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Abstract. We give a short overview of the results related to the refined forms of the central
limit theorem, with a focus on independent integer-valued random variables (r.v.’s). In the inde-
pendent and non-identically distributed (non-i.i.d.) case, an approximation is then developed for the
distribution of the sum by means of the Chebyshev-Edgeworth correction containing the moments
of the third order.
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1. Introduction. Let Xi,...,X,, be independent random variables (r.v.’s) with
finite absolute moments of the third order. Consider the sum S, = X7 + -+ + X,,.
It is known that S,, has a nearly normal distribution with mean p = ES,, and variance
0?2 =DS, (0 >0), as long as the third-order Lyapunov ratio (or fraction)

1 n
Ls=— > E[X), — EX,[?
k=1

is small. A quantitative result is given by the Berry—Esseen inequality

P{S, <x}—q>(m_“)‘ < cLs,
ag

(1.1) sup

holding with some positive absolute constant ¢ (cf., e.g., [19]). Here and in what
follows, ® denotes the standard normal distribution function (d.f.) with probability
density function

1
o(z) = 671’2/2, z € R.

We necessarily have Ly > 1/y/n. In the i.i.d. case Xy = &/+/n, this inequality
can be reversed up to a factor depending on &;. Hence in (1.1) we have

(1.2) P{S, <z} = @(T‘) + 0(%), n — oo,

with a standard rate of normal approximation.
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In order to make a more precise statement with a smaller error of approximation
than (1.1), (1.2), the normal distribution function should be slightly corrected in
a smooth way. Namely, we introduce

(1.3) D3(z) = P(x) — %3(952 — Dep(z), r€R,
where
1 5 1 ¢ 5
ls= 5 B(Sy —ES,)° = — > E(Xi - EX,)%.

k=1
Here the index 3 reflects the fact that in (1.3) the moments of X}, up to the third order
are used. In view of the Fourier—Stieltjes transform of a signed Borel measure on the
real line, the function ®3 is designated below as the third-order Chebyshev—Edgeworth
correction of the d.f. F,, = P{Z,, < z} of the normalized sum Z,, = (S, — u)/o.
In the i.i.d. case with X} = & /+/n, the correction ®3(z) — ®(x) appears as the first
term in the expansion for F,(x) in powers of 1/4/n in the form

Fal@) = 0(z) ~ Qu()plw) =175 + Qala)p(a) -+ -+

Here, each Q;(x) represents a polynomial whose coefficients depend on the first j + 2
moments of &. Based on the idea of expansion of arbitrary functions in series of
Chebyshev-Hermite polynomials, the study of such expansions was started in 1887
by Chebyshev [7] and then continued by Edgeworth, Charlier, Cramér, and Esseen,
among others. For references and discussion of the subject, we refer the reader to
Gnedenko and Kolmogorov [15].

Even if we restrict ourselves to the first term in this expansion, a general problem
is to explore whether or not it is possible to improve inequality (1.1) by replacing ®
with ®3. Such a replacement would not deteriorate this bound in view of the relation
|I3] < Ls. On the other hand, a comparison of smooth linear functionals (for example,
characteristic functions (ch.f.’s)) of F;, and ®3 suggests that an improvement is indeed
possible in various natural scenarios.

2. Nonlattice distributions. In particular, in the i.i.d. situation, assuming
that X; has a nonlattice distribution, Esseen [12] derived the representation

(2.1) P{sngx}:%(”:;“)ﬂ(\}ﬁ), n — 00,

which holds uniformly over all # € R, where as before, y = n EX; and 02 = nD(X}).
Although somewhat implicitly, this theorem improves the standard rate of normal
approximation as in (1.2). The remainder term in (2.1) can be improved to O(1/n),
provided that EX} < co and assuming that the Cramér continuity condition
(2.2) limsup |[Ee™™| < 1,
t—o0

is fulfilled; this is a particular case of Cramér’s theorem (see [9] and [10]).

In general, however, the order of magnitude of the remainder term depends on
arithmetical properties of the point spectrum of the d.f. of X;. If condition (2.2) is
not met, the Kolmogorov distance

A, =sup|P{S, <m}—¢3<x_”>‘
T g
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may actually be of the order of n=% up to logarithmic factors, for any prescribed
value «, % < a < 1. Let us mention the following characterization for the i.i.d. case
X, = &.//n with E€} < 0o in terms of the (common) ch.f. f(t) = Ee*é1. Namely,
given p > 2, the property

(2.3) A, =O0n?1P),  p oo,

is equivalent to saying that

(2.4) % =0(t"), t— oo

Here, we use the notation O(t?) for the growth rate O(t? (Int)?) with some ¢ € R and
similarly O(n?) for O(n?(Inn)?).

