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Abstract. Two–sided bounds are constructed for a probability density
function of a weighted sum of chi-square variables. Both cases of cen-
tral and non-central chi-square variables are considered. The upper and
lower bounds have the same dependence on the parameters of the sum
and differ only in absolute constants. The estimates obtained will be use-
ful, in particular, when comparing two Gaussian random elements in a
Hilbert space and in multidimensional central limit theorems, including
the infinite-dimensional case.
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1 Introduction

In many statistical and probabilistic applications, we have to solve the problem
of Gaussian comparison, that is, one has to evaluate how the probability of a ball
under a Gaussian measure is affected, if the mean and the covariance operators
of this Gaussian measure are slightly changed. In [1] we present particular exam-
ples motivating the results when such “large ball probability” problem naturally
arises, including bootstrap validation, Bayesian inference and high-dimensional
CLT, see also [2]. The tight non-asymptotic bounds for the Kolmogorov distance
between the probabilities of two Gaussian elements to hit a ball in a Hilbert space
have been derived in [1] and [3]. The key property of these bounds is that they
are dimension-free and depend on the nuclear (Schatten-one) norm of the dif-
ference between the covariance operators of the elements and on the norm of
the mean shift. The obtained bounds significantly improve the bound based on
Pinsker’s inequality via the Kullback–Leibler divergence. It was also established
an anti-concentration bound for a squared norm ||Z − a||2, a ∈ H, of a shifted
Gaussian element Z with zero mean in a Hilbert space H. The decisive role in
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proving the results was played by the upper estimates for the maximum of the
probability density function g(x, a) of ||Z − a||2, see Theorem 2.6 in [1]:

sup
x≥0

g(x, a) ≤ c (Λ1Λ2)−1/4, (1)

where c is an absolute constant and

Λ1 =
∞∑

k=1

λ2
k, Λ2 =

∞∑

k=2

λ2
k

with λ1 ≥ λ2 ≥ . . . are the eigenvalues of a covariance operator Σ of Z.
It is well known that g(x, a) can be considered as a density function of a

weighted sum of non-central χ2 distributions. An explicit but cumbersome rep-
resentation for g(x, a) in finite dimensional space H is available (see, e.g., Sect. 18
in Johnson, Kotz and Balakrishnan [4]). However, it involves some special char-
acteristics of the related Gaussian measure which makes it hard to use in specific
situations. Our result (1) is much more transparent and provides sharp uniform
upper bounds. Indeed, in the case H = Rd, a = 0, Σ is the unit matrix, one has
that the distribution of ||Z||2 is the standard χ2 with d degrees of freedom and
the maximum of its probability density function is proportional to d−1/2. This
is the same as what we get in (1).

At the same time, it was noted in [1] that obtaining lower estimates for
supx g(x, a) remains an open problem. The latter problem was partially solved
in [5], Theorem 1. However, it was done under additional conditions and we took
into account the multiplicity of the largest eigenvalue.

In the present paper we get two–sided bounds for supx g(x, 0) in the finite-
dimensional case H = Rd, see Theorem 1 below. The bounds are dimension-free,
that is they do not depend on d. Thus, for the upper bounds (1), we obtain
a new proof, which is of independent interest. And new lower bounds show
the optimality of (1), since the upper and lower bounds differ only in absolute
constants. Moreover, new two-sided bounds are constructed for supx g(x, a) with
a �= 0 in the finite-dimensional case H = Rd, see Theorem 2 below. Here we
consider a typical situation, where λ1 does not dominate the other coefficients.

2 Main Results

For independent standard normal random variables Zk ∼ N(0, 1), consider the
weighted sum

W0 = λ1Z
2
1 + · · · + λnZ2

n, λ1 ≥ · · · ≥ λn > 0.

It has a continuous probability density function p(x) on the positive half-axis.
Define the functional

M(W0) = sup
x

p(x).
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Theorem 1. Up to some absolute constants c0 and c1, we have

c0(A1A2)−1/4 ≤ M(W0) ≤ c1(A1A2)−1/4, (2)

where

A1 =
n∑

k=1

λ2
k, A2 =

n∑

k=2

λ2
k

and
c0 =

1
4e2

√
2π

> 0.013, c1 =
2√
π

< 1.129.

