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ABSTRACT

We study the problem of certification: given queries to a function
f 40,1} — {0, 1} with certificate complexity < k and an input
x*, output a size-k certificate for f’s value on x*.

For monotone functions, a classic local search algorithm of An-
gluin accomplishes this task with n queries, which we show is
optimal for local search algorithms. Our main result is a new algo-
rithm for certifying monotone functions with O(k® log n) queries,
which comes close to matching the information-theoretic lower
bound of Q(klogn). The design and analysis of our algorithm are
based on a new connection to threshold phenomena in monotone
functions.

We further prove exponential-in-k lower bounds when f is non-
monotone, and when f is monotone but the algorithm is only given
random examples of f. These lower bounds show that assumptions
on the structure of f and query access to it are both necessary for
the polynomial dependence on k that we achieve.
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1 INTRODUCTION

Given a function f : {0, 1} — {0, 1} and an input x*, why does f
output f(x*) on x*? Among the many possibilities for what con-
stitutes such an “explanation”, the notion of certificates is perhaps
the simplest: a set S C [n] of x*’s coordinates that determines f’s
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value on x*. That is, f(y) = f(x*) for all y that agree with x* on
the coordinates in S.

It is natural to seek small certificates, i.e. succinct explanations:
the smaller S is, the more inputs it covers, and the more general it is
as an explanation. This leads us to the following standard definition
from complexity theory:

DEFINITION 1 (CERTIFICATE COMPLEXITY). For a function f :
{0,1}" — {0,1} and an input x*, the complexity of certifying f’s
value on x* is the quantity:

C(f,x*) = Srni[n] {|S| : f(y) = fF(x™) forally s.t.ys = x;}

n

c

The certificate complexity of f is the quantity
C(f) = max {C(f,x)}.
xe{0,1}7

We can now state the algorithmic problem that we study in this
work, that of efficiently finding small certificates:

Certification Problem: Given queries to a function f :
{0,1}"* — {0, 1} with certificate complexity < k and an
input x*, output a size-k certificate for f’s value on x*.

Motivation. In addition to being a basic and natural problem, this
is also an abstraction of a problem of interest in explainable machine
learning, where f represents a black box model that we seek to
explain the predictions of. Modern machine learning algorithms,
powered by large amounts of computational resources and trained
on massive datasets, produce models that perform very well, but
are so complicated that they are essentially inscrutable black boxes.
This is a concern as we increasingly delegate weighty decisions to
these models. The field of explainable machine learning seeks to
address this by developing techniques to explain the predictions of
these models [6, 14].

There are numerous notions of “explanations” in this litera-
ture [2, 13, 15, 21, 25-27]; Ribero, Singh, and Guestrin [22] were
the first to propose certificates. Their work introduced a relaxed
“approximate” notion of certificates, where the set S of coordinates
mostly determines f’s value rather than fully determines it, and
“mostly” is measured with respect to a distribution over inputs.
We discuss [22], this notion of “approximate certificates", and cor-
responding approximate certification algorithms in more detail
in Section 1.2.

1.1 Our Results

1.1.1  Local Search for Monotone Functions and Its Limitations. The
certification problem can be viewed as the problem of efficiently
finding an “f-monochromatic" subcube in {0, 1}" of codimension
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< k containing x*, where a subcube is f-monochromatic if f takes
the same value on all inputs in that subcube. From this perspective,
it is natural to proceed by local search: first query f on x* and
its immediate Hamming neighbors, and iteratively expand this
neighborhood until it contains an f-monochromatic subcube of the
desired size.

Indeed, a classic algorithm due to Angluin [1] shows how such
a local search can be carried out systematically for monotone func-
tions, and solves the certification problem with just n queries:

Angluin’s algorithm: Given queries to a monotone function f :
{0,1}" — {0, 1} with certificate complexity < k and an input x*,
Angluin’s algorithm makes n queries to f and returns a size-k certifi-
cate for f’s value on x*.

Angluin’s algorithm is a modification of a similar algorithm
given by Valiant [28].

We begin by observing that Angluin’s algorithm is optimal
among local search algorithms. We consider a local search algorithm
to be any algorithm whose first query is x*, and whose subsequent
queries are Hamming neighbors of some input that has been pre-
viously queried. In other words, at any point in the execution of a
local search algorithm, the set of inputs that have been queried so
far forms a connected subgraph of {0, 1}" containing x*. We show
the following lower bound:

CrAM 1.1 (LOWER BOUND AGAINST LOCAL SEARCH ALGORITHMS).
For any ¢ > 0 the following holds. Any local search algorithm solving
the certification problem for monotone functions f : {0,1}"* — {0, 1}
must have query complexity Q(en), even if f is promised to have
certificate complexity k = 1 and even if the algorithm is only required
to return a size-Q(en) certificate with probability .

1.1.2 Near-Optimal Certification Algorithm for Monotone Functions.
Our main result is an algorithm for certifying monotone functions
that is substantially more efficient than Angluin’s:

THEOREM 1 (EFFICIENT CERTIFICATION OF MONOTONE FUNC-
TIONS). Given queries to a monotone function f : {0,1}" — {0,1}
with certificate complexity < k and an input x*, our algorithm makes
O(Kk8logn) queries to f and w.h.p. returns a size-k certificate for f’s
value on x*.

As one would expect given Claim 1.1, our algorithm does not
proceed by local search. In fact, our algorithm takes the exact op-
posite approach. A local search algorithm for monotone functions
starts with the trivial certificate S = {i € [n]: x}* = f(x})} and
trims it down in size by removing coordinates that are “irrelevant
to S". Our algorithm proceeds the opposite way: we start with the
empty set S = @ and add to it coordinates that we deem “important”.
We describe our approach in detail in Section 2.

We complement Theorem 1 with a lower bound showing that
the query complexity of our algorithm is near optimal, even if the
algorithm only has to return a certificate of size £ > k:

CraiM 1.2 (LOWER BOUND FOR MONOTONE FUNCTIONS). For any
¢ <landanyk <t < n€, let A be an algorithm which, given query
access to a monotone function f : {0,1}" — {0, 1} with certificate
complexity < k and an input x*, returns a size-t certificate for f’s
value on x* w.h.p. The query complexity of A must be Q(k log n).
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1.1.3  Algorithms and Lower Bounds for Other Settings. Finally, we
study the extent to which the setting of Theorem 1 can be relaxed:
what if f is an arbitrary function, one that is not necessarily mono-
tone? What if the algorithm is only given uniformly-distributed
random examples (x, f(x)) instead of query access to f? We obtain
fairly tight upper and lower bounds for both these settings. Table 1
summarizes these bounds and contrasts them with our results as
described in the previous subsection:

The exponential-in-k lower bounds for these alternative settings
(the last two rows of Table 1) show that some assumption on the
structure of f, such as monotonicity, and query access to it are both
necessary for the polynomial dependence on k that we achieve
in Theorem 1. As in Claim 1.2, these lower bounds hold even if the
algorithm is only required to return a size-¢ certificate where ¢ can
be significantly larger than k; we defer the precise statements to
the body of the paper.

1.2 Prior Work on “Approximate" and Exact
Certificates

We discuss two works from the explainable machine learning liter-
ature, [22] and [3], that are direct precursors to ours.

[22]. Ribero, Singh, and Guestrin were the first to propose certifi-
cates as explanations for black box machine learning models. They
introduced a relaxed notion of certificates that allows for errors!:

DEFINITION 2 (APPROXIMATE CERTIFICATES [22]). For a function
f:{0,1}" — {0, 1}, an input x*, a distribution D over {0,1}", and
&> 0, we say that a set S C [n] is an e-error certificate for f’s value
on x* with respect to D if PrD[f(y) #f(x*) |yg = xg‘] <e

y~

[22]’s work was empirical in nature: their paper demonstrated,
through experiments and a user study, the effectiveness of succinct
certificates as explanations. Their work also gave heuristics for
finding succinct approximate certificates, but these heuristics do
not come with provable performance guarantees.

