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Abstract—Estimating biological joint moments using wearable 

sensors could enable out-of-lab biomechanical analyses and 

exoskeletons that assist throughout daily life. To realize these 

possibilities, this study introduced a subject-independent hip 

moment estimator using a temporal convolutional network (TCN) 

and validated its performance and generalizability during 

multimodal ambulation. Electrogoniometer and simulated IMU 

data from sixteen participants walking on level ground, ramps and 

stairs were used to evaluate our approach when benchmarked 

against a fully-connected neural network, a long short-term 

memory network, and a baseline method (i.e., using subject-

average moment curves based on ambulation mode and gait 

phase). Additionally, the generalizability of our approach was 

evaluated by testing on ground slopes, stair heights, and gait 

transitions withheld during model training. The TCN 

outperformed the benchmark approaches on the hold-out data 

(p<0.05), with an average RMSE of 0.131±0.018 Nm/kg and R2 of 

0.880±0.030 during steady-state ambulation. When tested on the 

20 leave-one-out slope and stair height conditions, the TCN 

significantly increased RMSE only on the steepest (+18°) incline 

(p<0.05). Finally, the TCN RMSE and R2 was 0.152±0.027 Nm/kg 

and 0.786±0.055, respectively, during mode transitions. Thus, our 

approach accurately estimated hip moment and generalized to 

unseen gait contexts using data from three wearable sensors. 

 
Index Terms— Biomechanics estimation, machine learning, 

multimodal ambulation, neural networks, wearable sensors 

 

I. INTRODUCTION 

OWER limb joint moment estimation using wearable 

sensors could enable out-of-lab biomechanical analyses, 

provide real-time joint dynamics for long-term health 

monitoring, and could be used to modulate exoskeleton 

assistance during a variety of daily activities. Conventionally, 

biological joint moments are computed using inverse dynamics 

of subject-specific anatomical models [1], which rely on motion 

capture and ground reaction force measurements from 

stationary, in-lab systems (i.e. motion capture systems and force 

plates). This method has limited biomechanical analyses to 
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space- and time-constrained studies and mitigates the 

adoptability of biomechanically informed clinical 

interventions. Additionally, exoskeleton controllers typically 

rely on hand-engineered gait variables (e.g., ambulation mode 

and gait phase) to modulate assistance [2]–[6]. These 

approaches have successfully augmented human ambulation 

[7]–[10] but have been primarily limited to steady-state gait, 

such as constant speed treadmill walking. Currently, it is 

unknown how these robotic systems would affect human gait 

during real-world ambulation, especially during gait that is not 

well-defined by these hand-engineered variables. 

To reduce these limitations inherent to previous 

biomechanical analyses and exoskeleton controllers, 

researchers have developed biological joint moment estimators 

using anatomical, neuromusculoskeletal, and machine learning 

models informed by wearable sensors. Of these methods, 

machine learning approaches have the greatest potential to 

remove the need for subject-specific calibration and to reduce 

sensor suite complexity; however, model generalizability to a 

variety of ambulation conditions remains a concern. For 

instance, Stetter et al. found that a fully-connected neural 

network (FCNN) did not maintain accurate knee moment 

estimates when trained and tested across a wide variety of tasks 

[11]. Further, previous research has not evaluated model 

generalization to ambulatory conditions withheld from training, 

despite its relevance for real-world implementation. 

To address these limitations, we developed a novel joint 

moment estimator using a temporal convolutional network 

(TCN) [12] and evaluated its ability to estimate the biological 

hip flexion/extension moment of novel subjects across a wide 

variety of ambulatory tasks. These tasks included level ground, 

ramp ascent/descent, and stair ascent/descent ambulation with 

varying walking speeds, slopes, and stair heights. Since 

machine learning models can estimate biological joint moments 

using reduced sensor information, we limited the input of the 

TCN model to data from trunk and thigh inertial measurement 

units (IMUs) and a sagittal hip goniometer. We compared our 
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approach to three alternative hip moment estimation methods: 

a FCNN, a long short-term memory network (LSTM), and a 

non-machine learning baseline method. The baseline method 

estimated instantaneous hip moment from subject-averaged, 

mode-specific hip moment curves computed from the ground-

truth labels, which is an approach derived from biologically-

inspired torque controllers for wearable robots [8], [9]. The 

hyperparameters of each neural network were optimized to the 

task set to ensure a fair comparison among the estimators. 

