
D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
la

n
k
t/a

rtic
le

/4
3
/1

/8
5
/6

0
4
3
7
2
3

 b
y
 M

B
L
 W

H
O

I L
ib

ra
ry

 u
s
e
r o

n
 1

1
 J

u
ly

 2
0
2
2
 

Journal of 

Plankton Research  academic.oup.com/plankt 
 
 
 
 
 
 
J. Plankton Res. (2021) 43(1): 85–102. First published online December 22, 2020 doi:10.1093/plankt/fbaa060 

 

 
 

ORIGINAL ARTICLE 
 

 

Annual phytoplankton succession results 
from niche-environment interaction 

 
 
 

MARIARITA  CARACCIOLO  1, *,  GRÉGORY BEAUGRAND2,3,4, *,  PIERRE HÉLAOUËT4 ,  FRANCOIS GEVAERT3 , 

MARTIN  EDWARDS4,5 ,  FABRICE LIZON3 ,  LOÏCK KLÉPARSKI3,4 AND  ERIC GOBERVILLE6
 

1 sorbonne université, cnrs, station biologique de roscoff, umr 7144, ecomap, place georges teissier,  29680 roscoff, france, 2 centre 

national de la recherche scientifique (cnrs), université de lille, université littoral côte d’opale, umr 8187, log, laboratoire 

d’océanologie et de géosciences, f 62930 wimereux, france, 3 université de lille, cnrs, univ. littoral côte d’opale, umr 8187, log, 

laboratoire d’océanologie et de géosciences, f 62930 wimereux, france, 4 marine biological association, citadel hill, plymouth pl1 2pb, 

uk, 5 school of biological and marine sciences, university of plymouth, drake  circus, plymouth, pl4 8aa, united kingdom and 6 unité 

biologie  des organismes et écosystèmes aquatiques (borea), muséum national d’histoire naturelle, sorbonne université, université de caen 

normandie, université des antilles, cnrs, ird, cp53, 61, rue buffon 75005 paris, france 
 

 
*corresponding authors: mariarita.caracciolo@sb-roscoff.fr (mariarita caracciolo) and gregory.beaugrand@univ-lille.fr (gregory beaugrand) 

Received February 29, 2020; editorial decision November 12, 2020; accepted November 16, 2020 

Corresponding editor: Lisa Campbell 

 
Annual plankton succession has been investigated for many decades with hypotheses ranging from abiotic to biotic 

mechanisms being proposed to explain these recurrent patterns. Here, using data collected by the Continuous Plankton 

Recorder (CPR) survey and models originating from the MacroEcological Theory on the Arrangement of Life, we 

investigate Annual Phytoplankton Succession (APS) in the North Sea at a species level. Our results show that this 

phenomenon can be predicted well by models combining photosynthetically active radiation, temperature and macro- 

nutrients. Our findings suggest that APS originates from the interaction between species’ ecological niches and the 

annual environmental fluctuations at a community level. We discuss our results in the context of traditional hypotheses 

formulated to explain this recurrent pattern in the marine field. 

 
KEYWORDS: annual plankton succession; phenology; ecological niche; environment; plankton; continuous plankton 

recorder (CPR); METAL theory 
 
 
 
 
 
 
 
 

 
available online at academic.oup.com/plankt 

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 

mailto:mariarita.caracciolo@sb-roscoff.fr
mailto:gregory.beaugrand@univ-lille.fr
mailto:journals.permissions@oup.com


VOLUME 43 NUMBER 1 PAGES 85–102 2021 JOURNAL OF PLANKTON RESEARCH 

86 

 

 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
la

n
k
t/a

rtic
le

/4
3
/1

/8
5
/6

0
4
3
7
2
3

 b
y
 M

B
L
 W

H
O

I L
ib

ra
ry

 u
s
e
r o

n
 1

1
 J

u
ly

 2
0
2
2
 

 

 
 
 
 

INTRODUCTION 
 

Annual Phytoplankton Succession (APS) is defined as the 

recurrent pattern of species abundance, observed during 

the annual  cycle (Cushing,  1959; Winder and  Cloern, 

2010; Sommer et  al., 2012; Romagnan  et  al., 2015). In 

temperate and polar biomes, phytoplankton abundance 

varies from periods of proliferation in spring and autumn 

to periods of decline in summer and winter. In subtrop- 

ical and tropical waters where seasonal changes in solar 

radiation and temperature are less prominent, plankton 

abundance is more stable at an annual scale (Dakos et al., 

2009). 

APS has been widely described in marine ecosystems, 

leading to a variety of potential explanations often based 

on mechanisms such as bottom-up (i.e. nutrients availabil- 

ity; Metaxas and Scheibling, 1996) to top-down control 

(i.e. grazing by organisms such as zooplankton and fish; 

Sverdrup, 1953; Margalef, 1978; Sommer et  al., 1986, 

2012; Huisman et al.,  1999; Behrenfeld, 2010; Chiswell, 

2011; Smyth et al.,  2014; Chiswell et al.,  2015; Romagnan 

et  al., 2015; Atkinson et  al., 2018). Gilbert et  al. (2012), 

Barton et  al. (2014) and  Romagnan  et  al. (2015) have 

provided evidence for a strong influence of  the physi- 

cal environment on phytoplankton dynamics, suggesting 

a bottom-up  control of  annual  succession. A substan- 

tial impact of species interaction, such as grazing that 

imposes a top-down control (e.g. mesozooplankton species 

on protists), has also been suggested in the western part 

of the English Channel (Fileman et al.,  2010; Kenitz et al., 

2017). 

The  seasonal cycles of  irradiance,  temperature  and 

stratification—and associated changes in the pycnocline, 

thermocline and halocline—are known to be closely 

related to the onset of phytoplankton growth (Longhurst, 

1998), with nutrients influencing the phytoplankton 

bloom extent (Sommer et al.,  2012). Although APS starts 

typically by  the  onset  of   the  spring  bloom  in  most 

extra-tropical regions, winter is a key period during 

which the ingredients needed to trigger the start of 

phytoplankton proliferation are prepared (Sommer et al., 

2012). During winter, wind intensifies the mixing of the 

upper  layers and  an increase in convection leads to a 

deep mixing leading to an increase in the concentration 

of  nitrate,  phosphate  and  silicate in the surface layers 

(Falkowski and Oliver, 2007; Mann and Lazier, 1996) 

while diluting phytoplankton in the water column 

(Behrenfeld, 2010). 

The main objective of this study is to reconstruct APS 

using models of increasing complexity—generated from 

the MacroEcological Theory on the Arrangement of Life 

(METAL; Beaugrand, 2015a)—that considers a set of 

environmental  parameters  known to influence marine 

phytoplankton dynamics such as temperature, photosyn- 

thetically active radiation  (PAR)  and  macro-nutrients. 