[22]’s work has been influential in explainable machine learn-
ing. For more, see the discussion of their work in the book [18,
Chapter §5.9], and the open source library [12] for implementation
details of their heuristics.

[3]. Motivated by [22], [3] gave an algorithm for finding succinct
approximate certificates that comes with performance guarantees
with respect to the uniform distribution:

THEOREM 2 ([3]’s APPROXIMATE CERTIFICATION ALGORITHM; IN-
FORMAL). Let U denote the uniform distribution over {0,1}" and
e > 0. Given query access to f : {0,1}" — {0,1} with “e-error
certificate complexity" < k and an input x*, [3]’s algorithm makes
poly(k, 1/¢,n) queries to f and returns a set of coordinates S(x*).

With probability > 1 — ¢ over x* ~ U, the set S(x*) is an e-
error certificate for f’s value on x* with respect to U and |S(x*)| <
poly(k, 1/¢).

I They termed such explanations anchors, which has since become standard in the
explainable machine learning literature. We stick with the term certificates in our
description of their results.
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Table 1: Bounds on the query complexity of certification.

Algorithm is given:

Upper bound

Lower bound

Queries to monotone f,
and proceeds by local search

Angluin’s algorithm: n queries

Claim 1.1: Q(n) queries

Queries to monotone f

Theorem 1: O(k8 log n) queries

Claim 1.2: Q(k log n) queries

Queries to arbitrary f

Random examples of monotone f

Claim 8.1: O(2¥k log n) examples

Claim 8.3: Q(2K + klog n) queries

Claim 8.6: Q(2* + klog n) examples

Comparing Theorem 2 to our algorithm in Theorem 1, we see
that Theorem 2 applies to all functions whereas Theorem 1 only
applies to monotone ones. On the other hand, there are two sources
of errors in Theorem 2, neither of which are present in Theorem 1:
the guarantees of [3]’s algorithm only hold for most x* and not
for all of them, and the certificates returned are e-error certificates
and not actual certificates. Even if one is willing to tolerate both
sources of errors, the fact that they are measured with respect to
the uniform distribution remains a significant shortcoming—this
was identified in [3] as the main limitation of their result.

A primary motivation for our work was to develop certifica-
tion algorithms that, like [3]’s, come with provable performance
guarantees, but where these guarantees hold in the much more
challenging errorless setting.

Other related work on finding certificates. There has been signifi-
cant work on finding prime implicants in the ML and AlI literature
(see e.g. [5, 7-9] and the references therein), including for mono-
tone functions [17, 24]. In our terminology, a prime implicant is a
1-certificate which is minimal under set inclusion (relatedly a mini-
mal O-certificate is a prime implicant for —f). These algorithms for
computing prime implicants all have worst-case query complexity
and runtime that is at least linear in n. In contrast, our algorithm
has only a logarithmic dependence on n and always returns a prime
implicant.

2 OVERVIEW OF OUR ALGORITHM AND ITS
ANALYSIS

Before describing our algorithm, we first give an overview of An-
gluin’s and [3]’s algorithms, in tandem with a discussion of how
these algorithms led to ours and how ours differs from them. Through-
out this section, let f : {0,1}" — {0, 1} be a monotone function and
suppose without loss of generality that f(x*) = 1 for the input x*
that we seek to certify.

Angluin’s algorithm. By the monotonicity of f, the set S, =
{i € [n]: xl?* = 1} is certainly a certificate for f’s value at x*.
The assumption that f has certificate complexity < k implies the
existence of at least one subset T C S,~ of size < k that remains a
certificate for f’s value at x*. The goal of Angluin’s algorithm is to

find one of them.

DEFINITION 3 (IRRELEVANT COORDINATE OF A CERTIFICATE). For
a function f, an input x*, a certificate S C [n] for f’s value at x*,
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and a coordinate i € S, we say that i is irrelevant to S if S\ {i} remains
a certificate for f’s value at x*, and otherwise say that it is relevant.

Angluin’s algorithm starts with Sy+ and trims it down in size,
removing irrelevant coordinates one by one, all the while main-
taining the invariant that the current set remains a certificate. A
naive implementation of this plan results in a query complexity of
O(|Sy+|%). A simple but key observation yields an improved query
complexity of O(|Syx|) < O(n): if i is relevant for a certificate S, it
remains relevant for any certificate S’ C S. Therefore, each coor-
dinate i € S,~ is processed at exactly once throughout the entire
execution of the algorithm. (For completeness, we give a formal
description of Angluin’s algorithm and its analysis in Appendix A.)

[3]’s approximate certification algorithm. [3]’s algorithm, as well
as ours, takes an approach that is the opposite of Angluin’s, and
indeed, the opposite of all local search algorithms. Instead of starting
with S,» and removing irrelevant coordinates, we start with the
empty set and add to it coordinates that we deem “important”. The
notion of influence from the analysis of boolean functions provides
a way to quantify the importance of coordinates:

DEFINITION 4 (INFLUENCE). For a function f : {0,1}" — {0, 1}
and a coordinate i € [n], the influence of i on f is the quantity
Inf;(f) = 'fPr [£f(x) # f(x®))], where x®! denotes x with its

un

1orm xX

i-th coordinate flipped.

[3]’s algorithm is simple: using queries to f, determine the coor-
dinate i with (approximately) the largest influence? on f; restrict
the i-th coordinate of f according to x and recurse. [3] proved that
for most x*’s, running this recursion to a certain depth suffices to
guarantee a low-error certificate for f’s value on x*, where “most"
and “low-error” are both with respect to the uniform distribution.

2.1 The Three Components of Our Algorithm

The difference between our setting and [3]’s is akin to the difference
between exact and uniform-distribution learning: exact learning is
more challenging than distribution-independent learning, which
is in turn more challenging than uniform-distribution learning.
[3]’s algorithm can be seen to fail badly in the setting of zero-
error certificates: there are monotone functions f with certificate
complexity k < n such that their recursion has to be run to the

This is slightly imprecise, since [3] actually uses a notion of “noisy influence” which
generalizes Definition 4. We do not need this generalization in this work.
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maximum depth of n (corresponding to the trivial certificate S =
[n]) in order to return a zero-error certificate.

Our algorithm is more involved than [3]’s and has three main
components:

(1) Finding a small certificate. This component is independent of
the input x* that we seek to certify. We design an algorithm
that finds an arbitrary poly(k)-size certificate for a mono-
tone f—by arbitrary, we mean that this can be a certificate
for f’s value on any input, not necessarily a specific one.
In other words, this is a set S C [n] and a bit b € {0, 1}
such that f with all the coordinates i € S restricted to b is a
constant function.

(2) Finding a small certificate for x*. We then show how the
algorithm above can be called O(k) times to find a poly(k)-
size certificate for f’s value on x*. The fact that O(k) calls
suffice follows from a basic result in query complexity, that
every 1-certificate and 0-certificate of a function share at
least one variable. (We defer the definitions of these terms
to the body of the paper.)

Trimming the certificate. Finally, we use Angluin’s algorithm

to trim the size of this certificate from poly(k) down to < k.

Crucially, we enter this trimming process with a certificate

whose size is already bounded by < poly(k), in contrast to

Angluin’s algorithm which starts with the certificate Sy,

the size of which can be as large as n. The number of queries

that we require for this step is therefore only < poly(k),

independent of n.

®)

2.1.1 Killing a monotone function. We elaborate on the first com-
ponent; the other two are fairly straightforward. It will be useful
for us to view this as the task of “killing" a monotone function
efficiently: using as few queries to f as possible, find an assign-
ment to a small set of coordinates that kills f, meaning that the
corresponding restriction of f is a constant function.

Our algorithm for this step is most easily understood from the
perspective of threshold phenomena in monotone functions—this
connection is the key new ingredient in our work. A wealth of
techniques has been developed for the study of this topic, which is
central to the theory of random graphs and percolation theory. We
will only need a few of the fundamentals.

