the fitted model. Since a single
change of a dyad status can make a huge influence on the
other dyadic dependent statistics, observed dyadic dependent
network statistics can vary drastically depending on whom is
selected as a sample in the observed sub-network.

Compared to the standard ERGMs, FI-ERGM can avoid
model degeneracy issue and guarantee the projectivity of the
model. FI-ERGM analyzes temporal pairwise interaction net-
works (item–item networks) constructed from an item response
x ∈ R

T×n×p. To construct an item–item network At ∈ R
p×p at

time t, we use

At =
{

Atjk

}
=

{ n∑
l=1

xtljxtlk

}
,

where xtlj and xtlk are responses from a respondent l for item j
and k at time t, respectively. In the case of xtlk = 1,

the change of Atjk =
{ −1 if xtlj changes from 1 to 0

1 if xtlj changes from 0 to 1,

If xtlk = 0, then there is no change in Atjk. This implies the
status change of item j for respondent l at time t will make a very
minimal influence on Atjk so that FI-ERGM does not suffer from
model degeneracy. In a similar fashion, the observed network
statistics do not change much depending on whom are included
in samples; FI-ERGM can yield a consistent result.

One can generalize (1) by adding third-order interactions
of the form xtljxtlkxtlm or higher-order interactions with addi-
tional computational and statistical challenges. However, it is
particularly difficult to add higher-order interactions to FI-
ERGMs due to the highly correlated high-dimensional param-
eters. For instance, including third-order interactions to FI-
ERGMs would result in p + p(p − 1)/2 + p(p − 1)(p −
2)/6 functional parameters. This requires a sufficient number
of respondents (n) for accurate statistical inference; collecting
such large longitudinal item response data is challenging in
practice. Furthermore, such functional parameters are highly
correlated. Let δtjkm be the third-order interaction parameters
from xtljxtlkxtlm. If items j, k, and m have positive second-order
interactions (i.e., γtjk, γtjm, γtkm > 0), δtjkm should be positive.
FI-ERGMs with higher-order interaction can suffer from the
slow mixing of the Markov chain due to such highly corre-
lated functional parameters. For this practical reason, the recent
proposals in psychometrics (van Borkulo et al. 2014; Park, Jin,
and Schweinberger 2022) have adapted high-dimensional Ising
models (Ravikumar et al. 2010) to study pairwise interactions
among items. Both approaches can accurately recover the p × p
item–item network structures in educational assessment data.
By extending these works, we focus on modeling second-order
functional parameters to capture the temporal change in local
pairwise interactions in the p × p item-item graph.

Inferences for FI-ERGMs are challenging because of the
intractable normalizing constants κ(θ t•) included in (1). At
each time t, the calculation of κ(θ t•) requires summing the
overall 2np configurations of the binary response data, which is
intractable even with the moderate sizes of n and p. Although
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frequentist method (van Borkulo et al. 2014) for such models, it
cannot provide the uncertainty of estimates and is not robust to
model misspecification (Park, Jin, and Schweinberger 2022).

Another difficulty with FI-ERGMs is that the number of
model parameters increases at an order of p2 (p represents the
number of items). To rule out weak interaction parameters,
Park, Jin, and Schweinberger (2022) develops a Bayesian vari-
able selection method for I-ERGMs in static networks. How-
ever, compared with their problem, our case is more complex
because of the functional parameters {θ•i}q

i=1 that vary across
each time point. To address this challenge, we propose a novel
MCMC approach based on a shrinkage prior on function spaces.
Our method can automatically detect functional parameters
with a weak signal, while providing posterior samples from an
intractable likelihood function.

3. Functional Horseshoe Double Metropolis–Hastings

For FI-ERGMs, Bayesian approaches are useful to capture the
dependence structure in temporal networks because we can
easily incorporate shrinkage priors to rule out parameters
with weak signals. In this section, we propose an MCMC
algorithm for FI-ERGMs. We combine double Metropolis–
Hastings (DMH) (Liang 2010) with the functional horseshoe
prior (Shin, Bhattacharya, and Johnson 2021) to address the
computational and inferential challenges in FI-ERGMs.

3.1. Bayesian Hierarchical Models With the Functional
Horseshoe Prior

Since the number of model parameters (q) for FI-ERGMs
increases exponentially, one might consider standard shrinkage
priors (see George and McCulloch 1993; Carvalho, Polson, and
Scott 2010) to rule out weak signals. However, such methods do
not account for the temporal trends in the functional parameters
{θ•i}q

i=1 in FI-ERGMs. Furthermore, it is not clear how to
select the functional parameters through standard shrinkage
priors, because they can only induce sparsity on individual θti.
Therefore, in this article, we apply the functional horseshoe
(FHS) prior (Shin, Bhattacharya, and Johnson 2021), which
can impose shrinkage on the shape of functions. The FHS can
encourage shrinkage toward any parametric class of functions.
Here, we focus on shrinkage toward zero functions to detect
strong signals, which allows us to perform a natural model
selection in FI-ERGMs. Shin, Bhattacharya, and Johnson (2021)
showed that the posterior constructed from the FHS prior is
concentrated at a near-optimal min–max rate.

Consider the ith functional model parameter θ•i ∈ R
T in

(1). Then, the prior on the functional model parameter can be

θ•i|β iσ
2
i ∼ N(�β i, σ 2

i IT), (2)

where � ∈ R
T×kn is a matrix of prespecified basis functions and

β i ∈ R
kn is a vector of basis coefficients. σ 2

i explains an error
that cannot be captured by a mean trend �β i. We assume that
the nonparametric basis expansion can capture the temporally
dependent trends within each functional model parameter θ•i.
Here, we use the B-spline basis (De Boor et al. 1978), but other
basis functions can also be used. The FHS can shrink �β i

toward the null function subspace spanned by a null regressor
matrix �0 with d0 = rank(�0). Then, we can define the FHS
hyperpriors as

β i|σ 2
i , τi ∝ (σ 2

i τ 2
i )−(kn−d0)/2 exp

{
− 1

2σ 2
i τ 2

i
β

′
i�

′(I − Q0)�β i

}
,

τi ∝ (τ 2
i )b−1/2

(1+τ 2
i )a+b 10,∞(τi).