The METAL framework unifies behavioural, physiolog- 

ical, phenological biogeographic and long-term commu- 

nity shifts and  consequently allows one to model how 

communities form and how they are altered by envi- 

ronmental fluctuations, including climatic variability and 

global climate change  (Beaugrand  et al., 2010, 2014, 

2018; Beaugrand, Mackas, et al., 2013). The strength of 

this approach is to consider that basic organization and 

sensitivity of communities can be predicted from simple 

founding principles. Even though ecosystems are complex 

adaptive systems (Levin and Lubchenco, 2008), a signifi- 

cant proportion of the spatial and temporal adjustments 

of marine communities are deterministic, which opens 

the way to testable predictions. In this study, our objectives 

are to test whether APS is related to the interaction 

between the ecological niche (sensu  Hutchinson,  1957) 

of species and seasonal environmental fluctuations, and 

to identify the key ecological variables of the niche that 

control annual phytoplankton dynamics. 

Using data from  the Continuous Plankton Recorder 
 (CPR) survey (Reid et al.,  2003), we characterize APS in 
an area of the North Sea ranging from 1 E to 4 E and 

from 54 N to 56 N (Fig. S1). The area of consideration 

is close to the Flamborough Frontal structure, which 

separates seasonally thermally stratified water to the north 

and tidally mixed water to the south (Huthnance, 1991; 

Pingree et  al., 1978). We model  APS using METAL, 

comparing observed and predicted patterns, and we 

investigate how natural environmental fluctuations drive 

phytoplankton seasonality from initiation to termination. 

Finally, we discuss our  results in the  context of  APS, 

including the  spring bloom (Widdicombe  et  al., 2010; 

Sommer et al.,  2012; Romagnan et al.,  2015). 
 
 

METHOD 
 

Biological data 

Biological data are originated from the CPR (www.cprsu 

rvey.org/data/our-data/) survey, a marine monitoring 

programme currently operated by the Marine Biological 

Association (MBA) that has sampled the North Atlantic 

Ocean  and  its adjacent  seas since 1946 on  a routine 

monthly basis and at 7–10 m depth (Reid et al.,  2003). 
Extensively used in the literature, this dataset has allowed 

researchers to (i) investigate APS (e.g. Colebrook, 1979, 

1982; Zhai et  al., 2013; Barton et  al., 2014);   (ii) char- 

acterize pelagic biodiversity (e.g.  Barnard  et  al., 2004; 

Beaugrand et al., 2002);  (iii) document distributional, phe- 

nological and physiological responses of  marine species 

to climate change (e.g. Beaugrand et al.,  2009; Helaouët 

http://www.cprsurvey.org/data/our-data/
http://www.cprsurvey.org/data/our-data/
http://www.cprsurvey.org/data/our-data/
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and Beaugrand, 2009; Thackeray et al.,  2016; Beaugrand 

and Kirby, 2018) and (iv) anticipate the consequences of 

global warming in the pelagic realm (e.g. Reid et al.,  1998; 

Beaugrand et al.,  2015). 
 Here,  we focused  our  analyses on  the  phytoplank- 

ton community of the North Sea (1–4 E and 54–56 N; 

Fig. S1) and considered 90 species/taxa commonly mon- 

itored by the CPR  survey over the period 1958–2016 

(Table 1). The area was selected for both a regular sam- 

pling effort over the study period and its geographical 

location far from the coast. For each species/taxa, we 

calculated a  daily climatology of  species abundances, 

based on 60 years of sampling. 
 
 
Environmental data 

Nutrient  data  originated from  the World Ocean  Atlas 

2013 V2 provided by the NOAA National Centers for 

Environmental  Information,  Silver Spring,  MD,  USA 

(www.nodc.noaa.gov/OC5/woa13/woa13data.html; 

Garcia et al., 2014). It is a scientifically quality-controlled 

database  of  historical  in situ  surface  and  subsurface 

phosphate  (μmol.  L 1 ), silicate (μmol. L 1 )  and  nitrate 

(μmol. L 1 ) measures. Monthly means are provided on a 

3D grid of 1 latitude by 1 longitude, by 37 depth levels. 

We calculated the average nutrient concentrations in the 

area over the first 20-m water depth. From nitrate and 

phosphate concentration, we calculated the N/P  ratio 

(Redfield, 1958) known to influence the APS (Falkowski 

et al.,  2000). 

We  used  PAR  (Einstein.m 2 .day 1 ), solar  radiation 

spectrum in the wavelength range of  400–700 nm  as 

a proxy of the level of energy that can be assimilated by 

photosynthetic organisms (Asrar et al.,  1989). Data were 

provided by the Giovanni online data system, developed 

and  maintained  by the NASA GES DISC  (gdata1.sci. 

gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=ocea 

n_month). A monthly climatology of  PAR, at a spatial 

resolution of  9 km, was calculated by compiling Sea- 

viewing Wide Field-of-View Sensor (SeaWiFS) data from 

2009 to 2012. 

We  also  examined  annual  changes  in  the  Mixed 

Layer  Depth  (MLD  in  meters;  Fig. S2),  using  data 

from the Global Ocean  Physical Reanalysis product 

(GLOBAL_REANALYSIS_ PHY_001_030) provided by 

the Copernicus Marine Environment Monitoring service 

(https://marine.copernicus.eu/). 

We assessed the thermal environment of  the 90 phy- 

toplankton species over our region of interest using Sea 

Surface Temperature  (SST) from the Optimum Interpo- 

lation (OI), which is based on both in situ and satellite 

observations (see Reynolds et al.,  2002 for a full descrip- 

tion of the OI analysis). While nutrients and PAR were 

only available at a monthly scale, daily SST allowed us 

to calculate daily species thermal preferendum: we first 

calculated daily SSTs on a 1 by 1 grid from January 
 1982 to December 2017, and then averaged data for the 
region ranging from 1 E to 4 E and from 54 N to 56 N 

(Fig. S1). Annual environmental changes are shown in 

Fig. 2. 
 
 
 
The macroecological theory on the 
arrangement of life 

The METAL is a theory that explains how life is arranged 

and how changing environmental conditions alter bio- 

logical arrangements in space and time at different eco- 

logical levels (e.g. species, community and  ecosystem), 

allowing predictions to  be  tested (Beaugrand,  2015a). 

METAL  posits that  many  ecological (e.g.  phenology), 

biogeographic (e.g.  LBGs) and  climate-change biology 

patterns (e.g. phenological and biogeographical shifts) 

originate from the fundamental niche-environment inter- 

action and unifies a large number of patterns observed in 

biogeography and ecology at different organizational lev- 

els (e.g. spatial range, Rapoport’s rule, phenology, latitu- 

dinal biodiversity gradients, and formation and alteration 

of species assemblages) and in climate change biology 

(e.g. phenological shifts, year-to-year to decadal changes 

in species abundance, range shift, biodiversity shifts, com- 

munity alteration and  abrupt  community shifts; Beau- 

grand, Rombouts, et al., 2013; Beaugrand et  al., 2014, 

2018, 2019, 2020; Beaugrand, 2015a, 2015b; Beaugrand 

and Kirby, 2018). 

The theory uses the concept of  the ecological niche 

sensu Hutchinson (1957) as a macroscopic elementary 

brick to understand  how species fluctuate in time and 

space and how communities form and are altered by envi- 

ronmental fluctuations, including climate change (Fig. 1). 