Every monotone function f : {0,1}" — {0, 1} can be associated
with a function @ : [0,1] — [0, 1],

o= B
where {0, 1} Z denotes the p-biased product distribution over {0, 1}".
If f is non-constant, this is a strictly increasing function of p, going
from 0 to 1 as p goes from 0 to 1.

DEFINITION 5 (CRITICAL PROBABILITY). Let f : {0,1}" — {0,1}
be a non-constant monotone function. The critical probability of f is

the unique value p(f) € (0,1) for which ®¢(p(f)) = %

We use the critical probability of f as a proxy for how close to
constant it is, i.e. how “dead” the function is. If f’s critical proba-
bility is > 3, our algorithm kills it to the constant-0 function by
driving its critical probability towards 1; otherwise, we kill it to
the constant-1 function by driving its critical probability towards
0. Our algorithm for doing so is similar in spirit to [3]’s algorithm,
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with the crucial difference being that ours “continually adapts” to
the critical probability of f and its subfunctions:

(1) Estimate the critical probability p(f) of f.

(2) Determine the coordinate i with approximately the largest
p(f)-biased influence on f. The p-biased influence of a co-
ordinate is the generalization of Definition 4 to p-biased
product distributions over {0, 1}".

(3) Recurse on the subfunction f, p, the restriction of f to
x; = b, where b = 0if p(f) > % and b = 1 otherwise.

Our analysis of this process relies on two basic results from
the study of graph properties and percolation. We first use the
O’Donnell-Saks—Schramm-Servedio inequality [20] to show that
restricting f by the coordinate with the largest p(f)-biased influ-
ence changes its p(f)-biased expectation substantially:

E

1
E = >Q|l—=].
p(f)-biased x[ p(f)-biased x Uiz ()] = ( k2 )

We then show, via the Russo-Margulis lemma [16, 23], that the
above implies that the critical probability of f changes substantially:

()] -

1
Ip(f) = p(f=p)| = Q(F) 1)
It follows that our algorithm kills f within O(k®) recursive calls.
Figure 1 on page 9 illustrates our proof strategy.

A slight optimization. The query complexity of this algorithm
can be bounded by O(k® log k log n). To shave off a factor of log k,
we consider an optimization where we estimate the critical proba-
bility of f just once, at the very beginning of the algorithm, rather
than in each recursive call. Throughout the recursive process, we
assume conservatively that each restriction only changes the criti-
cal probability by the minimum amount guaranteed by Equation (1).
A simple adjustment of our analysis accounts for this modification
(i.e. for the possibility that the true critical probability drifts away
from what we assume it to be as we recurse).

3 DISCUSSION AND FUTURE WORK

Concrete directions for future work include closing the remain-
ing gap between our upper and lower bounds of O(k® log n) and
Q(klogn), as well as identifying other natural classes of functions
that admit efficient certification algorithms.

More broadly, a novel aspect of our techniques is the use of
concepts and results from the study of threshold phenomena: p-
biased analysis, the critical probability of monotone functions, the
Russo-Margulis lemma, etc. While the certification problem was
the focus of this work, we speculate that there are further applica-
tions of this toolkit in learning theory, where monotonicity of the
target function is a common assumption. For example, while the
variance of function is often used as progress measure in learning
theory, our work suggests that for monotone target functions, its
critical probability could be a more useful notion. Can our idea of
“continually adapting" to the critical probability be used to design
new learning algorithms?

Finally, circling back to the motivation for the certification prob-
lem, we mention that there is a growing flurry of work in explain-
able machine learning, the vast majority of which is empirical in
nature; see slide 7 of [11] for some staggering numbers. Hallmarks
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of problems in this area—query access to a black box f (“post-hoc
explanations"); the focus on f’s values at and near a specific input
x* (“local explanations"); various notions of influence of variables
(“feature attribution"); etc.—strongly suggest the potential for con-
nections to areas of theoretical computer science such as query
complexity, the analysis of boolean functions, learning theory, and
sublinear algorithms. Our work fleshes out a few of these connec-
tions, but we believe that there are more near at hand.

4 PRELIMINARIES

We use boldface often denote random variables (e.g. x ~ {0, 1}™)
and we write “w.h.p." to mean with probability > 1—1/poly(n). We
write a = b + ¢ as shorthand fora € [b—¢,b + ¢].

Boolean function complexity. In addition to certificate complex-
ity (Definition 1), we will need a few other standard notions and
facts from boolean function complexity. For an in-depth treatment
(including proofs of the facts below), see [4, 10].

For a function f : {0,1}" — {0, 1} and an input x € {0, 1}", the
sensitivity of f at x is the quantity

Sensy(x) = [{i € [n] : f(x) # f(x®)}],
where x®! denotes f with its i-th coordinate flipped.

PROPOSITION 4.1 (SENSITIVITY AND CERTIFICATE COMPLEXITY).
For all functions f : {0,1}" — {0, 1} and inputs x € {0, 1}", we have
Sensf(x) < Cr(x).

For a function f : {0,1}" — {0, 1}, we write D(f) to denote its
decision tree complexity, the depth of the shallowest decision tree
that computes f.

FacT 4.2 (DECISION TREE COMPLEXITY AND CERTIFICATE COMPLEX-
1TY). For all functions f : {0,1}"* — {0, 1}, we have D(f) < C(f)?.

We also will occasionally distinguish between 0-certificates and
1-certificates.

DEFINITION 6 (0, 1-CERTIFICATE COMPLEXITY). For a function
f :{0,1}" — {0,1} and input x € {0,1}", a certificate S C [n]
of x is a 0-certificate if f(x) = 0 and 1-certificate if f(x) = 1. The
0-certificate complexity and 1-certificate complexity of f are defined
as

Co(f) = xe?ﬁ)io){cf(x)} and Cy(f) = xel}lﬁ)il){cf(x)}
respectively.

p-biased analysis. We write {0, 1}7 to denote the p-biased prod-
uct distribution on n bit strings (that is, each bit is 1 with prob-
ability p) and Pr, to denote the p-biased probability measure on
strings. When sampling from {0, 1}7, we will often just write the
subscript p. In particular, IE, [ f] denotes the expectation of f with
respect to x ~ {0, 1}2 and similarly Var, [f] = IE, [£%] - E, [£1?
Ep[f1(1 = Ep[f]) is the p-biased variance of f.

We’ll use two common notions of influence.

DEFINITION 7 (p-BIASED FLIP INFLUENCE; GENERALIZATION OF DEF-
INITION 4). Let f : {0,1} — {0, 1} be a function, p € [0,1], and
i € [n]. The p-biased flip influence of i on f is the quantity:

Inf, [f] = Prp[f(x) # f(x®)].
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DEFINITION 8 (p-BIASED RERANDOMIZED INFLUENCE). Let f :
{0,1}® — {0, 1} be a function, p € [0,1], and i € [n]. The p-biased
rerandomized influence of i on f is the quantity:

Inf7,,[f] = 2Prp[f(x) # f(x™)]

where x™! is the string x with its i-th coordinate rerandomized ac-
cording t0 {0,1},.

i

For each notion of influence, the total influence is the sum of the
influences of all the coordinates. We write Inf;‘,a [f] and Inf; [f] for
the total flip and rerandomized influence, respectively.

We record a few basic properties of p-biased influence. For a
proof of these properties, see the appendix of the full version of the
paper.

PROPOSITION 4.3. For any boolean function f : {0,1}"* — {0,1}
andi € [n],

1 Inf;',9 [f] = Ep[Sensg(x)].

2. Inffp [f1 =Prp[fr;=1(x) # fr;=0(x)].
3. Inf;, [f] =4p(1 —p)Inffp Lf].

4. Inf;[f] > Varp[f].
If f is monotone,

5 Eplf] = Ep[fx=0]l +p - Inffp[f] =Ep[fy=11-1-p)-
Wf® [£].

5 FIRST COMPONENT OF THEOREM 1:
FINDING AN ARBITRARY CERTIFICATE

In this section, we show how to find an arbitrary size-poly(k)
certificate of a monotone function in O(k” logn) queries where
k is the certificate complexity of the function. We first state the
algorithm below then show each step can be implemented in a
query efficient manner and with high probability of success. In
particular, we’ll give a O(k” logk log n) query upper bound and
then we’ll show how a simple modification of the algorithm can
obtain a O(k” log n) upper bound.

