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Effects of temperature

on the behaviour and metabolism
of an intertidal foraminifera

and consequences for benthic
ecosystem functioning

Noémie Deldicq* , Dewi Langlet?, Camille Delaeter*, Grégory Beaugrand*?,
Laurent Seuront*3* & Vincent M. P. Bouchet*

Heatwaves have increased in intensity, duration and frequency over the last decades due to climate
change. Intertidal species, living in a highly variable environment, are likely to be exposed to such
heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however,
on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms
such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here,

we examine how temperature influences motion-behaviour and metabolic traits of the dominant
temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C)
and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced
their activity by up to 80% under high temperature regimes whereas they remained active under the
temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C),
all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts
significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed
to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica
contribution to surface sediment reworking substantially diminished from 10 mm3 indiv* day™ (usual
temperature) to o mm3 indiv* day™ when individuals were exposed to high temperature regimes (i.e.
above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results
suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy
ecosystems and some key biogeochemical cycles.

Over the last decades, anthropogenic pressures such as industrial activity, intensive agriculture, pollution, defor-
estation and overfishing have altered the terrestrial and marine biosphere'*. Greenhouse gas emissions have risen
substantially, affecting the global climate and the frequency and magnitude of extreme weather or climatic events
such as storms, floods, droughts and heatwaves®*~*. Over the period 1982-2010, extremely hot days have been
more frequent along 38% of the world’s coastlines'” and a recent study suggests that 50% of the ocean surface
may suffer from a permanent marine heatwave state by the late twenty-first century®. Marine heatwaves, which
result from the warming of both air and seawater temperature'"'?, have caused unprecedented mass mortalities
of a wide range of intertidal species such as mussels and limpets'*'”. In the intertidal environment, sessile and
slow-moving invertebrates are more likely to be exposed to extreme temperature events. Noticeably, in temperate
ecosystems, surface soft-sediment temperature (i.e. within the first centimetre) can frequently reach up to 30 °C'®
and sometimes even 40 °C at low tide'*?*" during spring and summer. Typically, in European Atlantic mudflats,
organisms can experience daily rise in sediment temperature up to 20 °C in 2 h at emersion'. Consequently,
intertidal species are more eurytherm than their subtidal counterparts®-2*. However, these organisms often live
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close to the upper limit of their thermal tolerance window, which make them also sensitive to thermal stress®*.
Outside their thermal range, temperature may have adverse effects on behaviour (e.g. locomotion), metabolism
and reproductive strategy, which ultimately affect species survival'?"*. To alleviate a thermal stress, organisms
typically decrease their metabolic rate by reducing their activity such as locomotion and feeding, which decrease
the space they explore and hamper their foraging strategy®**-?%. Thermal stress may have substantial implications
for soft-bottom ecosystem functioning and services. Indeed, the movements of benthic species affect biogeo-
chemical or ecosystem processes since they contribute to sediment reworking and dissolved material fluxes?*-**.
In this context, assessing how temperature might affect movements, activity and metabolic rate of intertidal
organisms is a critical prerequisite to better understand how their contribution to ecosystem functioning may
be affected by the increasing occurrence of marine heatwaves in the context of global warming.

In soft sediment, macrofaunal taxa such as molluscs, shrimps or crabs have been well-studied since they play
a key role in habitat structuration®**-*. Meiobenthic organisms such as benthic foraminifera also play a major
role in biogeochemical or ecosystem processes®*'. Yet, little is known about their behavioural and metabolic
response to changing temperatures. Many studies have shown that temperature can affect intertidal foraminifera
survival, diversity, growth, morphology and feeding?>**-*¢ and that some foraminiferal species also increase their
locomotion speed and oxygen consumption up to a point where temperature negatively impede movement,
behaviour and metabolism*>*. Under moderate temperature, Haynesina germanica is the most active species (i.e.
with an important time allocated to motion) amongst dominant European mudflat foraminifera and may be a
key contributor to sediment reworking***. Furthermore, H. germanica can sequester chloroplasts from diatoms
to use them for photosynthesis, which implies that this species contributes to both oxygen consumption and
production in the sediment”. In contrast to tropical species*>*****!, the metabolic response of H. germanica to
changing temperatures remains unknown. Given its high abundance in temperate intertidal mudflats®>->*, high
level of activity and subsequent putative contribution to sediment reworking, H. germanica is a good candidate
to experimentally assess the effects of temperature on soft-bottom ecosystem functioning, especially in the
context of global warming.