(3)
To impose shrinkage toward the zero function, we set the null
function space as �0 = {∅}. Then, d0 = 0 and I − Q0 = I,
where Q0 = �0(�

′
0�0)

−1�0. Following Shin, Bhattacharya,
and Johnson (2021), we set a = 1/2 and b = exp{−kn log T/2}
to satisfy the near optimal nonparametric posterior contraction
rate. We can summarize the hierarchical models for FI-ERGMs
as

π(θ , β , τ , σ 2|x) ∝ f (x|θ)π(θ |β , σ 2)π(β|τ )π(τ )π(σ 2), (4)

where

f (x|θ) = ∏T
t=1

1
κ(θ t•)

exp
{∑p

∀j αtj
∑n

l=1 xtlj + ∑p
∀j<k γtjk

∑n
l=1 xtljxtlk

}
,

θ•i|β iσ
2
i ∼ N(�β i, σ 2

i IT),
β i|σ 2

i , τi ∝ (σ 2
i τ 2

i )−(kn−d0)/2

exp
{

− 1
2σ 2

i τ 2
i
β

′
i�

′(I − Q0)�β i

}
,

τi ∝ (τ 2
i )b−1/2

(1+τ 2
i )a+b 10,∞(τi),

σ 2
i ∼ IG(1/100, 1/100).

(5)

3.2. MCMC Implementation

Our model (5) includes intractable normalizing constants
κ(θ t•), which pose inferential and computational challenges.
The resulting posterior (4) is called a doubly intractable
distribution having extra unknown normalizing terms κ(θ t•),
which cannot be canceled out in standard MCMC approaches.
Several Bayes methods have been developed for sampling
from doubly intractable distributions. Just few of these include
constructing Monte Carlo approximations for κ(θ t•) (see
Atchade, Lartillot, and Robert 2008; Lyne et al. 2015; Park
and Haran 2020) and generating auxiliary variables to avoid
the direct evaluation of κ(θ t•) (see Murray, Ghahramani, and
MacKay 2006; Liang 2010). Considering that constructing
Monte Carlo approximations is unstable with an increasing
number of parameters, auxiliary variable approaches may be
appropriate for the problems considered in this manuscript. In
particular, double Metropolis–Hastings (DMH) (Liang 2010)
is the most practical for computationally expensive problems
and the only feasible approach for high-dimensional parameter
problems among current approaches (see Park and Haran
(2018) for comparisons between algorithms). Therefore, in
what follows, we incorporate FHS priors with DMH to impose
functional shrinkage as well as estimate the model parameters
for FI-ERGMs.

Consider the model parameter θ , and the hyperparameters
for the FHS priors (β , τ , σ 2). We update the parameters sequen-
tially through the Gibbs sampler. Let the parameters at the mth
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iteration of the Markov chain be(
θ (m), β(m), τ (m), σ 2(m)

)
=

(
θ

(m)
•1 , . . . θ (m)•q ,

β
(m)
1 , . . . , β(m)

q , τ (m)
1 , . . . , τ (m)

q , σ 2(m)
1 , . . . , σ 2(m)

q

)
. (6)

For i = 1, . . . , q, we use the arbitrary initial values with θ
(0)
•i ∼

Uniform(−5, 5), β i ∼ N(0, Ikn), τi ∼ N(0, 1/
√

20), σ 2
i =

1. We can update the parameters successively. The ith model
parameter for time t can be updated from

θ
(m+1)
ti ∼ π

(
θ

(m)
ti |xt , θ (m)

t(i) , β(m)
i , σ 2(m)

i

)
∝ f

(
xt|θ(m)

ti , θ (m)
t(i)

)
π

(
θti|β(m)

i , σ 2(m)
i

)
, (7)

where θ
(m)
t(i) =

(
θ

(m+1)
t1 . . . , θ(m+1)

ti−1 , θ(m)
ti+1, . . . , θ(m)

tq

)
. Since

f
(

xt|θ(m)
ti , θ (m)

t(i)

)
includes intractable κ(θ t), we use a double

Metropolis–Hastings (DMH) algorithm (Liang 2010) to update
θ

(m+1)
ti . This is a nested MCMC algorithm; a Metropolis–

Hastings sampler is implemented within another Metropolis–
Hastings sampler. At each iteration of the MCMC (outer
MCMC) θ

′
ti is proposed from the proposal q

(
· |θ(m)

ti

)
. For the

given θ
′
ti, DMH simulates an auxiliary variable yt from the prob-

ability model f
(

xt|θ ′
ti, θ

(m)
t(i)

)
through the standard Metropolis–

Hastings sampler (inner sampler). For each iteration of the inner
sampler, (j, k) pairs from xt are randomly chosen; xtjk is set to 0
or 1 based on the full conditional probabilities of the networks.
See Hunter et al. (2008) for more details. Theoretically, we
can simulate an exact auxiliary variable as the inner sampler
length approaches infinity; of course the length of the inner
sampler should be finite in practice. Following Liang (2010),
we use the inner sampler length as 2n, where n is the number
of respondents for each θti update. Considering that we have q
model parameters with T times points, this choice results in a
2nqT number of MH updates to generate auxiliary variables.
In Section 5, we study the performance of the algorithm with
different lengths of the inner sampler. We observe that 2n can
generate a reasonably accurate auxiliary variable. Then, the
resulting acceptance probability for updating θ

(m+1)
ti is

α = min

⎧⎨⎩ f
(

xt|θ ′
ti, θ

(m)
t(i)

)
f
(

yt|θ(m)
ti , θ (m)

t(i)

)
π

(
θ ′

ti|β(m)
i , σ 2(m)

i

)
f
(

xt|θ(m)
ti , θ (m)

t(i)

)
f
(

yt|θ ′
ti, θ

(m)
t(i)

)
π

(
θ

(m)
ti |β(m)

i , σ 2(m)
i

) , 1

⎫⎬⎭ .