Simple discrete examples, where &7 takes 4 values +1, +a, each with probability %
for irrational numbers a, are described in [6] (note that &3 = ® for symmetric distri-
butions).

Let

n(a) = sup{n > 0: liminf n"||na| = 0} = inf{n > 0: 11;1“1 n||nal| > O},
n—o0 n=

where ||z|| denotes the distance from a real number z to the closest integer. The
value 77 = n(a), called a type of an irrational number a, is optimal in the sense that,
for any ¢ > 0, the Diophantine inequality |a — p/q| < ¢~'777%) has infinitely many
rational solutions p/q. By Dirichlet’s theorem, n > 1. The possible values of 7 fills
the whole half-axis [1, c0] including the case n = oo (which describes the Liouville
numbers); cf. [1]. Applying the equivalence of (2.3) and (2.4) with p = 27, we have,
for any € > 0,
A, = O(n—1/2—1/(2n)+s), n — 0o,

if and only if the number a is of type 7.

Note that the multidimensional case differs markedly from the one-dimensional
case. For instance, the distribution of the normalized sum of i.i.d. random vectors is
approximated only by a Gaussian distribution without any corrections on the class
of all centered ellipsoids with an accuracy of the order from o(1/4/n) up to O(1/n).
It holds under the appropriate dimension of space and when the summands satisfy
some moment conditions, for example, finiteness of the fourth absolute moment (see,

g., [12], [20], and [14]). For the non-i.i.d. random vectors case, see [23].

3. Lattice distributions. Bernoulli and Poisson schemes. It was also
shown by Esseen that a representation similar to (2.1) holds also for lattice distribu-
tions if one adds to ®3 a certain discontinuous periodic function with a factor of the
order of 1/y/n. To make the statement more transparent, we suppose without loss of
generality that X; takes integer values, with h = 1 being the maximal step (span),
so that the distribution of X; is not supported on hZ for o > 1. Now Theorem 3
in [12, p. 56] can be equivalently stated as

B0 P <n = e )+ Do) o 1),

with ¢(z) = « — [z] + § (the convergence is uniform in ; cf. also [15, Chap. 8, sec-
tion 43]. This result was refined by Bikjalis [4] with a nonuniform remainder term
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and then by Osipov [17] to higher order Chebyshev—Edgeworth expansions (thereby
refining Theorem 4 in [12]). However, the additional Esseen terms in such represen-
tations have a rather complicated structure and are expressed in the form of infinite
Fourier series.

To avoid unnecessary technicalities, we consider the probabilities P{S,, < k} for
integers k only, since the sum S,, in (3.1) is integer-valued. Now the additional term
vanishes if (3.1) is applied with = = k + %7 which gives us the simpler representation

(3.2) P{S, <k} = q>3<’”i2“) n 0<\/17€>

which holds uniformly over all k € Z. As we see, the points where ®3 is evaluated in
the two scenarios in (2.1) and (3.2) are slightly different. This well-known phenom-
enon should not be confusing; it was a focus of many investigations in the scheme
of Bernoulli trials including the works by Bernstein [2], [3], Feller [13], and Uspen-
sky [24]. If X} takes only two values 1 and 0 with probabilities p and ¢ = 1 — p, we
have u = np, 02 = npq, and now inequality (1.1) becomes

k—np)‘ c
P{S,<k}—-0 < .
{ ; <\/npq V1pq

In his book [24, pp. 129-131], Uspensky established a two-term approximation imply-
ing the much stronger inequality

sup
0<k<n

k:—|—1/2—np>| c
3.3 sup |P{S, <k} - < < —,
3:3) 0<k<n { } ’ vV 1Pq npq

which also quantifies the remainder term in (3.2). Here, according to (1.3), the
Chebyshev-Edgeworth correction may be simplified to read

pP—q o
$s3(z) = D(z) — x®—1)p(x).
(2) = ®(z) — & \/an( ) ¢()
Uspenksy’s approach was adapted by Cheng [8] to get a Poissonian analogue of
bound (3.3). It was shown that, if an r.v. £ has a Poisson distribution with parameter
A > 0, that is,

)\k
P{S:k}:ﬁe*’\, k=0,1,...,
then
k+1/2—/\)‘ c
3.4 sup|P{€ <k} — o5 —=— " )| < =.
(3.4) up {£ <k} 3< o 5

Here, the Chebyshev—Edgeworth correction for £ is given by

(3.5) By(x) = D(x) — %(gﬁ “1)p(z), z€R,
(which does not depend on n). This representation is consistent with (1.3): it suffices
to represent ¢ as the sum of n independent Poisson r.v.’s with parameter A/n.

