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Abstract
We consider a nonlocal evolution equation representing the continuum limit of a large
ensemble of interacting particles on graphs forced by noise. The two principle ingre-
dients of the continuummodel are a nonlocal term and a Q-Wiener process describing
the interactions among the particles in the network and stochastic forcing, respectively.
The network connectivity is given by a square integrable function called a graphon.
We prove that the initial value problem for the continuum model is well-posed. Fur-
ther, we construct semidiscrete (discrete in space and continuous in time) and fully
discrete schemes for the nonlocal model. The former is obtained by a discontinuous
Galerkin method and the latter is based on further discretizing time using the Euler–
Maruyama method. We prove convergence and estimate the rate of convergence in
each case. For the semidiscrete scheme, the rate of convergence is expressed in terms
of the regularity of the graphon, the Q-Wiener process, and the initial data. We work
in generalized Lipschitz spaces, which allows us to treat models with data of lower
regularity. This is important for applications as many interesting types of connectivity,
including small-world and power-law, are expressed by graphons that are not smooth.
The error analysis of the fully discrete scheme, on the other hand, reveals that for
some models common in applied science, one has a higher speed of convergence than
that predicted by the standard estimates for the Euler–Maruyama method. The rate
of convergence analysis is supplemented with detailed numerical experiments, which
are consistent with our analytical results. As a by-product, this work presents a rigor-
ous justification for taking continuum limit for a large class of interacting dynamical
systems on graphs subject to noise.
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1 Introduction

1.1 Themodel

In this work, we study an initial value problem (IVP) for the following stochastically
forced nonlocal evolution equation

du(t, x) =
{
f (t, u) +

∫
K (x, y)S(u(t, x), u(t, y))dy

}
dt + dW (t, x), (1.1a)

u(0, x) = g(x), (1.1b)

where u(t, x) is a real-valued process defined on [0, T ] × I d with T > 0 being an
arbitrary but fixed time horizon and I := [0, 1] throughout this paper. The Gaussian
process W (t, x) will be defined below. The domain of integration on the right–hand
side of (1.1) is implicitly assumed to be I d . The same convention will be used every
time the spatial domain of integration is not specified.

Equation (1.1) is a phenomenological model of a continuous population of interact-
ing particles subject to stochastic forcing. Function f (t, u(t, x)) defines the intrinsic
dynamics of a given particle at point x ∈ I d and time t > 0, while the integral term
on the right hand side of (1.1) describes the interaction with other particles in the pop-
ulation. Here, the function S(u(t, x), u(t, y)) models pairwise interactions between
particles located at x ∈ I d and y ∈ I d and a measurable K (x, y) describes spatial
connectivity between particles.

One way to arrive at a model of the form (1.1) is from the continuum limit of a
dynamical system for a discrete population of interacting particles [1, 2]. The contin-
uous Kuramoto model of coupled phase oscillators [3, 4] and neural fields [5] are two
prominent examples of models of this type. Another class of models leading to (1.1)
are nonlocal diffusion equations [6] including nonlinear and fractional diffusion mod-
els [7–9]. Other examples include models in population dynamics [10, 11], swarming
[12], and peridynamics [13], to name a few.

We complete the formulation of (1.1) by specifying assumptions on f , K , and S.
We assume that f : [0, T ] × R → R satisfies a linear growth bound and a Lipschitz
condition:

| f (t, u)| ≤ A f + B f |u|, (1.2a)

| f (t, u) − f (t ′, u′)| ≤ L f (|t − t ′| + |u − u′|), (1.2b)

with positive constants A f , B f , and L f . S : R2 → R also satisfies linear growth and
Lipschitz conditions

|S(u, v)| ≤ AS + BS(|u| + |v|), (1.3a)

|S(u, v) − S(u′, v′)| ≤ LS(|u − u′| + |v − v′|). (1.3b)
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Again, AS , BS , and LS are positive constants. For the interaction kernel, it will be
necessary to assume both

K1 ≡ ess supx∈I d
∫

|K (x, y)|2dy < ∞, (1.4a)

K2 ≡ ess supy∈I d
∫

|K (x, y)|2dx < ∞. (1.4b)

Finally, we define W (t, x). Let Q be a positive self-adjoint trace class operator on
H := L2(I d). Let λk, k ∈ N, denote the eigenvalues of Q arranged in the decreasing
order, counting multiplicity, and let ek ∈ H be the corresponding orthonormal eigen-
functions. Then W , a Q-Wiener Gaussian process, is given via its Karhunen–Loève
expansion as

W (t, x) =
∞∑
k=1

√
λkek(x)Bk(t), (1.5)

where the Bk(t), k ∈ N, are independent Brownian motions.

1.2 The Galerkin approximation

We next introduce a continuous in time Galerkin discretization of (1.1). First, the
domain V = I d is partitioned as

V n
ī

= (xi1−1, xi1 ] × (xi2−1, xi2 ] × · · · × (xid−1, xid ],
ī = (i1, i2, . . . , id) ∈ [n]d , (1.6)

where

xi = ih, h = n−1, i ∈ {0, 1, . . . , n}. (1.7)

Next, the Galerkin basis is defined as

Hn = {χn
ī
(x), ī ∈ [n]d}, χn

ī
(x) := 1V n

ī
(x), (1.8)

where 1A is the indicator function of set A. Substituting

un(t, x) =
∑
ī∈[n]d

un
ī
(t)χn

ī
(x), (1.9)

into (1.1), and projecting with respect to L2 onto Hn , we arrive that the following
semidiscrete IVP
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dun
ī

=
{
f (t, un

ī
) + hd

∑
j̄∈[n]d

K n
ī j̄
S(un

ī
, un

j̄
)
}
dt + dWn

ī
, (1.10a)

un
ī
(0) = gn

ī
, ī ∈ [n]d , (1.10b)

where

Kn
ī j̄

= h−2d
∫∫

K (x, y)χn
ī
(x)χn

j̄
(y)dxdy, (1.11a)

Wn
ī
(t) = h−d

〈
W (t, ·), χn

ī

〉
, (1.11b)

gn
ī

= h−d
〈
g, χn

ī

〉
. (1.11c)

Here, 〈·, ·〉 stands for the inner product ofH = L2(I d). The double integral in (1.11a)
is over I d × I d ; again, unless otherwise indicated, such double integrals will be over
this set.

1.3 Organization andmain results

We begin our study by establishing well-posedness of the IVP (1.1). This is the content
of Theorem 2.4 and subsequent results in Sect. 2. A fundamental challenge in studying
(1.1) is that the nonlocal term does not introduce smoothing into the flow. This is in
contrast to, say, a stochastic semilinear heat equation, where the heat kernel would
provide such smoothing. Indeed, the lack of smoothing is what precludes us from
using space-time white noise forcing in our framework.

After that we turn to the semidiscrete model (1.10), using it as a basis for construct-
ing a numerical schemes for the original IVP (1.1). Theorem 3.1 establishes that for
(1.10), as n → ∞, we recover (1.1). To obtain rates of convergence, it is necessary to
make additional assumptions on the regularity of the kernel K (x, y) and the process
W . Following [14], we use generalized Lipschitz spaces to measure the regularity of
K and use the spectral properties ofQ to classify the regularity ofW to arrive at a rate
of convergence, with respect to n, in Theorem 4.2, which appears in Sect. 4.

Section 5 contains our last analytical results. They concern the convergence of
the fully discretized problem, in both space and time, where Euler–Maruyama time
stepping is used. The key results appear in Theorem 5.1, and an improved estimate
is given in Theorem 5.5 for a key case of (1.1), with a trigonometric function for S.
Both results establish strong, mean square, convergence. The fully discrete problem
is addressed by splitting the error into a contribution from the spatial discretization
of the associated time discretized problem and the contribution to the error due to the
time step in the spatially continuous problem. The analysis of the spatial error in the
time discretized problem is a natural extension of Theorem 4.2. A classical analysis
of Euler–Maruyama applies, but more effort is needed to obtain the higher order
convergence; again, there is a novel analytical challenge due to the lack of smoothing
in the model.
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We verify the sharpness of our convergence results with numerical experiments in
Sect. 6. There, we run ensembles of independent trials for different values of particle
number n and time step �t and confirm the predicted scalings in n at fixed �t and
vice versa. These experiments also highlight the transition between when the error is
dominated by the deterministic terms and when it is dominated by the stochastic term.

We conclude with a discussion in Sect. 7, reviewing our results and highlighting
open challenges. Additional computations are given in Appendix A.