We hypothesized that the TCN would improve the estimation 

root-mean-square error (RMSE) and coefficient of 

determination (R2) compared to the alternative neural networks 

as the TCN used dilated, causal convolutional layers to encode 

temporal information and learn features from the input data, 

which has led to competitive performance of TCN models in 

many previous sequence modeling tasks [12]. Additionally, we 

hypothesized that our approach would improve estimation 

RMSE and R2 when compared to the baseline method, since the 

inputs to the TCN contain stride-specific data. Finally, we 

evaluated the ability of the TCN to estimate hip moments 

during ambulation mode transitions, ramp slopes, and stair 

heights withheld from the training set to quantify the ability of 

the model to generalize to unseen conditions common in daily 

ambulation. Therefore, our study introduces a novel biological 

hip moment estimator and provides the first comprehensive 

analysis of such a system to estimate biological hip moments 

during level ground, ramp, and stair ambulation using a simple 

kinematic sensor suite. Additionally, our study is the first to 

quantify the generalizability of a joint moment estimation 

model to unseen ambulatory contexts, which is an important 

consideration for the implementation of these systems. In 

general, our approach accurately estimated biological hip 

moments and generalized well to unseen gait contexts, 

indicating our approach is applicable for real-world contexts. 

II. BACKGROUND 

Multiple approaches have been developed to estimate 

biological joint moments using wearable sensors. One such 

approach is to directly compute biological joint moments using 

inverse dynamics based on wearable sensor data instead of 

conventional motion capture and force plate data [13]–[18]. 

Biological joint kinematics can be measured using 

electrogoniometers or rotary encoders located at each joint [19] 

or computed using accelerometer and gyroscope data [15]–[17], 

[19]. Additionally, the ground reaction forces and moments 

(GRFs) can be estimated using instrumented footwear (e.g., 

pressure insoles) [13], [15], [20]–[22], model-based approaches 

[14], [17], [18], and/or data-driven estimators [21]–[24]. One 

benefit of the wearable sensor-based inverse dynamics 

approach is that it is highly generalizable across activities, 

including walking [13]–[15], [17], running [18] jumping [18], 

and skiing [16]. Unfortunately, one major limitation of the 

inverse dynamics approach is that it requires complete 

kinematic and kinetic data of the anatomical model. This 

requirement can lead to cumbersome and complicated 

measurement systems, especially when estimating biological 

joint moments close to the center of mass (e.g., at the hip joint), 

limiting the practicality of this method. 

Another model-based approach to estimate biological joint 

moments is to use a forward dynamics neuromusculoskeletal 

model informed by joint kinematics and electromyography 

(EMG) [25]–[27]. This approach removes the need for GRF 

measurements by modeling the muscle force dynamics about 

the biological joint of interest, using an anatomical model and 

EMG-driven muscle dynamics [26]. Unfortunately, this 

approach still requires multi-joint kinematic measurements to 

account for biarticular muscle dynamics and requires ground-

truth biological moments to calibrate the neuromusculoskeletal 

model given a new subject or EMG electrode placement [25]. 

Additionally, EMG-informed forward dynamics models require 

accurate placement of EMG electrodes to model muscle 

activation dynamics, which requires previous training and 

detailed setup. These limitations currently reduce the viability 

of this approach for useful biological joint moment estimation. 

Recently, data-driven methods have been implemented as an 

alternative approach for estimating biological joint moments 

using reduced sensor information [11], [22], [28]–[32]. 

Accurate results are encouraging, since these machine learning 

models could lead to large-scale, out-of-lab biomechanics 

studies, health monitoring, and unified exoskeleton control, 

using low-cost, simple sensor suites. For instance, in our 

previous work, we implemented a FCNN and a XGBoost model 

that could accurately estimate hip flexion/extension moments 

during level and sloped walking using only kinematic 

measurements onboard a hip exoskeleton [29]. Further, Mundt 

et al. recently implemented a FCNN that could accurately 

estimate lower limb joint moments of a novel subject using 

inertial data during the stance phase of level walking [30], 

potentially removing the need for subject-specific calibration. 