(8)

We note that (8) does not include intractable normalizing con-
stant κ(θ t). The main idea of this approach is to cancel out κ(θ t)
in the acceptance probability with a clever choice of the auxiliary
variable. The more the simulated yt is close to the observed xt ,
the more likely the proposed θ

′
ti will be accepted. We repeat this

procedure for i = 1, . . . , q and t = 1, . . . , T.
Then, for i = 1, . . . , q τ

(m+1)
i can be obtained from

τ
(m+1)
i ∼ π

(
β

(m)
i |σ 2(m)

i , τ (m)
i

)
π

(
τ

(m)
i

)
. (9)

We transform η
(m)
i = τ

−2(m)
i to use a slicer sampler for bet-

ter mixing as well as computational efficiency. The remaining

parameters σ
2(m+1)
i and β

(m+1)
i can be updated from

σ
2(m+1)
i ∼ π

(
θ

(m+1)
•i |β(m)

i , σ 2(m)
i

)
π

(
β

(m)
i |σ 2(m)

i , τ (m+1)
i

)
π

(
σ

2(m)
i

)
β

(m+1)
i ∼ π

(
θ

(m+1)
•i |β(m)

i , σ 2(m+1)
i

)
π

(
β

(m)
i |σ 2(m+1)

i , τ (m+1)
i

)
,

(10)

where the conditional distributions are an inverse gamma distri-
bution and a normal distribution, respectively. The conditional
distributions for all parameters are described in the supple-
mentary material. The FHS-DMH algorithm is summarized in
Algorithm 1.

With each iteration of the MCMC, our algorithm generates
an auxiliary variable for qT times to update {θti} (see Step 2
of Algorithm 1). Since we use the inner sampler length as n
(identical to the number of respondents), the computational
complexity of the brute force implementation isO(np2T), where
p is the number of items and T is the number of observed time
points. However, in (5), we assume that xt is only dependent
on θ t•. Therefore, we can use parallel computing to generate
xt independently of the given θ t•. Then the computational
complexity of our method is O(np2T/c), where c < T is the
number of available processors. The parallel computation is
implemented through the OpenMp library in C++. FHS-DMH
can automatically shrink the parameters {θ•i}q

i=1 having weak
signals to zero functions as well as generate posterior samples
from the complex hierarchical models in (5).

3.3. Shrinkage Procedure for Functional Parameters in
FI-ERGMs

For FI-ERGMs, we have the functional parameters {θ•i}q
i=1,

where q = p + p(p − 1)/2 increases exponentially with the
number of items (p). Among the q functional parameters, the
first p of them represent the easiness of the corresponding items
across T time points. These can be regarded as the intercept
terms in standard regression models. The remaining p(p −
1)/2 number of parameters represent the pairwise interaction
among the items across T time points. Since not every item has
statistically significant interactions, it is important to identify
the important interactions only by shrinking the others to zero.

Consider the reparameterization ωi = 1/(1 + τ 2
i ), where

ωi can be interpreted as the weight that the posterior mean
for function places on the null function subspace (Shin, Bhat-
tacharya, and Johnson 2021). Therefore, a larger ωi indicates
higher weights on the zero function for θ•i. According to (Shin,
Bhattacharya, and Johnson 2021, theor. 3.2), the posterior dis-
tribution of ωi converges toward 1 when the true shape of θ•i
is the zero function. On the contrary, if the true θ•i �= 0, the
posterior distribution of ωi contracts toward 0. Following Shin,
Bhattacharya, and Johnson (2021), we set the threshold for ωi as
0.5. If the posterior mean of ωi is greater than 0.5, we diagnose
θ•i = 0 ∈ R

T ; otherwise θ•i �= 0 ∈ R
T

4. Applications

Here, we illustrate the application of our method to three real
data examples: (i) Korea youth panel survey data, (ii) motivation
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Algorithm 1 A Functional Horseshoe Double Metropolis–
Hastings (FHS-DHM) Algorithm

Given θ (m), β(m), τ (m), σ 2(m) update
θ (m+1), β(m+1), τ (m+1), σ 2(m+1) for all i = 1, . . . , q and
t = 1, . . . , T.

Step 1. Propose θ ′
ti ∼ q

(
· |θ(m)

ti

)
.

Step 2. Generate an auxiliary variable from the probability
model using the 2n-number of Metropolis-Hastings updates:
yt ∼ f

(
xt|θ ′

ti, θ
(m)
t(i)

)
, where θ

(m)
t(i) =(

θ
(m+1)
t1 . . . , θ(m+1)

ti−1 , θ(m)
ti+1, . . . , θ(m)

tq

)
.

Step 3. Accept θ
(m+1)
ti = θ ′

ti with probability

α = min

⎧⎪⎨⎪⎩
f
(

xt|θ ′
ti, θ

(m)
t(i)

)
f
(

yt|θ(m)
ti , θ (m)

t(i)

)
π

(
θ ′

ti|β(m)
i , σ 2(m)

i

)
f
(

xt|θ(m)
ti , θ (m)

t(i)

)
f
(

yt|θ ′
ti, θ

(m)
t(i)

)
π

(
θ

(m)
ti |β(m)

i , σ 2(m)
i

) , 1

⎫⎪⎬⎪⎭
else reject (set θ

(m+1)
ti = θ

(m)
ti ).

Step 4. Update τ
(m+1)
i using a slice sampler :

1. u ∼ Uniform
[

0,
(

1
1+η

(m)
i

)a+b
]

, where η
(m)
i = τ

−2(m)
i .

2. η
(m+1)
i ∼ Uniform

3.
[

0, ua+kn/2−d0/2−1e
− 1

2σ
2(m)
i

β
(m)′
i �′(I−Q0)�β

(m)
i u]

.

4. Take τ
(m+1)
i = 1√

η
(m+1)
i

.

Step 5. Update σ
2(m+1)
i from the conditional distribution:

σ
2(m+1)
i ∼ IG

(
T/2 + kn/2 + 1/100, β(m)′

i �′�β
(m)
i /2

+β
(m)′
i �′(I − Q0)�β

(m)
i /2τ

2(m+1)
i + 1/100

)
.

Step 6. Update β
(m+1)
i from the conditional distribution:

β
(m+1)
i ∼ N

([
�′� + I(1/τ

2(m+1)
i )

]−1
�′θ (m+1)

•i , σ 2(m+1)
i

[
�′� + I(1/τ

2(m+1)
i )

]−1
)

to succeed survey data, and (iii) hotel review data. We observe
that FHS-DMH can shrink weak interactions toward the zero
function as well as recover the dependence structure of the lon-
gitudinal network well. For the MCMC implementation, we use
an independent normal proposal. The convergence of MCMC

methods has been checked by the Monte Carlo standard errors
(Jones et al. 2006; Flegal, Haran, and Jones 2008).