All species have an ecological niche, which means that 

they operate within a range of ecological conditions that 

are suitable for growth and reproduction. The environ- 

ment acts by selecting species that have the most suit- 

able niche. It follows  that  this mechanism determines 

the place where a species lives (i.e. spatial distribution), 

time when it is active (i.e. phenology) and how individual 

density fluctuates from short- to long-time scales. Locally 

however, the absence of a species may be explained by 

species interaction and random processes, such as those 

discussed in the Unified Neutral Theory of  Biodiversity 

and Biogeography (Hubbell, 2001). The ecological niche, 

measured by the abundance plotted as a function of some 

key ecological factors throughout the spatial range of  a 

species, integrates all genetic variations that affect biolog- 

ical traits and physiological processes. More information 

http://www.nodc.noaa.gov/OC5/woa13/woa13data.html%3B
http://www.nodc.noaa.gov/OC5/woa13/woa13data.html%3B
http://www.nodc.noaa.gov/OC5/woa13/woa13data.html%3B
https://marine.copernicus.eu/
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Table 1: List of phytoplankton species and  their  correlation with  the first three PCs. List of phytoplankton 
species considered in our study area (see Fig. S1). 

 

Category 

Phylum: Ochrophyta 

Class: Bacillariophyceae 

Phytoplankton species PC1 (26.86 %) PC2 (18.06 %) PC3 (12.22 %) 

1 P. sulcata   X 
2 S. costatum X X  
3 Thalassiosira  spp.  X  
4 D. antarcticus X   
5 Rhizosolenia styliformis  X  
6 Rhizosolenia hebetata semispina  X  
7 Chaetoceros(Hyalochaete) spp.  X  
8 Chaetoceros(Phaeoceros) spp.  X  
9 Odontella  sinensis   X 

10 Thalassiothrix longissima  X  
11 T. nitzschioides X   
22 Asteromphalus spp.    
23 Bacteriastrum spp. X  X 

24 B. malleus X  X 

25 B. alternans   X 

26 Odontella  aurita X   
27 Odontella  granulata    
28 Odontella  regia X X  
29 Odontella  rhombus    
30 Cerataulina pelagica    
31 C. concinnus  X  
32 Coscinodiscus  spp. (Unidentified) X X  
33 D. brightwellii X X  
34 Eucampia zodiacus  X X 

35 Fragilaria spp. X   
36 G. flaccida    
37 Gyrosigma spp.  X  
38 Leptocylindrus danicus X   
39 Navicula spp.  X  
40 Cylindrotheca closterium  X  
41 Rhaphoneis amphiceros    
42 Rhizosolenia bergonii    
43 Rhizosolenia setigera  X  
44 Stephanopyxis spp.   X 

48 Nitzschia spp. (Unidentified)    
49 Odontella  mobiliensis   X 

64 Proboscia alata X   
65 Leptocylindrus mediterraneus X  X 

66 Proboscia inermis    
67 Asterionellopsis glacialis  X  
68 Ephemera planamembranacea    
69 Pseudo-nitzschia  delicatissima complex  X  
70 Pseudo-nitzschia  seriata complex  X  
72 Guinardia  delicatula    
73 Dactyliosolen fragilissimus  X  
74 G. striata X   
76 Lauderia annulata  X  
77 Bacillaria paxillifera X   
78 Corethron  hystrix X   
79 Proboscia curvirostris  X  
80 Proboscia indica X  X 

81 Rhizosolenia imbricata X   
75 Helicotheca tamesis    

Continued 
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  Table 1:   Continued   
Category 

Phylum: Ochrophyta 

Class: Bacillariophyceae 

Phytoplankton species PC1 (26.86 %) PC2 (18.06 %) PC3 (12.22 %) 

Class: Dictyochophyceae     
 

47 
 

Silicoflagellates 
 

X  
 

X 

 

Phylum: Dinoflagellata     
 

Class: Dinophyceae     
 

12 
 

C. fusus 
 

X   
13 C. furca X   
14 Ceratium lineatum X   
15 Ceratium tripos X   
16 Ceratium macroceros X  X 

17 Ceratium horridum X   
18 Ceratium longipes X   
19 Ceratium arcticum X   
20 Dinoflagellate cysts (Total) X  X 

21 Polykrikos schwartzii  cysts X   
50 Ceratium arietinum    
51 Ceratium bucephalum    
52 Ceratium buceros    
53 Ceratium carriense    
54 Ceratium hexacanthum X   
55 Ceratium massiliense X   
56 Ceratium minutum   X 

57 Ceratium teres    
58 Dinophysis spp. Total X   
59 Oxytoxum spp.    
60 Protoperidinium spp. X   
61 Pronoctiluca pelagica    
62 Prorocentrum spp. Total X   
63 Noctiluca  scintillans X   

 

Philum: Haptophyta     
 

Class: Prymnesiophyceae     
 

45 
 

Phaeocystis pouchetii    
46 Coccolithaceae (Total) X   

 

Phylum: Cyanobacteria     
 

Class: Cyanophyceae     
 

71 
 

Trichodesmium spp.    

The 81 species were grouped in the following classes: 1: Bacillariophyceae, 2: Dinophyceae, 3: Primnesiophyceae, 4: Dictyochophyceae and 5: 

Cyanophyceae.  The first  three PCs considered  in Fig. 3 and their  eigenvalues  are reported  here. A cross indicates  a significant correlation 

(>|0.5|) between  a species and a PC. Some  species were  not  correlated.  The percentage  of explained  variance  per PC is indicated  into 

brackets. The seasonal cycles of each phytoplankton species are represented  on Fig. 6 (see species numbers,  first column  of this table, for 

correspondence). 

 
on  METAL  can  be found  in Beaugrand  (Beaugrand, 

2015a; Beaugrand et al., 2020). 
 
 
Summary of the numerical procedures 

In this paper, we specifically test whether APS originates 

from the  interaction  between the  ecological niche  of 

a species and environmental fluctuations. First (Step 1 

hereafter), we examined APS in the North Sea by means 

of  a Principal Component  Analysis (PCA)  using data 

from the CPR  survey. APS has been regularly investi- 

gated by applying this multivariate technique (Colebrook, 

1979, 1984; Beaugrand et al.,  2000). A total of 81 species 

belonging to different taxonomic groups (e.g. diatoms, 

dinoflagellates) were considered in this analysis. Secondly 

(Step 2), we created a large pool of (Gaussian) ecological 

niches using a model from  the METAL theory and  a 

growing number of ecological dimensions up to five (i.e. 
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Fig. 1.    Representation  of a hypothetical 2D ecological niche of  a 
species. The ecological amplitude is an estimation of the breadth  of 
the species’ niche and the ecological optimum is the combination of 
the environmental factors that are optimal for growth and reproduction. 
Here, the niche is based on a bi-normal distribution with a correlation 
coefficient fixed to 0.6 between the two environmental factors. At the 
optimal part of the niche, all biological processes are operational. When 
ecological conditions become less favorable,  this successively impairs 
reproduction, growth, feeding and survival. Ecological dimensions (i.e. 
the number of ecological variables) varied between 2 and 5 in this study. 
xopt and t (parameters of Equations 1 and 2) are indicated on the figure. 

 

 
environmental parameters,  Fig. S2). Six environmental 

parameters  were used (e.g. SST,  PAR, nitrate,  silicate, 

phosphate and nitrate/phosphate ratio). Thirdly (Step 3), 

we made 84 simulations building for each a large number 

of hypothetical ecological niches based on 1–5D niches. 

