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Annual plankton succession has been investigated for many decades with hypotheses ranging from abiotic to biotic
mechanisms being proposed to explain these recurrent patterns. Here, using data collected by the Continuous Plankton
Recorder (CPR) survey and models originating from the MacroEcological Theory on the Arrangement of Life, we
investigate Annual Phytoplankton Succession (APS) in the North Sea at a species level. Our results show that this
phenomenon can be predicted well by models combining photosynthetically active radiation, temperature and macro-
nutrients. Our findings suggest that APS originates from the interaction between species’ ecological niches and the
annual environmental fluctuations at a community level. We discuss our results in the context of traditional hypotheses
formulated to explain this recurrent pattern in the marine field.
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INTRODUCTION

Annual Phytoplankton Succession (APS) is defined as the
recurrent pattern of species abundance, observed during
the annual cycle (Cushing, 1959; Winder and Cloern,
2010; Sommer et al., 2012; Romagnan ¢t al., 2015). In
temperate and polar biomes, phytoplankton abundance
varies from periods of proliferation in spring and autumn
to periods of decline in summer and winter. In subtrop-
ical and tropical waters where seasonal changes in solar
radiation and temperature are less prominent, plankton
abundance is more stable at an annual scale (Dakos ef al.,
2009).

APS has been widely described in marine ecosystems,
leading to a variety of potential explanations often based
on mechanisms such as bottom-up (i.e. nutrients availabil-
ity; Metaxas and Scheibling, 1996) to top-down control
(i.e. grazing by organisms such as zooplankton and fish;
Sverdrup, 1953; Margalef, 1978; Sommer et al., 1986,
2012; Huisman et al, 1999; Behrenfeld, 2010; Chiswell,
2011; Smyth etal, 2014; Chiswell etal, 2015; Romagnan
et al., 2015; Atkinson et al., 2018). Gilbert e al. (2012),
Barton et al. (2014) and Romagnan et al. (2015) have
provided evidence for a strong influence of the physi-
cal environment on phytoplankton dynamics, suggesting
a bottom-up control of annual succession. A substan-
tial impact of species interaction, such as grazing that
imposes a top-down control (e.g. mesozooplankton species
on protists), has also been suggested in the western part
of the English Channel (Fileman etal, 2010; Kenitz ¢t al.,
2017).

The seasonal cycles of irradiance, temperature and
stratification—and associated changes in the pycnocline,
thermocline and halocline—are known to be closely
related to the onset of phytoplankton growth (Longhurst,
1998), with nutrients influencing the phytoplankton
bloom extent (Sommer et al, 2012). Although APS starts
typically by the onset of the spring bloom in most
extra-tropical regions, winter is a key period during
which the ingredients needed to trigger the start of
phytoplankton proliferation are prepared (Sommer et al.,
2012). During winter, wind intensifies the mixing of the
upper layers and an increase in convection leads to a
deep mixing leading to an increase in the concentration
of nitrate, phosphate and silicate in the surface layers
(Falkowski and Oliver, 2007; Mann and Lazier, 1996)
while diluting phytoplankton in the water column
(Behrenfeld, 2010).

The main objective of this study is to reconstruct APS
using models of increasing complexity—generated from
the MacroEcological Theory on the Arrangement of Life
(METAL; Beaugrand, 2015a)—that considers a set of
environmental parameters known to influence marine
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phytoplankton dynamics such as temperature, photosyn-
thetically active radiation (PAR) and macro-nutrients.
The METAL framework unifies behavioural, physiolog-
ical, phenological biogeographic and long-term commu-
nity shifts and consequently allows one to model how
communities form and how they are altered by envi-
ronmental fluctuations, including climatic variability and
global climate change (Beaugrand et al., 2010, 2014,

2018; Beaugrand, Mackas, et al., 2013). The strength of
this approach is to consider that basic organization and
sensitivity of communities can be predicted from simple
founding principles. Even though ecosystems are complex
adaptive systems (Levin and Lubchenco, 2008), a signifi-
cant proportion of the spatial and temporal adjustments
of marine communities are deterministic, which opens
the way to testable predictions. In this study, our objectives
are to test whether APS is related to the interaction
between the ecological niche (sensu Hutchinson, 1957)
of species and seasonal environmental fluctuations, and
to identify the key ecological variables of the niche that
control annual phytoplankton dynamics.

Using data from the Continuous Plankton Recorder
(AN O B Nt Sea ranihe o T £5Rd"
from 54°N to 56°N (Fig. S1). The area of consideration
is close to the Flamborough Frontal structure, which
separates seasonally thermally stratified water to the north
and tidally mixed water to the south (Huthnance, 1991;
Pingree et al., 1978). We model APS using METAL,
comparing observed and predicted patterns, and we
investigate how natural environmental fluctuations drive
phytoplankton seasonality from initiation to termination.
Finally, we discuss our results in the context of APS,
including the spring bloom (Widdicombe et al., 2010;
Sommer etal, 2012; Romagnan etal, 2015).

METHOD
Biological data

Biological data are originated from the CPR (www.cprsu
rvey.org/data/our-data/) survey, a marine monitoring
programme currently operated by the Marine Biological
Association (MBA) that has sampled the North Atlantic
Ocean and its adjacent seas since 1946 on a routine
monthly basis and at ~7-10 m depth (Reid etal, 2003).
Extensively used in the literature, this dataset has allowed
researchers to (i) investigate APS (e.g. Colebrook, 1979,
1982; Zhai et al., 2013; Barton et al., 2014); (ii) char-
acterize pelagic biodiversity (e.g. Barnard ef al., 2004;
Beaugrand et al., 2002); (iii) document distributional, phe-
nological and physiological responses of marine species
to climate change (e.g. Beaugrand et al, 2009; Helaouét
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and Beaugrand, 2009; Thackeray efal, 2016; Beaugrand
and Kirby, 2018) and (iv) anticipate the consequences of
global warming in the pelagic realm (e.g. Reid etal, 1998;
Beaugrand etal, 2015).