Dorschky et al. expanded these findings by introducing a 

convolutional neural network to estimate sagittal lower limb 

joint moments of novel subjects during walking and running 

using inertial input data [32]. Unfortunately, machine learning-

based joint moment estimation models may lose relevance 

when evaluated on additional tasks. For instance, Stetter et al. 

found that training a FCNN to estimate knee moments during a 

multitude of tasks, including walking, running, turning, and 

cutting maneuvers, based on IMU data resulted in decreased 

model performance compared to previous neural networks that 

were evaluated on a limited task set [11]. This concern 

prompted our study, which proposed a novel joint moment 

estimator and evaluated its generalizability to novel subjects 

and several conditions common in community ambulation. 

III. BIOMECHANICAL DATASET 

A. Experimental Protocol & Measurements 

Sixteen able-body participants (10 males, 6 females, height 

of 1.70±0.07 m, body mass of 68.4±12.2 kg, and age of 22±4 

years) provided written informed consent according to the 

protocol approved by the Georgia Institute of Technology 

Institutional Review Board for this study. Each participant 

completed ten circuits of level ground (LG) walking at a slow, 

self-selected, and fast walking speed (30 total LG circuits per 
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participant). Each participant also completed 10 trials of ramp 

ascent (RA), ramp descent (RD), stair ascent (SA), and stair 

descent (SD) ambulation overground for each ground slope 

(5.2°, 7.8°, 9.2°, 11°, 12.4°, and 18°) and ADA compliant stair 

height (10.2 cm, 12.7 cm, 15.2 cm, and 17.8 cm) (Fig. 1). 

Transitions between each ascent/descent ambulation mode and 

LG walking were also recorded for each slope and stair height 

condition, with the right leg leading the transition. The 

transition stride was segmented to start at the final right leg toe-

off of the previous ambulation mode and end at the first right 

leg toe-off of the new ambulation mode. Further details about 

the experimental collection are provided by Camargo et al. [33]. 

Motion capture and 6-axis GRF data were collected using a 

36-camera Vicon motion capture system (Oxford Metric, 

Oxford, UK) and 10 Bertec force plates (Bertec, Columbus, 

Ohio, USA), respectively. The 200 Hz motion capture data and 

1000 Hz GRF data were filtered using a zero-lag, lowpass filter 

with cutoff frequencies of 6 and 20 Hz, respectively. In 

addition, wearable sensor data were also collected to be used as 

input to the hip moment estimation models. Hip 

flexion/extension angle of the right leg was measured using an 

electrogoniometer (Biometrics Ltd, UK) at 1000 Hz. Motion 

capture, GRF, and electrogoniometer data were sampled and 

synchronized using a Vicon Lock Sync Box. Additionally, 

accelerometer and gyroscope data were sampled from 6-axis 

IMUs (Yost, Ohio, USA) mounted on the trunk and right thigh 

of the participants. IMU data were sampled by and stored on a 

Raspberry Pi 3 (Raspberry Pi Foundation, Cambridge, UK) at 

200 Hz and synchronized with the remaining data by toggling a 

digital signal directly wired to the Lock Sync Box with each 

new sample. Unfortunately, the measured IMU data were 

discarded due to data dropout and signal saturation throughout 

the experimental data collection and were replaced by 

synthesized IMU data based on the kinematics of each stride 

(see Appendix A for implementation details and Supplement I 

for validation).  

 

B. OpenSim Hip Moment Labeling 

Ground-truth sagittal hip moment was computed using the 

opensource, musculoskeletal modeling software, OpenSim v4.1 

[34], [35]. The Gait2354 lower limb model was scaled to fit 

each participant’s segment dimensions and inertial properties 

using the Scale Tool. Lower limb joint kinematics were 

computed using the Inverse Kinematics Tool, which used 

weighted least-squares optimization to minimize the squared 

distance between the measured and modeled marker trajectories 

as a function of joint position. Lower limb joint moments were 

then computed for each trial using the Inverse Dynamics Tool, 

which solved the equations of motion of the scaled anatomical 

model using the joint kinematics and measured GRFs. 