1.4 Related work

This work is related to two lines of research. On the one hand, there has been a recent
effort in developing numerical methods for nonlocal diffusion equations [15–18]. Our
contribution to this research is that first, we consider a stochastically forced problem;
second, we work with kernels that may not have muchmore regularity beyond integra-
bility; and finally, our model has nonlinear diffusivity and, in this respect, is somewhat
more general than a typical nonlocal diffusion equation. On the other hand, the systems
of SODEs like (1.10), (1.10b) may be viewed as interacting diffusions on graphs [19].
A common framework for modeling interacting diffusions is based on the nonlinear
process introduced by Sznitman [20]. The evolution of each particle is described by an
implicit nonlinear diffusion equation, which in addition to the unknown state variable
involves its probability law (see, e.g., [19]). In practice, integrating such systems also
requires integrating a McKean–Vlasov PDE in addition to the system of SODEs for
individual particles. Our semidiscrete model (1.10), (1.10b) provides an alternative
continuum model of interacting diffusions on graphs. A central question in the theory
of interacting diffusions is analytical description of the continuum (thermodynamic)
limit for the system as the number of particles tends to infinity. Theorems 2.4 and 4.2
justify the nonlocal model (1.1), (1.1b) as a continuum limit for (1.10), (1.10b) in
the same way as [3,Theorem 3.1] justifies the continuum limit for models without
diffusion.

2 The initial value problem

In this section, we formulate the IVP for the nonlocal diffusion model and study its
well-posedness.

2.1 Preliminaries

Let {Ft ⊂ F , t ≥ 0} be a normal filtration associated with W (t) [21]. Further, let
T > 0 be arbitrary, but fixed. For p ≥ 2, we define H

p
T , the space of H-valued

predictable processes1 u(t), t ∈ [0, T ], such that

‖|u|‖p,T = ess supt∈[0,T ] ‖|u(t)|‖p , (2.1)

1 For the definition of a predictable process and other terminology used in the theory of stochastic integration
in Hilbert spaces, we refer to [21].
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where ‖|u|‖p := E[‖u(t)‖p]1/p and ‖·‖ is the norm ofH. (H p
T , ‖|·|‖p,T ) is a Banach

space (cf. [21]).

2.2 Existence of solutions

We first prove existence for a more general model and then specialize this result
to (1.1). While the proof is standard (cf. [21, 22]), we include it for completeness.
Consider the equation

du = N[t, u]dt + dW , u(0) = ξ, (2.2)

whereN[t, •] : H → H for every t ∈ [0, T ] and ξ isF0-measurable random variable.
This problem is posed on an an abstract separable Hilbert space, H; for (1.1) H =
L2(I d). Further, we assume

‖N[t, u]‖ ≤ AN + BN‖u‖, (2.3)

‖N[t, u] − N[s, v]‖ ≤ LN‖u − v‖ (2.4)

for any u, v ∈ H and t, s ∈ [0, T ].
A predictable process u(t), t ∈ [0, T ], is called a mild solution of (2.2) if

u(t) = ξ +
∫ t

0
N[s, u(s)]ds + W (t) (2.5)

holds for all t ∈ [0, T ] a.s. and

P

(∫ T

0
‖u(t)‖2dt < ∞

)
= 1. (2.6)

Theorem 2.1 Let ξ ∈ L p(�,F0,P;H) for some even p ∈ N. Then there exists a
unique mild solution to (2.2) such that

‖|u|‖p,T ≤ C(1 + ‖|ξ |‖p), (2.7)

where the constant C depends on T , but not ‖|ξ |‖p.

Proof of Theorem 2.1 Let τ = (LN + 1)−1 and ξ ∈ L p(�,F0,P;H), u ∈ H
p

τ and
define

J[u](t) = ξ +
∫ t

0
N(s, u(s))ds + W (t), t ∈ [0, τ ]. (2.8)

We want to show that J is a contraction on H
p

τ . Since u(t) is a predictable process
then so is

∫ t
0 N(s, u(s))ds and, consequently, J[u](t) is predictable too. By the triangle
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inequality and (2.3), for t ∈ [0, τ ], we have

‖|J[u](t)|‖p ≤ ‖|ξ |‖p +
∫ t

0
‖|N(s, u(s))|‖p ds + ‖|W (t)|‖p

≤ ‖|ξ |‖p +
∫ t

0
(AN + BN ‖|u(s)|‖p)ds + sup

t∈[0,τ ]
‖|W (t)|‖p

≤ ‖|ξ |‖p + τ(AN + BN ‖|u|‖p,τ ) + sup
t∈[0,τ ]

‖|W (t)|‖p .

(2.9)

Since W (t) is a Gaussian process with covariance operator tQ, we further have (cf.
[22])

sup
t∈[0,τ ]

‖|W (t)|‖p ≤ cp
√

τ TrQ (2.10)

for some cp > 0. The combination of (2.9) and (2.10) yields

‖|J[u]|‖p,τ ≤ ‖|ξ |‖p + τ(AN + BN ‖|u|‖p,τ ) + cp
√

τ TrQ < ∞. (2.11)

Next, we demonstrate that J is a contraction:

‖|J[u](t) − J[v](t)|‖p,τ ≤
∫ τ

0
‖|N(s, u(s)) − N(s, v(s))|‖p

≤
∫ τ

0
LN ‖|u(s) − v(s)|‖p ds

≤ τ LN ‖|u − v|‖p,τ .

On account of our choice of τ, by the Banach contraction mapping principle, J has
a unique fixed point in H

p
τ . This yields a unique mild solution of the initial value

problem (2.2) on [0, τ ]. Using u(τ ) as the initial condition, the local solution can
be further extended to [0, 2τ ] and by repeating this argument again and again, it is
extended eventually to [0, T ]. Thus, we have constructed a unique mild solution in
H

p
T . Finally, (2.7) follows from (2.9) and Gronwall’s inequality. 
�
In addition, we immediately have continuous dependence upon the data and conti-

nuity in time:

Corollary 2.2 Under the same assumptions as Theorem 2.1, the solution depends con-
tinuously on initial data

~u(t) − u′(t)~p,T � ~ξ − ξ ′~p (2.12)

for any ξ, ξ ′ ∈ L2(�,F0,P;H).
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Proof To show (2.12) note

~u(t) − u′(t)~p ≤ ~ξ − ξ ′~p +
∫ t

0
~N[s, u(s)] − N[s, u′(s)]~pds

≤ ~ξ − ξ ′~p + LN

∫ t

0
~u(s) − u′(s)~pds.

The Gronwall inequality yields (2.12). 
�
Corollary 2.3 Under the same assumptions as in Theorem 2.1, the solution is contin-
uous in time for any p ≥ 2:

‖|u(t) − u(s)|‖p �
√|t − s|. (2.13)

Proof

‖|u(t) − u(s)|‖p ≤
∫ t

s
‖|N(r , u(r))|‖p dr + ‖|W (t) − W (s)|‖p

≤
∫ t

s
(AN + BN ‖|u(r)|‖p)dr + cp

√
TrQ|t − s|

≤ (AN + BN ‖|u|‖p,T )|t − s| + cp
√
TrQ|t − s|

≤
(
(AN + BN ‖|u|‖p,T )

√
T + cp

√
TrQ

)√|t − s|

for any 0 ≤ s ≤ t ≤ T . Consequently, E[‖u(t) − u(s)‖p] � |t − s|p/2. 
�

2.3 Well-posedness of the nonlocal evolution equation

We now prove well-posedness of our model, (1.1).

Theorem 2.4 The IVP for (1.1) subject to (1.2a), (1.2b), (1.3a), (1.3b), (1.4) and given
initial condition in L p(�,F0,P;H) for even p ≥ 2 has a unique mild solution. It
depends continuously upon the initial data and is continuous in time, as in Corollar-
ies 2.2 and 2.3.

Note that for the existence of the solution to (1.1), we do not require the Lipschitz
continuity with respect to t in (1.2b). We will require this later for convergence of the
time discretized problem.

Proof It is sufficient to verify the conditions of Theorem 2.1 for

N[t, u] = f (t, u) + K[u], (2.14)

where K : H → H is defined by

K[u](x) =
∫

K (x, y)S(u(x), u(y))dy. (2.15)
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We then proceed in the following steps:

1. First, note that (1.2a), (1.2b), and (1.3a), (1.3b) imply

‖ f (t, u)‖Lq (I d ) ≤ A f + B f ‖u‖Lq (I d ), (2.16a)

‖ f (t, u) − f (t, u′)‖Lq (I d ) ≤ L f ‖u − u′‖Lq (I d ), (2.16b)

‖S(u, v)‖Lq (I d×I d ) ≤ AS + BS(‖u‖L p(I d ) + ‖v‖Lq (I d )), (2.16c)

‖S(u, v) − S(u′, v′)‖Lq (I d×I d ) ≤ LS(‖u − u′‖Lq (I d )

+ ‖v − v′‖Lq (I d )) (2.16d)

for any u, v ∈ Lq(I d), q ∈ [1,∞]. In addition, if B f = 0, then for p ∈ [1,∞),
f (t, ·) : Lq(I d) → L∞(I d), with ‖ f (t, u)‖L∞(I d ) ≤ A f . Likewise, if BS = 0,
for q ∈ [1,∞), S(·, ·) : Lq(I d) × Lq(I d) → L∞(I d × I d), with ‖S(u, v)‖L∞ ≤
AS .