Theorem 1 can be extended to more general weighted sums:

Wa = λ1(Z1 − a1)2 + · · · + λn(Zn − an)2 (3)

with parameters λ1 ≥ · · · ≥ λn > 0 and a = (a1, . . . , an) ∈ Rn.
It has a continuous probability density function p(x, a) on the positive half-

axis x > 0. Define the functional

M(Wa) = sup
x

p(x, a).

Remark. It is known that for any non-centred Gaussian element Y in a Hilbert
space, the random variable ||Y ||2 is distributed as

∑∞
i=1 λi(Zi − ai)2 with some

real ai and λi such that

λ1 ≥ λ2 ≥ · · · ≥ 0 and
∞∑

i=1

λi < ∞.

Therefore, the upper bounds for M(Wa) immediately imply the upper bounds
for the probability density function of ||Y ||2.

Theorem 2. If λ2
1 ≤ A1/3, then one has a two-sided bound

1
4
√

3
1√

A1 + B1

≤ M(Wa) ≤ 2√
A1 + B1

,

where

A1 =
n∑

k=1

λ2
k, B1 =

n∑

k=1

λ2
ka2

k.

Moreover, the left inequality holds true without any assumption on λ2
1.

Remark. In Theorem 2 we only consider a typical situation, where λ1 does not
dominate the other coefficients. Moreover, the condition λ2

1 ≤ A1/3 necessarily
implies that n ≥ 3. If this condition is violated, the behaviour of M(Wa) should
be studied separately.
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3 Auxiliary Results

For the lower bounds in the theorems, one may apply the following lemma, which
goes back to the work by Statulyavichus [6], see also Proposition 2.1 in [7].

Lemma 1. Let η be a random variable with M(η) denoting the maximum of its
probability density function. Then one has

M2(η)Var(η) ≥ 1
12

. (4)

Moreover, the equality in (4) is attained for the uniform distribution on any
finite interval.

Remark. There are multidimensional extensions of (4), see e.g. [8,9] and Section
III in [10].

Proof. Without loss of generality we may assume that M(η) = 1.
Put H(x) = P(|η − Eη| ≥ x), x ≥ 0.
Then, H(0) = 1 and H ′(x) ≥ −2, which gives H(x) ≥ 1 − 2x, so

Var(η) = 2
∫ ∞

0

xH(x) dx ≥ 2
∫ 1/2

0

xH(x) dx

≥ 2
∫ 1/2

0

x(1 − 2x) dx =
1
12

.

Lemma is proved.
The following lemma will give the lower bound in Theorem 2.

Lemma 2. For the random variable Wa defined in (3), the maximum M(Wa)
of its probability density function satisfies

M(Wa) ≥ 1
4
√

3
1√

A1 + B1

, (5)

where

A1 =
n∑

k=1

λ2
k, B1 =

n∑

k=1

λ2
ka2

k.

Proof. Given Z ∼ N(0, 1) and b ∈ R, we have

E (Z − b)2 = 1 + b2, E (Z − b)4 = 3 + 6b2 + b4,

so that Var((Z − b)2) = 2 + 4b2. It follows that

Var(Wa) =
n∑

k=1

λ2
k (2 + 4a2

k) = 2A1 + 4B1 ≤ 4(A1 + B1).

Applying (4) with η = Wa, we arrive at (5).
Lemma is proved.
The proofs of the upper bounds in the theorems are based on the following

lemma.
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Lemma 3. Let
α2
1 + · · · + α2

n = 1.

If α2
k ≤ 1/m for m = 1, 2, . . . , then the characteristic function f(t) of the random

variable
W = α1Z

2
1 + · · · + αnZ2

n

satisfies

|f(t)| ≤ 1
(1 + 4t2/m)m/4

. (6)

In particular, in the cases m = 4 and m = 3, W has a bounded density with
M(W ) ≤ 1/2 and M(W ) < 0.723 respectively.

Proof. Necessarily n ≥ m. The characteristic function has the form

f(t) =
n∏

k=1

(1 − 2αkit)−1/2,

so

− log |f(t)| =
1
4

n∑

k=1

log(1 + 4α2
kt2).