To validate our method, we compare the summary statistics
between the observed network and fitted network from the pos-
terior predictive distribution (Gelman et al. 2013). For observed
data x, we use the following summary statistics

T(x) =
{{ n∑

l=1
xtlj

}
∀j

,
{ n∑

l=1
xtljxtlk

}
∀j<k

}
∀t

.

Here, T(x) ∈ Rq×T because we have q = p + p(p − 1)/2
parameters for T time points. For a given posterior sample
from FHS-DMH, we simulate binary response data y. Then
we obtain summary statistics T(y). If these synthetic summary
statistics T(y) resemble the observed summary statistics T(x)

well, then our FHS-DMH posterior sample can be regarded as a
reasonable approximation of the true posterior distribution. To
implement this, we obtain 1000 thinned posterior samples from
FHS-DMH. We simulate y1, . . . , y1,000 from the 1,000 posterior
samples. Then, we calculate the sample mean of the summary
statistics 1

n
∑n

i=1 T(yi).
In addition, we assess our fitted models in terms of higher-

order degree statistics. From the posterior predictive distribu-
tion, for each time t, we calculate the p × p item-item graph
for each respondent l. A j, k element of the item–item graph
becomes 1, if a respondent l gives a correct (positive) responses
to both items j, k at time t (i.e., xtljxtlk = 1). Then we calculate
the degree statistics (order m) in the item–item graph obtained
from n respondents and take the average of the degree statistics
over n respondents. Then we compare the sample mean of the
simulated degree statistics with the observed degree statistics as
before. We provide model validations using degree statistics of
order m = 0, . . . , p − 1 for t = 1, . . . , T, which results in pT
number of degree statistics.

4.1. Korea Youth Panel Survey Data

4.1.1. Data Description
The first example came from the Korea Youth Panel Survey
(Lee, Lim, and Ahn 2008) that tracked a nationally represen-
tative sample of the second-year middle school students for six
consecutive years from 2003 to 2008. Following Jeon and Rabe-
Hesketh (2012), we analyzed the subset of the data that excludes
about 2% of the students who changed their school membership
during their middle school and/or high school years.

In this application, we used the five years’ data (2004–2008)
on the 30 items that measure how the students think about
themselves (i.e., self-image). The base year (2003)’s data were
dropped because six items were not included in the base year.
Each of the 30 item was measured on a 5-point Likert-type scale
with the response options, “Strongly disagree”, “Disagree”, “Nei-
ther agree nor disagree,” “Agree,” and “Strongly agree.” Exam-
ple items include I sometimes think I am a useless person, I
sometimes think I am a bad person, I sometimes feel like I am
a failure, and I think I am a trouble make. A full set of items are
provided in the supplementary material. To measure a positive
self-image, the response categories of the negative items were
reversed, and then all response categories were dichotomized at
point 3 (≤ 3 and > 3). The proportion of male students was
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Figure 1. Estimated networks for the Korea youth panel survey dataset. Green lines indicate positive relations. The width of the lines indicate the connection strength
between the relevant items—thicker lines indicate stronger interaction between items.

Figure 2. The left panel (a) compares the observed and mean of the simulated model summary statistics. The middle panel (b) compares the observed and mean of
the simulated degree statistics. The summary statistics are simulated 1000 times for the given FHS-DMH estimates. The right panel (c) shows the shrinkage effect for the
functional parameters. The red lines indicate shrinkage. Among the 465 functional parameters, 399 of them are diagnosed as the zero functions.

49.9%. At each time point, the data include binary responses
from about n = 3000 individuals to the p = 30 items; this
results in p + p(p − 1)/2 = 465 functional parameters in FI-
ERGMs.

4.1.2. Analysis Results
Among the 465 functional parameters, FHS-DMH shrinks 399
of them to zero functions (Figure 2(c)). Our method takes about
28 hours. Figure 1 and Table 2 describe the estimated depen-
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Table 2. Top 10 largest nonzero interaction parameters among items in the Korea
youth panel survey data.

Positive Time 1 Time 2 Time 3 Time 4 Time 5

γt,9,10 7.068 6.343 5.348 6.736 7.820
γt,7,8 4.559 3.771 3.438 4.754 6.176
γt,11,12 4.175 4.512 4.264 4.350 4.241
γt,28,29 3.242 3.149 3.349 3.162 3.683
γt,2,3 3.133 2.771 2.734 3.047 3.263
γt,8,10 2.914 3.156 2.820 1.740 3.116
γt,14,15 2.594 2.501 2.536 2.626 2.324
γt,23,24 2.359 2.223 2.403 2.451 2.342
γt,16,17 2.175 2.003 2.165 2.323 2.646
γt,13,14 2.128 2.014 2.151 2.260 2.428

NOTES: The order is based on the summation of the estimated interaction param-
eters across all time (i.e.,

∑
∀t γtjk ). Estimates are obtained from posterior mean

of 20,000 MCMC samples from FHS-DMH; the Monte Carlo standard errors are at
0.02.

dence structures and their nonzero interactions. We observe
that every connection of items shows positive relationships,
and the dependence structure is overall consistent over time.
We provide some descriptive explanations based on the top 10
largest positive interactions in terms of the posterior mean of
the parameters γt,j,k shown in Table 2.

The strongest positive interaction occurs between items (9)
(“Other people think I am a trouble maker”) and (10) (“Other
people think I am a juvenile delinquent”), which makes sense
given that both items are about how other people think and
“trouble maker” and “juvenile delinquent” are about similar
(negative) image. The second strongest positive interaction is
shown between items (7) (“I think I am a trouble maker”)
and (8) (“I think I am a juvenile delinquent”); the interaction
between these items becomes stronger as time goes. These items
are similar in content to the first pair of items (9) and (10)
with the strongest interaction; the only difference is that this
second pair is about how they think about themselves. The third
strongest positive interaction appears between items (11) (“If I
do something bad, then people will blame me”) and (12) (“If I
do something bad, then I’ll be humiliated by other people”). This
indicates that the teenagers who respond positively to items (11)
and (12) are concerned about other people’s negative opinion
about them. Therefore, they are less likely to cause troubles
which could damage to their self-image. A full list of items of the
self-image dataset can be found in the supplementary material.
In Figure 2(a) and (b), the mean of the observed statistics and
simulated statistics follow a straight line, indicating that our
model fits well.