2. Next, we show

‖K[u]‖L2(I d ) ≤ AK + BK ‖u‖L2(I d ), (2.17)

‖K[u] − K[v]‖L2(I d ) ≤ LK ‖u − v‖L2(I d ) (2.18)

for some nonnegative AK , BK and LK and all u, v ∈ L2(I d). If we can obtain
these results, we are done.
To this end, note

‖K[u]‖2L2(I d )
≤

∫ {∫
|K (x, y)| |S(u(x), u(y))| dy

}2

dx

≤
∫ {∫

|K (x, y)| (AS + BS|u(x)| + BS|u(y)|)dy
}2

dx

≤ 3
∫∫

|K (x, y)|2(A2
S + B2

S|u(x)|2 + BS|u(y)|2)dxdy

≤ 3A2
S‖K‖2L2(I d×I d )

+ 3B2
S ess supx

∫
|K (x, y)|2dy‖u‖2L2(I d )

+ 3B2
S ess supy

∫
|K (x, y)|2dx‖u‖2L2(I d )

.

Since

‖K‖2L2(I d×I d )
≤ ess supx

∫
|K (x, y)|2dy < ∞,

(2.17) holds.
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3. For (2.18),

‖K[u] − K[v]‖2L2(I d )

≤ L2
S

∫ {∫
|K (x, y)|(|u(x) − v(x)| + |u(y) − v(y)|dy

}2

dx

≤ 2L2
S

∫∫
|K (x, y)|2(|u(x) − v(x)|2 + |u(y) − v(y)|2)dxdy

≤ 2L2
S(ess supx

∫
|K (x, y)|2dy + ess supy

∫
|K (x, y)|2dx)‖u − v‖2L2(I d )

.


�

3 Convergence of the Galerkin scheme

In this section, we study convergence of the Galerkin scheme in L2(�,F ,P; L2(I d))
with the associated mean square norm, ‖|•|‖2. We will also make use of the space
time norm (2.1) in the case p = 2. Additionally, we will assume that our interaction
function, S, is bounded, which is to say BS = 0 in (1.3a).

Let Pn denote an L2-projector fromH ontoHn, whereHn is defined by (1.8). Our
main result of this section is:

Theorem 3.1 Let u(t, x) stand for the solution of the IVP for (1.1) subject to the
initial condition u(0, ·) = g ∈ H and let un(t, x) stand for the solution of the finite-
dimensional problem (1.10) subject to un(0, ·) = Png. Also assume that the interaction
term S has BS = 0 in (1.3a). Then

lim
n→∞

∥∥∣∣u − un
∣∣∥∥
2,T = 0. (3.1)

For simplicity, we have taken the initial condition to be deterministic. The proof of
the theorem relies on the following two lemmas.

Lemma 3.2 There is a positive constant C = C(AS, L f , LS, K1, T ) such that

‖|u − un|‖2,T ≤ C
(
‖(I − Pn)g‖ + ‖(I − P(1)

n )K‖L2(I d×I d ) + ‖|(I − Pn)W |‖2,T
)

,

where P(1)
n and P(2)

n stand for L2-projectors of L2(I 2d) onto Hn ⊗ H and H ⊗ Hn

respectively, i.e.,

〈
(
I − P(1)

n

)
K (·, y), χn

ī
〉 = 0 y ∈ I d a.e., ī ∈ [n]d ,

〈
(
I − P(2)

n

)
K (x, ·), χn

ī
〉 = 0 x ∈ I d a.e., ī ∈ [n]d .
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Lemma 3.3

lim
n→∞ ‖|(I − Pn)W |‖2,T = 0.

Proof of Theorem 3.1 For any g ∈ L2(I d), we have limn→∞ ‖(I − Pn)g‖ = 0
(cf. [23, Proposition 2.6]). Thus, Theorem 3.1 follows from Lemmas 3.2 and 3.3.


�
Proof of Lemma 3.2 Mild solutions of the IVP for (1.1) and (1.10) satisfy

u(t, x) = g(x) +
∫ t

0
{ f (s, u(s, x)) + K[u(s, ·)](x)}ds + W (t, x), (3.2)

un(t, x) = gn(x) +
∫ t

0
{ f (s, un(s, x)) + Kn[un(s, ·)](x)}ds + Wn(t, x), (3.3)

where

Kn[v(·)](x) =
∫

Kn(x, y)S (v(x), v(y)) dy, (3.4)

and Kn = PnK is the L2(I d × I d) projection of K with coefficients as in (1.11a).
Our proof then proceeds with the following steps.

1. Subtracting (3.3) from (3.2) and using the triangle inequality,

�n(t) := ∥∥∣∣u(t, ·) − un(t, ·)∣∣∥∥2
≤ ‖g − gn‖ +

∫ t

0

(∥∥∣∣ f (s, u(s, ·)) − f (s, un(s, ·))∣∣∥∥2
+ ∥∥∣∣K[u(s, ·)] − K[un(s, ·)]∣∣∥∥2 + ∥∥∣∣K[un(s, ·)] − Kn[un(s, ·)]∣∣∥∥2) ds
+ ∥∥∣∣W (t, ·) − Wn(t, ·)∣∣∥∥2 .

(3.5)

2. By (1.2b),

∥∥∣∣ f (s, u(s, ·)) − f (s, un(s, ·))∣∣∥∥2 ≤ L f �
n(s). (3.6)

Using (1.3b), (1.4) and Jensen inequality, we have

∥∥∣∣K[u(s, ·)] − K[un(s, ·)]∣∣∥∥22
= E

[∫ (∫
K (x, y)

{
S(u(s, x), u(s, y)) − S(un(s, x), un(s, y))

}
dy

)2

dx

]

≤ L2
S

∫ ∫
K (x, y)2E

{|u(s, x) − un(s, x)| + |u(s, y) − un(s, y)|}2 dxdy
≤ 2L2

S(K1 + K2)
∥∥∣∣u(s, ·) − un(s, ·)∣∣∥∥22 . (3.7)
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The constants, Ki , were defined in (1.4). Thus,

∥∥∣∣K[u(s, ·)] − K[un(s, ·)]∣∣∥∥2 ≤ √
2(K1 + K2)LS�

n(s). (3.8)

3. We next need the following observation. If φ ∈ Hn then

S (φ(x), φ(·)) ∈ Hn ∀x ∈ I d

and

Kn[φ(·)](x) =
∫

(PnK )(x, y)S (φ(x), φ(y)) dy

=
∫

(P(2)
n P(1)

n K )(x, y)S (φ(x), φ(y)) dy

=
∫

(P(1)
n K )(x, y)S (φ(x), φ(y)) dy.

In particular,

Kn[un(t, ·)](x) =
∫

(P(1)
n K )(x, y)S

(
un(t, x), un(t, y)

)
dy. (3.9)

4. Using (3.9) and |S| ≤ AS , we have

∥∥∣∣K[un(s, ·)] − Kn[un(s, ·)]∣∣∥∥2 ≤ AS‖(I − P(1)
n )K‖L2(I d×I d ). (3.10)

5. Plugging (3.6), (3.8), and (3.10) into (3.5) and using Gronwall’s inequality, we
obtain

sup
t∈[0,T ]

�n(T ) ≤ e(
√
2LSK1+L f )T

(
‖(I − Pn)g‖

+T AS‖(I − P(1)
n )K‖L2(I d×I d ) + ~(I − Pn)W~2,T

)
.


�
Proof of Lemma 3.3 We begin by calculating

‖|(I − Pn)W (t)|‖22 = E[‖W (t, ·)‖2] − 2E[〈W (t, ·),PnW (t, ·)〉] + E[‖PnW (t, ·)‖2]
= E[‖W (t, ·)‖2] − E[‖PnW (t, ·)‖2]
= t

(
TrQ −

∑
ī∈[n]d

h−d
〈
Qχn

ī
, χn

ī

〉 )
.

Denote the error term

�n := TrQ −
∑
ī∈[n]d

h−d
〈
Qχn

ī
, χn

ī

〉
.
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1. Expanding the χn
ī
functions in terms of the eigenfunctions of Q,

∑
ī∈[n]d

〈
Qχn

ī
, χn

ī

〉
=

∞∑
k=1

〈Qek, ek〉
∑
ī∈[n]d

〈
χn
ī
, ek

〉2
,

so

�n =
∞∑
k=1

λk
(
1 −

∑
ī∈[n]d

h−d
〈
χn
ī
, ek

〉2 ) =
∞∑
k=1

λk‖P⊥
n ek‖2. (3.11)

As the projection operator is orthogonal and the ek are orthonormal, ‖P⊥
n ek‖ ≤ 1.