All possible niches were therefore built. The maximum 

abundance  of  each niche was fixed to 1 and decreas- 

ing abundance  around the optimum was a function of 

the environmental amplitude. Estimations of seasonal 

changes in pseudo-species abundance  were calculated 

phytoplankton species (Table 1) for which we estimated 

average daily abundances for the period 1946–2015. To 

minimize short-term fluctuations and to reduce the noise 

inherent  to these data,  we applied twice a sixth-order 

symmetrical moving average on each daily time series 

(Legendre and Legendre, 1998). 

A standardized  PCA (Jolliffe,  1986)  was applied on 

the  correlation  matrix  [81  phytoplankton  species x 

365 days] and the significant principal components (PCs) 

were examined to identify changes in annual plankton 

succession. Species were then sorted according to their 

phenology by using normalized eigenvectors, i.e. linear 

correlation values with the corresponding PCs higher 

than |0.5| (Table 1). Only significant axes (PCs) that best 

explained APS were considered (Fig. 3). We tested the 

significance of  the first three axes by using a broken- 

stick distribution based on 100 000 simulations (Frontier, 

1976;  Beaugrand  et   al., 2019). Phytoplankton  species 

were then clustered into five groups: Bacillariophyceae, 

Dinophyceae, Primnesiophyceae, Dictyochophyceae and 

Cyanophyceae. We reported here the three PCs for which 

we found correlations between dominant phytoplankton 

species and PCs (Table 1). 
 
 
Step  2: Generation of pseudo-species using 
models from the METAL theory 

We modelled the patterns of  APS using METAL. First, 

and using each environmental parameter  (i.e. nutrients, 

PAR and SST), we generated a pool of 1D niches (i.e. 

niches with only one ecological dimension) based on a 

Gaussian model (Gauch et al.,  1974; Ter Braak, 1996) to 

calculate species abundance, (Fig. S2) 
 

f 
(x xopt )

2 
\

 

at a daily scale by performing a cubic interpolation of 

the  1–5D niches with the  corresponding environmen- 
A c e  

2t2 
(1) 

tal variables. This calculation step is fully described in 

Beaugrand and Kirby (2018) (their  Fig. 4). We detailed 

this stage of the procedure in Figs 3 and 4 using simple 

examples. Fourthly (Step 4), we compared modelled and 

observed annual patterns in phytoplankton abundance at 

the species level by means of correlation analyses and the 

computation of Minimum Assessment Errors (MAEs). To 

consider a possible bias induced by temporal autocorre- 

lation, we tested both correlations and MAEs with null 

models. 
 
 
Step  1: Examination of APS from the CPR 
survey 

where A is the abundance of a species as a function of 

the value of a given environmental parameter  x;  c the 

maximum abundance  of  a pseudo-species with c  being 

fixed to 1 (Beaugrand,  2015b); xopt  the environmental 

optimum  (e.g.  the condition for which a given species 

reaches the highest level of  abundance;  Fig. S2)  and  t 

the ecological amplitude (i.e. the environmental range 

where a species can occur; Fig. S2) of  a pseudo-species 

(Table S2). One dimension of the niche (or one ecological 

dimension; Fig. S2) is represented by the whole range of 

values of an ecological variable. 

Multi-dimensional niches (i.e. niches with more than 

one ecological dimension) were modelled as follows: 

We first removed species with average annual abundances 
1 
r( 

x1 xopt1 
) 2 ( 

xn xoptn 
)2 
  

<0.5  in the study area, leading to the selection of 81 A ce 
... tn 

, (2) 
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with 2 n 5 ecological dimensions, x1 to xn, the values of 
the environmental parameters, xopt1 to xoptn, the optimum 

values of x1 to xn and t1 to tn, the ecological amplitudes of 

x1 to xn. c is the maximum abundance of a pseudo-species 
with c being fixed to 1 (Beaugrand, 2015b). We chose a 

multiplicative model to ensure that one dimension can 

exclusively control the abundance  of  a pseudo-species. 

For example, if the interaction between the silicate niche 

and the environment leads to a nil or (low) abundance, 

the abundance will remain nil (or low) whatever the values 

of the other ecological dimensions. Simulated ecological 

niches had five ecological dimensions at maximum. We 

used six ecological variables to build the different niches: 

(i)  SST, (ii)  PAR, (iii)  nitrate, (iv)  phosphate, (v)  silicate 

and (vi) the N/P  ratio. When the N/P  ratio was consid- 

ered, neither nitrate nor phosphate concentrations were 

included in the niches to avoid possible bias related to 

multi-collinearity. To examine the sensitivity of our anal- 

yses to low PAR conditions, three minimum values were 

considered (Table S2): 1 (termed ‘PARa’), 10 (‘PARb’) and 

20 (‘PARc’) E.m 2 .day 1 . 
 
 
Step  3: Model simulations 

We then performed simulations using all possible environ- 

mental combinations, from one to five ecological dimen- 

sions, leading to a total of 84 runs: 16 simulations based 

on 1D niches, 23 simulations based on 2D niches, 29 

simulations based on 3D niches, 13 simulations based 

on  4D  niches and  3 simulations based on  5D  niches 

(Table S1). The characteristics (optimum and ecological 

amplitude) of  all niches are presented in Table S2. For 

example, we defined 7 optimum values for temperature 

(i.e. values corresponding to the highest abundance for a 

given pseudo-species) from 0 to 36 C—by increment of 

6 C—and 4 ecological amplitudes from 1 to 10 C—by 
increment of 3 C—leading to the creation of 28 (7 4) 

virtual (or pseudo-) niches. 

The core principle of METAL is to generate a large 

number of pseudo-niches (i.e. simulated niches, we say 

niche hereafter) and pseudo-species (i.e. virtual species; 

Beaugrand et  al., 2020)  to examine whether the niche- 

environment interaction (here the APS) is responsible for 

the generation of  spatio-temporal patterns in APS. For 

each simulation, a large number of  niches (from  21 to 

15 431 472) were created (Table S2). To determine the 

total number of niches per simulation, we multiplied the 

number  of niches generated for a given dimension by 

the number generated for all other ecological dimensions. 

For example, for a run based on temperature, PAR and 

nitrate (i.e. a 3D run), the total number of niches was 28 

 ecological dimensions were considered (a 5D simulation), the total number of niches was 28 (SST) 27 (PARa)  

27 (nitrate) 28 (silicate)  27 (phosphate) = 15 431 472 

ecological niches (Table S2). Optimum  and  ecological 

amplitude of all niches are presented in Table S1. 

To test whether niche resolution—function of the 

increments (Table S2)—affected our analyses, we com- 

pared two extreme cases of 1D models (i.e. we named 

them low and high resolutions hereafter) using each 

ecological variable. The term “bis” was added to identify 

high-resolution niches (Tables S2 and  S3). Because of 

the high number  of  categories generated in the high- 

resolution case (e.g. 144 648 000 categories for simulations 

based on temperature, PARa and phosphate) and the 

resulting high computation time, we only performed 

high-resolution analyses for 1D models. 