Here, we.focuse

ton community of the (r)rt%nglgaseagp Et%%dpgxi%%lﬁﬁl;(-
Fig. S1) and considered 90 species/taxa commonly mon-
itored by the CPR survey over the period 1958-2016
(Table 1). The area was selected for both a regular sam-
pling effort over the study period and its geographical
location far from the coast. For each species/taxa, we
calculated a daily climatology of species abundances,
based on 60 years of sampling.

Environmental data

Nutrient data originated from the World Ocean Atlas
2013 V2 provided by the NOAA National Centers for
Environmental Information, Silver Spring, MD, USA
(www.nodc.noaa.gov/OC5/woal 3/woal3data.html;
Garcia etal, 2014).1t is a scientifically quality-controlled
database of historical in sifu surface and subsurface
phosphate (umol. L"), silicate (umol. L") and nitrate
(umol. L") measures. Monthly means are provided on a
3D grid of 1° latitude by 1’ longitude, by 37 depth levels.
We calculated the average nutrient concentrations in the
area over the first 20-m water depth. From nitrate and
phosphate concentration, we calculated the N/P ratio
(Redfield, 1958) known to influence the APS (Falkowski
etal, 2000).

We used PAR (Einstein.m .day '), solar radiation
spectrum in the wavelength range of 400-700 nm as
a proxy of the level of energy that can be assimilated by
photosynthetic organisms (Asrar et al, 1989). Data were
provided by the Giovanni online data system, developed
and maintained by the NASA GES DISC (gdatal.sci.
gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance id=ocea
n_month). A monthly climatology of PAR, at a spatial
resolution of 9 km, was calculated by compiling Sea-
viewing Wide Field-of-View Sensor (SeaWiFS) data from
2009 to 2012.

We also examined annual changes in the Mixed
Layer Depth (MLD in meters; Fig. S2), using data
from the Global Ocean Physical Reanalysis product
(GLOBAL REANALYSIS PHY 001 030) provided by
the Copernicus Marine Environment Monitoring service
(https://marine.copernicus.eu/).

We assessed the thermal environment of the 90 phy-
toplankton species over our region of interest using Sea
Surface Temperature (SST) from the Optimum Interpo-
lation (OI), which is based on both in situ and satellite
observations (see Reynolds et al, 2002 for a full descrip-
tion of the OI analysis). While nutrients and PAR were
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only available at a monthly scale, daily SST allowed us
to calculate daily species thermal preferendum: we first

calculated daily SSTs on a 1' by 1° grid from January

Teaan Sanecsmbet 2P1anf! ghenerased dpt Ky fhe
(Fig. S1). Annual environmental changes are shown in

Fig. 2.

The macroecological theory on the
arrangement of life

The METAL is a theory that explains how life is arranged
and how changing environmental conditions alter bio-
logical arrangements in space and time at different eco-
logical levels (e.g. species, community and ecosystem),
allowing predictions to be tested (Beaugrand, 2015a).
METAL posits that many ecological (e.g. phenology),
biogeographic (e.g. LBGs) and climate-change biology
patterns (e.g. phenological and biogeographical shifts)
originate from the fundamental niche-environment inter-
action and unifies a large number of patterns observed in
biogeography and ecology at different organizational lev-
els (e.g. spatial range, Rapoport’s rule, phenology, latitu-
dinal biodiversity gradients, and formation and alteration
of species assemblages) and in climate change biology
(e.g. phenological shifts, year-to-year to decadal changes
in species abundance, range shift, biodiversity shifts, com-
munity alteration and abrupt community shifts; Beau-
grand, Rombouts, et al., 2013; Beaugrand et al., 2014,
2018, 2019, 2020; Beaugrand, 2015a, 2015b; Beaugrand
and Kirby, 2018).

The theory uses the concept of the ecological niche
sensu Hutchinson (1957) as a macroscopic elementary
brick to understand how species fluctuate in time and
space and how communities form and are altered by envi-
ronmental fluctuations, including climate change (Fig. 1).
All species have an ecological niche, which means that
they operate within a range of ecological conditions that
are suitable for growth and reproduction. The environ-
ment acts by selecting species that have the most suit-
able niche. It follows that this mechanism determines
the place where a species lives (i.e. spatial distribution),
time when it is active (i.e. phenology) and how individual
density fluctuates from short- to long-time scales. Locally
however, the absence of a species may be explained by
species interaction and random processes, such as those
discussed in the Unified Neutral Theory of Biodiversity
and Biogeography (Hubbell, 2001). The ecological niche,
measured by the abundance plotted as a function of some
key ecological factors throughout the spatial range of a
species, integrates all genetic variations that affect biolog-
ical traits and physiological processes. More information
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Table 1: List of phytoplankton species and their correlation with the first three PCs. List of phytoplankton
species considered in our study area (see Fig. S1).

Category
Phylum: Ochrophyta
Class: Bacillariophyceae

Phytoplankton species

PC1 (26.86 %)

PC2 (18.06 %)

PC3 (12.22 %)

©OoO~NOOAWN-
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49

P, sulcata

S. costatum

Thalassiosira spp.

D. antarcticus

Rhizosolenia styliformis
Rhizosolenia hebetata semispina
Chaetoceros(Hyalochaete) spp.
Chaetoceros(Phaeoceros) spp.
Odontella sinensis
Thalassiothrix longissima

T. nitzschioides
Asteromphalus spp.
Bacteriastrum spp.

B. malleus

B. alternans

Odontella aurita

Odontella granulata

Odontella regia

Odontella rhombus
Cerataulina pelagica

C. concinnus

Coscinodiscus spp. (Unidentified)
D. brightwellii

Eucampia zodiacus

Fragilaria spp.

G. flaccida

Gyrosigma spp.
Leptocylindrus danicus
Navicula spp.