4.1.3. Comparison With DLSM-B
Figure 3 represents the estimated latent positions from DLSM-
B. Estimates are obtained from the posterior mean of 20,000
MCMC samples, which takes about 8 min. For comparison,
we selected the two pairs that showed top two largest interac-
tions with the proposed method (Table 2). The latent positions
between the item pair (9) and (10) as well as the pair (7) and
(8) are relatively close to each other within the pair across
years, implying positive temporal interactions between the items
within each pair. This finding suggests some consistency in the
results between the two methods. To capture temporal changes
in local interactions between items with DLSM-B, one needs to
compare and identify changes in the relative distances between

all item pairs in the latent space. These comparisons are some-
what cumbersome and decisions on close and distant distances
may be seen somewhat subjective. In addition, with a large
number of items, it can be challenging and inconvenient to
determine meaningful changes over time in the interactions
(distances) between all item pairs (Figure 3). On the other hand,
FHS-DMH, our proposed approach, directly quantifies tempo-
ral interactions through estimated γt,j,k, and therefore, detects
statistically significant interactions at the expense of computing
time (Figure 1 and Table 2).

4.2. Motivation to Succeed Data

4.2.1. Data Description
The data for the second application came from the Pathways to
Desistance study (Mulvey et al. 2004), which is a multi-site lon-
gitudinal study that follows 1354 serious juvenile offenders from
adolescence to young adulthood in Philadelphia and Phoenix.
Participants completed baseline interviews in November 2000
and follow-up interviews at 6, 12, 18, 24, 30, 36, 48, 60, 72, and
84 months post-baseline (first follow-up interview completed in
May 2001; last follow-up interview completed in March 2010).
The aims of the study are to identify initial patterns of how
serious adolescent offenders stop antisocial activity; describe
the role of the social context and developmental changes in
promoting these positive changes; and compare the effects of
sanctions and interventions in promoting these changes.

From this large study, we used the motivation to succeed
scale (Eccles, Wigfield, and Schiefele 1998), which includes six
items that measure the respondent’s assessment of the oppor-
tunities available in his/her neighborhood regarding schooling
and work. An additional two items were included that measure
the adolescent’s perceptions of how far he/she would like to go
in school and how far he/she think they will go in school. The
eight test items are as follows: (i) In my neighborhood, it is easy
for a young person to get a good job; (ii) Most of my friends
will graduate from high school; (iii) In my neighborhood, it
is hard to make money without doing something illegal; (iv)
College is too expensive for most people in my neighborhood;
(v) We have fewer opportunities to succeed than kids from
other neighborhoods; (vi) Our chances of getting ahead/being
successful are not very good; (vii) How far would you like
to go in school? (viii) How far do you think you will go in
school?

The responses to the first six questions are on a five-point
Likert-scale (“Strongly disagree,” “Disagree,” “Neither agree nor
disagree,” “Agree,” and “Strongly agree”). The responses to the
last two questions are “Drop out before graduation,” “Graduate
from HS,” “Go to business, tech school or jr college,” “Graduate
from college,” and “Go to graduate or professional school.” We
dichotomized the responses to the first six items by assigning
1 to “Agree”, and “Strongly Agree” responses and 0 otherwise.
For the last two items, we assigned 1 to “Graduate from college”
and “Go to graduate or professional school” and 0 otherwise.
After removing cases with missing responses, 740 respondents
remained. In summary, at each time point, the data include
n = 740 respondents for the p = 8 items, which results in 36
functional parameters in FI-ERGMs.
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Figure 3. Estimated latent positions for the Korea youth panel survey dataset. The closer two latent positions of items are, the more likely they have positive relations.

4.2.2. Analysis Results
Figure 5(b) shows that among the 36 functional parameters,
FHS-DMH shrinks 17 of them to zero functions. Our method
takes about an hour. Figure 4 and Table 3 show the estimated
network structures and their estimated nonzero interaction
parameters. We observe several important negative and positive
connections among the items. Such relationships are generally
consistent over time, whereas their strengths vary to some
degree. In particular, item (1) and item (3) are negatively
connected. This indicates that students who believe that it is
easy for young people to get a job in their neighborhood tend
to disagree that doing illegal things is necessary to earn money.
On the contrary, item (3) shows a positive relationship with
item (4). Students who deem it necessary to engage in illegal
activities to earn money also think that college tuition is too
expensive. From these findings, we can conclude that poverty is
an important factor behind students’ antisocial activities.

In addition, item (6), which represents the chance of success,
has negative relationships with items (8) and (2), but a positive
relationship with item (5). Such connections show that students
who anticipate them having little chance of success are less likely
to think that they will opt for higher education. Instead, they
think their neighborhoods, including themselves, have fewer
opportunities to be successful. These relationships convey that
students who think they have insufficient opportunities than
others are less likely to think that they will go college or graduate

high school; rather, they think their neighborhood has fewer
opportunities for them to be successful.

In particular, the strength of the interaction between item
(6) and item (2) becomes stronger over time. It can be inferred
from this result that earning a high school diploma or higher
degree brings students closer to success. Therefore, education is
an important factor in leading students to success. Additionally,
items (7) and (8) have the strongest relationship; this indicates
that a desire and willingness to go to college are closely related.
This suggests that the desire to go to college motivates students
to overcome the obstacles presented by their living situation,
should those obstacles exist, and pursue their dream of higher
education.

As in the previous example, we simulate the summary statis-
tics from 1000 thinned posterior samples obtained from FHS-
DMH. Figure 5 shows that the mean of the 1000 simulated
summary statistics aligns with the observed summary statistics,
indicating that our model fits the observed data well.

4.2.3. Comparison With DLSM-B
Figure 6 illustrates the estimated latent positions of items from
DLSM-B. Estimates are obtained from the posterior mean of
10,000 MCMC samples, which takes about 6 min. There are
three clusters of latent positions: items (1)–(2), items (3)–(6),
and items (7)–(8). The closer latent positions are, the more likely
they have positive interactions. These results are consistent with
the estimated network from FHS-DMH (Figure 4). Note that
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Figure 4. Estimated networks for the motivation to succeed dataset. The green lines indicate positive relations and the red lines represent negative relations. The width of
the lines indicates the connection strength between the relevant nodes; thicker lines indicate stronger interactions between items.

Table 3. Estimated nonzero interaction parameters among the items in the moti-
vation to succeed data.