The next natural step was made by Deheuvels, Puri, and Ralescu [11] who
extended inequality (3.3) to independent Bernoulli r.v.’s X}, taking the values 0 and 1
with not necessarily equal probabilities py = P{X; = 1}. Namely, we similarly have

1/2 —
(3.6) sup [P{S, < k} — @(’”/“)] <<
g

0<k<n o2
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for some absolute constant ¢ > 0, where

p=pi+-+pn, oE=pigi+-+0utn (G =1-pp),

and where @3 is defined according to (1.3) with
1 n
ls=—3 > prar(pr — a)-
k=1

For statistical reasons, this estimate was polished by Mikhailov [16], who showed
that the right-hand side in (3.6) can be replaced by (o + 3)/(40®) provided that
o = 10. See also [25] for a further improvement.

4. Further developments. The aim of the remaining part of this note is to
extend estimate (3.6) to general independent integer-valued r.v.’s under the fourth
moment condition (which would also contain the Poissonian case (3.4)). To this aim,
we involve the Lyapunov ratio of order 4 defined by

(4.1) L4:;ZE(X,€—EX;€) ,  0*=DS, =) DX,

k=1 k=1
This functional often appears naturally in various asymptotic expansions related to
the central limit theorem. However, for our purposes this functional is insufficient,
and so we introduce another quantity not related to the moments.

DEFINITION 4.1. Given an integer-valued r.v. & with ch.f. v(t) = Ee's, t € R,
we put

In |v(t)]
4.2 V(€)= — L
(4.2) €3] I A

One important feature of this functional is described in the following.

PROPOSITION 4.1. If £ is an integer-valued r.v., then 0 < V(§) < co. Moreover,
V(&) > 0 if and only if the distribution of £ is nondegenerate and has the maximal
step h = 1.

In some sense, V(£) quantifies the “strength” of the property that the maximal
step of the lattice distribution of ¢ is exactly h = 1. To illustrate this, suppose that
P{{ = £1} = 1—¢/2 and P{{ = 0} = ¢ for some € € (0,1). Then h = 1, while
V() — 0 as e — 0. It is therefore not surprising that the limit distribution has
a larger maximal step h = 2.

If the r.v. £ has a finite second moment, then by applying the Taylor formula to
the function |v(¢)|? near zero, we have by (4.2)

(4.3) V(€) < D&

However, in general, it is unnecessary for these functionals to be of the same order, as
the previous example shows, where D(§) — 1 as € — 0. On the other hand, we have

V(§) = D¢ = pg,

when £ has a Bernoulli distribution with parameters p = P{¢ = 1} and ¢ = P{{ = 0}.
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Let us also point out a superadditivity property of the functional V along con-
volutions. From Definition 4.1, for the sum S, = X; + --- + X, of independent
integer-valued r.v.’s, we have

(4.4) V(Sn) =) V(Xa).
k=1
Moreover, here in the i.i.d. case we have an equality. In particular, V(S,) =
D(S,,) = npgq for the binomial distribution with parameters (n,p). More generally, the
equality in (4.4) also holds for sums of non-i.i.d. Bernoulli r.v.’s, since the supremum
in (4.2) with £ = S, is attained asymptotically at ¢ = 0.
We can now formulate the main result. Recall that the Chebyshev—-Edgeworth
correction ®3(x) is defined in (1.3) and V(§) is defined in (4.2).

THEOREM 4.1. Let integer-valued r.v.’s X1, ..., X, be independent and have finite
fourth moments. For the sum S, = X1 + -+ + X,,, we put p = ES,,, 0 = D(S,),
and V =37_  V(Xy). Then

2

1/2 —
(4.5) sup(P{S, <k} — %(k ty “)‘ <Ly
kEZ g V

with an absolute constant ¢ > 0.

In the i.i.d. case, the right-hand side of (4.5) is simplified, and we arrive at (3.2)
with an improved remainder term.