Algorithm 1 Finding a certificate of a monotone function

Given: Query access to a monotone function f : {0,1}" — {0,1}
and parameter k.
Initialize S «— @
while f is nonconstant do
Find an e-approximate critical probability p of f, where ¢ =
0(1/k%)
Estimate Inf Zp [£] to additive accuracy +O(1/k?) for all i
Add coordinate i to S where Inf Zp [f] is the largest influence
estimate
f < fx,=p where b= 0if p > 1/2 and 1 otherwise
end while
return the certificate S

THEOREM 3. Let f : {0,1}" — {0, 1} be a monotone function with
C(f) < k. There is an implementation of Algorithm 1 that w.h.p.
makes O(k’ log k log n) queries to f and returns a certificate of size
O(k3).
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5.1 Structural Properties of @
As discussed in Section 2, the function ®¢ : [0,1] — [0,1],

Or(p) = Eplf(x)]
will be central to our analysis. In this section we record and establish
a few structural properties of @ that will be useful for the proof
of Theorem 3.

The first is the Russo-Margulis lemma [16, 23] which states that
the derivative of @7 (p) is exactly the total flip influence of f under
the p-biased distribution.

LEMMA 5.1 (RUusso—-MARGULIS). Let f be a monotone function,
then

d
4y =W If]

For a Fourier-analytic proof of the Russo-Margulis lemma, see [19]
For the sake of completeness, we give a self-contained combinato-
rial proof in the appendix of the full version.

We leverage three important corollaries of the Russo-Margulis
lemma in our analysis. Applying the lemma twice, to ®(p) and
Inf ??p
quantities by k when viewed as functions of p. We then apply
it again to lower bound the derivative of ®7(p) near the critical
probability p(f) of f, to show that that any p for which ®¢(p) is
close to 1/2 must be close to p(f).

[f], we can upper bound the Lipschitz constants of these

COROLLARY 5.2 (LIPSCHITZ CONSTANT OF (IJf). Let f: {0,1}" —
{0, 1} be a monotone function with C(f) < k, then for allq # r we

have Br(q)— (1)
- r
q-r
Proor. By the mean value theorem, the slope of the tangent line
(@r(q) = @r(r))/(q—r) is the derivative of Oy (p) at some point p
in between q and r. Applying the Russo—Margulis lemma, we have
that
Dr(q) - Qp(r)
q-r

By Propositions 4.3.1 and 4.1,

Inf;? [f]1 =Es[Sensp(x)] < E[Cr(x)] < C(f)

and the proof is complete.

d

= %fbf(p) =Inf;'§[f].

p=p

]

COROLLARY 5.3 (LIPSCHITZ CONSTANT OF Inffep). Letf : {0,1}" —
{0, 1} be a monotone function with C(f) < k. Then for all ¢ # r and
i € [n] we have
Inff, [f] - Inf{ [f] L

q-—r

Proor. When f is monotone, Proposition 4.3.2 can be written
as Prp [ fi=1(x) # fa=0(x)] = CIJin:l (p) - q)fxi:O (p). Hence,
d d
U = 3 [0 ) - op )]

P
= Infff [fe=1] - Inf;? [frei=o]

by the Russo-Margulis lemma. Since 0 < Inf;',3 [fr=p] < C(fy,=p) <
C(f) for b € {0, 1}, the result then follows from the application of
the mean value theorem as in the proof of Corollary 5.2. ]
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COROLLARY 5.4. Let f : {0,1}" — {0, 1} be a monotone function
and let p € [0, 1] be any point satisfying ®r(p) = 1/2 + e. Then

4e
p=p(N) x5

Proor. Suppose without loss of generality that p < p(f) (the
case where p > p(f) is symmetric). Again applying the mean
value theorem, there is some p € [p, p(f)] satisfying Inf;'; [f]

(@r(p(f)) = @£ (p))/(p(f) = p)- Then, we have

e Qr(p(f) —Pp(p)
p(H)-p  p(fH-p
= Inf;? [f1 > Varj[f] (Proposition 4.3.4)
> Vary[f] = @7 (p)(1 - Pp(p)) (monotonicity)
[bre)fi-e)=ie
>|-+e¢ll-—-¢]=--¢
2 2 4
which gives the desired inequality. O

The next lemma quantifies the change in the critical probability
of f when we restrict one of its coordinates. In particular, we use
the Lipschitz constant for ®7(p) to show this change is large when
the restricted coordinate is influential.

LEmMma 5.5. Let f : {0,1}" — {0, 1} be a monotone function with
C(f) < k. Then for alli € [n], we have

P(fr0) ~p(f) > -

and analogously,

(1= p(f) - Inf®, [ f]
() = p(fm) 2 - .

Proor. We prove the lower bound on p(fx;=0) — p(f). The proof
for p(f) — p(fx;=1) is symmetric. First, rewriting Proposition 4.3.5
in the @5 notation we have

@, (p) = @p(p) - p-Inf],[f].

@)
Therefore,

Pp, (P(fri=0)) = Pp, _, (p(f))
e
Of,pes (PUim0)) = (@4 (P (1) = p(f) - In2, (1)

B p(frr0) - P()

(Corollary 5.2)

(Equation (2))
p(fxi=0) = p(f)

which completes the proof. O

Finally, we need an inequality of O’Donnell, Saks, Schramm,
and Servedio [20] which says that f has an influential p-biased
coordinate when the p-biased variance of f is large.

THEOREM 4 (OSSS INEQUALITY). For all functions f : {0,1}"" —
{0,1} and p € [0,1],
Vary [ f]
D(f) ~

max
i€[n]

{Infgp (f1} >
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where D(f) denotes the decision tree complexity of f.

5.2 Algorithmic Lemmas

We will need a few lemmas to bound the query complexity of Algo-
rithm 1. First we show that we can find an approximation of the
critical probability of f by finding a value p for which ®¢(p) is close
to 1/2. Next we show that we can efficiently estimate rerandomized
influence to an additive accuracy. Finally, we show that if all of
the influences are estimated under the p-biased distribution for p
close to p(f), the critical probability of f, then the most influential
coordinate under the p-biased distribution must also be influential
under the p(f)-biased distribution.

LEMMA 5.6 (FINDING AN APPROXIMATE EXPECTATION OF f). Given
queries to a monotone f : {0,1}" — {0, 1} with C(f) < k, for any
£ > 0 we can find some p € [0,1] satisfying @¢(p) = 1/2 £ ¢ wh.p.
using O(log(k/e) log(n)/€?) many queries.

Proor. Since @y has Lipschitz constant < k (Corollary 5.2),
any value p that is within an additive +¢/3k of the true critical
probability p(f) of f is an ¢/3-critical probability of f. That is,
€

p=p(Nt g = Vp=;5.

We split the [0, 1] into 3k/¢ intervals each of length ¢/3k. As
observed above, the interval containing the critical probability will
satisfy @r(p) = — + £ for all § in that interval. By the Chernoff
bound, for any Value p € [0, 1] we can estimate @7 (p) = E,[f] to
accuracy +¢/3 and confidence 1 — & using O(log(1/8)/e?) queries.