Interactions Time 1 Time 3 Time 5 Time 7 Time 9 Time 11

γt,1,2 0.470 1.069 1.047 0.961 0.610 0.453
γt,1,3 −0.880 −0.927 −1.164 −0.781 −1.176 −0.910
γt,3,4 1.353 1.595 1.518 1.681 2.716 2.762
γt,1,5 0.005 0.071 −0.517 −1.007 −1.292 −1.688
γt,4,5 0.869 1.479 1.252 1.108 0.113 0.966
γt,2,6 −0.410 −0.560 −0.605 −1.440 −4.414 −4.562
γt,5,6 2.128 2.584 2.145 2.387 1.684 0.765
γt,2,7 0.143 0.034 0.263 0.254 0.586 0.542
γt,5,7 −0.187 0.136 −0.303 −0.859 −1.726 −1.714
γt,2,8 0.196 0.716 0.537 −0.009 −0.961 −1.070
γt,6,8 −1.544 −0.841 −1.505 −2.031 −3.998 −6.812
γt,7,8 4.163 5.078 4.846 5.084 5.534 5.864

NOTE: The estimates are obtained from the posterior mean of 30,000 MCMC samples
from FHS-DMH; Monte Carlo standard errors are at 0.04.

for DLSM-B estimates, it is difficult to distinguish between the
zero and negative interactions. Since the latent positions of items
(1), (8) are located far away from item (6), one can interpret
that they have no interactions. On the other hand, FHS-DMH
can quantify negative interactions (item (6) and item (8)) and
zero interactions (item (1) and item (8)) separately (Table 3,
Figure 4).

4.3. Hotel Review Data

4.3.1. Data Description
Many reviewers express their opinions by writing reviews on
websites, and their satisfaction toward hotels is summarized
with sentiment keywords. Sentiment keywords represent emo-
tional expressions in hotel review data; the positive and negative

opinions in the review data correspond to specific keywords. We
use text mining to construct aspect-based sentiments, which are
composed of keywords with similar aspects. Here, we study the
temporal networks among aspect-based sentiments about hotel
reviews from reservation websites. We collect 231,862 reviews of
423 hotels in South Korea from 2018 to 2019 and exclude adver-
tisements and spam reviews. To obtain the sentiment keywords
from the data, we use the natural language process through
the Daumsoft Text Mining Engine Version 2. With these key-
words, we construct 14 aspect-based sentiments such as prices,
rooms, subsidiary facilities, food, interior design, service, and
bed. Table 4 summarizes the aspects-based sentiments and their
keywords. The dataset contains binary review information from
n = 423 hotels over the seven time points from the first quarter
of 2018 to the third quarter of 2019. The binary value indicates
whether an individual hotel has a review containing aspect-
based sentiments (1 existence of sentiments in the review and
0 otherwise). The p = 14 aspect-based sentiments result in FI-
ERGMs with 105 functional parameters.

4.3.2. Analysis Results
Analysis of Dyadic Relationships. Figure 8(b) shows that among
the 105 functional parameters, FHS-DMH shrinks 33 of them
to zero functions. Figure 7 and Table 5 describe the estimated
network structures and their nonzero interaction parameters.
FHS-DMH takes about 3 hr. In Figure 7, we used the layout to
the method of Fruchterman and Reingold (Fruchterman and
Reingold 1991), which exploits analogies between the relational
structure in graphs, to visualize the node cluster structure effi-
ciently. We provide a circular layout for the hotel review data
in the supplementary material. We observe several meaningful
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Figure 5. The left panel (a) compares the observed and mean of the simulated model summary statistics. The middle panel (b) compares the observed and mean of
the simulated degree statistics. The summary statistics are simulated 1000 times for the given FHS-DMH estimates. The right panel (c) shows the shrinkage effect for the
functional parameters. The red lines indicate shrinkage. Among the 36 functional parameters, 17 of them are diagnosed as the zero functions.

Figure 6. Estimated latent positions for the motivation to succeed dataset. The closer two latent positions of items are, the more likely they have positive relations.

patterns. First, item (8) (food dissatisfaction) and item (9) (inte-
rior design satisfaction) are connected positively at each time
point. This indicates that although reviewers may be satisfied
with the interior and exterior design of the hotel (including the
restaurant), they are not necessarily satisfied with the taste of
the food. On the contrary, satisfaction with the food (item (7))
is linked to satisfaction with the service (item (11)). Since this
also has a strong positive relationship at all times, it can be seen
as related to satisfaction with the food and service. However,

Table 5 shows that food satisfaction (item (7)) and food dis-
satisfaction (item (8)) has a strong positive relationship at all
times, even though they have the opposite meanings. The items
connecting favorable and unfavorable sentiments tend to dis-
play positive relationships because of the characteristics of the
review data (i.e., reviewers mention negative and positive senti-
ment keywords on different aspects simultaneously in reviews).
Therefore, the input matrix of the review data according to
favorable and unfavorable aspect-based sentiments is analyzed
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Figure 7. Estimated networks for a hotel keyword dataset. Green lines indicate positive relations and red lines represent for negative relations. The width of the lines
indicate the connection strength between the relevant items—thicker lines indicate stronger interaction between keywords.

Table 4. Aspect-based sentiments and their sentiment keywords for the hotel
review data.

Item Aspect-based Sentiments Sentiment Keywords

1 Price—satisfaction Reasonable price, inexpensive price
2 Price—dissatisfaction Very expensive, terrible price,

ridiculous price
3 Room—satisfaction Amazing room, luxury room, quiet

room
4 Room—dissatisfaction Dry room, dirty room, old room
5 Subsidiary facilities—satisfaction Clean lounge, comfortable lounge
6 Subsidiary facilities—

dissatisfaction
Dirty floor, old lounge

7 Food—satisfaction Delicious buffet, nearby restaurant,
clean cafeteria

8 Food—dissatisfaction Dirty restaurant, tasteless cafeteria
9 Interior design—satisfaction Nice place, luxurious interior
10 Interior design—dissatisfaction Poor lighting, no sunlight
11 Service—satisfaction Great service, prompt service
12 Service—dissatisfaction Abysmal service, satisfactory ser-

vice, surly service
13 Bed—satisfaction Get a good night’s sleep
14 Bed—dissatisfaction Terrible bed, uncomfortable bed

with co-occurrence information. When this occurs, our model
labels the interaction between satisfaction and dissatisfaction as
positive. From this, we can infer that reviewers tended to say
both good things and bad things about their food. Note that
there is an exception; we observe a negative relationship between
item (13) (bed satisfaction) and (14) (bed dissatisfaction) at

Table 5. Top 10 largest nonzero interaction parameters among items in the hotel
keyword data.