First, let us describe the argument in the simplest case m = 1.
For a fixed t, consider the concave function

V (b1, . . . , bn) =
n∑

k=1

log(1 + 4bkt2)

on the simplex

Q1 =
{

(b1, . . . , bn) : bk ≥ 0, b1 + · · · + bn = 1
}

.

It has n extreme points bk = (0, . . . , 0, 1, 0, . . . , 0). Hence

min
b∈Q1

V (b) = V (bk) = log(1 + 4t2),

that is, |f(t)| ≤ (1 + 4t2)−1/4, which corresponds to (6) for m = 1.
If m = 2, we consider the same function V on the convex set

Q2 =
{

(b1, . . . , bn) : 0 ≤ bk ≤ 1
2
, b1 + · · · + bn = 1

}
,

which is just the intersection of the cube [0, 1
2 ]n with the hyperplane. It has

n(n − 1)/2 extreme points

bkj , 1 ≤ k < j ≤ n,
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with coordinates 1/2 on the j-th and k-th places and with zero elsewhere. Indeed,
suppose that a point

b = (b1, . . . , bn) ∈ Q2

has at least two non-zero coordinates 0 < bk, bj < 1/2 for some k < j. Let x be
the point with coordinates

xl = bl for l �= k, j, xk = bk + ε, and xj = bj − ε,

and similarly, let y be the point such that

yl = bl for l �= k, j, yk = bk − ε, and yj = bj + ε.

If ε > 0 is small enough, then both x and y lie in Q2, while

b = (x + y)/2, x �= y.

Hence such b cannot be an extreme point. Equivalently, any extreme point b of
Q2 is of the form

bkj , 1 ≤ k < j ≤ n.

Therefore, we conclude that

min
b∈Q2

V (b) = V (bkj) = 2 log(1 + 2t2),

which is the first desired claim.
In the general case, consider the function V on the convex set

Qm =
{

(b1, . . . , bn) : 0 ≤ bk ≤ 1
m

, b1 + · · · + bn = 1
}

.

By a similar argument, any extreme point b of Qm has zero for all coordinates
except for m places where the coordinates are equal to 1/m. Therefore,

min
b∈Qm

V (b) = V
( 1

m
, . . . ,

1
m

, 0, . . . , 0
)

= m log(1 + 4t2/m),

and we are done.
In case m = 4, using the inversion formula, we get

M(W ) ≤ 1
2π

∫ ∞

−∞
|f(t)| dt ≤ 1

2π

∫ ∞

−∞

1
1 + t2

dt =
1
2
.

Similarly, in the case m = 3,

M(W ) ≤ 1
2π

∫ ∞

−∞

1
(1 + 4

3 t2)3/4
dt < 0.723.

Lemma is proved.
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4 Proofs of Main Results

Proof of Theorem 1. In the following we shall write W instead of W0.
If n = 1, then the distribution function and the probability density function

of W = λ1Z
2
1 are given by

F (x) = 2Φ

(√
x

λ1

)
− 1, p(x) =

1√
2πλ1

e−x/(2λ1) (x > 0),

respectively. Therefore, p is unbounded near zero, so that M(W ) = ∞. This is
consistent with (2), in which case A1 = λ2

1 and A2 = 0.
If n = 2, the density p(x) is described as the convolution

p(x) =
1

2π
√

λ1λ2

∫ 1

0

1√
(1 − t)t

exp
{

− x

2

[1 − t

λ1
+

t

λ2

]}
dt (x > 0). (7)

Hence, p is decreasing and attains maximum at x = 0:

M(W ) =
1

2π
√

λ1λ2

∫ 1

0

1√
(1 − t)t

dt =
1

2
√

λ1λ2

.

Since A1 = λ2
1 + λ2

2 and A2 = λ2
2, we conclude, using the assumption λ1 ≥ λ2,

that
1
2

(A1A2)−1/4 ≤ M(W ) ≤ 1
23/4

(A1A2)−1/4.

As for the case n ≥ 3, the density p is vanishing at zero and attains maximum
at some point x > 0.

The further proof of Theorem 1 is based on the following observations and
Lemma 3.