COROLLARY 4.1. Suppose that integer-valued r.v.’s Xy, are independent and have

a common nondegenerate distribution with mazimal step h = 1 and EX{ < oo.
Let u =nEX; and 0> = nD(X;). Then

k+1/2— 1
(4.6) P{S, <k} — %(*éﬂ) + o<n>

as n — oo uniformly over all k € Z.

Moreover, the involved constant in the remainder term does not exceed, up to
a numerical factor, the quantity

E(X; — EX;)*

If X} are independent Bernoulli r.v.’s with parameters p, = P{X; = 1} and
qr = P{Xk = 0}, then

1
E(X), — BXy)" = prear(pi + 6) < pray,  B(Xi = EXp)" > g
Therefore, according to (4.1),

(4.7) B

In addition, Y_,_, V(X}) = o2, which is mentioned above. As a result, inequality (4.5)
contains (3.6) as a particular case (the Deheuvels—Puri-Ralescu theorem).
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Another important particular case worth mentioning is related to the normal
approximation for the Poisson distribution. If an r.v. £ has Poisson distribution with
parameter A > 0, then, for all ¢ € R, its ch.f. v(¢) satisfies

Injo(t) _
1—cost

Hence V(¢) =D¢=\. We also have E{ = ), so it is easy to check that
(4.8) E¢-E&* =), E(E-EO*=\BA+1).

Representing £ = X; + --- + X,, with independent Poisson r.v.’s X} with parame-
ter A/m, we get I3 = 1/ VA, so, the Chebyshev-Edgeworth correction for ¢ is given
by (3.5). In addition, Ly = 3/n + 1/, according to (4.1) and (4.8). Hence, making
n — 0o, we get Cheng’s bound (3.4) from Theorem 4.1.

Let us now return to Proposition 4.1 and describe a simple argument in the
proof, which is required only in one part of the proof. If the distribution of an r.v. £
is nondegenerate, then |v(t)| < e” " for some ¢ > 0 in a sufficiently small interval
[t] < to (to > 0). In particular,

n(1/[o(@)])  _ ct?
1—cost ~ 1—cost

in some neighborhood of zero. If, in addition, one kno2ws that ¢ is integer-valued, then
v(t) is (2)-periodic, implying that |v(t)| < e=¢(*=27)" for |t — 27| < to. Hence

n(1/jo(®)))  (t=2m)?

1—cost ~ 1—cost ~

in some neighborhood of 27. Finally, recall that the property that the maximal step
is equal to h = 1 is equivalent to saying that |v(27)] = 1 with |v(¢)| < 1 for all
0 <t < 2m (cf. [19, Chap. 1, Lemma 1.2]). By the continuity of v(t), the ratio in (4.2)
is therefore bounded away from zero on the whole interval (0, 27).

5. Preparation to the proof. Here we collect some technical results required
for the proof of Theorem 4.1.

Given independent r.v.s Xi,...,X, with finite fourth moments, we put
pr =EXp, =y + -+ pn, 0 =D(S,) (0 > 0), and define

_ Xkt

Sp —
Go=t Zi=g+et6 =t

g

Clearly, E¢, = EZ,, =0 and DZ,, = 1.
Note that the Lyapunov fractions

1 n
L= ZE|Xk —EX,P,  p>2,
k=1

are affine invariant functionals, and hence L3 and L4 for the collection &1,...,&,
are the same as for Xq,...,X,. A similar result also holds for I3, and hence the
Chebyshev-Edgeworth correction ®3(z) for Z,, is again given by (1.3).
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The proximity of the d.f.
F,(z) =P{Z, <z}, x €R,

to ®3(z) in a weak sense can be studied in terms of the proximity of the ch.f.

fu(t) = Ee'Zn = / e dF, ()
to the Fourier—Stieltjes transform of ®3, that is, to the corrected normal ch.f.
(5.1) g(t) = / e ddy(x) = e t'/2 (1 + g’(it)3>, teR.

In particular, we have

LEMMA 5.1. On the interval |t| < 1/Ls,
(5.2) [fn() = g(£)] < cLymin(1, ) e /3

with some absolute constant ¢ > 0.