IV. MODEL OPTIMIZATION AND EVALUATION 

A. Biological Hip Moment Estimators 

Four hip moment estimation approaches were implemented 

in this study: the TCN (our approach) shown in Fig. 2, the non-

machine learning baseline method, and two alternative neural 

networks (i.e., the FCNN and the LSTM) used to benchmark 

our approach. The output of each estimator was a scalar 

estimate of the hip flexion/extension moment of the right leg. 

We considered estimating hip flexion/extension dynamics for 

this study, since the hip is a primary energy contributor during 

multimodal ambulation [36] and would require the most 

wearable sensors to estimate the biological moment using 

inverse dynamics, compared to the ankle and knee joints. 

The Baseline Method – was included in our study to provide 

an approach representative of those used by exoskeleton 

biological torque controllers [8], [9], which provide assistance 

based on a predefined torque trajectory shaped by normative 

biomechanical curves. The baseline method was computed as 

the subject-average hip moment profile with respect to gait 

phase per ambulation mode and mode transition, thus predicting 

the average, mode-dependent torque profile for each stride. In 

our study, the baseline method was informed by a perfectly 

accurate oracle of both gait phase and ambulation mode. This 

approach represented the performance of the baseline method 

in a best-case, but unrealistic, scenario, since gait phase and 

mode estimates also have error in practice [2]–[5]. 

Opposed to the baseline method, the neural networks did not 

rely on gait phase and ambulation mode data. Instead, the inputs 

to each neural network consisted of the synthesized trunk and 

thigh 6-axis IMU data, the hip goniometer angle, and the hip 

angular velocity (14 channels total) (Fig. 1). The hip velocity 

was computed using first-order backward finite differencing 

from the hip goniometer angle and was lowpass filtered using a 

third order Butterworth filter with a cutoff frequency of 10 Hz, 

which maintained causality of the input data. The ground-truth 

hip moment computed using OpenSim was used as the label for 

training and testing the models. Each model was implemented 

in Python v3.6.9 using the deep learning framework, Pytorch 

v1.6.0. The hyperparameters of the TCN, FCNN, and LSTM 

were independently optimized using 16-fold leave-one-subject-

out validation (details in Appendix B). Each neural network 

was trained using the Adam optimizer and an MSE loss 

function. The optimized models for each type of neural network 

were then trained for 300 epochs from random initialization 

using a leave-one-subject-out approach. The results for all 

 
Fig. 1. Experimental setup. Participants walked on level ground, ramps and 

stairs of several slopes and heights, shown in green. Force plates and a motion 
capture system were used to collect conventional biomechanics data (red). 

Wearable sensors were used to collect additional kinematic measurements 

(blue). *The trunk and thigh inertial measurement unit (IMU) data were 

replaced with simulated data due to experimental limitations. 
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further analyses were computed using this training method. 

The FCNN – served as an additional comparison to our 

approach, as it has effectively estimated lower limb biological 

joint moments in previous studies [22], [28]–[30], but has so far 

diminished in performance when trained on a large set of 

ambulatory tasks [11]. FCNNs use a series of fully connected 

layers comprising hidden nodes activated by a nonlinear 

activation function to estimate the output. Based on our 

hyperparameter optimization, the FCNN in our study consisted 

of seven total layers – six hidden layers of size 30, activated by 

the ReLU function, and an output layer. Batch normalization 

after each hidden layer was also used to stabilize the network 

during training. Unique to the FCNN, a feature extraction layer 

that preceded the fully connected layers was included to reduce 

the dimensionality and encode temporal relationships in the 

input data. Specifically, the feature extraction layer computed 

the mean, standard deviation, and latest value over a sliding 

window for each input channel, which were the features found 

to reduce hip moment estimation RMSE in our previous work 

[29]. This reduced the dimensionality of the FCNN input space 

from ℝ1400 to ℝ42, given the 100 frame (495 ms) window size 

of the input data selected as a hyperparameter of the network. 