Cylindrotheca closterium
Rhaphoneis amphiceros
Rhizosolenia bergonii
Rhizosolenia setigera
Stephanopyxis spp.

Nitzschia spp. (Unidentified)
Odontella mobiliensis
Proboscia alata
Leptocylindrus mediterraneus
Proboscia inermis
Asterionellopsis glacialis
Ephemera planamembranacea
Pseudo-nitzschia delicatissima complex
Pseudo-nitzschia seriata complex
Guinardia delicatula
Dactyliosolen fragilissimus

G. striata

Lauderia annulata

Bacillaria paxillifera

Corethron hystrix

Proboscia curvirostris
Proboscia indica

Rhizosolenia imbricata
Helicotheca tamesis

XX XX XX

X

X X X X X

X

X X

X X X
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Table 1: Continued

Category
Phylum: Ochrophyta
Class: Bacillariophyceae

Phytoplankton species

PC1 (26.86 %) PC2 (18.06 %) PC3 (12.22 %)

Class: Dictyochophyceae

47 Silicoflagellates X X
Phylum: Dinoflagellata

Class: Dinophyceae

12 C. fusus X

13 C. furca X

14 Ceratium lineatum X

15 Ceratium tripos X

16 Ceratium macroceros X X
17 Ceratium horridum X

18 Ceratium longipes X

19 Ceratium arcticum X

20 Dinoflagellate cysts (Total) X X
21 Polykrikos schwartzii cysts X

50 Ceratium arietinum

51 Ceratium bucephalum

52 Ceratium buceros

53 Ceratium carriense

54 Ceratium hexacanthum X

55 Ceratium massiliense X

56 Ceratium minutum X
57 Ceratium teres

58 Dinophysis spp. Total X

59 Oxytoxum spp.

60 Protoperidinium spp. X

61 Pronoctiluca pelagica

62 Prorocentrum spp. Total X

63 Noctiluca scintillans X

Philum: Haptophyta

Class: Prymnesiophyceae

45 Phaeocystis pouchetii

46 Coccolithaceae (Total) X

Phylum: Cyanobacteria

Class: Cyanophyceae

71

Trichodesmium spp.

The 81 species were grouped in the following classes: 1: Bacillariophyceae, 2: Dinophyceae, 3: Primnesiophyceae, 4: Dictyochophyceae and 5:
Cyanophyceae. The first three PCs considered in Fig. 3 and their eigenvalues are reported here. A cross indicates a significant correlation
(>]0.5]) between a species and a PC. Some species were not correlated. The percentage of explained variance per PC is indicated into
brackets. The seasonal cycles of each phytoplankton species are represented on Fig. 6 (see species numbers, first column of this table, for

correspondence).

on METAL can be found in Beaugrand (Beaugrand,
2015a; Beaugrand etal, 2020).

Summary of the numerical procedures

In this paper, we specifically test whether APS originates
from the interaction between the ecological niche of
a species and environmental fluctuations. First (Step 1
hereafter), we examined APS in the North Sea by means

89

of a Principal Component Analysis (PCA) using data
from the CPR survey. APS has been regularly investi-
gated by applying this multivariate technique (Colebrook,

1979, 1984; Beaugrand etal, 2000). A total of 81 species
belonging to different taxonomic groups (e.g diatoms,
dinoflagellates) were considered in this analysis. Secondly
(Step 2), we created a large pool of (Gaussian) ecological
niches using a model from the METAL theory and a
growing number of ecological dimensions up to five (i.e.
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Fig. 1. Representation of a hypothetical 2D ecological niche of a
species. The ecological amplitude is an estimation of the breadth of
the species’ niche and the ecological optimum is the combination of
the environmental factors that are optimal for growth and reproduction.
Here, the niche is based on a bi-normal distribution with a correlation
coefficient fixed to 0.6 between the two environmental factors. At the
optimal part of the niche, all biological processes are operational. When
ecological conditions become less favorable, this successively impairs
reproduction, growth, feeding and survival. Ecological dimensions (i.e.
the number of ecological variables) varied between 2 and 5 in this study.
Xopt and t (parameters of Equations 1 and 2) are indicated on the figure.

environmental parameters, Fig S2). Six environmental
parameters were used (e.g. SST, PAR, nitrate, silicate,
phosphate and nitrate/phosphate ratio). Thirdly (Step 3),
we made 84 simulations building for each a large number
of hypothetical ecological niches based on 1-5D niches.
All possible niches were therefore built. The maximum
abundance of each niche was fixed to 1 and decreas-
ing abundance around the optimum was a function of
the environmental amplitude. Estimations of seasonal
changes in pseudo-species abundance were calculated

at a daily scale by performing a cubic interpolation of

the 1-5D niches with the corresponding environmen-

tal variables. This calculation step is fully described in
Beaugrand and Kirby (2018) (their Fig. 4). We detailed
this stage of the procedure in Figs 3 and 4 using simple
examples. Fourthly (Step 4), we compared modelled and
observed annual patterns in phytoplankton abundance at
the species level by means of correlation analyses and the
computation of Minimum Assessment Errors (MAEs). To
consider a possible bias induced by temporal autocorre-
lation, we tested both correlations and MAEs with null
models.

Step 1: Examination of APS from the CPR
survey

We first removed species with average annual abundances
<0.5 in the study area, leading to the selection of 81
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phytoplankton species (Table 1) for which we estimated
average daily abundances for the period 1946-2015. To
minimize short-term fluctuations and to reduce the noise
inherent to these data, we applied twice a sixth-order
symmetrical moving average on each daily time series
(Legendre and Legendre, 1998).