Interactions Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7

γt,7,8 1.415 1.510 1.480 1.942 1.636 1.860 1.631
γt,7,11 1.543 1.271 1.792 1.461 1.487 1.036 0.775
γt,3,5 1.293 1.217 1.144 1.151 1.891 1.564 1.037
γt,3,11 1.266 0.695 0.644 1.163 1.286 1.906 1.554
γt,5,13 1.259 0.847 0.796 1.069 1.188 1.606 1.603
γt,3,9 2.093 1.220 1.297 0.804 0.963 0.844 1.055
γt,8,9 1.036 1.004 1.141 1.378 1.629 1.080 0.717
γt,3,13 0.512 1.447 1.306 1.363 1.169 0.852 1.062
γt,4,10 1.257 1.092 1.167 0.963 1.224 0.816 0.981
γt,2,9 0.877 0.899 0.727 0.913 0.835 0.699 0.976

NOTES: The order is based on the summation of the estimated interaction param-
eters across all time (i.e.,

∑
∀t γtjk ). Estimates are obtained from posterior mean

of 50,000 MCMC samples from FHS-DMH; the Monte Carlo standard errors are at
0.03.

Time 7. From this, we can conclude that once reviewers gratify
their bed conditions, most reviewers less likely to respond the
unfavorable reviews on their bed conditions.

Analysis of Negative Relationships. At Time 1, there is a neg-
ative relationship between room satisfaction (item (3)) and bed
dissatisfaction (item (14)). We can infer that there are some
favorable reviews about room condition but discontent with
the bed quality for reasons such as a hard bed, dirty bed, etc.
Moreover, based on the negative relationship between interior
dissatisfaction (item (10)) and bed dissatisfaction (item (14)),
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Figure 8. The left panel (a) compares the observed and mean of the simulated model summary statistics. The middle panel (b) compares the observed and mean of
the simulated degree statistics. The summary statistics are simulated 1000 times for the given FHS-DMH estimates. The right panel (c) shows the shrinkage effect for the
functional parameters. The red lines indicate shrinkage. Among the 105 functional parameters, 33 of them are diagnosed as the zero functions.

Figure 9. Estimated latent positions for the hotel review dataset. The closer two latent positions of items are, the more likely they have positive relations.

some reviewers distinct unfavorable feedback of room interior
from bed conditions. We can infer that even though customers
dislike the interior of a room, such as poor lighting, they may
satisfy the bed conditions or vise versa. In addition, we observe
a negative relationship between item (2) (price dissatisfaction)
and item (4) (room dissatisfaction) at Time 1. This implies that
even if the price of a room is high, many reviewers content with
room conditions. However, these negative connections turn into
positive relationships over time.

Analysis of Triangle Relationships. There is a consistent trian-
gle (cyclic) relationship between favorable aspect-based items
over time. At Time 1, the connection between room satisfac-
tion (item (3)) and interior design satisfaction (item (9)) is

the strongest and their interaction parameter becomes smaller
over the seven time points. Furthermore, both those items are
connected to satisfaction with the service (item (11)); hence,
the three items have a triangle relationship that is consistent
at each time point. In other words, many reviews contain a
favorable impression of the room, interior design, and service.
Furthermore, there is a strong positive relationship between
satisfaction with the food (item (7)) and satisfaction with the
service (item (11)) at Time 3. In addition, these two items display
a strong positive relationship with room satisfaction (item (3))
at all times. Given that items (3) and (11) are connected to item
(5) (subsidiary facilities satisfaction), they form another triangle
relationship. We can combine this result to conclude that hotel
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users have favorable opinions about their room, the service, the
interior design, the food, and the subsidiary facilities. Consid-
ering that such triangle relationships are composed of items (3)
and (11), we can infer that satisfaction with the service and
with the room conditions are major factors in getting favorable
reviews.

As shown in Figure 7 and Table 5, the triangle relationships
between items do not change structurally between time points;
rather, the strength of these relations vary over time. In terms
of unfavorable aspect-based factors, price dissatisfaction (item
(1)), service dissatisfaction (item (12)), and meal dissatisfac-
tion (item (8)) are all connected. Further, room dissatisfaction
(item (4)), interior design dissatisfaction (item (10)), and bed
dissatisfaction (item (14)) are connected. In addition, as shown
by the connection strength, the main complaint is that the
room design is so poor that it reflects negatively on reviews
about the room and bed. Furthermore, the connection between
room satisfaction (item (3)), interior design satisfaction (item
(9)), and bed satisfaction (item (13)) is maintained over time.
Therefore, we can conclude that the interior design influences
the overall impression of the room and bed. Other factors are
affected by the price such as dissatisfaction with the room and
facilities. That is, there is constant connectivity between price
dissatisfaction (item (1)), room dissatisfaction (item (4)), and
facilities dissatisfaction (item (6)). As in the previous examples,
Figure 8 shows that the observed summary statistics and simu-
lated summary statistics are aligned (i.e., our model fits well).

Comparison With DLSM-B. Figure 9 shows the estimated
latent positions from DLSM-B. Estimates are obtained from the
posterior mean of 10,000 MCMC samples, which takes about
4 min. The latent position of item (3) becomes close to the latent
positions of items (5), (9), (13) over time, which implies that they
have positive temporal interactions. However, such interpreta-
tion is based on the relative distances between latent positions
that can be subjective. Our method can be more informative in
that FHS-DMH quantifies the change in interactions through γ

estimates. Table 5 indicates that there are positive interactions
between these items over time (i.e., γt,3,5, γt,3,9, γt,3,13 > 0, ∀t );
FHS-DMH can determine statistically significant local interac-
tions.

5. Simulated Data Examples

To validate our method, we conduct a simulation study under
different scenarios. We simulate temporal binary response
datasets with n = 600 observations, p = 10 items, and
t = 8 time points. This results in 55 functional parameters. We
provide cyclic trends for the parameters using a function μ(t) =
(1/8) cos(π t) + (1/8) sin(π t), which has fluctuating patterns
around 0. We simulate 10 intercept parameters (αtj) from
N(−1+μ(t), σ 2I8). Among the 45 interaction parameters (γtjk),
22 of them are simulated from N(μ(t), σ 2I8); these are assumed
to be the true zero functions. Then, 11 of the interaction param-
eters are generated from N(−1 +μ(t), σ 2I8) and the remaining
12 parameters are generated from N(1 + μ(t), σ 2I8). Here, we
consider four noise strength settings (σ 2 = 0.05, 0.1, 0.3, 0.5).
For the given model parameters {{αtj}∀t,j, {γtjk}∀t,j<k}, we
simulate the datasets via 100n iterations of Metropolis–Hastings

Table 6. 10,000 MCMC samples are generated for each scenario; Monte Carlo
standard errors are at 0.05.