By homogeneity of (2), we may assume that A1 = 1.
If λ1 ≤ 1/2, then all λ2

k ≤ 1/4, so that M(W ) ≤ 1/2, by Lemma 3. Hence,
the inequality of the form

M(W ) ≤ 1
2

(A1A2)−1/4

holds true.
Now, let λ1 ≥ 1/2, so that A2 ≤ 3/4. Write

W = λ1Z
2
1 +

√
A2 ξ, ξ =

n∑

k=2

αkZ2
k , αk =

λk√
A2

.

By construction, α2
2 + · · · + α2

n = 1.
Case 1: λ2 ≥ √

A2/2. Since the function M(W ) may only decrease when
adding an independent random variable to W , we get using (7) that

M(W ) ≤ M(λ1Z
2
1 + λ2Z

2
2 ) =

1
2
√

λ1λ2

≤ c (A1A2)−1/4,
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where the last inequality holds with c = 1. This gives the upper bound in (2)
with constant 1.

Case 2: λ2 ≤ √
A2/2. It implies that n ≥ 5 and all α2

k ≤ 1/4 for k > 1.
By Lemma 3 with m = 4, the random variable ξ has the probability density
function q bounded by 1/2. The distribution function of W may be written as

P{W ≤ x} =
∫ x/

√
A2

0

P
{

|Z1| ≤ 1√
λ1

(x − y
√

A2)1/2
}

q(y) dy, x > 0,

and its density has the form

p(x) =
1√

2πλ1

∫ x/
√

A2

0

1√
x − y

√
A2

e−(x−y
√

A2)/(2λ1) q(y) dy.

Equivalently,

p(x
√

A2) =
1√

2πλ1

A
−1/4
2

∫ x

0

1√
x − y

e−(x−y)
√

A2/(2λ1) q(y) dy. (8)

Since λ1 ≥ 1/2, we immediately obtain that

M(W ) ≤ A
−1/4
2

1√
π

sup
x>0

∫ x

0

1√
x − y

q(y)dy.

But, using q ≤ 1/2, we get
∫ x

0

1√
x − y

q(y)dy =
∫

0<y<x, x−y<1

1√
x − y

q(y)dy

+
∫

0<y<x, x−y>1

1√
x − y

q(y)dy

≤ 1
2

∫ 1

0

1√
z

dz + 1 = 2.

Thus,

M(W ) ≤ 2A
−1/4
2

1√
π

.

Combining the obtained upper bounds for M(W ) in all cases we get the upper
bound in (2).

For the lower bound, one may apply the inequality (4) in Lemma 1. Thus,
we obtain that

M(W ) ≥ 1
2
√

6

due to the assumption A1 = 1 and the property Var(Z2
1 ) = 2.

If λ2
1 ≤ 1/2, we have A2 ≥ 1/2. Hence,

M(W ) ≥ 1
2
√

6
≥ c0 (A1A2)−1/4, (9)
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where the last inequality holds true with

c0 =
1

25/4
√

6
≥ 0.171.

In case λ2
1 ≥ 1

2 , we have A2 ≤ 1/2. Returning to the formula (8), let us choose
x = Eξ + 2 and restrict the integration to the interval

Δ : max(Eξ − 2, 0) < y < Eξ + 2.

On this interval necessarily
x − y ≤ 4.

Therefore, (8) yields

M(W ) ≥ A
−1/4
2

2
√

2πλ1

· e−2
√

A2/λ1 P{ξ ∈ Δ}.

Here,
A2

λ2
1

=
1
λ2
1

− 1 ≤ 1,

and we get

M(W ) ≥ A
−1/4
2

2
√

2π
· e−2 P{ξ ∈ Δ}.

Now, recall that ξ ≥ 0 and Var(ξ) = 2 (α2
2 + · · · + α2

n) = 2. Hence, by
Chebyshev’s inequality,

P{|ξ − Eξ| ≥ 2} ≤ 1
4

Var(ξ) =
1
2
.

That is, P{ξ ∈ Δ} ≥ 1/2, and thus

M(W ) ≥ (A1A2)−1/4

4
√

2π
e−2 ≥ 0.013 · (A1A2)−1/4.

Theorem 1 is proved.

Proof of Theorem 2. In the following we shall write W instead of Wa.
The lower bound in Theorem 2 immediately follows from (5) in Lemma 2

without any assumption on λ2
1.

Our next aim is to reverse this bound up to a numerical factor under suitable
natural assumptions.