2. Next, let ε > 0 be arbitrary but fixed. SinceQ is trace class, there ism = m(ε) ∈ N

such that

0 ≤
∞∑

k=m+1

λk <
ε

2
. (3.12)

Therefore,

�n ≤ ε

2
+ TrQ max

k∈[m] ‖P
⊥
n ek‖2. (3.13)

3. As n → ∞, we are assured that ‖P⊥
n ek‖ → 0 (cf. [23, Proposition 2.6]). Choosing

n1 = n1(ε,m) ∈ N large enough, we have, that for all k ≤ m and n ≥ n1

‖P⊥
n ek‖ ≤ ε

TrQ
(3.14)

The combination of (3.13) and (3.14) proves that �n → 0.


�

4 The rate of convergence

To quantify the rate of convergence in Theorem 3.1, we need to impose additional
regularity assumptions on the initial data, the kernel K, and the covariance operator
Q. The regularity is well described by Lipschitz spaces, which we define following
[14].

Definition 4.1 For φ ∈ L p(I d), p ≥ 1,

ωp(φ, δ) = sup
|h|≤δ

‖φ(• + h) − φ(•)‖L p(I dh
⋂

I d ), δ > 0,

I dh = {x ∈ R
d : x + h ∈ I d},

(4.1)
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is called the L p-modulus of continuity of φ. For α ∈ (0, 1], the Lipschitz space
Lip

(
α, L p(I d)

)
is defined as follows

Lip
(
α, L p(I d)

)
=

{
φ ∈ L p(I d) : ∃C > 0 : ωp(φ, δ) ≤ Cδα

}
,

‖φ‖p,α = lim sup
δ→0

δ−αωp(φ, δ).
(4.2)

We are now ready to state the main result of this section.

Theorem 4.2 In addition to the assumptions of Theorem 3.1, let λk, k ∈ N be the
eigenvalues of Q arranged in the decreasing order counting multiplicity and ek ∈
L2(I d) be the corresponding normalized eigenfunctions. Let g ∈ Lip

(
α, L2(I d)

)
and

K ∈ Lip
(
β, L2(I d × I d)

)
for some α, β ∈ (0, 1]. Then

∥∥∣∣u − un
∣∣∥∥
2,T ≤ C max

{
n−α, n−β,�(n)

}
, (4.3)

where

�(n) = �(n;Q) =
√√√√ inf

m∈N

{
m∑

k=1

λkω2(ek, n−1)2 +
∞∑

k=m+1

λk

}
, (4.4)

and the eigenvalues λk and eigenfunctions ek are those ofQ and C > 0 is independent
of n.

The proof of Theorem 4.2 relies on the following lemma.

Lemma 4.3 (cf. [14]) Let φ ∈ L p(I d), p ≥ 1, and let φn = Pnφ. Then

‖φ − φn‖L p(I d ) ≤ Cωp(φ,
√
dn−1),

where C depends on d but not on φ or n.
In particular, if φ ∈ Lip

(
α, L2(I d)

)
, α ∈ (0, 1],

‖φ − φn‖L p(I d ) ≤ Cn−α. (4.5)

Remark 4.4 Equation 4.5 with α = 1 yields the convergence rate for Lipschitz con-
tinuous functions.

123



Stoch PDE: Anal Comp

Proof of Lemma 4.3 We include a short proof adapted from [24,Theorem 5]. Using
Jensen’s inequality and Fubini’s theorem, we have

‖φ − φn‖p
L p(I d )

=
∑
ī∈[n]d

∫
I n
ī

∣∣∣∣∣nd
∫
I n
ī

(φ(x) − φ(z)) dz

∣∣∣∣∣
p

dx

≤ nd
∑
ī∈[n]d

∫
I n
ī

∫
I n
ī

|φ(x) − φ(z)|p dzdx

≤ nd
∑
ī∈[n]d

∫
I n
ī

∫
B√

dn−1 :={|y|≤√
dn−1}

|φ(x) − φ(x + y)|p 1I d (x + y)dydx

= nd
∫
B√

dn−1

∫
I d

|φ(x) − φ(x + y)|p 1I d (x + y)dxdy

≤ ω
p
p(φ,

√
dn−1)|B√

dn−1 |nd

= Cω
p
p(φ,

√
dn−1), C = C(d) := |B√

dn−1 |nd = (πd)d/2

�
( d
2 + 1

) ,

where |B√
dn−1 | stands for the volume of the ball B√

dn−1 . 
�
Example 4.5 LetQ = (−�)−1 and d = 1. Then λk = (πk)−2 and ek = √

2 sin(πkx).
By a direct application of the mean value theorem,

∫ 1

0
(sin (πk(x + h)) − sin (πkx))2 dx

=
∫ 1

0
(cos(z�(x))πkh)2 dx ≤ (πkh)2.

Thus, ω2(ek, h) ≤ πkh. Consequently, by optimizing over m, �(n) = O(n−1/2).

Proof of Theorem 4.2 By Lemma 3.2,

‖|u − un|‖2,T ≤ C max
{
‖(I − Pn)g‖ , ‖(I − P(1)

n )K‖L2(I d×I d ), ‖|(I − Pn)W |‖2,T
}

.

First, by Lemma 4.3, ‖(I − Pn)g‖ � n−α . Next, since we can write Pn = P(2)P(1),
where the projectors are over L2(I d × I d) and Pn is the projector in both x and y,

‖PnK‖L2(I d×I d ) ≤ ‖P(1)
n K‖L2(I d×I d ).

Next, note that

‖(I − P(1)
n )K‖2L2(I d×I d )

= ‖K‖2L2(I d×I d )
− ‖P(1)

n K‖L2(I d×I d )

≤ ‖K‖2L2(I d×I d )
− ‖PnK‖2L2(I d×I d )

= ‖(I − Pn)K‖2L2(I d×I d )
.
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Consequently, we can apply Lemma 4.3 again, now over L2(I d × I d) = L2(I 2d) , to
conclude ‖(I − P(1)

n )K‖L2(I d×I d ) � n−β .
It remains to estimate ‖|(I − Pn)W |‖T . From the proof of Theorem 3.1, it follows

that

‖|(I − Pn)W |‖22,T ≤ T
∞∑
k=1

λk‖P⊥
n ek‖2 =: �. (cf. (3.11)).

As in the proof of Theorem 3.1, we decompose the sum above into two contributions:

� =
m∑

k=1

λk‖P⊥
n ek‖2

︸ ︷︷ ︸
≡�m

+
∞∑

k=m+1

λk‖P⊥
n ek‖2

︸ ︷︷ ︸
≡�m̄

, (4.6)

where m ∈ N is to be determined. Again, since the ek are orthonormal and P⊥
n is an

orthogonal projector,

�m̄ ≤
∞∑

k=m+1

λk < TrQ < ∞. (4.7)

On the other hand, using Lemma 4.3

�m ≤ m max
k∈[m] λk‖P

⊥
n ek‖2 ≤ Cm max

k∈[m] ω2

(
ek,

√
dn−1

)2
. (4.8)

The combination of (4.6), (4.7) and (4.8) completes the proof. 
�

5 Fully discrete analysis

Convergence of the semidiscrete problem is interesting in its own right, as we may
be interested in the relationship between a discrete system of particles and its contin-
uum limit (cf. [3]). For numerical integration of (1.1), we must introduce a temporal
discretization. In this section, we analyze that contribution to the error.

The full discretization of (1.1) with Euler–Maruyama time stepping is

un,k+1 = un,k + f (tk, u
n,k)�t + Kn[un,k]�t + �Wn,k+1, (5.1a)

un,0 = Png, (5.1b)

where un,k is our approximation of the solution in the Galerkin space Hn at time tk .
Kn is defined as in (3.4), and

�Wn,k+1 = Pn(W (tk+1) − W (tk)) = Wn,k+1 − Wn,k (5.2)
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is the increment in the Gaussian process within the subspace. Iterating,

un,k = un,0 +
k−1∑
j=0

�t f (t, un, j ) +
k−1∑
j=0

�tKn[un, j ] +
k−1∑
j=0

�Wn, j ,

= un,0 +
k−1∑
j=0

�t f (t, un, j ) +
k−1∑
j=0

�tKn[un, j ] + Wn,k .

(5.3)

Our goal is to obtain a convergence rate, with respect to both n, the spatial mesh,
and �t , the time step, for the error

�n,k = ~u(tk) − un,k~2 (5.4)

along with the max error,

max
k≤M

�n,k . (5.5)

We will assume that the time steps are chosen such that

M = T

�t
∈ N. (5.6)

Throughout, n will be used to denote spatial discretization, while j and k, will indicate
the associated time, t j = j�t . As we noted after stating Theorem 2.4, we will now
make use of the Lipschitz continuity with respect to t in assumption (1.2b).