The objectives of this study are (i) to experimentally describe the responses of H. germanica to temperature
in terms of motion behaviour and metabolic rate using a thermal gradient usually encountered in temperate
intertidal environments (i.e. 6-30 °C), (ii) to characterize the effects of experimentally-induced heatwaves rang-
ing from 32 to 36 °C and (iii) to experimentally assess the ability of the species to recover after being exposed to
extreme temperatures i.e. 6 and 36 °C. We also discuss possible consequences of an acute hyperthermic stress
on H. germanica and its putative effects on benthic ecosystem functioning and services.

Methods

Collection. Surface sediment (0-1 cm) were gently scrapped off with a spoon in April, May and June 2019 in
two intertidal mudflats located on the French coasts of the eastern English Channel, i.e. Authie Bay (50° 22" 20"
N, 1° 35’ 45" E) and Boulogne-sur-Mer harbour (50° 43’ 6" N, 1° 34’ 25" E). Both sampling sites showed simi-
lar grain size (20% sand, 80 silt), TOC contents (between 1 and 2%)*, temperature and salinity values (18 °C,
33.8 PSU)*. Samples were stored in plastic containers (100 ml) and transported to the laboratory, then washed
through a 125 pm mesh sieve. Living H. germanica of similar size were sorted individually with a brush and sub-
sequently kept for 24 h in temperature-controlled incubators (MIR-154, Panasonic, Japan; temperature fluctua-
tion+0.3 °C, light intensity 170 umol m™s™"). Temperatures at which individuals were acclimated corresponded
to those used for the experiments (i.e. 6, 12, 18, 24, 30, 32, 34 and 36 °C, see section below). Additionally, the
temperature was monitored inside each incubator with a temperature logger (DSL1922L iButttons, resolution
0.1 °C, Supplementary Fig. S1). Only active individuals (i.e. producing a displacement track on a thin layer of
sediment)*” ™ were chosen and subsequently imaged to assess the shell size parameter measurements (Olympus
SZX16, Japan, TC capture software with a calibrated tool for the estimation of the maximum length and width
of each individual) prior to each experiment.

Motion behaviour and recovery experiments. Active individuals were transferred into a 400 ml
aquarium containing 25-30 ml of de-frozen sediment (i.e. ~1 cm thick) corresponding to their sampling site,
free of moving animals with oxygenated overlaying natural seawater (33PSU; Supplementary Fig. S2). Eight
temperatures (6, 12, 18, 24, 30, 32, 34, and 36 °C; see Supplementary Fig. S1 for temperature records) were
tested. The ranges 6-30 °C and 32-36 °C were respectively considered as usual (i.e. temperature regularly expe-
rienced in the field) and extreme (i.e. temperature rarely or never reached so far in the field) temperatures in the
intertidal mudflats located along the French side of the eastern English Channel. Fifteen experiments contain-
ing between 20 and 30 individuals were performed in temperature-controlled incubators (MIR-154, Panasonic,
Japan, temperature fluctuation 0.3 °C, light intensity 170 pmol m~2 s™') in April, May and June 2019 (Supple-
mentary Table S1). Living foraminifera were randomly placed on the sediment surface and the displacement of
each individual in and on the sediment was recorded using time-lapse photography (i.e. one image every 10 min
during 24 h; Nikon V1 with a Nikkor 10-30 mm lens). Then, the images were analysed by using the software
Fiji®®. Such a method allowed us to visually follow each individual and extract the coordinates from each of
the ~ 144 images combined by the computer program. The coordinates thereby gave the individuals trajectory
during the time of the experiment.

Additional recovery experiments were performed on one of each experiment carried out at 6 and 36 °C to
assess specifically the resilience of H. germanica at extreme temperatures i.e. near the limit of their thermal range.
To do so, one of each 24-h experiments carried out at 6 °C and 36 °C were pursued for extra 24-h by increasing
or decreasing the temperature until 18 °C, respectively. Displacements were subsequently recorded every 10 min
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for 24 h. The mean distance travelled within 10 min was calculated with a 3-order simple moving average to
reduce the influence of short-term fluctuations.

Motion-traits. A total of 713 active (i.e. moving) individuals was initially selected for the experiment. Dur-
ing the experiment, it was not possible to track all individuals (i) because some burrowed into the sediment up
to a depth where their paths were not visible and/or (ii) because some paths crossed and consequently individual
trajectories were lost. We therefore only kept individuals that exhibited visible tracks throughout the whole 24 h
experiment. In total we followed the trajectories of 246 individuals.

Four motion traits were investigated following Seuront and Bouchet* and Deldicq et al.**.