Finally, annual  estimations of  pseudo-species abun- 

dances were assessed by performing a cubic interpolation 

of the 1–5D niches with the corresponding environmental 

variables. Four  runs  on  APS are  closely examined  as 

examples: three 1D runs based on either (i) SST, (ii) PAR 

or (iii) nitrate (Fig. 4) and (iv) one 3D run based on SST, 

PAR and nitrate (Fig. 5). To reveal the simulated patterns 

in APS, we also applied a standardized PCA and used the 

PCs to sort the different pseudo-species in the same way 

as we did for observed APSs (Step 1). We did one PCA 

per  simulation. In the case of these examples, we there- 

fore performed four PCAs: one for the simulation based 

exclusively on  thermal  niches (Fig. 4a–c), one  for  the 

simulation based exclusively on PAR niches (Fig. 4d–f ), 

one for the simulation based exclusively on nitrate niches 

(Fig. 4g–i)  and  a last one for the simulation based on 

the 3D (SST, PAR and nitrate) niches (Fig. 5). We only 

examined significant PCs for which we found correlations 

>|0.5| between pseudo-species and PCs. 
 

 
Step  4: Comparisons of modelled and 
observed seasonal patterns 

Comparisons between modelled and observed annual 

patterns in phytoplankton abundance were not based 

upon regression analyses but assessed by the Pearson’s 

correlation coefficients (Fig. 6 and Fig. 7) and the Mean 

Absolute Error (MAE; Fig. 7) that measures the average 

magnitude of the errors in a set of  predictions without 

considering their direction. Equation (3) represents the 

absolute differences between predictions and  observa- 

tions, divided by the number of differences to be tested 

(with all individual differences having equal weight) 

21 27 = 15 876 ecological niches (with 28 niches for 
SST, 21 for PARc and 27 for nitrate; Table S2). When all 

MAE 
)

 
n 

i 1 

Xi Yi 

n 
, (3) 
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with n  the  number  of  differences to  be  tested, Xi  is 

prediction i and Yi is observation i. The MAE is a neg- 

atively oriented score; the lower values being related to 

the strongest correlations. 

Pearson’s correlation coefficients and MAEs were cal- 

culated for each run between all observed and modelled 

daily patterns in (pseudo-) species abundance, leading to 

a correlation or MAE matrix [species  pseudo-species]. 
We then identified the highest positive correlations and 

the lowest MAE values. For each run and species, and 

using the average correlation and MAE values, we there- 

fore obtained two vectors (Fig. S4). To graphically depict 

the relationships, the daily normalized (between 0 and 

1) pseudo-species abundances—that  showed the highest 

correlation with observed species—were plotted against 

daily observed species abundances (Fig. 6). 

To consider a possible bias induced by temporal 

autocorrelation, we tested both correlations and MAEs 

with null models. First, we randomly generated a number 

of daily time series corresponding to the total number 

of pseudo-species generated for each run. The number 

of time series was small for 1D simulations but became 

important for an increasing number of dimensions. The 

procedure was repeated 1000 times and the average 

Pearson correlation and MAE values were calculated for 

each simulation. To consider temporal autocorrelation, 

we generated two million of  time series and  kept the 

first  1000  with  a  30-order  (i.e.   30  days/ 1-month 
autocorrelation  for  daily  time  series) autocorrelation 

higher than average 30-order autocorrelation found in 

observed daily time series. We represented the results in a 

diagram that exhibited the observed average correlation 

for each run and the 1000 correlations found using the 

null model with (red) and without (blue) autocorrelation 

(Fig. 7). For each combination of environmental variables 

(i.e. 84 runs), we calculated the probability of significance 

of each correlation (Table S3) and used contour diagrams 

to identify (i) the most important environmental param- 

eters and  (ii)  the number  of  dimensions to accurately 

reconstruct APS. This allowed us to highlight the number 

of species that exhibits the highest correlations in each 

run (Fig. 8). 
 

 
RESULTS 

 

Seasonal changes in environmental 
parameters in the North Sea 

Temperature   exhibited  a  minimum  at  the  beginning 

of March  and a maximum at the end of July–August 

(Fig. 2). PAR showed minimum and maximum values in 

December–January and June, respectively. The  highest 

concentrations  in nitrate,  phosphate  and  silicate were 

 
 
Fig. 2.   Annual changes in the environmental parameters considered 
in this study. (a) SST, (b) PAR, (c) nitrate, (d) silicate,  and (e) phosphate 
concentrations, and (f) nitrate/phosphate (N/P) ratio. Note that SST is 
at a daily resolution, whereas other parameters are at a monthly one (see 
Materials and Methods). 
 

 
observed in winter and reached their lowest concentra- 

tions from the end of spring to the end of summer. The 

MLD reaches the sea floor of the studied area every 

winter (Fig. S2), shoals in March to reach the shallowest 

values (i.e. close to 12 m) between April and September. 
 
 
Observed APS 

We examined APS based on CPR plankton data by means 

of a standardized PCA (Fig. 3). The first three PCs were 

used because they were significant using a broken-stick 
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Fig. 3.  Annual succession of phytoplankton sorted by PCA. (a) Species positively and (b) negatively correlated with the first principal component 
 (PC1).  (c) Species positively correlated with PC2. (d) Species negatively correlated with PC3. Only annual changes in phytoplankton species with normalized eigenvectors negatively (< 0.5) or positively (>0.5) correlated to a corresponding principal component were represented. See Table 1 

for information on species and their relations to the PCs. Tot. Sp. Richness: total species richness. 

 
 

model with 100 000 simulations (PC1:  26.86%, PC2: 

18.06%, PC3: 12.22%; PCs were above the threshold 

percentage of 6.14, 4.91 and 4.29%, respectively). The 

PCs allowed us to differentiate five periods, each being 

characterized by a species assemblage: (i) an early-spring 

stage (8 species negatively correlated to PC1; left part of 

Fig. 3b), (ii) a spring stage (22 species positively correlated 

to  PC2;  Fig. 3c), (iii)  a  widespread summer  stage (28 

species positively related to PC1; Fig. 3a), (iv) a late sum- 

mer/beginning  of autumn  stage (13 species negatively 

correlated to PC3; Fig. 3d)  and (v) an autumn  stage (8 

species negatively correlated to PC1; right part of Fig. 3b). 

The  summer  stage (Fig. 3a)  was characterized  by the 

highest species richness but showed a low proportion of 

diatoms in comparison to both spring and autumn stages. 

Silicoflagellates were also present (Table 1). 