To better analyze time and spatial discretization error, we break the problem of
estimating (5.5) into two intermediate problems, one addressing only spatial error and
another addressing only time error:

�n,k ≤ ~u(tk) − uk~2︸ ︷︷ ︸
≡�k

t

+~uk − un,k~2︸ ︷︷ ︸
≡�

n,k
x

. (5.7)

The term �k
t accounts for only time discretization and �

n,k
x accounts for space dis-

cretization. The time step �t is still present in �
n,k
x , but the error with respect to n is

uniform over �t ∈ (0,�t0) for any fixed �t0 > 0. Decomposition (5.7) introduces a
new quantity, uk , which corresponds to the discretization of (1.1) only in time,

uk+1 = uk + f (tk, u
k)�t + K[uk]�t + �Wk+1,

u0 = g.
(5.8)

For analysis, it is helpful to represent the exact solution as

u(tk) = g +
k−1∑
j=0

∫ t j+1

t j
f (s, u(s)ds +

k−1∑
j=0

∫ t j+1

t j
K[u(s)]ds + W (tk), (5.9)
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along with its time discretization, (5.8),

uk = u0 +
k−1∑
j=0

�t f (t, u j ) +
k−1∑
j=0

�tK[u j ] + Wk . (5.10)

The main results of this section is:

Theorem 5.1 Under the same assumptions as those of Theorem 4.2

max
k

~u(tk) − un,k~2 � max{n−α, n−β,�(n)} + √
�t,

where � is defined in (4.4).

Proof Using (5.7) along with Corollary 5.2 and Corollary 5.4, we have our result. 
�

An improvement to this, with O(�t) error, for the particular case of (1.1), where S is
a trigonometric function, is presented in Sect. 5.3

5.1 Spatial error of the discrete in time problem

As a corollary to Theorem 4.2, we have

Corollary 5.2 Under the assumptions of Theorems 4.2, fixing �t0 > 0, for all �t ∈
(0,�t0),

max
k

~uk − un,k~2 � max{n−α, n−β,�(n)}.

The implicit constant in the above error bound depends upon �t0 but not �t , so the
result is uniform for all �t sufficiently small.

Proof The proof is established by reformulating Lemma 3.2 for discrete sums in place
of time integrals. We begin with the computation

�n,k
x ≡ ~uk − un,k~2 ≤ ~(I − Pn)g~ + �t

k−1∑
j=0

~ f (t j , u
j ) − f (t j , u

n, j )~2

+ �t
k−1∑
j=0

~K[u j ] − Kn[un, j ]~2 + ~(I − Pn)W (tk)~2.

For the self interaction summand, by our assumptions on f ,

~ f (t j , u
j ) − f (t j , u

n, j )~2 ≤ L f ~u j − un, j~2 = L f �
n, j
x .
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For the nonlocal summand, in the case that K ∈ Lip(β, L2(I 2d)),

~K[u j ] − Kn[un, j ]~2 ≤ LK�
n, j
x + AS‖(I − Pn)K‖

� �
n, j
x + n−β.

Finally, as in the proof of Theorem 4.2

~(I − Pn)W (tk)~2 � �(n).

Next, since

�n,0
x = ~u0 − un,0~2 = ‖(I − Pn)g‖ � n−α,

and

�n,k
x � n−α + �t

k−1∑
j=0

�
n, j
x + �t

k−1∑
j=0

n−β + �(n)

� max{n−α, n−β,�(n)} + �t
k−1∑
j=0

�
n, j
x ,

we can apply apply a discrete Gronwall equality to obtain

�n,k
x � max{n−α, n−β,�(n)}e�tk .

This completes the result. 
�

5.2 Time stepping error

To unify our analysis of the time stepping error, we return to the generic form (2.2),
and compare

u(tk) = g +
k−1∑
j=0

∫ t j+1

t j
N[s, u(s)]ds + W (tk), (5.11)

uk = u0 +
k−1∑
j=0

N[t j , u j ]�t + Wk . (5.12)

This amounts to the Euler–Maruyama discretization, which is known to have a strong
order of convergence of 1/2. We will establish a convergence result for (5.12), and
then verify f , K , and S in (1.1) satisfy the assumptions, as in the proof of Theorem 2.4.
In place of (2.4), we will need the stronger assumption

‖N[t, u] − N[s, v]‖ ≤ LN (|t − s| + ‖u − v‖). (5.13)
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Theorem 5.3 Under the assumptions of Theorem 2.1 and (5.13), for �t > 0, the time
discretization error satisfies

max
k

~u(tk) − uk~2 �
√

�t .

An immediate consequence of this is the result for (1.1),

Corollary 5.4 Under the assumptions of Theorem 2.4, for �t > 0, the time discretiza-
tion error satisfies

max
k

~u(tk) − uk~2 �
√

�t .

We include a proof of Theorem 5.3, which is standard, for completeness.

Proof of Theorem 5.3 Letting �k
t = ~u(tk) − uk~2, our first estimate is

�k
t ≤

k−1∑
j=0

∫ t j+1

t j
~N[s, u(s)] − N[t j , u j ]~2ds.

By our assumptions and Theorem 2.4,

~N[s, u(s)] − N[t j , u j ]~2 � |s − t j | + ~u(s) − u j~2

� |s − t j | + ~u(s) − u(t j )~2 + �
j
t

� |s − t j | + √|s − t j | + �
j
t .

Consequently,

�k
t �

k−1∑
j=0

∫ t j+1

t j

√|s − t j | + |s − t j | + �
j
t

�
k−1∑
j=0

�t3/2 + �t2 + �t� j
t �

√
�t + �t

k−1∑
j=0

�
j
t .

Since u0 = u(0), �0
t = 0, by discrete Gronwall,

�k
t �

√
�tek�t .

This completes the result. 
�
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5.3 Improved convergence estimates

Higher order convergence in time can be achieved in certain special, but important,
cases. This is a consequence of our problem having only additive noise and the inter-
action term in the classical Kuramoto being a trigonometric function. For additive
noise, Euler–Maruyama is exactly Milstein’s method which has strong first order con-
vergence, provided the drift term is sufficiently smooth, [25, 26]. We are able to prove:

Theorem 5.5 Under the same assumptions as in Theorem 4.2, if, in addition, f = 0
and S(u, v) = sin(2π(u − v)), then

max
k

~u(tk) − un,k~2 � max{n−α, n−β,�(n)} + �t,

where � is defined in (4.4).

Proof This follows from (5.7), the previously stated Corollary 5.2, and Corollary 5.7,
which is presented below. 
�

This result is rather specialized to the sin function, though it can be generalized to
other such trigonometric functions and their linear combinations. However, it reveals
a fundamental challenge to studying (1.1) owing to the lack of smoothing.

For equations with additive noise, to obtain the higher order in time result, one
typically assumes at most linear bounds with respect to u on the first and second
variations of N[t, •] : H → H, as in [25, 27, 28]. That is to say, it is assumed

‖DN[t, u]‖H→H � ‖u‖.

The higher order convergence result is then obtained by performing a Taylor expansion
in the nonlinearity, using such assumed bounds on the variational derivatives. Here,
there is an obstacle in even defining the variational derivatives. Consider the case of

N[t, u](x) =
∫

K (x, y) sin(u(x) − u(y))dy.

By Taylor’s theorem with remainder,

sin(u + δu) = sin(u) + cos(u)δu −
∫ 1

0
(1 − λ) sin(u + λδu)δu2dλ.

Consequently,

N[t, u + δu] = N[t, u] +
∫

K (x, y) cos(u(x) − u(y))(δu(x) − δu(y))dy

−
∫

K (x, y)
∫ 1

0
(1 − λ) sin(u(x) − u(y) + λ(δu(x) − δu(y)))(δu(x) − δu(y))2dλ.
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To justify that the first variational derivative is

DN[u]δu =
∫

K (x, y) cos(u(x) − u(y))(δu(x) − δu(y))dy

we would need to show that the quadratic term is o(‖δu‖2
L2). But the second order

term in the expansion includes expressions like

{∫
K (x, y)

∫ 1

0
(1 − λ) sin(u(x) − u(y) + λ(δu(x) − δu(y)))dydλ

}
(δu(x))2.

This necessitates δu ∈ L4(I d), but our solutions, in the spatial variable, are only in
H = L2(I d). Thus, the standard approach, via variational derivatives will not work
here.