First, the level of activity (i.e. time allocated to locomotion by each individual) was estimated with the activity
index A; which is based on the ratio ¢, and ¢, . as follows:

active

Ai = 100 % (tactive /tmove)-

move

where ¢, includes the total time taken by an individual to move from its initial to its final position, which
thereby includes the time periods when individual remains inactive. In contrast, t,,,, only considers the time
periods when an individual actually moves between its initial and final position.

The distance travelled by each individual between two images (i.e. 10 min) was assessed as follows:
2
Di= " (—Xew1)'+ Vi~ Vi+1

where (x,,y,) and (x,,,, ¥,,,) are the coordinates between two successive images taken at times ¢ and #+ 10 min
and the total distance travelled within 24 h was then calculated (D,,) and normalized by the experiment dura-
tion to obtain velocity.

The complexity of the trajectory of each individual was assessed using fractal dimension analysis. Because the
principles behind fractal theory, fractal analysis techniques and their applications to behavioural data, including
foraminifera behaviour*, have all been described in detail elsewhere®-%, we only briefly describe hereafter the
basic principles of the box-counting method, which is likely among the most widely applied and intuitive meth-
ods available to date to characterize the geometric complexity of movement paths. This method superimposes a
regular grid of squares of length [ on a path and counts the number of occupied squares, N(/). This procedure is
repeated using different values of I. The surface occupied by a trajectory is then estimated using a series of boxes
spanning a range of surfaces down to some small fraction of the entire space, typically the size of the organ-
ism considered. The number of occupied squares fundamentally increases with decreasing square size, and the
presence of a fractal structure manifests itself by a power-law relationship of the form N(I) =k x I"°, where k is
an empirical constant and D the fractal dimension. The fractal dimension D, estimated from the slope of the
linear trend of the log-log plot of N(J) versus I, fundamentally measures the degree to which the trajectory fills
the available space and is bounded between D=1 for a line (i.e. the simplest instance of a trajectory) and D=2
for a movement so complex that it actually fills the whole available space.

Following the method newly described in Deldicq et al.*, the vertical position of H. germanica in the sediment
for every individual and picture was determined based on a classification with three depth categories. When
part of the test remained visible at the surface and the width of the path was indistinguishable an individual
was considered to be crawling on the sediment surface (Fig. 1A,D). When an individual was burrowing into the
sediment, its position was divided into two categories: it was considered (i) as moving at the sediment-water
interface when half of the test was visible (Fig. 1B,E) and (ii) as fully burrowed into the sediment when a swelling
at the sediment surface was the only indication of the presence of a test in the sediment (Fig. 1C,F). The number
of individuals was estimated for each position and each 10-min period during the time of the experiment.

Surface sediment reworking rate. To assess H. germanica contribution to surface sediment reworking,
the test surface TS, (mm?) of each individual was estimated by measuring individual maximum length and width
and assuming that the species has an ellipse-shape shell:
Length _ Width
x O x

TSi='IT .
2 2

Since there was no significant difference in term of individual size between each set of experiment
(Kruskal-Wallis test, p <0.05), the mean test surface TS was calculated for each set of experiment and used for
the calculation of the Individual Surface Sediment Reworking Rate, SSRR; (mm?® indiv"! day™'):

SSRR; =TS % Dyy4.

where D,, is the total distance travelled (in mm) within 24h by each individual.

Oxygen consumption and production.  Active individuals used for respiration measurements were
acclimated overnight with artificial seawater (35 g of Red Sea salt per litter of MilliQ ultrapure water, and
referred to as ASW hereafter) at the temperature corresponding to the experimental condition (i.e. 6,12, 18, 24,

30 and 36 °C). Three sets of five active individuals (with homogenised shell length ranging from 340 to 420 um,
Kruskal-Wallis test, p <0.05) were transferred to a 1-mm wide and 1-cm high glass microtube containing ASW
for each chosen temperature (6, 12, 18, 24, 30 and 36 °C, Supplementary Table S2). Measurements within the
microtube were carried out in a temperature-controlled water bath (Huber CC-K12, Germany) to estimate oxy-
gen fluxes at 6, 12, 18, 24 and 30 °C. To this end, a 50-um Clark-type oxygen microelectrode (Unisense, Den-
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Figure 1. Schematic side-view representation of the vertical position (A-C) and top-view images of the
sediment surface showing actual trajectories of foraminifera (D-F) related to the three vertical position
categories, which can be taken by a foraminifera, i.e. surface (A,D) sediment-water interface, (B,E), and
burrowed (C,F). Scale bars=0.2 mm. From Deldicq et al.**.

mark) was 2-point calibrated® using oxygen-saturated seawater (considering O, saturation at 35 PSU and at the
chosen temperatures) and an anoxic solution (20 g of sodium ascorbate per litter of 0.1 mol I"' NaOH solution).
The electrode was then placed in the measurement microtube about 300 pm above the 5 individuals. Oxygen
profiles were realized with a 50-um vertical resolution to determine the oxygen consumption gradient (dC/dz, in
pmol cm™) in the first millimetre above the foraminifera®->’.