The LSTM – was also used in our study as the final 

benchmark to our approach. The LSTM is a type of recurrent 

neural network (RNN), which are a class of neural networks 

effective in time series regression tasks since they temporally 

propagate information with each new estimate. This approach 

allows RNNs to learn latent representations of time history 

information during backpropagation [37]. LSTMs are 

particularly useful since they also mitigate the problem of 

vanishing gradients common to RNNs via the gated structure 

and cell state within each LSTM node [38]. Since LSTMs 

model temporal relationships in the data, we did not include a 

feature extraction layer to the model. Specifically, the input data 

to the LSTM at a given discrete time instance 𝑡 was the raw 

sensor data measured at 𝑡, which had dimension ℝ14 and the 

hidden and cell states output by each LSTM node at 𝑡-1. The 

hidden and cell states were randomly initialized from a normal 

distribution with zero mean and unit variance. The optimized 

LSTM was composed of two LSTM layers of size 50 and a 

fully-connected layer to reshape the network output to size one. 

The TCN (Our Approach) – was proposed as our candidate 

network for estimating biological hip moment (Fig. 2) due to 

the benefits of dilated, causal convolution for joint moment 

estimation. Firstly, convolutional layers learn feature 

representations in the input data, removing the need for hand-

engineered methods [39]. Additionally, the fixed window size 

of 1D causal, convolutional layers have been shown to retain 

temporal information over longer input sequences in practice 

compared to LSTMs [12]. These benefits of convolutional 

networks have yielded impressive performance in a variety of 

sequence modeling tasks [5], [6], [12], [32]. In this study, we 

implemented the TCN as introduced by Bai et al. [12], which 

used dilated 1D convolution to exponentially increase the 

receptive field of the model (ℎ) with a linear increase in its 

number of layers, which mitigates the total number of learnable 

parameters of the model compared to a conventional 

 
Fig. 2. The hip moment estimation network. The dilation factor is increased 

after each residual connection, shown with a change in hue, to exponentially 

increase the receptive field of the network with network depth. Residual 
connections are used between increases in dilation to further stabilize the 

network during training. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

5 

convolutional network with the same receptive field. 

Specifically, the  𝑗𝑡ℎ output of the dilated 1D convolution 

operation 𝐹(∙) of a sequence 𝑥, is computed as  

 

𝐹𝑗(𝑥) = ∑ 𝑓𝑖𝑥𝑗−𝑑𝑖

𝑘−1

𝑖=0

 , (1) 

 

where 𝑘 is the kernel size, 𝑓𝑖 is the 𝑖𝑡ℎ weight of the learned 1D 

kernel, and 𝑑 is the dilation factor. From (1), it can be seen that 

when 𝑑 = 1, the dilated convolution is equivalent to a regular 

1D convolutional layer and increasing 𝑑 increases the range 

over which the convolution spans the input sequence. From 

[12], 𝑑 was exponentially increased with each residual block in 

the network (each consisting of two convolutional layers), 

resulting in an exponential increase in ℎ, computed as, 

 

ℎ = 1 + ∑2(𝑘 − 1)𝑑𝑖

𝑙−1

𝑖=0

 , (2) 

𝑑𝑖 = 2𝑖  , (3) 

 

where 𝑙 is the number of residual blocks in the network. This 

approach preserved the resolution of the input sequence. In 

other words, none of the inputs were “skipped” by the network 

due to the dilation. Thus, the receptive field of the TCN was 

determined by the number of layers and kernel size (constant 

for all layers). The optimized TCN hyperparameters (five 

residual block levels with channel size of 50 and kernel size of 

four), resulted in a receptive field of 187 frames (930 ms). Thus, 

the optimized TCN had an input space of ℝ14𝑥187 for each hip 

moment estimate in time. 

 

B. Model Generalization to Unseen Gait Contexts 

Each neural network variant was tested on the gait transitions 

collected in the dataset (i.e., RA/RD/SA/SD to LG and LG to 

RA/RD/SA/SD). Since the training set only included steady-

state strides, testing each model on the transition strides 

evaluated its ability to generalize to a subset of non-cyclic gait. 