A sufficient condition on the nonlinearity to obtain theMilstein rate of convergence
is the following:

Proposition 5.6 Under the same assumptions of Theorem 2.1 and (5.13), assume, also,
that there exists a constant C > 0 such that for any partition 0 = t0 < t1 < . . . <

tM = T , there exist H valued functions a j and β j such that for s ∈ [t j , t j+1]

N[t j , u(s)] − N[t j , u(t j )] = a j (s) + β j (s),∥∥∣∣a j (s)
∣∣∥∥
2 ≤ C(s − t j ),∥∥∣∣β j (s)

∣∣∥∥
2 ≤ C

√
s − t j , E[β j (s) | Ft j ] = 0.

Then for all �t > 0,

max
k

~u(tk) − uk~2 � �t .

This avoids the need to directly manage the problematic variational derivatives of the
drift term.

Corollary 5.7 For (1.1), in the case that f = 0 and S(u, v) = sin(2π(u − v)) the
assumptions of Theorems 2.1 and 5.6 are satisfied with N[t, u(t)] = K[u(t)]. For this
model, we have O(�t) convergence under an Euler–Maruyama discretization.

Proof of Corollary 5.7 This follows from Proposition 5.6, once the conditions are ver-
ified on the nonlinearity. This is a somewhat technical proof which we omit from the
main text. See Proposition 7.1 in the appendix for the full details. 
�
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Proof of Proposition 5.6 1. As in the case of proof of Theorem 5.3, we begin with

�k
t =

∥∥∥∥∥∥

∣∣∣∣∣∣
k−1∑
j=0

∫ t j+1

t j
N[s, u(s)] − N[t j , u j ]ds

∣∣∣∣∣∣

∥∥∥∥∥∥
2

≤
∥∥∥∥∥∥

∣∣∣∣∣∣
k−1∑
j=0

∫ t j+1

t j
N[s, u(s)] − N[t j , u(s)]ds

∣∣∣∣∣∣

∥∥∥∥∥∥
2︸ ︷︷ ︸

I

+
∥∥∥∥∥∥

∣∣∣∣∣∣
k−1∑
j=0

∫ t j+1

t j
N[t j , u(s)] − N[t j , u(t j )]ds

∣∣∣∣∣∣

∥∥∥∥∥∥
2︸ ︷︷ ︸

I I

+
∥∥∥∥∥∥

∣∣∣∣∣∣
k−1∑
j=0

∫ t j+1

t j
N[t j , u(t j )] − N[t j , u j ]ds

∣∣∣∣∣∣

∥∥∥∥∥∥
2︸ ︷︷ ︸

I I I

.

Each of the three terms will be treated separately.
2. First, by (5.13),

I ≤
k−1∑
j=0

∫ t j+1

t j

∥∥∣∣N[s, u(s)] − N[t j , u(s)]∣∣∥∥2 ds ≤
k−1∑
j=0

∫ t j+1

t j
LN (s − t j )ds

�
k−1∑
j=0

�t2 � �t .

3. Next,

I I I ≤
k−1∑
j=0

∫ t j+1

t j

∥∥∥
∣∣∣N[t j , u(t j )] − N[t j , u j ]

∣∣∣
∥∥∥
2
ds

≤
k−1∑
j=0

∫ t j+1

t j
LN

∥∥∥∣∣∣u(t j ) − u j
∣∣∣∥∥∥
2
ds � �t

k−1∑
j=0

�
j
t .

4. Finally,

I I ≤
k−1∑
j=0

∫ t j+1

t j

∥∥∣∣a j (s)
∣∣∥∥
2 ds +

∥∥∥∥∥∥

∣∣∣∣∣∣
k−1∑
j=0

∫ t j+1

t j
β j (s)ds

∣∣∣∣∣∣

∥∥∥∥∥∥
2

.
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By our assumptions,

k−1∑
j=0

∫ t j+1

t j

∥∥∣∣a j (s)
∣∣∥∥
2 ds ≤ C

k−1∑
j=0

∫ t j+1

t j
(s − t j )ds � �t .

For the other term,

∥∥∥∥∥∥

∣∣∣∣∣∣
k−1∑
j=0

∫ t j+1

t j
β j (s)ds

∣∣∣∣∣∣

∥∥∥∥∥∥
2

2

=
k−1∑
j=0

∥∥∥∥∥
∣∣∣∣∣
∫ t j+1

t j
β j (s)ds

∣∣∣∣∣
∥∥∥∥∥
2

2

+ 2
∑
i< j

E

[〈∫ ti+1

ti
βi (s)ds,

∫ t j+1

t j
β j (s)ds

〉]
.

Conditioning on Ft j ,

E

[〈∫ ti+1

ti
βi (s)ds,

∫ t j+1

t j
β j (s)ds

〉]

= E

[
E

[〈∫ ti+1

ti
βi (s)ds,

∫ t j+1

t j
β j (s)ds

〉
| Ft j

]]

= E

[〈∫ ti+1

ti
βi (s)ds,

∫ t j+1

t j
E[β j (s) | Ft j ]ds

〉]
= 0.

For the remaining terms, applying Jensen’s inequality and our assumption,

k−1∑
j=0

∥∥∥∥∥
∣∣∣∣∣
∫ t j+1

t j
β j (s)ds

∣∣∣∣∣
∥∥∥∥∥
2

2

≤
k−1∑
j=0

�t
∫ t j+1

t j

∥∥∣∣β j (s)
∣∣∥∥2
2 ds

�
k−1∑
j=0

�t
∫ t j+1

t j
(s − t j )ds

�
k−1∑
j=0

�t3 � �t2.

5. Combining all of our estimates on I , I I , and I I I ,

�k
t � �t + �t

k−1∑
j=0

�
j
t .
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As �0
t = 0, by the discrete Gronwall inequality,

�k
t � �tek�t ,

completing the proof

�

6 Numerical examples

In this section we present numerical experiments to demonstrate our convergence
results. While our time stepping error, from Theorem 5.7, appears to be sharp, there
appears to be opportunity to refine the spatial error given in Theorems 5.2 and 5.5.

As a test problem, we consider the problem in d = 1

du =
∫

K (x, y) sin(2π(u(x) − u(y)))dydt + dW (6.1)

and

Ar =
{
(x, y) ∈ [0, 1]2 | min{|x − y|, 1 − |x − y|} < r

}
(6.2a)

K (x, y) = 1Ar (x, y). (6.2b)

As an initial condition, we take

u0(x) = x(1 − x). (6.3)

The stochastic processW hasQ = (−d2/dx2)−s/2 with periodic boundary conditions.
The parameter s > 1 ensures that Q is trace class on H.

For such a process, since the initial condition is continuous, we can take α = 1
(whereα is given inTheorem4.2). For a piecewise constant interaction kernel function,
β = 1/2 (see [14]). Lastly, for Q, since the eigenfunctions ek are trigonometric
functions, as in the case of Example 4.5, we will have that ω2(ek, n−1) � k/n, and
the eigenvalues scale as λk ∼ k−s with s > 1. Then, as in Example 4.5, this allows us
to conclude that

�(n) �

√√√√inf
m

{
1

n2

m∑
k=1

k2−s +
∞∑

k=m+1

k−s

}

�

√√√√inf
m

{
1

n2

m∑
k=1

k2−s + m1−s

}
.

(6.4)
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For s > 1 and s �= 3, �(n) � n−(s−1)/2. For s = 3, �(n) � n−1√log n. Therefore,
looking at the mean square error, Theorem 5.5 predicts

MSE � n−2 + n−1 + �t2 +
{
n−(s−1) s > 1, s �= 3

n−2 log n s = 3.
(6.5)

At first glance, it would appear that for s > 2, the contribution to the spatial error is
dominated by the contribution from the nonlocal term, n−1, while for s < 2, the spatial
error is dominated by the noise term, n−(s−1). In fact, our numerical experiments will
reveal that the contribution to the MSE from the nonlocal term is actually O(n−2),
and, instead, the noise term dominates for s < 3.

6.1 Results and details of computation

As we do not have access to an analytic solution, we make use a high resolution
solution with n = n� large, as a surrogate to see convergence in n. Indeed, at a fixed
�t by Corollary 5.2, since

max
k

~uk − un,k~2 ≤ max
k

~uk − un�,k~2 + max
k

~un�,k − un,k~2

� max
k

~un�,k − un,k~2

provided we take n� large enough. Analogously, at a fixed n, by taking �t� small
enough, we compare against �t

~un,M − un(T )~2 ≤ ~un,M − un,M�~2 + ~un,M� − un(T )~2

� ~un,M − un,M�~2,

where M� = T /�t�.
In each case, we perform 102 independent trials. To see the convergence in n, we fix

�t = 0.001 and vary n, along with s. To see the convergence in �t , we fix n = 1024
and vary �t , along with s. The random process is sampled by FFT methods. When
assessing the convergence in�t , it is sampled on n = 1024 points. For convergence in
n at fixed �t , we sample the process on 214 mesh points, and project it onto the lower
resolution in n spaces by Riemann sum approximation. As this is higher resolution
than the values of n at which we compare, the Riemann approximation error is higher
order. The discretized interaction kernel, PnK , is computed using Gauss–Kronrod
quadrature, and, in assessing the L2(I d) error, Gauss–Kronrod is also used to compare
the piecewise constant approximations across resolutions.