Modelled APS 

We reconstructed APS by using models of growing com- 

plexity (i.e.  by considering a growing number of niche 

dimensions) including all combinations of  SST,  PAR, 

nitrate, phosphate, silicate and N/P ratio (a total of 84 

simulations). Here, we focused on four examples of mod- 

elled APS (Fig. 4 and Fig. 5). We used the same procedure 

(standardized PCA) to sort pseudo-species phenology and 

characterize annual succession. We retained the first two 

PCs for simulations based exclusively on thermal niches 

(81.05 and 15.10% of the explained variance; Fig. 4a–c), 

for simulations based exclusively on PAR niches (42.98 

and 27.66%; Fig. 4d–f ) and for simulations based exclu- 

sively on nitrate niches (91.84 and 5.10%; Fig. 4g–i). The 

first four  PCs (32.30,  20.90, 14.82 and  11.05%) were 

kept for  simulations based  on  SST,  PAR  and  nitrate 
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Fig. 4.  Reconstructed annual plankton succession from a 1D model based on SST (left panels), PAR (middle panels) and Nitrate (right panels). A 
PCA was performed on the relative pseudo-species abundances to identify the most important seasonal phytoplankton abundance patterns. Only 
modelled plankton seasonal changes, related substantially negatively or positively (i.e. normalized eigenvectors >|0.5|) to the PCs, are shown. 
SST (a–c): species  (a) positively and (b) negatively correlated to PC1, and (c) species negatively  correlated to PC2. SST: individual pseudo-species 
abundance is on the left vertical axis. PAR (d–f): species (d) positively and (e) negatively correlated to PC1, and (f) species negatively correlated 
to PC2. Nitrate (g–i): species (g) positively  and (h) negatively correlated to PC1, and (i) species negatively correlated to PC2. Relative individual 
pseudo-species abundances generated from METAL are on the left vertical axis. 

 
 
 
 

(Fig. 5), all PCs being significant using the broken-stick 

distribution  based on  100 000 simulations (thresholds 

of significance were of  6.14, 4.91, 4.29 and 3.88% for 

PC1–PC4). 

The   first  simulations,  based   on   thermal   niches 

only, showed two main phases of  high phytoplankton 

abundance (also representative of a high species richness) 

in summer (Fig. 4a) and winter (Fig. 4b) and two minor 

phases in spring and autumn (Fig. 4c). The winter phase 

of high abundance did not correspond to any observed 

patterns (Figs 3 versus 4). The second simulations, based 

on PAR only, showed several peaks of high phytoplankton 

abundance  in spring, summer and autumn  (Fig. 4d–f ). 

These patterns were close to the observed patterns of 

annual succession (Fig. 3), suggesting an important role of 

PAR in the modulation of APS. The third simulations— 

based on nitrate only (Fig. 4g–i)—showed an important 

winter peak in phytoplankton abundance  not detected 

in the observations (Figs 3 versus 4). Considering nitrate 

only was, therefore, not sufficient to reconstruct APS. 
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Fig. 5.  Reconstructed annual plankton succession from a 3D run based on SST, PAR and Nitrate. A PCA was performed on relative individual 
pseudo-species abundances to identify the most important seasonal patterns in phytoplankton abundance. Only predicted plankton seasonal changes 
related substantially negatively or positively (i.e. normalized eigenvectors >|0.5|) to the PCs are shown. Species (a) positively  and (b) negatively 
correlated to PC1. (c) Species negatively correlated to PC2. (d) Species negatively correlated to PC3. (e) Species positively correlated to PC4. 
Individual pseudo-species abundance is on the left vertical axis. 

 
 
 

The  fourth  simulations that  combined SST,  PAR and 

nitrate (Fig. 5a–e)  were more efficient to reproduce the 

APS observed in the CPR  data,  especially during the 

late-summer phase (Figs 5 versus 3). The  relationships 

between modelled and observed APS are thoroughly 

examined below. 
 

 
Reconstruction of species seasonal patterns 

We calculated the Pearson’s correlation coefficients 

between observed and modelled phytoplankton abun- 

dances for the 84 simulations we performed; note that 

our simulations were characterized by a growing number 

of ecological dimensions—ranging from one to five—and 

that all combinations of environmental parameters were 

tested. We selected the best correlations and examined 

graphically the  relationships (Fig. 6): for  most of  phy- 

toplankton species or taxa (e.g.  Skeletonema  costatum  and 

Thalassiosira  spp.), pseudo-species reproduced  observed 

seasonal patterns well, while marginal discrepancies were 

sometimes observed for some species (e.g. Paralia  sulcata 

and  Dactyliosolen  antarcticus;   Fig. 6).  All phytoplankton 

groups  were  well  modelled  (see  the   colour  curves 

in Fig. 6). 
 

 
 
Identification of the number of ecological 
dimensions to reconstruct APS 

To identify the number of ecological dimensions to use for 

reconstructing APS well, we calculated—considering all 

our simulations—the average of the best correlations and 

MAEs between observed and modelled phytoplankton 

abundances (Table S3, Fig. 7). We tested the robustness 

of correlations and MAEs (e.g. possible bias related to 

temporal autocorrelation) using null models. While MAE 

values were sometimes significant for 1D simulations 

(Fig. 7), APS was better reproduced when at least three 

dimensions were considered (Fig. 7). Not all correlations 

were significant for models based on three or more 

ecological dimensions; considering five dimensions did 

not  improve  the  percentage   of   explained  variance 

(i.e. model quality). This  result emphasizes that  using 
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Fig. 6.  Seasonal patterns in standardised observed and simulated phy- 
toplankton species abundances. Relative abundances of species sampled 
by the CPR survey (each taxonomic class being identified by a specific 
colour, see legend) plotted together with relative abundances of pseudo- 
species reconstructed using METAL (orange). See Table 1 for species 
names and taxonomic class. 

 
 

relevant environmental variables is more important than 

increasing model complexity. 
 

 
 
Identification of key environmental 
variables to reconstruct APS 

We then identified the most relevant environmental vari- 

ables that best reproduce APS and the seasonal patterns 

that result of species phenology (Fig. 8). Uni-dimensional 

models (1D, Runs 1–16) explained poorly observed sea- 

sonal changes in species abundance, with the exception 

of Run  2 that was exclusively based on SST (Fig. 8a). 

 
 
 
 
 

 
 
Fig. 7.    Average correlation (a) and MAE (b) for each run used to 
reconstruct APS from 1D to 5D models. The average value (blue circle) 
was based on the best correlations (a) or MAEs (b) assessed between 
observed species and (simulated) pseudo-species. Black and red points 
show the results of  the same calculations based on a null model with 
(red) and without (black) consideration of temporal autocorrelation. 

 
 
For  Run  2,  eight species showed their  highest corre- 

lations between observed and modelled seasonal pat- 

terns (Fig. 8a). Two-dimensional models (Runs 17–39) 

also explained poorly species seasonal patterns and only 

three species exhibited their highest correlations when 

simulations were based on both temperature  and PAR 

(Fig. 8a,  Table S1). Better results were achieved when 

models were based on three or more ecological dimen- 

sions: 3–5D models showed 29 (Runs 40–68), 25 (Runs 

69–81) and 14 (Runs 82–84) highest correlations between 

observed and modelled seasonal patterns, respectively 

(Fig. 8a). Note that  Run  51, based on SST,  N/P  and 

PARc (i.e. a minimum value of PAR = 20 E.m 2 .day 1 ), 

exhibited 10 highest correlations. 

We also examined the correlations between each simu- 

lated and observed seasonal patterns for all species and 

runs  (Fig. 8b). Even if  the  best results were achieved 

for models based on SST only (Run 2), results were 

similar when three or more dimensions were included 

(Fig. 8b). Low correlations generally appeared when the 

triplet SST/PAR/macro-nutrient was not used (Fig. 8b 

and Table S1, e.g. Runs 53–56), revealing that this combi- 

nation was important to model species seasonal patterns. 
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Fig. 8.  Identification of the key environmental parameters for recon- 
structing APS. (a) Number of  phytoplankton species exhibiting their 
highest correlation for each model (run). See Table S1 for the corre- 
spondence between run numbers and environmental combinations of 
variables. (b) Highest correlation for a given phytoplankton species and 
run. The colorbar shows the linear correlation value. 