To further test the generalization of the subject-independent 

TCN, we also tested its performance on multiple hold-out 

conditions. First, the model was evaluated using a leave-one-

ground-slope-out and leave-one-stair-height-out approach, in 

which the model was trained after random initialization while 

permuting through the hold-out conditions. With each 

permutation, the hold-out condition was a single ground slope 

or stair height, which was then used as the test condition for the 

subject-independent models. This analysis quantified the 

performance of the model when generalizing to unseen contexts 

(i.e., novel ground slopes and stair heights).  

 

C. Statistical Analysis 

All statistical tests were completed using SPSS Statistics 

21.0 (IBM, Amonk, NY, USA) with an 𝛼 = 0.05 level of 

significance. A one-way repeated measures analysis of variance 

(ANOVA) was used to test for a significant effect among the 

results of the four hip moment estimation methods during 

steady-state ambulation and during mode transitions. A two-

way repeated measures ANOVA was used to compute main and 

interaction effects between two hip moment estimators (i.e., the 

TCN and baseline method) and ambulation modes. Similarly, a 

two-way repeated measures ANOVA was used to compute 

significant effects within the ground slope and stair height 

analyses. A Greenhouse-Geisser correction was used to correct 

for any violations in sphericity. A post hoc multiple 

comparisons test was used to compute pairwise differences 

within each comparison with a Bonferroni correction to control 

the familywise error rate. Finally, a paired t-test was used to 

compute statistical differences between the overall steady-state 

and mode transition results of the TCN. 

V. RESULTS 

A. Steady-State Hip Moment Estimation Performance 

The TCN significantly improved the leave-one-subject-out 

validation RMSE and R2 compared to the FCNN, LSTM, and 

baseline method (Table I) (p<0.05). Additionally, the FCNN 

and LSTM models significantly reduced estimation RMSE 

compared to the baseline method (p<0.05) but did not 

statistically differ in R2 compared to the baseline method. As 

shown in Fig. 3, the TCN also reduced the average RMSE 

during steady-state LG, RA, RD, SA, and SD ambulation by 

29.1%, 31.8%, 21.8%, 12.1%, and 25.4%, respectively, 

compared to the baseline method. These differences were 

significant for all modes other than SA (Fig. 3) (p<0.05). 

Additionally, the TCN resulted in an average R2 of 

0.904±0.050, 0.935±0.040, 0.895±0.050, 0.897±0.049, and 

0.753±0.077 for the LG, RA, RD, SA, and SD modes, 

respectively. Compared to the baseline method, the TCN 

significantly increased R2 for all modes other than RA and SA 

(p<0.05). Fig. 4 shows the estimated hip moment of the TCN 

and baseline method for representative strides of the steady-

state ambulation conditions. 

The TCN RMSE did not statistically differ among 

ambulation modes, but RMSE of the baseline method for RA 

was significantly higher than that of SA (p<0.05). The resulting 

TCN R2 for SD was significantly lower than the TCN R2 for the 

TABLE I 

HIP MOMENT ESTIMATION RESULTS FOR STEADY-STATE AMBULATION 

 
Our Approach 

(TCN) 
FCNN LSTM Baseline Method 

RMSE (Nm/kg) 0.131±0.018* 0.150±0.024*† 0.149±0.020*† 0.173±0.015† 

R2 0.880±0.030* 0.848±0.039† 0.842±0.037† 0.793±0.061† 

* and † represent a statistical difference from the baseline method and TCN estimates, respectively (p<0.05). All other comparisons were not statistically different. 
Best performance according to RMSE and R2 is bolded. Results are presented as the leave-one-subject-out average ± 1 standard deviation. 
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other ambulation modes (p<0.05). Similarly, the R2 of the 

baseline method was significantly lower for SD compared to 

the other ambulation modes (p<0.05). The difference in 

baseline R2 between RA and RD was also significant (p<0.05). 