The spatial results appear in Fig. 1. For s < 3, the squared stochastic error, ∝
n−(s−1) dominates. For s > 3, it is dominated by an error, ∝ n−2. It was predicted
that the squared nonlocal discretization error, ∝ n−1 would dominate for s ≥ 2. We
explain this discrepancy below, but, briefly, it is due to the square of the nonlocal
integral error actually being ∝ n−2 for this K (x, y).
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(a) (b)

(c) (d)

Fig. 1 Convergence of the mean square error as a function of n at fixed time step�t = 0.001. The reference
path is generated with 213 sample points. Error bars are one standard deviation from 102 trials

At fixed n = 1024, we obtain the results shown in Fig. 2. Here, we see the predicted
∝ �t error across all cases.

6.2 Understanding the spatial error discrepancy

Consider the slight simplification of (6.2),

Br =
{
(x, y) ∈ [0, 1]2 | |x − y| < r

}
, (6.6a)

K (x, y) = 1Br (x, y), (6.6b)

for some r ∈ (0, 1). This is in function is in Lip(1/2, L2(I 2)) and, using the preceding
estimates, contributes an error term ∝ n−1/2. In our proof of Theorem 4.2, we treated
the error of ~K[un] −Kn[un]~2 with the L2(I d × I d) error of P(1)

n K ; this appears in
(3.10). We could have, instead, bounded it in L1

y L
∞
x , to obtain

∥∥∣∣K[un] − Kn[un]∣∣∥∥2 � ‖‖K (x, ·) − (P(1)
n K )(x, ·)‖L1

y
‖L∞

x
.
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(a) (b)

(c) (d)

Fig. 2 Convergence of the mean square error as a function of �t at fixed spatial resolution n = 1024. The
reference path is generated with �t = 10−6. Error bars are one standard deviation from 102 trials

This can give us higher order convergence. Indeed, consider, x ∈ (r , 1 − r), and
assume that n is sufficiently large that

r < xi−1 < x < xi < 1 − r .

Then, by a geometric argument,

∫
|K (x, y) − (P(1)

n K )(x, y)|dy =
∫ xi−r

xi−1−r
|K (x, y) − (P(1)

n K )(x, y)|dy

+
∫ xi+r

xi−1+r
|K (x, y) − (P(1)

n K )(x, y)|dy

=
∫ xi−r

xi−1−r
|1|x−y|<r − �x−1(y − (xi−1 − r))|dy

+
∫ xi+r

xi−1+r
|1|x−y|<r − �x−1(xi + r − y))|dy

� �x .
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Similar arguments hold for when x < r and when x > 1 − r . Consequently,

∥∥∣∣K[un] − Kn[un]∣∣∥∥2 � n−1

instead of the n−1/2 rate we would get from an L2(I d × I d) analysis.

7 Discussion

In this paper, we examined the well-posedness and analyzed a numerical method for
a nonlocal evolution equation describing dynamics of interacting particles on graph
forced by noise in the limit as the number of particles goes to infinity. We found good
agreement between our numerical experiments and the predictions, and we were able
to explain the discrepancy between the more general result, Theorem 5.1, and the
experiments.

Several extensions are possible. First, it is straightforward to extend this algorithm
and the error analysis to cover models with random initial data. Second, one can
combine the Galerkin method with the Monte Carlo approximation of the nonlocal
term to reduce the amount of computation necessary to achieve a given degree accuracy
(cf. [14]). This approach is especially effective for models with nonsmooth kernels
and for higher dimensional spatial domains.

Another extension would be to further develop the convergence analysis with
respect to the interaction kernel, as discussed in Sect. 6.2. There, we remarked that
if the error were measured in the L1

y ⊗ L∞
x norm, we could obtain higher order con-

vergence than in the L2
x ⊗ L2

y norm. It would be desirable to determine an “optimal”
function space in which to study the projection error of the kernel. Likewise, we
found that for trigonometric nonlinearities, we could improve our time stepping error
to match that of Milstein’s method; this was the content of Theorem 5.5. It would
also be desirable to identify the full class of nonlinear interactions, S, for which this
higher order convergence holds. A final extension of this work would be to allow for
multiplicative, instead of additive, noise.

As a by-product, this work also presents a rigorous continuum limit for a large
class of interacting dynamical systems on graphs subject to noise. Existing contin-
uum models for interacting diffusions on graphs rely on Sznitman’s nonlinear process
framework [20], which requires additional integration of McKean–Vlasov partial dif-
ferential equation [19].Thus, ourmodel presents a simpler, andmoredirect, description
of the continuum limit of interacting diffusions on graphs in the spirit of [3]. At the
technical level, we prove convergence of discrete models in a stronger topology than
is normally used in this context. In addition to providing continuum descriptions for
many common applications such as the Kuramoto model of coupled phase oscillators
and discrete models of neural tissue, our method can be used for numerical integration
of nonlocal diffusion equations, including nonlinear and fractional diffusion models.
Other applications include population dynamics, swarming, and peridynamics.
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Appendix A. Supplementary Calculations

Lemma A.1 Let Y be an H = L2(I d) valued Gaussian random variable with mean
zero and trace class covariance operator Q, with eigenvalues λk and eigenfunctions
ek . Then E[sin(Y (x))] = 0, a.e. in x.

Proof 1. We first write Y using the a Karhunen–Loève representation,

Y =
∞∑
k=1

√
λkξkek,

and truncate it to the first N modes,

YN =
N∑

k=1

√
λkξkek .

YN → Y in L2(P;H), as

E[‖Y − YN‖2] =
∞∑

k=N+1

λk .

As TrQ < ∞, this clearly vanishes. Suppose we can show that, for all N ,
E[sin(YN )] = 0. Then, for any N ,

‖E[sin(Y )]‖2 = ‖E[sin(Y )] − E[sin(YN )]‖2
≤ E[‖ sin(Y ) − sin(YN )‖2] ≤ E[‖Y − YN‖2].

Since this vanishes as N → ∞, E[sin(Y )] = 0 with equality in the sense of L2.
2. Next, we verify that for any N , E[sin(YN )] = 0. Let

YN ,ε =
N∑

k=1

√
λkξkϕk,ε .

where ϕk,ε are mollified eigenfunctions so as to allow for pointwise evaluation.
Since N is finite, we can be assured that ϕk,ε → ek in L2 as ε → 0, uniformly
in k = 1, . . . , N . We will verify that for any x and any ε, E[sin(YN ,ε(x))] = 0.
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Consequently,

‖E[sin(YN )]‖2 = ‖E[sin(YN ) − sin(YN ,ε)‖2
≤ E[‖ sin(YN ) − sin(YN ,ε)‖2]
≤ E[‖YN − YN ,ε‖2]

≤
N∑

k=1

λk‖ek − ϕk,ε‖2 ≤ λ1

N∑
k=1

‖ek − ϕk,ε‖2.

This obviously vanishes as ε → 0.
3. Finally, for any x and any ε, YN ,ε(x) is a scalar mean zero Gaussian with variance

N∑
k=1

λkϕk,ε(x)
2 < ∞.

For such a random variable, it is a straightforward calculation to verify that
E[sin(YN ,ε(x))] = 0.


�

The following proposition shows that the bounds in Proposition 5.6 hold for a
particular case of (1.1), allowing us to obtain higher order convergence in time when
Euler–Maruyama time stepping is used; see Theorem 5.5.

Proposition 7.1 Let u solve (1.1) with f = 0 and

K[u(t)] =
∫

K (x, y) sin(2π(u(x, t) − u(y, t)))dy.

Then for any partition 0 = t0 < t1 < . . . < tM = T , s ∈ [t j , t j+1]

K[u(s)] − K[u(t j )] = a j (s) + β j (s),

with a j and β j that satisfy the conditions:

∥∥∣∣a j (s)
∣∣∥∥
2 � (s − t j ),∥∥∣∣β j (s)
∣∣∥∥
2 �

√
s − t j , E[β j (s) | Ft j ] = 0,

where the implicit constants are independent of the t j .

The precise form of a j and β j is not essential, but it can be found below in (A.6) and
(A.7).
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Proof We begin by writing

K[u(s)] − K[u(t j )]
=

∫
K (x, y) sin(2π(u(x, s) − u(y, s)))dy

−
∫

K (x, y) sin(2π(u(x, t j ) − u(y, t j )))dy.