Oxygen consumption gradients were first measured in the dark to estimate foraminiferal respiration and then
oxygen production gradients were estimated under homogeneous light conditions to determine net photosyn-
thesis (photosynthetically active radiation 170 pmol photon m™ s™'; SA-190 quantum sensor, LI-COR, USA,
provided by two arrays of LEDs (YN-160 III, Yongnuo, China). Given that previous studies show that ASW alone
does not produce nor consume oxygen®**>°, no further blank controls were performed for this experiment and
the measured oxygen production of consumption was assumed to originate from the foraminifera themselves.

Respiration and photosynthesis calculations. Oxygen fluxes J (pmolO, cm™ s7!) were calculated
using Ficks first law of free diffusion, as follows:

J =D xdC/dz,

where D is the free diffusion coefficient for oxygen in seawater at a given temperature*” and dC/dz the oxygen
gradient 1 mm above the foraminifera in the microtube. Oxygen solubility and free diffusion coefficients (D) were
selected from tables compiled by Ramsing and Gundersen®” (Unisense, Denmark). All respiration measurements
were performed in the dark in a temperature-controlled water bath (Huber CC-K12, Germany).

Individual respiration rate R (pmolO, indiv"' h™') and net photosynthesis rate NP (pmolO, indiv"' h™') were
subsequently calculated as:

R = Jgark % S/n,

NP = Jlight x 8/n,

where S is the microtube inner section (§=7.9 x 103 cm?), n the number of individuals (i.e. n=>5) and J the fluxes
estimated under dark and light conditions, respectively.
Gross photosynthesis (GP) was estimated from respiration (R) and net photosynthesis (NP) rates as follow:

GP NP R
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Figure 2. The influence of temperature on (A) the activity (B) the distance travelled (over 24 h), (C) the
velocity and (D) the fractal dimension of H. germanica. The box represents the first, second and third quartiles
and the whiskers extend to 1.5 times the interquartile range; values outside this range are represented by

open circles. Number of replicates are 30, 23, 30, 25, 15, 69, 28 and 26 for 6, 12, 18, 24, 30, 32, 34 and 36 °C
respectively. Due to the absence of motion it was impossible to estimate fractal dimension at 32, 34 and 36 °C.
Letters above the boxes (‘a, ‘b, ‘c’ and ‘d’) identify significant different groups (Dunn test, p <0.05).

In addition, to estimate the influence of temperature on H. germanica physiological rate, Q,, was calculated
within the ranges 6-24 °C and 24-36 °C. The Q,, values quantify changes in the metabolic rate for a 10 °C
increase:

R(T,) T T
R(T,)

Qp =

where R(T,) and R(T,) (nmolO, indiv"' h™") are the metabolic rate (i.e. respiration or gross photosynthesis)
respectively measured at extreme tested temperatures (i.e. 6 and 36 °C) and 24 °C.

To estimate the daily oxygen budget, i.e. the balance between oxygen consumption (respiration) and pro-
duction (photosynthesis) within a day, we calculated the amount of oxygen produced in a day for a 12-h light
exposure duration (to account for diurnal cycles) and 6-h light exposure duration (to account for both diurnal
and tidal cycles, assuming that coastal seawater turbidity is so high that no light is reaching the sediment during
immersion). Such calculations were done by pondering net photosynthesis with respiration rates with a 0.5 and
0.75 ratio for 12-h and 6-h light exposure, respectively.

Data analysis. Because behavioural parameters were non-normally distributed (Shapiro-Wilk test, p <0.05).
Kruskal-Wallis tests were conducted for activity and surface sediment reworking rate in order to discriminate
temperatures. In case of significant differences a Dunn post-hoc test was applied for two-sample comparisons®®.
In turn, metabolic parameters rate were normally distributed (Shapiro-Wilk test, p>0.05) and an analysis of
variance (ANOVA) was conducted on respiration rates and photosynthesis followed by a two-sample compari-
son (Tukey test) to identify distinct groups of measurement®. The presence of significant differences between
fractal dimensions was assessed using an analysis of covariance. All statistical analyses were performed using
R.3.5.2. software®.