Performing binary search over the 3k /¢ intervals, with O(log(k/¢))

estimations of @ (p) we are guaranteed to find a p such that our

1
estimate 0f<1>f(p) is 2 £+ é =3
£

valueis @ (p) = 5 le2ey t5 = 2 +¢,1e. pisindeed an e-approximate
critical probability. Choosing § = 1/poly(n) and noting that this
is small enough to union bound over the O(log(k/¢)) many esti-
mations (with much room to spare), we get that the overall query

complexity is

O(log(k/e)) - O(log(n) /%) = O(log(k/e) log(n) /). O

+ E' this implies that its true

LEMMA 5.7 (FINDING AN APPROXIMATE CRITICAL PROBABILITY).
Given queries to a monotone f : {0, 1} — {0, 1} with C(f) < k for
any0 < € < 1, we can find p € [0, 1] satisfying p = p(f) + € wh.p.
using O(log(k/e)log(n)/e?) queries.

Proor. We show thatany p € [0, 1] satistying @ (p) = 1/2+¢/8
satisfies the constraints of the lemma statement. The result then
follows from Lemma 5.6 which says that we can compute such a p
w.h.p. using O(log(k/¢) log n/e?) queries.

Let p € [0,1] satisfy E,[f] = 1/2 + £/8. Then we have

p=p(f) £ % (Corollary 5.4)

=p(f)+ 52 I
=p(f) e (£2/8 < 1)
m}
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LEmMMA 5.8 (ESTIMATING INFLUENCES). Given queries to a mono-
tone f : {0,1}" — {0,1}, some p € [0,1], and ¢ > 0, we can
approximate Inf;p [f] to accuracy +¢ for all i € [n] w.h.p. using

O(log n/e?) many queries.

PROOF. Rewriting Proposition 4.3.5 using Inf;’, [f] = 4p(1 -
p)Inffp [f] we have
Inf;, [f] = 4(1 - p) (Ep[f] - Eplfi=0])
=4p (BEp[ fr=1] — Eplf]) ®)

We show with a single random sample S € {0, 1}" of size O(log n/¢?)
we can estimate Inf} b [f] to accuracy ¢ for all i € [n] by estimating
E,[f] and either IE, [ f,=1] or Ep [ fx,=0]. We write g [ f] for the
p-biased expectation of f estimated from the set S. For each i € [n]
and b € {0,1}, we define S, = {x™" € {0,1}" ' : x € Sand x; = b}
where x~! denotes the string x with the ith coordinate removed.
Since |S| = |S1|+|So| we must have |S| > |S|/2 for some b € {0, 1}.
We then estimate IE, [ fy,—p ] for this value of b and use the appro-
priate identity from eq. (3) to estimate the ith influence. Note that
we can perform this estimate of IE, [ fy,=p] because the strings in
S}, are distributed according to {0, 1};_1 and we already know the
values of fy,_p for all strings in S;, (since the query values of f
on S are known). Thus by a Chernoff bound we can estimate both
Ep[fx,=p] and IE, [ f] to accuracy +¢/8 and confidence 1 - § using
O(log(1/8)/?) random samples. These estimates then ensure that
our estimate of Inf;’ [ f] has accuracy +e. For example, if b = 0,

our estimates Eg| f] and ESU [ fi;=0] satisfy
Wnf, (] = 41 - p) (Bs[f] - Bs, [fiy=0])

=41 = p)((BpLf1 £ ¢/8) = (Bplfr0] £ £/8))
= Infzp[f] +(1-p)e= Infzp[f] +e

where ﬁ: [f] denotes the influence estimate. We choose § =
1/poly(n) small enough to union bound over all i € [n] which
makes the total number of random samples/queries O(log n/e?) as
desired. O

LEmMA 5.9. Let f : {0,1}" — {0, 1} be a monotone function with
C(f) < k. Letp = p(f) + ¢ for some 0 < ¢ < 1/k? and suppose
Infi’lf][f] = Inf;ﬁ[f] + ke for alli € [n]. Then

nffp(f) [f] = 5 — 3ke

where i = arg max; ¢, Infgﬁ [f1.

Proor. Recall that Var, [f] = @¢(p) (1-®¢(p)) and for our esti-
mate p = p(f) + e we have O (p) = 1/2+ ke since Of has Lipschitz
constant < k (Corollary 5.2). Thus by monotonicity Varf,[ fl =
(1/2 — ke)(1/2 + ke) = 1/8 (using the assumption that & < 1/k?).
The OSSS inequality, Theorem 4, then states

varglfl 4
D(f) ~ 8D()

g )
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Furthermore, we can lower bound 1/8D(f) > 1/8k? using Fact 4.2.
Since our estimate Inf; 5[ ] has accuracy +ke the maximum influ-
ence estimate satisfies
. N 1
miaxInfl-’p[f] > m?xlnfij)[f] —ke > i ke.
>

(1/8k% — ke) — ke = 1/8k? — 2ke. Finally, to translate this bound to
alower bound on Inf® [ f] we switch to flip influence and apply

i,p(f)

our Lipschitz bound on Inf ?p. In other words,
® ® _ _5l.
f®, ) [f] 2 Wf2 (1] - Ip(f) - 71 - &
> Inf%[f] — ke
> Inf;?)[f] — ke

Hence, the true influence at this maximal i satisfies Inf ;’7 [f]

(Corollary 5.3)

1
> — — 3ke.
8k2

5.3 Proof of Theorem 3

For our proof, we first show that accurate estimates of the critical
probability of f and the influences will ensure quick progress to-
wards termination. Then we analyze the query complexity required
to estimate these quantities to the specified accuracy with high
confidence. This proof can be read in conjunction with Figure 1
which illustrates the main idea.

Proof of correctness. Our measure of progress is the critical prob-
ability of f. At a high level we show that if we find an O(1/k3)-
approximate critical probability and estimate influences to accuracy
O(1/k?) at each step of the algorithm, then the critical probability
of f is guaranteed to increase or decrease by Q(1/k3). Since the
function is constant when the critical probability is 0 or 1, we know
that the algorithm must terminate after O(k3) steps.

To be more specific, let f be a nonconstant function obtained at
some point in the algorithm with C(f) < k. Let 0 < ¢ < 1/k? be
arbitrary and let p = p(f) + ¢ be an approximate critical probability
and suppose each Ian‘fJ [f] is estimated to accuracy +ke. Then, we
can write

k

> p(f) - (# —3e)

p(fri=0) —p(f) > (Lemma 5.5)

(Lemma 5.9)

and likewise
() = p(fegmt) 2 (1= p(F) - (8_,13 _ 38) .

In the final step of the algorithm’s loop f is restricted to x; = 0 if
P = 1/2 in which case we have p(f) > 1/2 — ¢ and thus p(fx,=0) —
p(f) = (1/2 — £)(1/8k> — 3¢). Note importantly that if p > 1/2
the next estimate will also be greater than 1/2 and so on, ensuring
that the final certificate will be a 0-certificate. We can then choose
£ = O(1/k®) small enough to ensure p(fy,=0) — p(f) > Q(1/k%)
and likewise in the case that p < 1/2.

In both cases, one step of the main loop makes at least Q(1/k3)
progress towards termination and so the loop iterates O(k%) times.
Hence, the final certificate has at most O(k?) coordinates since each
iteration of the loop adds one coordinate.
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Query complexity. Lemma 5.6 shows we can compute a O(1/k>)-
approximate critical probability using O(k* log k log n) queries. More-
over, computing a O(1/k?)-approximation of influence requires
O(k*log n) queries by Lemma 5.8. Note also that we can test whether
f is constant with < 2 queries using monotonicity (f is constant
if and only if f(0™) = f(1")). Thus, one iteration of the main loop
makes O(k* log k log n) queries to f. Since the main loop executes
O(k?) times, the total number of queries is at most O(k” log k log n).

5.4 Reducing the Query Complexity via Fewer
Critical Probability Estimates

We can reduce the query complexity of Algorithm 1 by a logk
factor if we instead estimate the critical probability of f once at the
beginning of the algorithm then deterministically update it by the
error term we calculated as ¢ in the proof above. At a high level, the
idea is that the analysis for Theorem 3 shows that restricting f by
an influential coordinate will shift its critical probability by at least
Q(1/k3). Hence, in the worst case, the algorithm makes the smallest
amount of progress, approximately 1/k3, in each step. We can thus
manually shift our critical probability estimate after each iteration
by the minimal amount of progress we expect instead of using
additional queries to f to determine the new critical probability.