Scenario MSE TP TN

σ 2 = 0.05 0.09 1.00 0.92
σ 2 = 0.1 0.12 0.86 0.91
σ 2 = 0.3 0.16 0.68 0.76
σ 2 = 0.5 0.23 0.73 0.67

NOTES: The MSE represents the mean square errors obtained from FHS-DMH esti-
mates. TP (true positive) is the proportion of times that the true zero functional
parameters are diagnosed as zero. TN (true negative) is the proportion of times
that the true nonzero functional parameters are diagnosed as nonzero.

Table 7. MSE (mean square errors), TP (true positive), and TN (true negative) from
the different lengths of the inner sampler in FHS-DMH.

Inner sampler MSE TP TN Time(min)

n 0.12 1.00 0.85 21.01
2n 0.08 1.00 0.97 24.86
4n 0.08 0.95 1.00 38.14
8n 0.08 0.97 0.95 77.58

updates (Hunter et al. 2008). Figure 10 illustrates the simulated
functional parameters under the different scenarios.

To study the performance of our method, we calculate the
true positive rate (diagnose zero for the true zero functions)
and true negative rate (diagnose nonzero for the true nonzero
functions) for each scenario. Furthermore, we define the mean
square error (MSE) as

1
55

55∑
i=1

(̂θ•i − θ•i)
′(̂θ•i − θ•i),

where θ̂•i is the functional parameter estimate obtained from
FHS-DMH and θ•i is the true parameter. Table 6 summarizes
the results. Based on the MSE, we observe that FHS-DMH
estimates are reasonably close to the true functional parameters.
Furthermore, FHS-DMH can detect the true zero function well
for reasonable noise settings (σ 2 = 0.05, 0.1). With increasing
noise (σ 2 = 0.3, 0.5) in the simulated data, it becomes difficult
to detect the true zero functions because the noises overwhelm
the signals from each function.

In addition, we study our method for different lengths of
inner sampler (Step 2 in Algorithm 1). With the increasing
length of the inner sampler, auxiliary variable samples become
close to the stationary distribution at the expense of compu-
tational costs (Caimo and Friel 2012; Park and Haran 2018).
Under the same simulation setting above (σ 2 = 0.05), we
calculate MSE, true positive rate, and true negative rate with
the increasing length of the inner sampler. Table 7 indicates that
the performances do not change much from 2n. Therefore, we
recommend using 2n as a practical choice for sampling auxiliary
variables for FHS-DMH.

6. Discussion

In this article, we embed functional parameters in inhomoge-
neous exponential random graph models to study the temporal
interactions among the items. Our models include intractable
normalizing constants, and the number of functional param-
eters increases with an increasing number of items. We com-
bine a double Metropolis–Hastings algorithm and a functional
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Figure 10. Simulated functional parameters for FI-ERGMs under the four scenarios.

shrinkage method to address these computational and inferen-
tial challenges. Our study to real and simulated data examples
shows that FHS-DMH can rule out weak interactions among
items as well as provide a direct interpretation of temporal
trends; our method can recover the dependence structure of the
longitudinal networks well. To our knowledge, this is the first
attempt to use functional shrinkage for models with intractable
normalizing constants, which is an important contribution.

Most ERGM-based dynamic models (e.g., TERGM, STERGM)
describe probabilistic properties of the dynamic network by
assuming Markov dependence between consecutive network
observations with time-invariant model parameters. From
different perspectives, we directly model the dynamic trends
in the functional parameters using the nonparametric basis
expansion �β i in (2). Our model assumes that the temporal
dependence can be fully explained by time-varying parameter,
and the networks on different time points are independent given
the time-dependent parameter. This kind of assumption is not
uncommon; for instance, dynamic spatio-temporal models (see
Wikle, Zammit-Mangion, and Cressie 2019) also assume that
observed processes are independent for a given time-evolving
process which have similarities to our models. The practical
advantage of our model is applicability to dynamic networks in

continuous time as in Lee, Li, and Wilson (2020); it would be
unclear to specify the Markov dependence when the time points
are irregularly observed.

Similar to the variable selection methods (van Borkulo et al.
2014; Park, Jin, and Schweinberger 2022) for static networks,
our methods are suited to datasets with a sufficient number of
respondents (n) and a moderate number of items (p), as exam-
ples illustrated in this article. Otherwise, it will suffer from a
small n, large p issues, which can lead to an unreliable inference.
As a simple heuristic, we recommend applying our methods to
problems with n > p(p − 1)/2.

FHS-DMH is practical for moderate size of longitudinal
item response datasets (e.g., n = 2000, p = 20, t = 10).
With an increasing number of items and respondents, FHS-
DMH becomes computationally expensive due to the auxiliary
variable simulation in Step 2. Note that it is quite costly to
collect large (for both n, p) item response data over a long
period. It is usually the case that when the number of respon-
dents increases, the number of items stays small, and when the
number of items increases, the number of respondents stays
small. Considering that it is challenging to have longitudinal
item response datasets larger than our examples, FHS-DMH is
applicable to many realistic cases. There have been several recent
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proposals to speed up inference for large network models. For
instance, Bouranis, Friel, and Maire (2017) corrected MCMC
samples collected from pseudo-posterior distribution, which
is computationally efficient. Park and Haran (2020) used fast
Gaussian process approximation to replace expensive Monte
Carlo estimates for intractable normalizing constants. Adapting
some of these methods would potentially lend itself to faster
algorithms.

The computational methods developed here allow researchers
in many disciplines to study temporal interactions among items
for binary response datasets. Our methods could be applicable
to a variable selection in existing temporal network models
as well as for a broader class of functional models. Examples
include temporal exponential random graph models (Hanneke
et al. 2010) and their variants (Krivitsky and Handcock 2014),
and functional regression models (Ramsay and Silverman
2007).
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