Results
Motion traits. Individuals were most active between 6 and 30 °C, spending more than 90% of their time
moving into the sediment (Fig. 2A). Individuals exposed to extremely high temperatures (i.e. 32-36 °C) signifi-
cantly decreased their activity from circa 90% to ca. 15% (Dunn test, p<0.01; Fig. 2A).

The highest velocities and the longest distances travelled during the 24-h experiment were observed in the
range 12-30 °C (Fig. 2B,C). The longest trajectories were measured at 24 °C with a mean travelled distance of
46.9 mm (Fig. 2B,C). Beyond 32 °C, individuals started burrowing into the sediment at the beginning of the

Scientific Reports |

(2021) 11:4013 |

https://doi.org/10.1038/s41598-021-83311-2 naturc portfolio


http://www.nature.com/scientificreports/

www.nature.com/scientificreports/

experiment but there was no subsequent displacement throughout the rest of the experiment (Fig. 2B,C). More
specifically, the travelled distance of H. germanica trajectories were discriminated into several groups, i.e. D ¢,
= D34 o) = Disa oc) < Digs »cy < Dira o) = Duas oy = Digaa oy = Dygao oy (Dunn test, p<0.01).

Since there were no displacements between 32 and 36 °C, the complexity of movement (i.e. fractal analysis)
was not assessed for these temperatures. However, all trajectories considered at cooler temperature (i.e. 6, 12,
18, 24, 30 °C) were characterized by a fractal property, i.e. a highly significantly linear behaviour of N(/) vs. I in
log-log plots (r*>0.99, p<0.01). The fractal dimension D ranged from 1.09 to 1.22 and significantly differed
between treatments (Fig. 2D; Kruskal-Wallis test, p <0.01). The trajectories of H. germanica was subsequently
discriminated into several homogeneous groups, i.e. Dgec =D\, ¢ <Dgo¢c <D,y o < D3y o, Which overall indicated
an increase in movement complexity with rising temperature.

For intermediate temperatures (18, 24, 30 °C), individuals were alternatively observed at the sediment-water
interface or burrowed in the sediment during the experiment (Fig. 3). At the hottest temperatures e.g. 32-36 °C,
individuals moved rapidly from the surface down to the sub-surface and stayed buried during the remaining time
of the experiment. In contrast, they were observed at the sediment-water interface between 6 and 12 °C (Fig. 3).

Recovery experiment. After a 24-h exposure to a temperature of 6 °C, individuals exposed to 18 °C
increased their velocity from an average of 0.8 mm h™' in the first 24 h of the experiment up to approximately
1.6 mm h™! in average over the 30-55 h time interval (Fig. 4A). This increase started as soon as the temperature
rose in the experiment container (Fig. 4A). Noticeably, the recovered velocity at 18 °C (1.6 mm h™') was close to
the value observed for individuals solely exposed to 18 °C (1.74 mm h™', Fig. 2C).

At 36 °C, the distance travelled was nearly nil during the first day of the experiment. Individuals exposed to
36 °C for a 24-h period started to move only 4 h after the decrease in temperature from 36 to 18 °C (Fig. 4B). The
recovered mean velocity at 18 °C (0.57 mm h™') never reached the mean velocity where individuals were solely
exposed to a thermal regime of 18 °C (1.7 mm h™"; Fig. 2C).

Respiration and photosynthesis. Oxygen respiration rates did not significantly differ between 6 and
12 °C (Tukey test, p <0.01). However, respiration rates were significantly higher for warmer temperatures (Tukey
test, p<0.01). Hence, oxygen consumption increased from 24.5 pmolO, indiv:' h™ (12 °C) to 55.7 pmolO,
indiv' h™' (24 °C), then decreased down to 48.5 pmolQ, indiv' h™! at 36 °C (Fig. 5A). Gross photosynthesis also
increased up to 77 pmolO, indiv' h™! when temperature warmed from 6 to 24 °C. A significant diminution was
subsequently observed from 24 °C to 30 °C (Tukey test, p<0.01; Fig. 5B).

The increase in respiration and gross photosynthesis between 6 and 24 °C can be described with Q,, = 1.75
and Q,, = 1.22, respectively. However, the influence of the warmest temperatures on respiration decrease (Q,, =
0.89) was lower than for gross photosynthesis decrease (Q,, = 0.32) over the 24-36 °C range.