In the lemma below we assume that the critical probability of
f is initially > 1/2 — ¢, and hence f is simplified by repeatedly
restricting 0-coordinates. The proof shows these restrictions force
its critical probability to approach 1. The alternate case where the
initial critical probability is less than 1/2 + ¢ is analogous. In this
case, one can show via symmetric arguments that the estimate
Dy =1/2 - (t — 1)e satisfies p(f;) < p, forall ¢.

LEMMA 5.10. Fix an error term 0 < ¢ < 1/40k> and suppose
p(f) = 1/2 — &. Consider a variant of Algorithm 1 where at the t'!
step we estimate the critical probability asp, = 1/2+ (t — 1)¢ and we
always set f < fx,=0. Let f; : {0,1}"~¢ — {0, 1} denote the function
at the t'F step. Then p(f;) = p; for allt for which f; is nonconstant.

Proor. The proof is by induction on t. The statement holds for
t = 0 by assumption. Otherwise assume that p(f;) > p,. Then
we show p(fi+1) = Py If p(fi) > Pyyq then there’s nothing
left to show since @, (p(fz)) < @f, (p(fi+1)) always holds by
Proposition 4.3.5 and hence p(f;) < p(fr+1). Otherwise, assume
p(ft) < pyyy- In particular, p; < p(fi) < pryq = p; + € which
shows that p, = p(f;) + . The influence estimates have accuracy
+ke which then allows us to apply Lemmas 5.5 and 5.9 as in the
proof of Theorem 3 above, to conclude
()
2 8k3 '
<

Choosing ¢ < 1/40k> then ensures p(fi+1) — p(f;)
completes the induction since p(f;) +¢ > p, + € = p; 1.

1
pUion) =90 > p(0) - (575 - 5
> ¢ which
[m]
Equipped with Lemma 5.10, we can give a slight improvement
on the query complexity of Theorem 3.

THEOREM 5. Given a monotone function f : {0,1}" — {0, 1} with
C(f) < k, there is an algorithm which w.h.p. returns a certificate of
size O(k3) and makes O(k” log n) queries to f.
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Figure 1: Illustration of the key atomic step in the proof of Theorem 3. Let p(f) denote the critical probability of f. The OSSS
inequality implies the existence of a coordinate i € [n] such that ®¢(p(f)) - (I)fx,-:o (p(f) = Q(k7?), and we bound, using the
Russo-Margulis lemma, the Lipschitz constant of 1 __ by < k. We therefore conclude that the critical probabilities of f and

fxi=o differ by Q(k™3).

Proor. We modify Algorithm 1 to estimate the critical proba-
bility of f once at the start and then increment/decrement it by
€ = 1/(40k3) after each iteration. Then the algorithm terminates
after at most O(k®) iterations of the main loop by Lemma 5.10.
We use Lemma 5.7 to estimate the critical probability of f initially
which requires O(k® log k log n) queries for our choice of . Since
this estimate p satisfies p = p(f) +eif p > 1/2then p(f) > 1/2—¢
ensures the desired precondition for Lemma 5.10 and otherwise
p(f) < 1/2 + ¢ and the symmetric case applies.

Each step of the algorithm’s loop requires O(k*log n) queries
to estimate the influences to accuracy ke = 1/40k? by Lemma 5.8.
Hence the algorithm makes O(k” log n) queries overall. O

6 COMPLETING THE PROOF OF THEOREM 1

In this section we show how to find a certificate for a given input
using Algorithm 1 as a subroutine. The algorithm itself is fairly
straightforward. For a monotone function f and an input x*, we
find an arbitrary certificate of f using Algorithm 1 and then restrict
f on the coordinates in the certificate to the values specified by x*.
Then we recurse on the subfunction and repeat until the function
is constant.
We prove the following guarantee on Algorithm 2.

THEOREM 6. Let f : {0,1}" — {0, 1} be a monotone function with
C(f) < k, then Algorithm 2 iterates O(k) times and w.h.p. outputs a
certificate of size O(k*).
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Algorithm 2 Finding a certificate for a given input

Given: A monotone function f : {0,1}" — {0, 1} and input x*.
1: Initialize S < @

: while f is nonconstant do

s « the output of Algorithm 1 on f

S « SUs » Update certificate S with coordinates from s
f e fomx*ies > restrict f according to s
: end while

2
3
4:
5.
6
7

: return the certificate S.

Combining this theorem with Theorem 5, we get that a certificate
for an input to a monotone function can be found using at most

O(k8log n) queries to f.

COROLLARY 6.1. Let f : {0,1}" — {0, 1} be a monotone function
with C(f) < k. Then, a certificate of size O(k*) can be computed
w.h.p. for any input x* using O(k®logn) queries to f.

The progress measure in our analysis of Algorithm 2 is Co(f) +
C1(f), the sum of the 0-certificate complexity and 1-certificate
complexity of f. In particular, each iteration of the main loop is
guaranteed to decrease this quantity by at least 1 which gives an up-
per bound on 2C(f) on the total number of iterations. For the proof,
we use the fact that, for any Boolean function, every 0-certificate
must intersect every 1-certificate (since otherwise there would be
one input string having both a 0-certificate and a 1-certificate).
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FacT 6.2. Let So be a O-certificate for a Boolean function f :
{0,1}" — {0, 1} and let S1 be a 1-certificate. Then Sy N Sy # @.

ProoF oF THEOREM 6. Let f be a nonconstant function during
the execution of the algorithm. We’ll show that Co(f) + C1(f)
decreases by at least 1 after each iteration of the main loop. Let s
denote the certificate that Algorithm 1 returns and suppose without
loss of generality that s is a 1-certificate (the argument is symmetric
for a 0-certificate). Then we’ll show that Co(fs) < Co(f) — 1 where
fs is the restriction according to s and x*: f; = fx,-:xi*,iES' Consider
any x € f;1(0). Let x” € {0,1}" be the string formed by inserting
x*|s into the string x so that f(x’) = f;(x) and x’|s = x*|s. Let
so be a 0-certificate of f on x” with |so| < Co(f). Then sp \ s is a
0-certificate of f; on x. We can bound the size of this 0-certificate:

Iso \'s| < Isol =1
<Go(f) - 1.

Since x is any arbitrary 0-input to fs, we have that Co(fs) < Co(f)—
1 as desired.

Since f must be constant when either Cy(f) or C1(f) is 0, the
algorithm must terminate after at most Co(f) + C1(f) < 2C(f)
iterations. Each iteration adds at most O(k?) coordinates to the
certificate S and hence |S| is O(k*) at the end of the algorithm. O

(so N's # @ by Fact 6.2)

6.1 Trimming the Certificate Using Angluin’s
Algorithm

Algorithm 2 returns a certificate of size O(k?). In this section, we
show how to reduce that certificate to size < k using O(k*) addi-
tional queries.

CramM 6.3. Let S be a certificate for an input x* of a monotone
function f : {0,1}" — {0,1}. If|S| > C(f) then a certificate S’ C S
with |S’| < C(f) can be computed from S using O(|S|) queries to f.

The proof of this claim is implicit in [1, Theorem 1]. We give
a self-contained exposition of the proof adapted to our setting in
Appendix A.

We apply Claim 6.3 as a postprocessing step after executing
Algorithm 2. Since this postprocessing step only requires an ad-
ditional O(k*) queries to f the overall number of queries is still
upper bounded by O(k®logn), the query bound on Algorithm 2.
Thus, the combination of Corollary 6.1 with Claim 6.3 establishes
Theorem 1.

7 LOWER BOUNDS: PROOFS OF CLAIM 1.1
AND CLAIM 1.2

Our lower bounds in this section and the next will rely on the easy
direction of Yao’s lemma:

LemMaA 7.1 ([29]). For any q € IN, let Rq and Dy be the set of all
q-query randomized and deterministic algorithms respectively, and let
I be the set of all possible pairs f : {0,1}" — {0,1} and x* € {0,1}"
(i.e. instances of the certification problem).