A standardized PCA (Jolliffe, 1986) was applied on
the correlation matrix [81 phytoplankton species x
365 days] and the significant principal components (PCs)
were examined to identify changes in annual plankton
succession. Species were then sorted according to their
phenology by using normalized eigenvectors, i.e. linear
correlation values with the corresponding PCs higher
than |0.5]| (Table 1). Only significant axes (PCs) that best
explained APS were considered (Fig. 3). We tested the
significance of the first three axes by using a broken-
stick distribution based on 100 000 simulations (Frontier,
1976; Beaugrand et al., 2019). Phytoplankton species
were then clustered into five groups: Bacillariophyceae,
Dinophyceae, Primnesiophyceae, Dictyochophyceae and
Cyanophyceae. We reported here the three PCs for which
we found correlations between dominant phytoplankton
species and PCs (Table 1).

Step 2: Generation of pseudo-species using
models from the METAL theory

We modelled the patterns of APS using METAL. First,
and using each environmental parameter (i.e. nutrients,
PAR and SST), we generated a pool of 1D niches (i.c.
niches with only one ecological dimension) based on a
Gaussian model (Gauch et al, 1974; Ter Braak, 1996) to
calculate species abundance, (Fig. S2)

_ (= xopt)?

A=c¢e (1)

where A is the abundance of a species as a function of
the value of a given environmental parameter X; ¢ the
maximum abundance of a pseudo-species with ¢ being
fixed to 1 (Beaugrand, 2015b); Xopt the environmental
optimum (e.g. the condition for which a given species
reaches the highest level of abundance; Fig. S2) and ¢
the ecological amplitude (i.e. the environmental range
where a species can occur; Fig. S2) of a pseudo-species
(Table S2). One dimension of the niche (or one ecological
dimension; Fig. S2) is represented by the whole range of
values of an ecological variable.
Multi-dimensional niches (i.e. niches with more than
one ecological dimension) were modelled as follows:
)2 ( )2

r(
X] X Xn X
_1 1 Xoptl + o+ n_Xoptn

1
A=c ° O o , )
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with 2<n<5 ecological dimensions, X; to Xp, the values of

the environmental parameters, Xopt1 tO Xoptn, the optimum

values of x| to X, and {; to t,, the ecological amplitudes of

X1 to Xp. cis the maximum abundance of a pseudo-species
with ¢ being fixed to 1 (Beaugrand, 2015b). We chose a

multiplicative model to ensure that one dimension can
exclusively control the abundance of a pseudo-species.
For example, if the interaction between the silicate niche
and the environment leads to a nil or (low) abundance,
the abundance will remain nil (or low) whatever the values
of the other ecological dimensions. Simulated ecological
niches had five ecological dimensions at maximum. We
used six ecological variables to build the different niches:
(i) SST, (ii) PAR, (iii) nitrate, (iv) phosphate, (v) silicate
and (vi) the N/P ratio. When the N/P ratio was consid-
ered, neither nitrate nor phosphate concentrations were
included in the niches to avoid possible bias related to
multi-collinearity. To examine the sensitivity of our anal-
yses to low PAR conditions, three minimum values were
considered (Table S2): 1 (termed ‘PARa’), 10 (‘PARDb’) and

20 (‘PARc’) E.m *.day .

Step 3: Model simulations

We then performed simulations using all possible environ-
mental combinations, from one to five ecological dimen-
sions, leading to a total of 84 runs: 16 simulations based
on 1D niches, 23 simulations based on 2D niches, 29
simulations based on 3D niches, 13 simulations based
on 4D niches and 3 simulations based on 5D niches
(Table S1). The characteristics (optimum and ecological
amplitude) of all niches are presented in Table S2. For
example, we defined 7 optimum values for temperature
(i.e. values corresponding to the highest abundance for a
given pseudo-species) from 0 to 36°C—by increment of
6’ C—and 4 ecological amplitudes from 1 to 10° C—by
increment of 3°C—leading to the creation of 28 (7 X 4)
virtual (or pseudo-) niches.

The core principle of METAL is to generate a large
number of pseudo-niches (i.e. simulated niches, we say
niche hereafter) and pseudo-species (i.e. virtual species;
Beaugrand ef al., 2020) to examine whether the niche-
environment interaction (here the APS) is responsible for
the generation of spatio-temporal patterns in APS. For
each simulation, a large number of niches (from 21 to
15 431 472) were created (Table S2). To determine the
total number of niches per simulation, we multiplied the
number of niches generated for a given dimension by
the number generated for all other ecological dimensions.
For example, for a run based on temperature, PAR and
nitrate (i.e. a 3D run), the total number of niches was 28
X 21 X 27 =15 876 ecological niches (with 28 niches for
SST, 21 for PARc and 27 for nitrate; Table S2). When all
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frolRaiga AHRRAS NG BIREE GRRsidered 19 SDsipalRtpnY:
27 (nitrate) X 28 (silicate) X 27 (phosphate) = 15431 472
ecological niches (Table S2). Optimum and ecological
amplitude of all niches are presented in Table S1.

To test whether niche resolution—function of the
increments (Table S2)—affected our analyses, we com-
pared two extreme cases of 1D models (i.e. we named
them low and high resolutions hereafter) using each
ecological variable. The term “bis” was added to identify
high-resolution niches (Tables S2 and S3). Because of
the high number of categories generated in the high-
resolution case (e.g. 144 648 000 categories for simulations
based on temperature, PARa and phosphate) and the
resulting high computation time, we only performed
high-resolution analyses for 1D models.

Finally, annual estimations of pseudo-species abun-
dances were assessed by performing a cubic interpolation
of the 1-5D niches with the corresponding environmental
variables. Four runs on APS are closely examined as
examples: three 1D runs based on either (i) SST, (ii) PAR
or (iii) nitrate (Fig. 4) and (iv) one 3D run based on SST,
PAR and nitrate (Fig. 5). To reveal the simulated patterns
in APS, we also applied a standardized PCA and used the
PCs to sort the different pseudo-species in the same way
as we did for observed APSs (Step 1). We did one PCA
per simulation. In the case of these examples, we there-
fore performed four PCAs: one for the simulation based
exclusively on thermal niches (Fig. 4a—c), one for the
simulation based exclusively on PAR niches (Fig 4d-f),
one for the simulation based exclusively on nitrate niches
(Fig. 4g—1) and a last one for the simulation based on
the 3D (SST, PAR and nitrate) niches (Fig. 5). We only
examined significant PCs for which we found correlations
>]0.5| between pseudo-species and PCs.