Surface sediment reworking rate and oxygen budget. Due to low travelled distances, there was
no surface sediment reworking beyond 32 °C. In contrast, for lower temperatures, individuals could rework
between 3.7 and 10.1 mm?® indiv™! day! (respectively 6 and 24 °C; Fig. 6). Statistical analyses showed significant
differences in the SSRR; between temperatures (Kruskal-Wallis test, p <0.05) and four groups were further iden-
tified as SSRR; (3, «cy = SSRR 3 o) = SSRR; (36 o) < SSRR;(5 o¢) < SSRR; 15 ocy = SSRRy15 oy = SSRR; 39 oy <SSRR 24 o). Quo
of surface sediment reworking in the thermal range 6-24 °C was 1.75.

For a 6-h light exposure, daily oxygen budget was negative at all temperatures and significantly decreased
above 12 °C (Fig. 7, Tukey test p <0.05). When considering a 12 h light exposure cycle, average daily oxygen
productive was positive at 6 and 12 °C and gradually decreased to reach negative values within the thermal
range 18-36 °C.

Discussion

The resilience of H. germanica motion behaviour to temperature fluctuations reveals plastic-
ity to seasonal thermal variations. Haynesina germanica was more active in the range 6-30 °C, with the
highest velocities and distances travelled being in the range 12-24 °C. Specifically, individuals were 1.4 times
faster at 24 °C than at 12 °C (Fig. 2C). This is consistent with previous measurements of locomotion speed on
glass petri dish, velocity being nearly twice lower at 12 °C (~2 mm h™')*’” than at 22 °C (~4 mm h™")”". This
observation confirms that cold temperatures may reduce the activity of temperate foraminifera®. In our experi-
ments, H. germanica explored actively its environment from 6 to 30 °C by consistently moving vertically and
horizontally into the sediment between 22 and 24 h. However, specimens remained only active between 3 and
4 h in the sediment at temperatures above 30 °C with velocities and travelled distances being nil above 32 °C.
Increasing fractal dimensions in the range 12-30 °C were also indicative of more intensive foraging behaviour
consistent with the more complex trajectories and more intensive foraging behaviour exhibited by unstressed
organisms®”'~?, Note that these results may also indicate that foraging behaviour may differ at the sediment-
water interface and within the sediment. The observed adaptive responses to a range of temperatures typically
encountered in temperate intertidal mudflats (i.e. 6-30 °C"*7*7) as well as more extreme and rare temperature
(36 °C) suggest that H. germanica behavioural flexibility specifically evolved to optimize the timing of their
response to thermal stress at temporal scales typical of the tidal alternance of immersion and emersion. In fact,
many studies have shown that intertidal invertebrates often live close to the upper limit of their thermal toler-
ance windows**”*7%, Our findings therefore suggest that irrespective of species physiological and behavioural
plasticity, unusual temperatures such as those caused by heatwaves may affect species performance and perhaps
survival. After being exposed to extremely hot temperatures, H. germanica was nevertheless able to quickly
recover. After bringing them back to 18 °C, all individual exposed to cold and hot temperatures (6 °C and 36 °C),
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Figure 3. Temporal changes in the vertical position of H. germanica for each tested temperature. Number of
individuals are shown in Supplementary Table S1.

started exploring all potential habitats i.e. both surface and deeper sediment, suggesting that the protist can
exhibit a thermotactic behaviour.

Thermal control of the position of H. germanica in the sediment. At temperatures correspond-
ing to autumn and winter (i.e. 6-12 °C), H. germanica preferably remained at the sediment-water interface. At
intermediate temperatures (18 and 24 °C) corresponding to spring and summer conditions, individuals alterna-
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Figure 4. Temporal changes in the mean velocity of 9 H. germanica individuals previously exposed at (A) 6 °C
then 18 °C and (B) 36 °C then 18 °C. The grey line is the instantaneous velocity and the red line is the 3-order
simple moving average of the velocity. Yellow triangles correspond to water-temperature changes through time.
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Figure 5. Mean values of (A) respiration and (B) gross photosynthesis (pmolO, indiv' h™") of H. germanica
under different thermal regime in 3 replicate measurements. The error bars are the standard errors of the mean.
Letters @ and ‘b’ identify significant different groups (Tukey test, p <0.05).