This result, including Chebyshev-Edgeworth expansions for products of ch.f.’s
of higher order (especially in the i.i.d. case, cf., e.g., [15, Chap. 8, section 40] or [18,
Chap. 6, section 3]), is well known. The formulation of inequalities such as (5.2) in the
non-i.i.d. case is often different in different places with respect to the interval where
the bound holds and to the constants in the exponent (cf. [10, Chap. 7], [21], [22]).
Our formulation follows that of [5, Theorem 18.1]. It is important that (5.2) implies
the integral estimate

53 /t|<1/L3

Let us briefly comment on the relationship between different Lyapunov fractions.
Since L, = 1, the function p — L;l,/p*2 is nondecreasing with respect to p > 2.

In particular,

(5.4) Ls < /L.
2

For integer-valued r.v.’s X, there are other relations involving the variance o~.
According to the well-known von Mises inequality,

fa(t) = 9(t)
t

’ dt g CL4.

E‘g - E§|p < 2E|§ - E€|p+17 p 2 17

provided that an r.v. & takes only integer values.

For the reader’s convenience, we give a short proof of this inequality. Let 1 be an
integer-valued r.v. with zero mean and with all finite moments. By Holder’s inequality,
for arbitrary positive p and ¢, and 8, 0 < 6 < 1, we have

E[y|*P+ (=00 < (Bn|?)’ (Elp| 1) 7.

Hence, the function R(p) = In E|n|? is convex for p > 0, and therefore R(p+1) — R(p)
is a nondecreasing function for p > 0. So, for p > 1, we have

p+1 2
E[n| s En® L
E[n» ~ Eln| ~ 2
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since, if ¢ is an independent copy of 7, we have
1 1 1
Ep’ = SE(n—()* > Eln — ¢ > SEl),

because ¢ and 7 are integer-valued. Hence, by the von Mises inequality,

1 1 1
. Ls>— Li>—1Ig>—.
(5.5) 37 95 17 96737 4o2

The inequalities in (5.5) can be reversed, up to constants, for Bernoulli distributions
(see, e.g., (4.7)).
For the function in (5.1), the following integral estimate complements (5.3).

LEMMA 5.2. The following inequality holds:

(5.6) /t - (*)

’ dt < 3L4.
Proof. Given T > 0, we have

/ Lo g o L -2 < 1
o T2

T2’
o0 2 2 1
/ e 2dt < Te T /2 < —.
T T

Applying these inequalities with T'= 1/L3 and using (5.1) and (5.4), we see that the
integral in (5.6) is majorized by

1
213 + 3l Ls < 3L3 < 3Ly,

the result required.

Following [11] and especially [16], where many arguments in the proof were clari-
fied, let us now describe a smoothing operation that allows one to properly modify the
Fourier analysis of the distribution of S;,, = X; +---+ X,,. Let n denote an r.v. which
is independent of all X}, and has a uniform distribution U on the interval (—1/2,1/2).
If all X are integer-valued, then the r.v. gn = S, + 1 has an absolutely continuous
distribution satisfying

~ 1
(5.7) P{Sn<k+2} =P{S, <k}, kel

The d.f. ﬁn of §n has a simple structure: one may just restrict the d.f. of S, to the
lattice Z and then extend it to the whole real line as a continuous function which is
linear on every interval [k, k + 1].

In view of (5.7), one may now focus on the asymptotic approximation for E,.
This can be done by employing the Chebyshev-Edgeworth correction for the extended
sequence X1, ...,X,,n. In other words, using the Chebyshev-Edgeworth correction
&5 for Z,, as in (1.3), it makes sense to approximate the d.f. of the smoothed r.v.

= n_ Sp—p+tn

Zn =Zn+
o o
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by the convolution

(5.8) By(w) = By(z) + Uox) = / Y (x _ y) dy.

—1/2 g
Similarly to (5.2) and (5.3), the difference between ®3 and ®j is small, as long as Ly
is small.
LEMMA 5.3. The following inequality holds:

(5.9) sup| () — Ba(w)] < oz (1+ Lo)

Proof. By Taylor’s integral formula applied to the integrand in (5.8),

~ 1 t
B -m@ =z [ [ a-opes(s- )
07 Jlyl<1/2 Jo<t<1 o

which implies

~ 1
sup|<I>3(:r) — <I>3(x)| < 3152 SUP |®% ().

According to (1.3),
l-
f(2) = —ap(x) — ¢ Ha(2)p(x),

where Hy(x) = 2* —62%+3 is the fourth-order Chebyshev-Hermite polynomial. It can
be easily checked that

1

|zlp(2) < <7 [Ha(@)lp(r) < <12

DO

;

(9]
IS

5=
)

Using |l3] < L3, we get
1 1
+ oLy

@/l -
()] <+

and therefore (5.9). The lemma is proved.