Step 4: Comparisons of modelled and
observed seasonal patterns

Comparisons between modelled and observed annual
patterns in phytoplankton abundance were not based
upon regression analyses but assessed by the Pearson’s
correlation coefficients (Fig. 6 and Fig. 7) and the Mean
Absolute Error (MAE; Fig. 7) that measures the average
magnitude of the errors in a set of predictions without
considering their direction. Equation (3) represents the
absolute differences between predictions and observa-
tions, divided by the number of differencesto be tested
(with all individual differences having equal weight)

Do | Xi— i
MAE = = jj——, ()
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with n the number of differences to be tested, X; is
prediction i and Yjis observation i. The MAE is a neg-
atively oriented score; the lower values being related to
the strongest correlations.

Pearson’s correlation coefficients and MAEs were cal-
culated for each run between all observed and modelled
daily patterns in (pseudo-) species abundance, leading to
a correlation or MAE matrix [species X pseudo-species].
We then identified the highest positive correlations and
the lowest MAE values. For each run and species, and
using the average correlation and MAE values, we there-
fore obtained two vectors (Fig. S4). To graphically depict
the relationships, the daily normalized (between 0 and
1) pseudo-species abundances—that showed the highest
correlation with observed species—were plotted against
daily observed species abundances (Fig. 6).

To consider a possible bias induced by temporal
autocorrelation, we tested both correlations and MAEs
with null models. First, we randomly generated a number
of daily time series corresponding to the total number
of pseudo-species generated for each run. The number
of time series was small for 1D simulations but became
important for an increasing number of dimensions. The
procedure was repeated 1000 times and the average
Pearson correlation and MAE values were calculated for
each simulation. To consider temporal autocorrelation,
we generated two million of time series and kept the
first 1000 with a 30-order (i.e. 30 days/~1-month
autocorrelation for daily time series) autocorrelation
higher than average 30-order autocorrelation found in
observed daily time series. We represented the results in a
diagram that exhibited the observed average correlation
for each run and the 1000 correlations found using the
null model with (red) and without (blue) autocorrelation
(Fig. 7). For each combination of environmental variables
(i.e. 84 runs), we calculated the probability of significance
of each correlation (Table S3) and used contour diagrams
to identify (i) the most important environmental param-
eters and (ii) the number of dimensions to accurately
reconstruct APS. This allowed us to highlight the number
of species that exhibits the highest correlations in each
run (Fig. 8).

RESULTS

Seasonal changes in environmental
parameters in the North Sea

Temperature exhibited a minimum at the beginning
of March and a maximum at the end of July—August
(Fig. 2). PAR showed minimum and maximum values in
December—January and June, respectively. The highest
concentrations in nitrate, phosphate and silicate were
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Fig. 2. Annual changes in the environmental parameters considered
in this study. (a) SST, (b) PAR, (c) nitrate, (d) silicate, and (e) phosphate
concentrations, and (f) nitrate/phosphate (N/P) ratio. Note that SST is
at a daily resolution, whereas other parameters are at a monthly one (see
Materials and Methods).

observed in winter and reached their lowest concentra-
tions from the end of spring to the end of summer. The
MLD reaches the sea floor of the studied area every
winter (Fig. S2), shoals in March to reach the shallowest
values (i.e. close to 12 m) between April and September.

Observed APS

We examined APS based on CPR plankton data by means
of a standardized PCA (Fig. 3). The first three PCs were
used because they were significant using a broken-stick
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model with 100 000 simulations (PC1: 26.86%, PC2:
18.06%, PC3: 12.22%; PCs were above the threshold
percentage of 6.14, 4.91 and 4.29%, respectively). The
PCs allowed us to differentiate five periods, each being
characterized by a species assemblage: (i) an early-spring
stage (8 species negatively correlated to PC1; left part of
Fig. 3b), (ii) a spring stage (22 species positively correlated
to PC2; Fig. 3c), (ili) a widespread summer stage (28
species positively related to PC1; Fig. 3a), (iv) a late sum-
mer/beginning of autumn stage (13 species negatively
correlated to PC3; Fig. 3d) and (v) an autumn stage (8
species negatively correlated to PC1; right part of Fig. 3b).
The summer stage (Fig. 3a) was characterized by the
highest species richness but showed a low proportion of
diatoms in comparison to both spring and autumn stages.
Silicoflagellates were also present (Table 1).
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Modelled APS

We reconstructed APS by using models of growing com-
plexity (i.e. by considering a growing number of niche
dimensions) including all combinations of SST, PAR,
nitrate, phosphate, silicate and N/P ratio (a total of 84
simulations). Here, we focused on four examples of mod-
elled APS (Fig 4 and Fig 5). We used the same procedure
(standardized PCA) to sort pseudo-species phenology and
characterize annual succession. We retained the first two
PCs for simulations based exclusively on thermal niches
(81.05 and 15.10% of the explained variance; Fig. 4a—c),
for simulations based exclusively on PAR niches (42.98
and 27.66%; Fig. 4d-f ) and for simulations based exclu-
sively on nitrate niches (91.84 and 5.10%; Fig. 4g—i). The
first four PCs (32.30, 20.90, 14.82 and 11.05%) were
kept for simulations based on SST, PAR and nitrate
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Fig. 4. Reconstructed annual plankton succession from a 1D model based on SST (left panels), PAR (middle panels) and Nitrate (right panels). A
PCA was performed on the relative pseudo-species abundances to identify the most important seasonal phytoplankton abundance patterns. Only
modelled plankton seasonal changes, related substantially negatively or positively (i.e. normalized eigenvectors >|0.5|) to the PCs, are shown.
SST (a—): species (a) positively and (b) negatively correlated to PC1, and (c) species negatively correlated to PC2. SST: individual pseudo-species
abundance is on the left vertical axis. PAR (d-f): species (d) positively and (e) negatively correlated to PC1, and (f) species negatively correlated
to PC2. Nitrate (g—i): species (g) positively and (h) negatively correlated to PC1, and (i) species negatively correlated to PC2. Relative individual
pseudo-species abundances generated from METAL are on the left vertical axis.