tively moved in and on the sediment during the whole experiment with a proportion of burrowed individuals
increasing with temperatures. For instance, at 30 °C more than 90% of the individuals were observed below the
sediment-water interface. Habitat selection as a function of environmental conditions has also been reported
in a wide range of organisms such as crabs, worms and gastropods®”**. Organisms inhabiting intertidal mud-
flats move toward a more favourable habitat following the vertical thermal gradient they experience in soft
sediments®"#2. Under low temperatures (here 6, 12 °C), basking behaviour, i.e. a common thermoregulatory
behaviour observed in many ectotherms, might allow species to live in the limited-oxygenated zone to draw
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benefit from solar heating®-*’. In contrast, burrowing deep into the sediment may provide cooler environment
and leads to a decrease in cell temperature’”®®. Considering that the thin sediment layer used in our experi-
ments is unlikely to generate a thermal gradient, our results strongly suggest that benthic foraminifera, in par-
ticular H. germanica, may have an intrinsically basking- and burrowing behaviour to regulate their inner body
temperature.
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Effect of temperature on H. germanica metabolism: an adaptation to variable thermal forc-
ing. In our experiments, highest respiration and photosynthesis rates were recorded between 18 and 24 °C.
Outside this range, H. germanica respiration rates strongly decreased at cooler temperatures (6, 12 °C) while
there was a decrease in gross photosynthesis at 30 °C. Metabolic change is a common response to temperature
in ectothermic species®, including benthic and planktonic foraminifera*!. Instability in metabolism affects
macro-invertebrate species performance such as feeding, mating and locomotion®>**, which is consistent with
our observations on H. germanica motion-behaviour, where travelled distances, and hence velocities, consist-
ently decreased at cooler and warmer temperatures. Our results open a new perspective on our understanding
of the physiology of H. germanica. In our experiments, the Q,, values reported in the range 6-24 °C for respi-
ration (Q,,=1.75) and photosynthesis (Q,,=1.22) suggest (i) a maximum performance level and a relatively
low thermal dependence of respiration and (ii) that photosynthesis is not affected by temperature inside this
thermal range. Low Q,, values have been interpreted as characteristic of the optimal temperature range of a
species in its natural habitat®. Noticeably, our Q,, calculated on respiration is substantially lower than previ-
ous direct Q,, estimates for planktonic foraminifera® (Q,,=3.18) and for the intertidal foraminifera Ammonia
beccarii tepida* (Q,,=3.2 in the north-eastern regions of the Pacific) but in the same order of magnitude as
Arcachon Basin mudflats for Ammonia tepida and Haynesina germanica® (Q,,=1.4 and Q,, = 1.8 respectively).
Compared to other meiobenthic species from the English Channel mudflats, H. germanica respiration Q,, in
the 6-24 °C range is lower than those reported in the 0-20 °C range in the sabellid polychaete Manayunkia
aestuarina (Q,,=2.19) and in the copepod Tachidius discipes (Q,,=2.17)”". Our findings suggest that the protist
is particularly well adapted to the frequently-occurring thermal range 6-24 °C in intertidal soft-sediments in
temperate environments. Similarly, a vast majority of intertidal macro-invertebrates can easily tolerate thermal
variation with no adverse effects on their physiological rates”*, like on metabolic rates of fiddler crabs®.

Fast behavioural and metabolic responses of H. germanica to extreme temperatures: a key for
survival in an era of climate change? At high temperatures (32, 34 and 36 °C), H. germanica individuals
immediately burrowed in the sediment and then remained inactive throughout the rest of the experiment. These
two successive behaviours (i.e. burrowing then inactivity) are typically observed in macro-invertebrate intertidal
species exposed to temperatures outside their tolerance thermal range”**'®*. Note that this strategy may also be
detrimental given the low oxygen penetration depth and the intense hydrogen sulphide production in coastal
marine sediments'’"'"2, which are known to hamper benthic foraminifera'™*-'>. Noticeably, the lethal limit of H.
germanica was never reached since after being inactive for 24-h at 36 °C, all individuals started to move (though
they never recovered their baseline behaviour and activity during the time of the experiment) when temperature
decreased at 18 °C. The distance travelled at 18 °C by individuals previously exposed at 36 °C was twice lower
than the distance travelled by individuals previously exposed to 6 °C, suggesting that although not lethal, the
24 h spent by H. germanica individuals at 36 °C had long-lasting harmful consequences. In the literature, tem-
perature LT, (i.e. the temperature for which 50% of individuals die) for intertidal foraminifera typically ranged
from 37.5 to 45 °C*. Exposure to high temperatures have important adverse effects such as production of reac-
tive oxygen species and DNA degradation®*’¢. These is confirmed by the metabolic Q,, value, which dropped
below 1 in the range 24-36 °C (respectively Q,,=0.89 and Q,,=0.32 for respiration and gross photosynthesis),
suggesting that biological functions are altered in H. germanica above 24 °C. Our respiration Q,, is similar
to the one of the intertidal nematode Pellioditis marina from the south-western regions of the Netherlands'*
(Q,,=0.76 in the range 25-35 °C), although thermal dependence is much higher in Ammonia beccarii tepida
from the eastern Pacific (Q,,=0.17 in the 34-45 °C range)** suggesting that H. germanica respiration might also
be inhibited beyond 36 °C. Photosynthetic activity of H. germanica is more affected than respiration, a result
that has been found in other symbiont-bearing benthic foraminifera®>*"'”. Our results therefore suggest that
H. germanica may not benefit from autotrophic nutrition since sequestered chloroplast photosynthetic activity
was strongly inhibited beyond 24 °C. Further analyses are needed to identify whether the plastids could recover
after being exposed to high temperatures and whether individuals maintain them in their cell or use them as a
source of food.