6. Proof of Theorem 4.1. Under the notation of the previous section, recall
that f,(t) denotes the ch.f. of the normalized sum Z,,. Hence, the ch.f. of the sum
S,n=X1+4+- 4+ X, =u+ 027, is given by

u,(t) = e f,(ot), teR.

Similarly, we introduce
u(t) = / e A <x — ,u> = eg(ot),
o

where g represents the Fourier—Stieltjes transform of ®s; cf. (5.1). Since the ch.f. of
the r.v. n ~ U is given by

sin(t/2)

tj2
the ch.f. and the Fourier-Stieltjes transform of S, = S, + n and ®3(z — p/0) are
given, respectively, by

w(t) = Be'™ =
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Recall that F,(z) = P{S, < }. By the Fourier inversion formula,

ﬁn(x)_<53<xa“> B A Uil O

27 J_ o —it
L[ pua(t) —u(t)

= — wr AT N7 t)dt
o [me vt

where the integrals are absolutely convergent. Hence

Fox) — &»3(”“" - “)‘ <1

~
o 2

(6.1) A, = sup

T

-/

Our purpose here is to properly estimate the last integral.
Near zero it can be estimated by virtue of Lemma 5.1 via (5.3). Indeed, changing
the variable and using |w(t)| < 1, we have

_ ualt) —ult)|
62 b= /|t<1/<aL3> t " O gt < /t

For a similar integral I; over the complementary region, we have Iy < 2J + I with

o0 t t
1(oLs)l T t>1/Ls

K2
The last integral was estimated in Lemma 5.2. Using (6.2) and (5.6), we obtain

where
un(t) — ult) - u(t) ‘|w(t)| dt.

Fnlt) ~9) _g(t)’dt<cL4
: <cLs.

I<1/Ls

t

~ 1
s

with some absolute constant ¢ > 0.

Let us now estimate J by involving the functional V. Putting *> = V(S,,), b > 0,
we recall that b? < 02 and a = 1/(0L3) < 2 as indicated in (4.3) and (5.5). We also
note that

b b
6.4 ab=——> .
( ) O'L3 g4/ L4

Since the function wu,(t) is (27)-periodic, it makes sense to split the integration

in the definition of J into the intervals

Ag = (a,m), A= ((2k -7, (2k + 1)), k=1,2,....

From (4.2) we have

6.5 un ()] < exp] —2b2 sin? E teR.
(65) un®)] < exp ap
Next, sin(t/2) > % in0<t<m and so

lun (8)] < ™20/t e Ay,
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Jo

Hence, putting T' = 2ab/m, we find that
unt(t) ‘|W(t)| dt < / e—2b2t2/7r2 @

/. R

©  a,ds 1 3 302
6.6 = R L <Ly,
(6:6) /T ¢ s T? = (ab)? 2

where we have used (6.4).
The remaining integrals should be estimated in a different way by using the
property that w(t) is small when ¢ is close to any integer multiple of 27r. Namely,

by (6.5),
Un (1) 2
= —_— t)dt < —+=K,
= 014 < (g Ty
where
K= » exp{—Qb2 sin? (;)} sin;‘ dt

w/2 w/2 ]2 g2 w2
= 4/0 exp{—2b2 Sin2 S} sin s ds é 4/0 exp{—ﬁ}sds < @

It follows that Y .-, Jp < 7, and, together with (6.6), we have

302 1 To?
J < —0L4s+ be < bT

b2 L47

where we use 6?Ly > 1; cf. (5.5). Combining this with (6.3), we have
(6.7) A, < —

It remains to apply Lemma 5.3, together with (5.4), (5.5), and (6.7), and use
definition (6.1). Hence

2
~ xr — CoO
Fi(a) - <I>3( - “)‘ < Lyt eLa(1+ LY

A, = sup

xT

b2

with some absolute constant ¢ > 0. If Ly < 1, we get (4.5) in view of (5.7) and since
o2/b? > 1. Otherwise, the required inequality

CO’2

An < bTL4

also holds with a sufficiently large c¢. Indeed, if Ly > 1, then by (1.3),

|P3(z)| <1+ |ls] <14 Ly <14 /Ly < 2L4.

Thus, A,, < 3L4.
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