For any distribution u supported on I,

min max [errorg(f,x*)] = min T [errorp(f,x*)]

ReRy (fox*)el DeDy (F.x*)~p
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where errorg (f, x*) is the probability that R does not successfully
return a certificate for f’s value on x*, and errorp (f, x*) =
1[D does not successfully return a certificate for f’s value on x*].

7.1 Proof of Claim 1.1

Claim 1.1 is a special case of the following claim:

Cramm 7.2. Letn,q,¢ € IN and A be a q-query randomized local
search algorithm. There is a monotone f : {0,1}" — {0,1} with
C(f) = 1 and input x* € {0,1}" on which A successfully returns a
size-{ certificate for x with probability < (£ +q - 1)/n.

We use Yao’s lemma with the distribution y where:

(1) x is a constant, supported entirely on x* = [1,...,1], and
(2) fisarandom dictator: we select i € [n] uniformly at random
and set f(x) = x;.

We will assume that A is deterministic and prove that the prob-
ability, over the randomness of f, that A successfully finds a size-£
certificate f’s value on x* is at most (£ +q — 1)/n).

PROPOSITION 7.3. Let A be any deterministic g-query local search
algorithm. For any f : {0,1}" — {0,1}, let x(D, ... x@ pe A’s
queries when it is asked to certify f’s value on x* = [1,...,1]. The
number of coordinates i on which xi(j)

q-—1

= 0 for some j € [q] is at most

Proor. By induction on j. For j = 1, a local search algorithm’s
first query must be x(1) = x* = [1,.. ., 1] which has no coordinates
set to 0. For j > 1, we know that x(/) is Hamming adjacent to some
xU") where j’ < j. Thus, x() can have at most one coordinate
i on which xi(j) = 0 but xl.(j,) = 1. The desired result holds by
induction. O

PROPOSITION 7.4. Let A be any deterministic q-query local search
algorithm and f : {0,1}" — {0, 1} be a uniformly random dictator.
The probability, over the randomness of f, that f’s value is 0 on least
one of A’s queries is at most (q — 1) /n.

Proor. For each j € [q], let x() be A’s jth query when f’s
value on its first j — 1 queries are all 1. Note that f’s value is 0 on
at least one of A’s queries ifff(x(j)) = 0 for some j € [q]. Hence

I}r [fs value is 0 on at least one of A’s queries]

= I}r [f(x(j)) =0 for some j € [q]]

= i&rn] [xgj) = 0 for some j € [q]]
qg—1

— (Proposition 7.3)
n

(Definition of f)

<
O

We upper bound the probability any set S of size ¢ is a certificate
for f’s value on x* = [1,...,1].

PROPOSITION 7.5. Fix any set S C [n] of size ¢. The probability,
over the randomness of f, that S is a certificate for f’s value on
x* =[1,...,1] is at most £/n.
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Proor. Recall that f(x) = x; for uniformly random i € [n].
Therefore S is a certificate for f’s value on x* iff i € S, which
happens with probability |S|/n = £/n. O

With Propositions 7.4 and 7.5, we can now complete the proof
of Claim 7.2:

Proor oF Craim 7.2. As A is a deterministic algorithm, when
f’s values on A’s queries are all 1, there is a single set of coordinates
S output by A. Then,

l}r [.?[ returns a size-¢ certificate for f’s value on x*]
= I}r [ﬂ returns a size-£ certificate for f’s value on x* &
f’s values on all queries are 1]+

Pr [ﬂ returns a size-£ certificate for f’s value on x* &
f

f’s value on some query is 0]
< I}r [S is a certificate for f’s value on x*] +
Pr
f

+

[f’s value is 0 on at least one of A’s queries]

iy

qg-—1

n

<— (Propositions 7.4 and 7.5)

=

[}

7.2 Proof of Claim 1.2

The proof is simple and is essentially an instantiation of the follow-
ing elementary fact: if a problem P has > M possible outputs, and
the input to P can be accessed only via queries with binary answers,
then log M is a lower bound on the query complexity of solving P.
In our context of certification, since there are (}) many sets of size k,
this fact suggests that if every such set is a possible certificate, then
log ((3)) = klogn would be a lower bound on query complexity.
Indeed this is what we show, and the argument extends easily to
certification algorithms that are allowed to return a certificate of
size £ > k:

CrLamm 7.6. Let k,t,n,q € IN and A be a q-query randomized
algorithm. There is some monotone function f : {0,1}"* — {0, 1} with
C(f) < k and input x* € {0, 1}" on which A successfully returns
a size-¢ certificate for x* with probability at most 29 - (£)/(}) <

p <
te
2. (;) .
Claim 1.2 follows as an immediate consequence of Claim 7.6: if

k < ¢ < nforanyc < 1, then g > Q(klogn) queries are necessary
even to succeed with probability 0.1.

Proor. We will once again use Yao’s lemma. Consider the dis-
tribution p where:

(1) x is constant, supported entirely on x* = [1,...,1], and
(2) f is drawn uniformly at random from the set of monotone
conjunctions of k variables.

We observe that if f is the monotone conjunction of the variables
some set T, then a set S certifies f’s value on x* iff S 2 T. Therefore,
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for any fixed set S of size at most ¢,

I}r [S certifies f’s value on x*]

= l}r [f is a conjunction of k variables within S|

(&) W

® &)
Since any deterministic g-query algorithm A can take on at most
29 many output values, we have by a union bound that

Pr [ﬂ finds a size-¢ certificate for f’s value on x*]

4 k k
Sz‘].@sz‘l.%:z‘i.(fﬁ) .
(x) (n/k) n
Claim 7.6 follows from the above and an application of Yao’s lemma.

[m]

8 ALGORITHMS AND LOWER BOUNDS FOR
OTHER SETTINGS

8.1 An Algorithm for Certifying Arbitrary
Functions with Random Examples
Cramm 8.1. For any k,m,n € IN, there is an algorithm which,
given access to uniform random samples (x, f(x)) of a function f :
{0,1}" — {0,1} with certificate complexity < k, an input x* €
{0,1}", and f’s value on x*, uses m random samples and returns a
size-k certificate for f’s value on x* with probability at least
—kym [T
1-(1-2 . .
-z (7)
In particular, the algorithm succeeds with high probability if
m= G)(Zkklog n).
Our proof of Claim 8.1 uses the following easy fact:

PROPOSITION 8.2. For every non-constant f : {0,1}" — {0,1}

with certificate complexity < k and every b € {0, 1},
Pr x) =b] =27k,
MO

Proor. Without loss of generality, we only prove that the prob-
ability f(x) = 1is at least 27k As f is non-constant, there is some
input y on which f(y) = 1. Since f has certificate complexity < k,
there is some set S of size < k where f(x) = 1 whenever xg = ys.
Finally,

Pr
x~{0,1}"

Pr
x~{0,1}"

[fx)=1] 2 [xs = ys] = 27" o

Proor oF Craim 8.1. We say that a set S C [n] is eliminated by
a sample (x, f(x)) if xg = xg‘ and f(x) # f(x*). The algorithm is
simple: it iterates over all (}) candidate size-k certificates (i.e. all
size-k sets), keeping only those not eliminated by any of the m
sample points, and returns an arbitrary one. Any actual certificate
for f’s value on x* will not be eliminated by the above procedure.
Therefore, if all non-certificates are eliminated, the output of this
algorithm will be correct.

Fix any size-k set S that is not a certificate for f’s value on x*,
and consider fx;, the subfunction of f obtained by restricting the
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coordinates in S according to x*. Since f has certificate < k, all its
subfunctions, including fx§> also have certificate complexity < k.