Consequences of marine heatwaves on H. germanica contribution to benthic ecosystem func-
tioning and services. The shifts in metabolism and motion behaviour observed in this study provide evi-
dence that heatwaves may alter the contribution of H. germanica to benthic ecosystem functioning. Specifically,
sediment reworking directly depends on motion-behaviour (e.g. crawling, burrowing), which leads to sediment
particle displacements®'*®. The Q,, value reported in the range 6-24 °C for surface sediment reworking rate
(Q,y=1.75) indicated a thermal dependence in the range 6-24 °C. Hence, H. germanica can rework a larger
amount of sediment within the range 18-30 °C. In addition, individuals intensively explored the environment
by moving vertically and horizontally into the sediment. This diversity of movements would most likely lead to
more intense sediment mixing since particles are carried out in both directions. In contrast, at lower tempera-
tures, H. germanica remained in the upper millimetres of sediment inducing a space-scale limited contribution
to surface sediment reworking. The intertidal polychaete species Neanthes virens also showed a lower biotur-
bation rate at 6 °C, which limits sediment transport and dissolved fluxes'®”. At temperatures >32 °C, H. ger-
manica surface sediment reworking activity fully ceased. Such temperatures can be reached during summer in
temperate intertidal mudflats'®'*!°. Heatwaves may therefore limit H. germanica contribution to surface sedi-
ment reworking. Although heatwaves have limited duration, they actually continue to increase in frequency and
intensity’. The repetition of such extreme events over successive periods has dramatic consequences on species’
survival and associated ecosystem functions"®'*'”. As previously evidenced for macro-invertebrates inhabiting
the Eastern English Channel coastlines'’, we suggest that the thermal tolerance of H. germanica and therefore
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its contribution to ecosystem functions could be altered by the successive exposition to extreme temperatures.
It would be interesting to perform successive thermal exposures to high temperatures (i.e. chronic stress) to
further investigate the ability of H. germanica to acclimate and assess its resistance and resilience to several
expositions to extreme temperatures.

Benthic foraminifera may also affect benthic fluxes directly by consuming or producing oxygen. Our results
suggest that foraminiferal oxygen uptake increases in the 6-24 °C range and that high temperatures may most
likely limit the contribution of H. germanica to oxygen fluxes. Noticeably, oxygen production by photosynthesis,
and to a lesser extent oxygen consumption, decreased at 30 °C and above. It further co-occurred with individu-
als reduced-surface sediment reworking activity during heatwaves. Our daily oxygen budget calculations under
realistic light exposure revealed that H. germanica oxygen production was closed to 0 or negative at all measured
temperatures. Specimens from Atlantic mudflats showed similar negative oxygen production under 12 h light
exposure (i.e.—283 at 13 °C and — 327 pmolO, indiv"' day ' at 18 °C; recalculated respectively from Jauffrais
etal.""" and Cesbron et al.*®). Within European waters kleptoplastic intertidal species, only Cribroelphidium wil-
liamsoni showed positive oxygen production budget under a 12 h dark-light cycle (5165 pmolO, indiv' day’;
recalculated from Jauffrais et al.''?). This result confirms that H. germanica has a minimal impact on benthic
oxygen production (up to 0.2%).

Conclusion

Global climate change has now unambiguous effects on many marine biological and ecological systems of the
world. Among observed consequences of global climate change, marine heatwaves have become more frequent
and prominent. In this context, we have examined some biological responses of the temperate foraminifera H.
germanica to thermal changes in soft-sediment habitats over a short period. Although some thermal plasticity
is observed for temperatures commonly observed in the field, we show that a hyper-thermic stresses typical of a
marine heatwave strongly affects the behaviour and the metabolism of this protist, triggering responses that were
not entirely reversed during the time of the experiments. Our results also suggest that these biological alterations
have consequences on the species contribution to surface sediment reworking.
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