 

B. Model Generalization 

As shown in Table II, the TCN significantly improved the 

leave-one-subject-out validation RMSE and R2 compared to the 

alternative approaches when tested on the mode transition 

dataset (p<0.05). Additionally, the LSTM model significantly 

increased R2 compared to the baseline method (p<0.05), but all 

other comparisons were not statistically significant. Further, the 

average RMSE of the TCN estimate on the transition dataset 

was 0.152±0.027 Nm/kg, which was 16.3% larger than the 

average steady-state RMSE (Fig. 5a) (p<0.05). As shown in 

Fig. 5b, the average RMSE of the mode transitions ranged from 

0.129±0.034 Nm/kg (SA to LG) to 0.186±0.046 Nm/kg (LG to 

RA). Additionally, the TCN estimate on the transition dataset 

resulted in an R2 of 0.786±0.055 (Fig. 5c), which was 

significantly lower than the R2 of the steady-state result 

(p<0.05). The average R2 of each mode transition is shown in 

Fig. 5d, which ranged from 0.537±0.165 (SD to LG) to 

0.918±0.028 (LG to RA). 

Fig. 6 shows the TCN results of the ground slope and stair 

height hold-out analyses. The two-way ANOVA resulted in 

significant main and interaction effects among the ground slope 

and hold-out factors when tested on the RMSE and R2 results 

(p<0.05); however, the 18° hold-out condition was the only 

condition to significantly reduce model performance according 

to the multiple comparisons test, increasing the average +18° 

validation RMSE by 0.077 Nm/kg (p<0.05). The remaining 

leave-one-slope-out comparisons were not statistically 

significant, resulting in an average increase in RMSE within 

0.024 Nm/kg and decrease in R2 within 0.033, compared to 

including each hold-out slope in the training set. 

When testing the results of the stair height hold-out analysis, 

the two-way ANOVA resulted in significant main effects 

among the stair height and hold-out factors (p<0.05); however, 

none of the hold-out conditions resulted in statistical 

significance during the post hoc pairwise comparisons. In 

general, withholding each stair height increased TCN RMSE 

within 0.016 Nm/kg and decreased R2 within 0.034, compared 

to including each held-out stair height in the training set. 

VI. DISCUSSION 

This study introduced a novel biological hip moment 

estimator using a TCN framework, compared its performance 

to three alternative estimators, and evaluated its generalizability 

to a variety of overground ambulatory conditions. As 

hypothesized, the TCN outperformed the FCNN, LSTM, and 

baseline method when tested on the steady-state ambulation 

data and mode transition data with respect to RMSE and R2 

(Tables I and II) (p<0.05). Additionally, the TCN improved 

RMSE and R2 results for each steady-state ambulation mode 

compared to the baseline method (Fig. 3), significantly 

improving these outcomes for the LG, RD, and SD ambulation 

modes (p<0.05). Thus, the TCN better captured the changes in 

hip moment per stride, despite that the baseline method was 

informed by a perfectly accurate gait phase and ambulation 

mode oracle. In practice, these estimates also have error, which 

would further reduce the accuracy of the baseline method [2]–

[5]. Therefore, the performance of the TCN is sufficient for 

modulating exoskeleton assistance, since it outperformed the 

baseline method, and maintains the potential to generalize 

across ambulatory tasks. 

 
Fig. 4. Representative single stride results. Hip flexion/extension moment estimated by the temporal convolutional network (TCN) and the baseline method (BASE) 

are shown for representative strides of each ambulation condition. The ground-truth hip moment for each stride is also shown. The resulting RMSE (Nm/kg) of the 

TCN and BASE method for each selected stride is included for reference. Heel strike denotes the start of the gait cycle.  

 
Fig. 3. Hip moment estimation results per ambulation mode. The (a) RMSE 

(lower is better) and (b) R2 (higher is better) results of the temporal 
convolutional network (TCN) and baseline method are shown. Results are 

presented for the level ground (LG), ramp ascent (RA), ramp descent (RD), 

stair ascent (SA), and stair descent (SD) ambulation modes. The error bars 
represent ±1 standard deviation. * represents statistical difference (p<0.05). 