(A.1)

It will be sufficient to analyze one of the integral terms.

1. Define the following terms to simplify the expressions

� j u(x, s) = u(x, s) − u(x, t j ), (A.2)

δxyu(s) = u(x, s) − u(y, s), (A.3)

� jδxyu(s) = (u(x, s) − u(y, s)) − (u(x, t j ) − u(y, t j )). (A.4)

We will occasionally suppress the x or y dependence when there is no ambiguity.
Then one of the integrand terms in (A.1) is

sin(2πδxyu(s)) − sin(2πδxyu(t j )) = sin(2πδxyu(t j ))[cos(2π� jδxyu(s)) − 1]
+ cos(2πδxyu(t j )) sin(2π� jδxyu(s)))︸ ︷︷ ︸

≡I

.

2. Next, since

� j u(s) =
∫ s

t j
K[u(τ )]dτ

︸ ︷︷ ︸
≡� j F(s)

+(W (s) − W (t j )︸ ︷︷ ︸
≡� j W (s)

)

with analogous expressions for � jδxy F(s) and � jδxyW (s), we write

I = sin(2π� jδxy F(s)) cos(2π� jδxyW (s)) + cos(2π� jδxy F(s))

× sin(2π� jδxyW (s))

= sin(2π� jδxy F(s)) cos(2π� jδxyW (s)) + [cos(2π� jδxy F(s)) − 1]
× sin(2π� jδxyW (s)) + sin(2π� jδxyW (s))︸ ︷︷ ︸

≡I I

.
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3. Finally, we expand the last term, to obtain

I I = sin(2π� jW (x, s)) cos(2π� jW (y, s))

− cos(2π� jW (x, s)) sin(2π� jW (y, s))

= sin(2π� jW (x, s))

+ sin(2π� jW (x, s))[cos(2π� jW (y, s)) − 1]
− sin(2π� jW (y, s))

− [cos(2π� jW (x, s)) − 1] sin(2π� jW (y, s)).

4. The original nonlinear interaction term in (A.1) can now be expressed as

sin(2πδxyu(s)) − sin(2πδxyu(t j ))

= θ
(1)
j (x, y)[cos(2π� jδxyu(s)) − 1] + θ

(2)
j (x, y, s) sin(2π� jδxy F(s))

+ θ
(3)
j (x, y, s)[cos(2π(� jδxy F(s)) − 1]

+ θ
(4)
j (x, y, s)[cos(2π� jW (y, s)) − 1]

− θ
(5)
j (x, y, s)[cos(2π� jW (x, s)) − 1]

+ η j (x, y)(sin(2π� jW (x, s)) − sin(2π� jW (y, s))),

where

θ
(1)
j = sin(2πδxyu(t j )),

θ
(2)
j = cos(2πδxyu(t j )) cos(2π� jδxyW (s)),

θ
(3)
j = cos(2πδxyu(t j )) sin(2π� jδxyW (s)),

θ
(4)
j = cos(2πδxyu(t j )) sin(2π� jW (x, s)),

θ
(5)
j = cos(2πδxyu(t j )) sin(2π� jW (y, s)),

η j = cos(2πδxyu(t j )).

5. The terms that we need to analyze to reach our result, a j and β j , are now given
explicitly.

a j (s) =
∫

K (·, y)
{
θ

(1)
j (·, y)[cos(2π� jδxyu(s)) − 1]

+ θ
(2)
j (·, y, s) sin(2π� jδxy F(s))

+ θ
(3)
j (·, y, s)[cos(2π� jδxy F(s)) − 1]

+ θ
(4)
j (·, y, s)[cos(2π� jW (·, s)) − 1]

−θ
(5)
j (·, y, s)[cos(2π� jW (y, s)) − 1]

}
dy

(A.6)
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while

β j (s) =
∫

K (·, y)η j (·, y){sin(2π� jW (·, s))
− sin(2π� jW (y, s))}dy. (A.7)

6. We show that a j has the desired property. First,

~a j (s)~2 ≤
5∑

k=1

A(k)
j (s),

where

A(1)
j (s) =

∥∥∥∥
∣∣∣∣
∫

K (·, y)θ(1)
j (·, y)[cos(2π� jδxyu(s)) − 1]dy

∣∣∣∣
∥∥∥∥
2
,

A(2)
j (s) =

∥∥∥∥
∣∣∣∣
∫

K (·, y)θ(2)
j (·, y, s) sin(2π� jδxy F(s))dy

∣∣∣∣
∥∥∥∥
2
,

A(3)
j (s) =

∥∥∥∥
∣∣∣∣
∫

K (·, y)θ(3)
j (·, y, s)[cos(2π� jδxy F(s)) − 1]dy

∣∣∣∣
∥∥∥∥
2
,

A(4)
j (s) =

∥∥∥∥
∣∣∣∣
∫

K (·, y)θ(4)
j (·, y, s)[cos(2π� jW (·, s)) − 1]dy

∣∣∣∣
∥∥∥∥
2
,

A(5)
j (s) =

∥∥∥∥
∣∣∣∣
∫

K (·, y)θ(5)
j (·, y, s)[cos(2π� jW (y, s)) − 1]dy

∣∣∣∣
∥∥∥∥
2
.

7. Wenow show for each k,~A(k)
j (s)~2 � (s−t j ), with a constant that is independent

of the t j . This relies on the elementary inequalities:

| sin(x)| ≤ |x |,
| cos(x) − 1| ≤ |x |,
| cos(x) − 1| ≤ 1

2 |x |2.

First,

(A(1)
j (s))2 = E

[∫ ∣∣∣∣
∫

K (x, y)θ(1)
j (x, y)[cos(2π� jδxyu(s)) − 1]dy

∣∣∣∣
2

dx

]

≤ E

[∫∫
|K (x, y)|2|θ(1)

j (x, y)|2[cos(2π� jδxyu(s)) − 1]2dydx
]

� E

[∫∫
|K (x, y)|2(|� j u(x, s)|2 + |� j u(y, s)|2)2dxdy

]

� (‖‖K (x, ·)‖L2‖2L∞ + ‖‖K (·, y)‖L2‖2L∞)E[‖�u j (s)‖4].
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Consequently, by Corollary 2.3,

A(1)
j �

∥∥∣∣u(s) − u(t j )
∣∣∥∥2
4 � s − t j .

Similarly,

(A(2)
j (s))2 = E

[∫ ∣∣∣∣
∫

K (x, y)θ(2)
j (x, y, s) sin(2π� jδxy F(s))dy

∣∣∣∣
2

dx

]

≤ E

[∫∫
|K (x, y)|2| sin(2π� jδxy F(s))|2dydx

]

� E

[
(‖‖K (x, ·)‖L2‖2L∞ + ‖‖K (·, y)‖L2‖2L∞)|� j F(x, s)|2dx

]

� E[‖� j F(s)‖2].

Since the trigonometric interaction term is bounded

E[‖� j F(s)‖2] = E

⎡
⎣
∥∥∥∥∥
∫ s

t j
K[u(τ )]τ

∥∥∥∥∥
2

L2

⎤
⎦ � (s − t j )

2

and we conclude A(2)
j (s) � s − t j . The term A(3)

j is established in the same way

as A(2)
j , but using the estimate | cos(x) − 1| ≤ |x |. For A(4)

j ,

(A(4)
j )2 = E

[∫ ∣∣∣∣
∫

K (x, y)θ(4)
j (x, y, s)[cos(2π� jW (y, s)) − 1]dy

∣∣∣∣
2

dx

]

� E

[∫∫
|K (x, y)|2|� jW (y, s)|4dydx

]

� E[‖W (s) − W (t j )‖4].

Using the properties of W ,

A(4)
j �

∥∥∣∣W (s) − W (t j )
∣∣∥∥2
4 � s − t j .

A(5)
j is proved in the same way, and we have that ~a j (s)~2 � s − t j .

8. Conditioning, we examine the β j term:

E[β j | Ft j ] =
∫

K (·, y)E[η j (·, y){sin(2π� jW (·, s)) − sin(2π� jW (y, s))} | Ft j ]dy.
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Recall, η j = cos(2πδxyu(t j )), so it is Ft j measurable, and:

E[η j (x, y){sin(2π� jW (x, s)) − sin(2π� jW (y, s))} | Ft j ]
= η j (x, y)E[sin(2π� jW (x, s)) | Ft j ]
− η j (x, y)E[sin(2π� jW (y, s)) | Ft j ]
= 0 − 0, a.s.

by Lemma A.1.
Finally,

~β j (s)~2
2 ≤ E

[∫∫
|K (x, y)|2|ηi (x, y)|2| sin(2π�iW (·, s)|2dxdy

]
ds

� E[‖� jW (s)‖2]ds � s − t j ,

where we have used the properties of W (t) and that η j is bounded by one.


�
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