 

 
DISCUSSION 

 

Annual phytoplankton succession 

The  application of  the plankton ecology group (PEG) 

model in lakes and  subsequently in the marine  realm 

(Sommer et al.,  1986, 2012) has suggested that (i) physics 

(light and stratification) controls the start and the end of 

the phytoplankton growth season, (ii) grazing by meta- 

zoan plankton results in a clear water phase, (iii) nutrients 

define the carrying capacity of  phytoplankton, (iv) food 

limitation determines zooplankton abundance and (v) fish 

predation determines zooplankton size structure. 

While grazing may have a substantial influence on 

phytoplankton  (Kivi  et  al., 1993; Fileman et  al., 2010; 

Kenitz et al.,  2017), its non-consideration in our analyses 

did not prevent us from accurately reconstructing species 

phenology. Here, we show that annual plankton succes- 

sion in the North Sea—including the spring bloom—may 

originate from the niche-environment  interaction with 

a key role of bottom-up  processes in shaping APS, as 

observed by Romagnan et al. (2015) for the Mediterranean 

Sea. Our results suggest that PARs, and to a lesser extent 

SST, are important for the initiation of the spring bloom, 

macro-nutrients for the end of the spring bloom and both 

SST and macro-nutrients for the development of APS. All 

these parameters (i.e. light, nutrients and temperature) are 

seen as master parameters controlling photosynthesis in 

physiological studies (Geider et al., 1997; Longhurst, 1998; 

McMinn and Martin, 2013; Ras et al.,  2013). 

In previous works, we suggested that large-scale pat- 

terns in biodiversity emerged from the niche-environment 

interactions that propagate  from the species to the 

community level (Beaugrand,  Rombouts,  et al., 2013; 

Beaugrand et al., 2015, 2018, 2020). While APS has been 

frequently investigated at the group level (e.g.  plankton 

functional type, PEGs or  categories), we show that— 

even within a given ecological or taxonomic group— 

species reacts to environmental fluctuations individually 

through the niche-environment interaction, conforming 

themselves to the principle of species individuality 

(Whittaker, 1975). 

By investigating APS at a species scale, we detected 

four main microphytoplanktonic successions in the North 

Sea (see  Table 1 for the species list). The  first assem- 

blage is composed of species that exhibited their highest 

abundance  at  the  beginning of  spring and  a  second 

less important peak in autumn (PC1 in Figs 3b and 6). 

This microphytoplanktonic assemblage, generally com- 

posed of  large diatoms such as Thalassionema nitzschioides 

and Ditylum brightwellii (Table 1 and Fig. 6), was primar- 

ily controlled by PAR  and  nutrients  availability. PAR 

is an essential parameter  limiting photosynthesis with a 

well-known influence on species growth rate (Eppley and 

Sloan, 1966) that mainly acts in polar regions (McMinn 

and Martin, 2013), but also in lower latitude areas such as 

the North Sea (Peeters et al., 1993).  The first assemblage is 

also psychrophilic, reaching its highest (lowest) abundance 

when temperature is lowest (highest) (Fig. 2). When PAR 

is highest and when PAR or nutrients concentration is 

lowest (Fig. 2), the assemblage is not detected, which is 

consistent with a positive influence of nutrients on both 

growth rate and primary production (Goldman, 1980; 

Longhurst, 1998). Although not considered in our sim- 

ulations (because of data availability), turbulence, mixing 

and high SST variability, environmental conditions that 

characterize early spring and autumn may also influence 

positively the first assemblage which is more adapted to 

this environment  than  dinoflagellates (Margalef,  1978; 

Holligan et al.,  1980; Beaugrand et al.,  2010). In winter, 

PAR (or the number of  daily light hours) and tempera- 

ture, to a lesser extent, limit diatom growth; deep-water 

column mixing combined to an absence of biological 

production enables nutrients to increase at the surface. 

The second assemblage, less psychrophile than the first 

one and which encompasses species such as Chaetoceros 

spp. or Coscinodiscus  concinnus,  occurs generally between 

April and June at a time when temperature  and PAR 
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increase, and silicate—and nitrate and phosphate, but to 

a lesser extent—concentrations diminish (Figs 2, Fig. 3c 

and Fig. 6). 

The third assemblage, mainly composed of  dinoflag- 

ellates (e.g. Ceratium  fusus and Ceratium furca) and of some 

small diatoms (e.g. Guinardia striata and Guinardia flaccida), 

is observed in oligotrophic conditions and when tempera- 

ture and PAR are high (Figs 2, Fig. 3a and Fig. 6). Silicate 

depletion played an important role in the change in dom- 

inance observed between the second and third assem- 

blage. In a mesocosm experiment, silicate deficiency was 

assumed to be the cause of the strong reduction in large 

spring bloom diatoms and the replacement by flagellates 

(Jacobsen et al., 1995). Small diatoms need less silicic acid 

for their skeleton and have a higher surface to volume 

ratio which increases nutrient absorption (Miller and 

Moser, 2004). Dinoflagellates occur in areas when tem- 

peratures are warm, SST variability is low and the water 

column is well stabilized (Margalef,  1978; Beaugrand 

et al.,  2010). 

The fourth assemblage is composed of late-summer/ 

autumn warm-temperate species (e.g. the diatoms Belle- 

rochea malleus and Biddulphia  alternans; Figs  3d and 6) with 

a northern  distributional limit in the North Sea (e.g. B. 

malleus)  (Barnard  et  al., 2004). This assemblage occurs 

when temperature is high and when nutrients concentra- 

tion tends to increase. 
 
 
 
The spring bloom 

Our  study also provides evidence for a strong environ- 

mental control of the initiation, development and ter- 

mination phases of the spring bloom. The  integration 

of PAR, and to a lesser extent SST, in the simulations 

can simply explain the initiation of  the spring bloom 

in the North Sea. Average light intensity in the mixed 

layer is known to govern the timing of the spring bloom 

(Riley, 1967; Legendre, 1990). This is especially the case 

in the shallow regions of high latitudes (Reid et al.,  1990; 

Eilertsen, 1993; Shaw and  Purdie, 2001). Smyth et  al. 

(2014) have provided evidence that oceanic net heat flux 

strongly affects ecosystem dynamics and have also con- 

veyed that the spring bloom started in the western part 

of the English Channel (Station L4, Plymouth) when net 

heat flux becomes positive (Smyth et al.,  2014). Because 

net  heat  flux is highly positively correlated  with irra- 

diance and  PAR (Beaugrand,  2015a), a strong control 

of PAR on the initiation of the spring bloom may be 

expected. 