(Fig. 5), all PCs being significant using the broken-stick
distribution based on 100 000 simulations (thresholds
of significance were of 6.14, 4.91, 4.29 and 3.88% for
PC1-PC4).

The first simulations, based on thermal niches
only, showed two main phases of high phytoplankton
abundance (also representative of a high species richness)
in summer (Fig 4a) and winter (Fig. 4b) and two minor
phases in spring and autumn (Fig. 4c). The winter phase
of high abundance did not correspond to any observed
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patterns (Figs 3 versus 4). The second simulations, based
on PAR only, showed several peaks of high phytoplankton
abundance in spring, summer and autumn (Fig. 4d-f).
These patterns were close to the observed patterns of
annual succession (Fig. 3), suggesting an important role of
PAR in the modulation of APS. The third simulations—
based on nitrate only (Fig. 4g—i)—showed an important
winter peak in phytoplankton abundance not detected
in the observations (Figs 3 versus 4). Considering nitrate
only was, therefore, not sufficient to reconstruct APS.
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Individual pseudo-species abundance is on the left vertical axis.

The fourth simulations that combined SST, PAR and
nitrate (Fig. Sa—e) were more efficient to reproduce the
APS observed in the CPR data, especially during the
late-summer phase (Figs 5 versus 3). The relationships
between modelled and observed APS are thoroughly
examined below.

Reconstruction of species seasonal patterns

We calculated the Pearson’s correlation coefficients
between observed and modelled phytoplankton abun-
dances for the 84 simulations we performed; note that
our simulations were characterized by a growing number
of ecological dimensions—ranging from one to five—and
that all combinations of environmental parameters were
tested. We selected the best correlations and examined
graphically the relationships (Fig. 6): for most of phy-
toplankton species or taxa (e.g. Skelefonema costatum and
Thalassiosira spp.), pseudo-species reproduced observed
seasonal patterns well, while marginal discrepancies were
sometimes observed for some species (e.g. Paralia Sulcata
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and Dactyliosolen antarcticus; Fig. 6). All phytoplankton
groups were well modelled (see the colour curves
in Fig. 6).

Identification of the number of ecological
dimensions to reconstruct APS

To identify the number of ecological dimensions to use for
reconstructing APS well, we calculated—considering all
our simulations—the average of the best correlations and
MAEs between observed and modelled phytoplankton
abundances (Table S3, Fig. 7). We tested the robustness
of correlations and MAEs (e.g. possible bias related to
temporal autocorrelation) using null models. While MAE
values were sometimes significant for 1D simulations
(Fig. 7), APS was better reproduced when at least three
dimensions were considered (Fig. 7). Not all correlations
were significant for models based on three or more
ecological dimensions; considering five dimensions did
not improve the percentage of explained variance
(i.e. model quality). This result emphasizes that using
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species reconstructed using METAL (orange). See Table 1 for species
names and taxonomic class.

relevant environmental variables is more important than
increasing model complexity.

Identification of key environmental
variables to reconstruct APS

We then identified the most relevant environmental vari-
ables that best reproduce APS and the seasonal patterns
that result of species phenology (Fig. 8). Uni-dimensional
models (1D, Runs 1-16) explained poorly observed sea-
sonal changes in species abundance, with the exception
of Run 2 that was exclusively based on SST (Fig. 8a).
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For Run 2, eight species showed their highest corre-
lations between observed and modelled seasonal pat-
terns (Fig 8a). Two-dimensional models (Runs 17-39)
also explained poorly species seasonal patterns and only
three species exhibited their highest correlations when
simulations were based on both temperature and PAR
(Fig. 8a, Table S1). Better results were achieved when
models were based on three or more ecological dimen-
sions: 3—5D models showed 29 (Runs 40—68), 25 (Runs
69-81) and 14 (Runs 82-84) highest correlations between
observed and modelled seasonal patterns, respectively
(Fig. 8a). Note that Run 51, based on SST, N/P and
PARCc (i.e. a minimum value of PAR=20 E.m 2.day '),
exhibited 10 highest correlations.

We also examined the correlations between each simu-
lated and observed seasonal patterns for all species and
runs (Fig. 8b). Even if the best results were achieved
for models based on SST only (Run 2), results were
similar when three or more dimensions were included
(Fig. 8b). Low correlations generally appeared when the
triplet SST/PAR/macro-nutrient was not used (Fig. 8b
and Table S1, e.g. Runs 53-56), revealing that this combi-
nation was important to model species seasonal patterns.
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DISCUSSION

Annual phytoplankton succession

The application of the plankton ecology group (PEG)
model in lakes and subsequently in the marine realm
(Sommer etal, 1986, 2012) has suggested that (i) physics
(light and stratification) controls the start and the end of
the phytoplankton growth season, (ii) grazing by meta-
zoan plankton results in a clear water phase, (iii) nutrients
define the carrying capacity of phytoplankton, (iv) food
limitation determines zooplankton abundance and (v) fish
predation determines zooplankton size structure.

While grazing may have a substantial influence on
phytoplankton (Kivi et al., 1993; Fileman et al., 2010;
Kenitz etal, 2017), its non-consideration in our analyses
did not prevent us from accurately reconstructing species
phenology. Here, we show that annual plankton succes-
sion in the North Sea—including the spring bloom—may
originate from the niche-environment interaction with
a key role of bottom-up processes in shaping APS, as
observed by Romagnan et al. (2015) for the Mediterranean
Sea. Our results suggest that PARs, and to a lesser extent
SST, are important for the initiation of the spring bloom,
macro-nutrients for the end of the spring bloom and both
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SST and macro-nutrients for the development of APS. All
these parameters (i.e. light, nutrients and temperature) are
seen as master parameters controlling photosynthesis in
physiological studies (Geider ef al., 1997; Longhurst, 1998;
McMinn and Martin, 2013; Ras etal, 2013).