Furthermore, since S is not a certificate for f’s value on x*, we
have that fx;( is non-constant. Hence, by Proposition 8.2,

Pr [fr(x) % f(x")] 2275,

x~{0,1}"
Therefore, the probability a random sample (x, f(x)) eliminates S
is at least 27%_ Since the samples are independent, the probability
S is not eliminated after m samples is at most (1 — 27%)™_Union
bounding over all (}) possible non-certificates S of size k gives the

desired result. o

8.2 Lower Bound on the Query Complexity of
Certifying an Arbitrary Function

Cramv 8.3. Let k,n,q,¢ € IN and A be a q-query randomized
algorithm. There is some f : {0,1}" — {0, 1} with C(f) = k and
input x* € {0, 1}"* on which A successfully returns a size-¢ certificate
for x* with probability at most q - 27k 4 (k) /n.

Claim 8.3 implies that as long as k < ¢ satisfy k¢ < 0.01n, then
q = Q(2%) queries are necessary even to succeed with probabil-
ity 0.1. Combining this with the ¢ > Q(klogn) lower bound we
showed in Claim 1.2 yields the ¢ > Q(2F + klog n) lower bound
stated in Table 1.

We apply Yao’s lemma with the distribution y where:

(1) x is constant, supported entirely on x* = [1,...,1],

(2) fis the indicator function of a uniformly random subcube of

codimension k. More formally, we select k uniformly random

unique coordinates iy, iy, . . ., iy € [n] and k uniform random
bits by, by, ..., by ~ {0, 1}, and let:

) = {1 if xi, =.bj forall j € [k]
0 otherwise.

By Yao’s lemma, in order to prove Claim 8.3, we need only show
that every g-query deterministic strategy successfully finds a size-¢
certificate for x* with probability at most Zik + % (over the random-
ness of f). The proof of Claim 8.3 is similiar in spirit to Claim 7.2,

and will follow from Propositions 8.4 and 8.5:

PROPOSITION 8.4. Let A be a q-query deterministic algorithm.
The probability, over the randomness of f, that f’s value is 1 on at
least one of A’s queries is at most q - 27X,

ProoF. Since A is a deterministic algorithm, the queries it makes
are a deterministic function of the previous query outputs. For each
j€lql, let x() be A’s jth query when f’s value on its first j — 1
queries are all 0. Note that f’s value is 1 on at least one of A’s
queries iff there is some j € [g] for which f(x(j)) = 1. Hence

I}r [fs value is 1 on at least one of A’s queries]

= E’Cr [f(x(j>) = 1for some j € [q]]

< Pr [f(x(j)) = l] (Union bound)
Jjelql y

_4 .

= 5 (Definition of f)
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[m]

PROPOSITION 8.5. Fix a set S C [n] of size £. The probability,
over the randomness of f, that S is a certificate for f’s value on

x* =[1,...,1] is at most (k) /n.
Proor. Recall that f is a function of k random coordinates
i1,...,ix ~ [n]. In order for S to be a certificate for f’s value

on x*, it has to contain at least one i ;. Hence,

Pr [S is a certificate for f’s value on x*]

< I}r [ij € S for some j € [k]]
< Pr [i j € S] (Union bound)
jetr
<k- £ o
n

Proor oF Craim 8.3. Let S be the set of coordinates output by
A when f’s values on its queries are all 0. Then,

I}r [&2{ returns a size-£ certificate for f’s value on x*]
= I}r [ﬂ returns a size-£ certificate for f’s value on x* &

f’s values on all queries are 0] +

I}r [ﬂ returns a size-£ certificate for f’s value on x* &

f’s value on some query is 1]

< I}r [S is a certificate for f’s value on x*] +
I}r [fs value is 1 on at least one of A’s queries|
kt q

<—+—. Propositions 8.4 and 8.5
w o (Prop )

[m]

8.3 Lower Bound on the Sample Complexity of
Certifying a Monotone Function

CLamM 8.6. Fork < ¢ < cn where c is a sufficiently small constant.
Suppose A is an algorithm which satisfies the following: given q
uniform random examples (x, f(x)) labeled by a monotone function
f:{0,1}" — {0,1} with C(f) < k and an input x* € {0,1}", we
have that A returns a size-t certificate for f’s value on x* w.h.p. Then
q= Q(2k).

Combining Claim 8.6 with the ¢ > Q(k logn) lower bound we
showed in Claim 7.6 yields the ¢ > Q (2 + klogn) lower bound
stated in Table 1.

Proor. We will again apply Yao’s lemma with f being a mono-
tone conjunction of k random variables and x supported entirely
on x* = [1,...,1]. (This is the same distribution as in the proof
of Claim 7.6.) Let Q be q independent and uniform random elements
x(l), .. .,x(q) ~ {0,1}", and A be a deterministic algorithm.

By a union bound,

q

5; [Elj € [q] such thatf(x(j>) = 1] < e
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and so if ¢ < c2k for a sufficiently small constant c, it then follows
by Markov’s inequality that:

I(:)r l}r [3) € [g] such that f(x)) = 1] > 0.01| <0.01. (4)
FixaQ = {x(l), ..., xD} for which
I}r [f(xY)) =0 forall j € [q]] = 0.99. (5)

Since A is deterministic, it has to return the same size-f set, call it
S, for all f’s that satisfy f(x(’)) =0forall j € [g]. Thisset Sisa
certificate for f’s value on x* = [1,..., 1] iff f is the conjunction
of k variables T where T C S, the probability of which is:
k
el
(?) et\
< — ] <£0.01,
n

(6)

where the final inequality holds as long as ¢ < cn for a sufficiently
small constant c. Equations (4) to (6) imply that A succeeds with
probability at most 0.1 over the randomness of f, and the claim
follows by Yao’s lemma. O
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A ANGLUIN’S ALGORITHM

In this section we give an overview of Angluin’s algorithm adapted
to our setting and a proof of correctness.

Algorithm 3 Reducing a certificate

Given: A monotone function f : {0,1}" — {0, 1}, a b-certificate S

for b € {0, 1}, and input x*.

1: SEEN «~ @

2: Initialize zg € {0, 1}" to be equal to x* on coordinates in S and
1 — b everywhere else

3. while |S| < C(f) do

4: Pick some i € S\ SEEN

5 Iff(z?i) # f(zs) then add i to SEEN, otherwise remove i
from S and update zg

6: end while

7: return S.

ProoOF OF CraM 6.3. Algorithm 3 gives a sketch of the proce-
dure. Suppose without loss of generality that f(x*) = 1 and so S is
a 1-certificate. We can continuously attempt to remove coordinates
from S one at a time until |S| < C(f). For a 1-certificate S, write
zs € {0, 1}" for the string which has a 1 at each coordinate in S
and 0s everywhere else. Note that zg < x*, f(zs) = 1, and also
zs < y for all y satisfying y|s = zs|s. For i € S, we check if i is an
irrelevant coordinate (Definition 3) by checking if flipping the it

coordinate in zg flips the output of the function. That is, we check
if i is sensitive on zg. If i is not sensitive, we remove i from S and
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recurse on S \ {i}. Otherwise, we leave i in S and do not check it
again. We proceed in this fashion until |S| < C(f). Since we only
check coordinates in S and check each such coordinate at most
once we make < 2|S| queries to f.

To establish correctness, suppose this procedure returns S’. Since
we only remove non-sensitive coordinates from S we have f(zg) =
1. For any y satisfying y|ss = zs/|s» we know that y > zg and hence
f(y) = 1 by monotonicity. It follows that S’ is a 1-certificate for
zs and likewise for x* as S’ C S. Note also that if i is in S and i is
sensitive for zg then i remains sensitive for all zg» withi € S’ C S.
In particular, zg» < zg and z?,i < Z?i which shows 0 = f (z?i) >
f (z?i) by monotonicity. Thus, any sensitive coordinate can be left
in the certificate without having to check again. Moreover, since
Sensr(zs) < C(f) we know that the number of sensitive indices
we keep in the certificate S is at most C(f) which ensures that if
|S| > C(f) there will always be some non-sensitive index that we
can remove from S. O
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