The physical structure of the sea water strongly 

changes at the time of spring bloom initiation, and many 

studies have suggested that  it exerts a  strong control, 

although the debate remains active on the exact types of 

physical processes that may play a critical role (Atkinson 

et al., 2018). Our biological model, however, suggests that 

APS results from the interaction between niche of species 

and annual environmental fluctuations. Parameters such 

as those  related  to  vertical mixing would only affect 

the abundance  by influencing sinking rate and vertical 

distribution, r =  μ l  with r the  net  specific biomass 
accumulation rate, μ the phytoplankton growth rate and 

l a loss term influenced by sinking and vertical mixing 

(and other  processes such as grazing, respiration  and 

parasitism; Behrenfeld, 2010; Chiswell et  al., 2015). In 

this study, we concentrate on μ at the species level and 

have not implemented any loss rate in our models. We 

think that this lack of  complexity in this shallow region 

cannot  affect our  conclusions on  the  primary  control 

of APS. 

Our  models suggest that the limitation in macro- 

nutrients is a key factor for bloom termination. To model 

the end of the spring bloom, we did not have to consider 

the influence of grazing in regulating phytoplankton 

communities and the exhaustion of  surface macro- 

nutrients could explain alone bloom termination (Fischer 

et   al., 2014). Large  seasonal changes  in  atmospheric 

forcing and ocean surface conditions shape, to a large 

degree, the  seasonal cycles of  phytoplankton  biomass 

but also the relative abundance of phytoplankton species 

(Barton et al., 2014). Investigating the oceanic region of 

the North Atlantic, Beaugrand et al.  (2015) showed that 

phytoplankton and zooplankton seasonal fluctuations 

were closely related (his figure 5.28), suggesting a bottom- 

up control. More recently, by focusing on a region with 

approximately the same bathymetry than ours, Atkinson 

et  al. (2018) demonstrated  that  both  the  increase and 

termination  of   the  spring  bloom  were  encapsulated 

by  zooplankton,  providing  strong  evidence  against  a 

top-down control. 

In the pelagic ecosystem of the North Atlantic, diatom 

blooms end with the depletion of silicate and are progres- 

sively replaced by slower growing dinoflagellates (Taylor 

et  al., 1993). Although the succession between diatoms 

and dinoflagellates is well explained by macro-nutrients 

and temperature  in our simulations, it is also known— 

since Margalef (1979)—that water column stability is a 

key factor to explain the succession between these two 

functional groups. Dinoflagellates are more sensitive than 

diatoms to turbulence (Karp-Boss et al.,  2000). They can 

undergo significant vertical migrations to nutrient-rich 

areas but cannot reproduce when turbulence is too high 

(Estrada  and Berdalet, 1997). In contrast, diatoms can 

continue cell division and the photosynthetic energy prod- 

ucts are used to synthesize fatty acid that are converted 

to energy when cells are exported below the euphotic 
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zone; fatty acid can be considered as a buoyancy regulator 

(Amato et al.,  2017). It is possible that mixing and turbu- 

lence are not required in our models because temperature 

is a proxy of  mixing and turbulence conditions in the 

North Sea (e.g. Sharples et  al., 2006). Confirmation  of 

our results should be searched in regions that experience 

different sequences of environmental conditions. 
 
 
 
Uncertainties and  potential caveats related 
to our  approach 

As with all studies based on modelling and data analysis, 

it is sometimes difficult to identify primary factors and 

putative mechanisms at work. In this paper, we have 

primarily focused on the  physical parameters  of  high 

biological relevance (temperature,  PAR  and  nutrients; 

Peeters et  al., 1993; Brown et  al., 2004; Eilertsen and 

Degerlund, 2010; Mcminn and Martin, 2013; Behrenfeld 

and Boss, 2014). We know that these parameters have a 

key biological role. However, temperature could also be 

a correlate for another  physical parameter  of  primary 

importance  such as MLD  and  depth  of  the euphotic 

zone (Beaugrand, 2015a). The role of  vertical mixing is 

primarily to increase nutrient concentrations in surface 

and to influence phytoplankton sinking rate and vertical 

distribution (Chiswell, 2013; Behrenfeld and Boss, 2014). 

In  the  field, natural  systems are  more  complex than 

models and all parameters act in synergy. 

The niche-environment interaction is certainly more 

unpredictable in the field than in our modelling approach 

for two main reasons. First, while the fundamental niche 

(sensu Hutchinson) was estimated here, the environment— 

through random meteorological conditions—may influ- 

ence the realized niche of microalgae species. Second, 

phytoplankton community before and/or during the 

growth of a given species may alter species realized niche 

by competition for resources that lead to competitive 

exclusion (Barton et al., 2014). For example, the trait-based 

approach of Breton et al. (2017) suggests that competitive 

exclusion prevails during Phaeocystis  spp. blooms in the 

eastern English Channel. 

It is well-known that the underwater light available for 

photosynthesis (PAR) is a key environmental variable for 

primary production (Cole and Cloern, 1987; MacIntyre 

et  al., 2000; Foden et  al., 2010; Capuzzo  et al., 2013, 

2015, 2018). Light field in the water column depends 

in turn  on phytoplankton  biomass (self-shading),  inor- 

ganic suspended particulate materials, colored dissolved 

organic materials and water itself (IOCCG, 2000). Recent 

works on  light quality have  also revealed the  impor- 

tant role of spectral irradiance on phytoplankton suc- 

cession (Lawrenz  and Richardson, 2017). In this study, 

we used surface PAR data  that  originated from  a cli- 

matology. All phytoplankton species can perform photo- 

regulation or photo-acclimation (i.e.  the first occurs at 

time scales of  minutes and  the  second takes place in 

a few hours or a day) to limit photo-inhibition in high 

light surface waters or optimize both light harvesting and 

Calvin cycle activity in the water column (MacIntyre et al., 

2000; Lavaud, 2007; Dubinsky and Stambler, 2009). In 

addition, photo-acclimation processes can be conducted 

on different kinetic models and time scales (Cullen and 

Lewis, 1988), according to environmental conditions and 

functional phytoplankton groups (MacIntyre et al., 2000). 

Even if photosynthesis performances between different 

species remain  poorly documented  (Goss  and  Lepetit, 

2015; Suggett et al., 2015), they can induce a competitive 

effect between species at a given time. 
 

 
 

CONCLUSION 
 

Our   study  suggests that  APS  may  result  from  the 

niche-environment interaction and that APS must be 

investigated at the species level to accurately explore and 

understand ecological patterns and processes. Our mod- 

els provide evidence that sharp temporal environmental 

gradients  may  be  responsible for  the  strong  annual 

shifts in microphytoplanktonic composition in the North 

Sea; this occurs when an environmental factor becomes 

rapidly favourable (e.g. increasing PAR at the end of 

winter) or limiting (e.g. diminution of macro-nutrients at 

the end of spring). We identify the three key parameters 

that  are  the  best predictors of  the  succession: (i) 

temperature, (ii) PAR and (iii) macro-nutrients. There is a 

clear effect of temperature on APS with a cline from cold- 

water species in early spring to warm-water species in late 

summer. By enabling the initiation of  the spring bloom 

and ending the second bloom in autumn, PAR exerts a 

pivotal role. Macro-nutrients are critical at the end of 

the spring bloom and their increases in autumn trigger a 

secondary bloom which then becomes rapidly limited by 

conditions in PAR and temperature. Mixing is an impor- 

tant  process by which macro-nutrients  increase in the 

euphotic zone. 
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