In previous works, we suggested that large-scale pat-
terns in biodiversity emerged from the niche-environment
interactions that propagate from the species to the
community level (Beaugrand, Rombouts, et al., 2013;
Beaugrand et al., 2015, 2018, 2020). While APS has been
frequently investigated at the group level (e.g. plankton
functional type, PEGs or categories), we show that—
even within a given ecological or taxonomic group—
species reacts to environmental fluctuations individually
through the niche-environment interaction, conforming
themselves to the principle of species individuality
(Whittaker, 1975).

By investigating APS at a species scale, we detected
four main microphytoplanktonic successions in the North
Sea (see Table 1 for the species list). The first assem-
blage is composed of species that exhibited their highest
abundance at the beginning of spring and a second
less important peak in autumn (PC1 in Figs 3b and 6).
This microphytoplanktonic assemblage, generally com-
posed of large diatoms such as Thalassionema nitzschioides
and Ditylum brightwellii (Table 1 and Fig. 6), was primar-
ily controlled by PAR and nutrients availability. PAR
is an essential parameter limiting photosynthesis with a
well-known influence on species growth rate (Eppley and
Sloan, 1966) that mainly acts in polar regions (McMinn
and Martin, 2013), but also in lower latitude areas such as
the North Sea (Peeters et al., 1993). The first assemblage is
also psychrophilic, reaching its highest (lowest) abundance
when temperature is lowest (highest) (Fig. 2). When PAR
is highest and when PAR or nutrients concentration is
lowest (Fig. 2), the assemblage is not detected, which is
consistent with a positive influence of nutrients on both
growth rate and primary production (Goldman, 1980;
Longhurst, 1998). Although not considered in our sim-
ulations (because of data availability), turbulence, mixing
and high SST variability, environmental conditions that
characterize early spring and autumn may also influence
positively the first assemblage which is more adapted to
this environment than dinoflagellates (Margalef, 1978;
Holligan et al, 1980; Beaugrand et al, 2010). In winter,
PAR (or the number of daily light hours) and tempera-
ture, to a lesser extent, limit diatom growth; deep-water
column mixing combined to an absence of biological
production enables nutrients to increase at the surface.

The second assemblage, less psychrophile than the first
one and which encompasses species such as Chaetoceros
spp. or Coscinodiscus concinnus, occurs generally between
April and June at a time when temperature and PAR
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increase, and silicate—and nitrate and phosphate, but to
a lesser extent—concentrations diminish (Figs 2, Fig. 3¢
and Fig. 6).

The third assemblage, mainly composed of dinoflag-
ellates (e.g. Ceratium fusus and Ceratium furca) and of some
small diatoms (e.g. Guinardia striata and Guinardia flaccida),
is observed in oligotrophic conditions and when tempera-
ture and PAR are high (Figs 2, Fig. 3a and Fig. 6). Silicate
depletion played an important role in the change in dom-
inance observed between the second and third assem-
blage. In a mesocosm experiment, silicate deficiency was
assumed to be the cause of the strong reduction in large
spring bloom diatoms and the replacement by flagellates
(Jacobsen et al., 1995). Small diatoms need less silicic acid
for their skeleton and have a higher surface to volume
ratio which increases nutrient absorption (Miller and
Moser, 2004). Dinoflagellates occur in areas when tem-
peratures are warm, SST variability is low and the water
column is well stabilized (Margalef, 1978; Beaugrand
etal, 2010).

The fourth assemblage is composed of late-summer/
autumn warm-temperate species (e.g the diatoms Belle-
rochea malleus and Biddulphia alternans; Figs 3d and 6) with
a northern distributional limit in the North Sea (e.g. B.
malleus) (Barnard ef al., 2004). This assemblage occurs
when temperature is high and when nutrients concentra-
tion tends to increase.

The spring bloom

Our study also provides evidence for a strong environ-
mental control of the initiation, development and ter-
mination phases of the spring bloom. The integration
of PAR, and to a lesser extent SST, in the simulations
can simply explain the initiation of the spring bloom
in the North Sea. Average light intensity in the mixed
layer is known to govern the timing of the spring bloom
(Riley, 1967; Legendre, 1990). This is especially the case
in the shallow regions of high latitudes (Reid et al, 1990;
Eilertsen, 1993; Shaw and Purdie, 2001). Smyth et al.
(2014) have provided evidence that oceanic net heat flux
strongly affects ecosystem dynamics and have also con-
veyed that the spring bloom started in the western part
of the English Channel (Station L4, Plymouth) when net
heat flux becomes positive (Smyth ef al, 2014). Because
net heat flux is highly positively correlated with irra-
diance and PAR (Beaugrand, 2015a), a strong control
of PAR on the initiation of the spring bloom may be
expected.

The physical structure of the sea water strongly
changes at the time of spring bloom initiation, and many
studies have suggested that it exerts a strong control,
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although the debate remains active on the exact types of
physical processes that may play a critical role (Atkinson
et al, 2018). Our biological model, however, suggests that
APS results from the interaction between niche of species
and annual environmental fluctuations. Parameters such
as those related to vertical mixing would only affect
the abundance by influencing sinking rate and vertical

distribution, r = p—/ with r the net specific biomass

accumulation rate, U the phytoplankton growth rate and

I a loss term influenced by sinking and vertical mixing
(and other processes such as grazing, respiration and
parasitism; Behrenfeld, 2010; Chiswell et al., 2015). In
this study, we concentrate on y at the species level and
have not implemented any loss rate in our models. We
think that this lack of complexity in this shallow region
cannot affect our conclusions on the primary control
of APS.