Without loss of generality, let A1 = 1. Our basic condition will be that
λ2
1 ≤ 1/3, similarly to the first part of the proof of Theorem 1. Note that if

λ2
1 ≤ 1/3 then necessarily n ≥ 3.

As easy to check, for Z ∼ N(0, 1) and a ∈ R,

E eit (Z−a)2 =
1√

1 − 2it
exp

{
a2 it

1 − it

}
, t ∈ R,
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so that ∣∣∣E eit (Z−a)2
∣∣∣ =

1
(1 + 4t2)1/4

exp
{

− 2a2 t2

1 + 4t2

}
.

Hence, the characteristic function f(t) of W satisfies

− log |f(t)| =
1
4

n∑

k=1

log(1 + 4λ2
kt2) + 2

n∑

k=1

a2
k

λ2
kt2

1 + 4λ2
kt2

.

Since λ2
1 ≤ 1

3 , by the monotonicity, all λ2
k ≤ 1

3 as well. But, as we have
already observed, under the conditions

0 ≤ bk ≤ 1
3
, b1 + · · · + bk = 1,

and for any fixed value t ∈ R, the function

ψ(b1, . . . , bn) =
n∑

k=1

log(1 + 4bkt2)

is minimized for the vector with coordinates

b1 = b2 = b3 =
1
3

and bk = 0 for k > 3.

Hence,
ψ(b1, . . . , bn) ≥ 3 log(1 + 4t2/3) ≥ 3 log(1 + t2).

Therefore, one may conclude that

|f(t)| ≤ 1
(1 + t2)3/4

exp
{

− 2
n∑

k=1

a2
k

λ2
kt2

1 + 4λ2
kt2

}
. (10)

It is time to involve the inversion formula which yields the upper bound

M(W ) ≤ 1
π

∫ ∞

0

|f(t)| dt. (11)

In the interval
0 < t < T =

1
2λ1

,

we have λ2
kt2 ≤ 1/4 for all k, and the bound (8) is simplified to

|f(t)| ≤ 1
(1 + t2)3/4

e−B1t2 .

This gives ∫ T

0

|f(t)| dt ≤ I(B1) ≡
∫ ∞

0

1
(1 + t2)3/4

e−B1t2 dt.
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If B1 ≤ 1,

I(B1) ≤
∫ ∞

0

1
(1 + t2)3/4

dt < 3,

while for B1 ≥ 1,

I(B1) ≤
∫ ∞

0

e−B1t2 dt =
√

π

2
√

B1

<
1√
B1

.

The two estimates can be united by

I(B1) ≤ 3
√

2√
1 + B1

.

To perform the integration over the half-axis t ≥ T , a different argument is
needed. Put pk = a2

kλ2
k/B1, so that pk ≥ 0 and p1 + · · · + pk = 1. By Jensen’s

inequality applied to the convex function V (x) = 1/(1 + x) for x ≥ 0 with points
xk = 4λ2

kt2, we have
n∑

k=1

a2
k

λ2
kt2

1 + 4λ2
kt2

= B1t
2

n∑

k=1

pkV (xk)

≥ B1t
2 V (p1x1 + . . . pnxn)

=
B1t

2

1 + 4t2

B1

∑n
k=1 a2

kλ4
k

≥ B1t
2

1 + 4t2

3B1

∑n
k=1 a2

kλ2
k

=
B1t

2

1 + 4
3 t2

,

where we used the property λ2
k ≤ 1/3. Moreover, since

t2 ≥ 1
(2λ1)2

≥ 3
4
,

necessarily
t2

1 + 4
3 t2

≥ 3
8
.

Hence, from (10) we get

|f(t)| ≤ 1
(1 + t2)3/4

e−3B1/4, t ≥ T,

and
∫ ∞

T

|f(t)| dt ≤ e−3B1/4

∫ ∞
√
3/2

1
(1 + t2)3/4

dt < 1.68 e−3B1/4 <
1.85√
1 + B1

.

Combining the two estimates together for different regions of integration with
(3

√
2 + 1.85)/π < 1.94, the bound (11) leads to

M(W ) <
2√

A1 + B1

.

Thus, this inequality, together with Lemma 2, completes the proof of the theo-
rem.
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