Our models suggest that the limitation in macro-
nutrients is a key factor for bloom termination. To model
the end of the spring bloom, we did not have to consider
the influence of grazing in regulating phytoplankton
communities and the exhaustion of surface macro-
nutrients could explain alone bloom termination (Fischer
et al, 2014). Large seasonal changes in atmospheric
forcing and ocean surface conditions shape, to a large
degree, the seasonal cycles of phytoplankton biomass
but also the relative abundance of phytoplankton species
(Barton et al., 2014). Investigating the oceanic region of
the North Atlantic, Beaugrand ef al. (2015) showed that
phytoplankton and zooplankton seasonal fluctuations
were closely related (his figure 5.28), suggesting a bottom-
up control. More recently, by focusing on a region with
approximately the same bathymetry than ours, Atkinson
et al. (2018) demonstrated that both the increase and
termination of the spring bloom were encapsulated
by zooplankton, providing strong evidence against a
top-down control.

In the pelagic ecosystem of the North Atlantic, diatom
blooms end with the depletion of silicate and are progres-
sively replaced by slower growing dinoflagellates (Taylor
et al., 1993). Although the succession between diatoms
and dinoflagellates is well explained by macro-nutrients
and temperature in our simulations, it is also known—
since Margalef (1979)—that water column stability is a
key factor to explain the succession between these two
functional groups. Dinoflagellates are more sensitive than
diatoms to turbulence (Karp-Boss ef al, 2000). They can
undergo significant vertical migrations to nutrient-rich
areas but cannot reproduce when turbulence is too high
(Estrada and Berdalet, 1997). In contrast, diatoms can
continue cell division and the photosynthetic energy prod-
ucts are used to synthesize fatty acid that are converted
to energy when cells are exported below the euphotic
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zone; fatty acid can be considered as a buoyancy regulator
(Amato etal, 2017).1t is possible that mixing and turbu-
lence are not required in our models because temperature
is a proxy of mixing and turbulence conditions in the
North Sea (e.g. Sharples et al., 2006). Confirmation of
our results should be searched in regions that experience
different sequences of environmental conditions.

Uncertainties and potential caveats related
to our approach

As with all studies based on modelling and data analysis,
it is sometimes difficult to identify primary factors and
putative mechanisms at work. In this paper, we have
primarily focused on the physical parameters of high
biological relevance (temperature, PAR and nutrients;
Peeters et al.,, 1993; Brown et al., 2004; Eilertsen and
Degerlund, 2010; Mcminn and Martin, 2013; Behrenfeld
and Boss, 2014). We know that these parameters have a
key biological role. However, temperature could also be
a correlate for another physical parameter of primary
importance such as MLD and depth of the euphotic
zone (Beaugrand, 2015a). The role of vertical mixing is
primarily to increase nutrient concentrations in surface
and to influence phytoplankton sinking rate and vertical
distribution (Chiswell, 2013; Behrenfeld and Boss, 2014).
In the field, natural systems are more complex than
models and all parameters act in synergy.

The niche-environment interaction is certainly more
unpredictable in the field than in our modelling approach
for two main reasons. First, while the fundamental niche
(sensu Hutchinson) was estimated here, the environment—
through random meteorological conditions—may influ-
ence the realized niche of microalgae species. Second,
phytoplankton community before and/or during the
growth of a given species may alter species realized niche
by competition for resources that lead to competitive
exclusion (Barton et al., 2014). For example, the trait-based
approach of Breton ef al. (2017) suggests that competitive
exclusion prevails during Phaeocystis spp. blooms in the
eastern English Channel.

It is well-known that the underwater light available for
photosynthesis (PAR) is a key environmental variable for
primary production (Cole and Cloern, 1987; Maclntyre
et al., 2000; Foden et al., 2010; Capuzzo et al., 2013,
2015, 2018). Light field in the water column depends
in turn on phytoplankton biomass (self-shading), inor-
ganic suspended particulate materials, colored dissolved
organic materials and water itself (IOCCG, 2000). Recent
works on light quality have also revealed the impor-
tant role of spectral irradiance on phytoplankton suc-
cession (Lawrenz and Richardson, 2017). In this study,
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we used surface PAR data that originated from a cli-
matology. All phytoplankton species can perform photo-
regulation or photo-acclimation (i.e. the first occurs at
time scales of minutes and the second takes place in
a few hours or a day) to limit photo-inhibition in high
light surface waters or optimize both light harvesting and
Calvin cycle activity in the water column (Maclntyre et al.,
2000; Lavaud, 2007; Dubinsky and Stambler, 2009). In
addition, photo-acclimation processes can be conducted
on different kinetic models and time scales (Cullen and
Lewis, 1988), according to environmental conditions and
functional phytoplankton groups (Maclntyre et al, 2000).
Even if photosynthesis performances between different
species remain poorly documented (Goss and Lepetit,
2015; Suggett etal, 2015), they can induce a competitive
effect between species at a given time.

CONCLUSION

Our study suggests that APS may result from the
niche-environment interaction and that APS must be
investigated at the species level to accurately explore and
understand ecological patterns and processes. Our mod-
els provide evidence that sharp temporal environmental
gradients may be responsible for the strong annual
shifts in microphytoplanktonic composition in the North
Sea; this occurs when an environmental factor becomes
rapidly favourable (e.g. increasing PAR at the end of
winter) or limiting (e.g. diminution of macro-nutrients at
the end of spring). We identify the three key parameters
that are the best predictors of the succession: (i)
temperature, (i) PAR and (iii) macro-nutrients. There is a
clear effect of temperature on APS with a cline from cold-
water species in early spring to warm-water species in late
summer. By enabling the initiation of the spring bloom
and ending the second bloom in autumn, PAR exerts a
pivotal role. Macro-nutrients are critical at the end of
the spring bloom and their increases in autumn trigger a
secondary bloom which then becomes rapidly limited by
conditions in PAR and temperature. Mixing is an impor-
tant process by which macro-nutrients increase in the
euphotic zone.
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