Statistical comparisons among ambulation modes are not shown. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

7 

There were no significant differences in TCN estimation 

RMSE among the steady-state ambulation modes. We expected 

this result since the network was trained using the MSE loss 

function, weighting each ambulation mode with equal 

importance. However, the SD R2 (0.753±0.077) was 

significantly lower than that of all other steady-state ambulation 

modes, which had an average R2 of 0.908 (p<0.05). Similarly, 

the resulting R2 results of the LG to SD and SD to LG 

transitions were lower than those the other mode transitions 

(Fig. 5d). The reduction in R2 of the SD conditions was a result 

of the decreased range in hip moment along the SD strides 

compared to the other modes. Therefore, the model maintained 

performance with respect to the selected loss function; 

however, it may be important to use a loss function that 

normalizes loss among ambulation modes if relative estimation 

performance of each ambulation mode is more important than 

absolute error. For instance, normalizing loss across ambulation 

modes may be an important consideration when developing a 

biological moment estimator to be used for multimodal, out-of-

lab biomechanical analyses; however, it may be more 

appropriate to minimize absolute error when developing a 

similar system for exoskeleton control. 

The TCN was robust to 19 of the 20 ground slope and stair 

height hold-out conditions (Fig. 6), resulting in a maximum 

increase in RMSE within 0.024 Nm/kg and decrease in R2 

within 0.034, other than for the +18° hold-out condition. The 

reduced performance on the +18° hold-out was expected since 

this condition was 45% steeper than the second most severe 

ground slope condition of 12.4°. Therefore, it is important to 

prioritize collecting training data at steep inclines if these 

conditions are within the test set distribution (e.g., if using a 

neural network to estimate joint moments during hiking); 

however, a reduced set of ramp conditions can be used in the 

training dataset if this is less of a concern (e.g., for joint moment 

estimation during typical community ambulation), since the 

model generalized well when holding out less severe ground 

slopes. Additionally, the TCN was robust against the stair 

 
Fig. 6. Leave-out analysis results. The (a) RMSE (lower is better) and (b) R2 
(higher is better) results of the temporal convolutional network (TCN) are 

shown with and without withholding each ground slope condition from the 

training set. The (c) RMSE and (d) R2 results of the TCN with and without 
withholding each stair height from the training dataset are also shown. The error 

bars represent ±1 standard deviation. * represents statistical difference 

comparing the results when each ground slope and stair height was and was not 

included in the training dataset (p<0.05). 

TABLE II 
HIP MOMENT ESTIMATION RESULTS DURING AMBULATION MODE TRANSITIONS 

 
Our Approach 

(TCN) 
FCNN LSTM Baseline Method 

RMSE (Nm/kg) 0.152±0.027* 0.173±0.035† 0.169±0.026† 0.177±0.023† 

R2 0.786±0.055* 0.738±0.067† 0.757±0.046*† 0.712±0.047† 

* and † represent a statistical difference from the baseline method and TCN estimates, respectively (p<0.05). All other comparisons were not statistically different. 

Best performance according to RMSE and R2 is bolded. Results are presented as the leave-one-subject-out average ± 1 standard deviation. 
 

 
Fig. 5. Ambulation mode transition results. The overall (a) RMSE (lower is 
better) and (c) R2 (higher is better) results of the temporal convolutional 

network (TCN) are shown for the steady-state and ambulation mode transition 

data. Additionally, the TCN (b) RMSE and (d) R2 results of each ambulation 
mode transition involving level ground (LG), ramp ascent (RA), ramp descent 

(RD), stair ascent (SA), and stair descent (SD) are shown. The error bars 
represent ±1 standard deviation. * represents statistical difference (p<0.05). 
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height hold-out conditions, which encompassed the complete 

range of ADA compliant stair heights. Therefore, it is unlikely 

that additional stair height conditions would need to be included 

in the training dataset to ensure the model can generalize to stair 

ascent/descent; however, additional SD data and improved 

model training methods may improve estimation R2 on the SD 

trials in general. 

While the TCN model performed significantly worse on the 

ambulation mode transition data compared to the overall 

steady-state results, as shown in Fig. 5a and 5c (p<0.05), the 

transition data results were of similar magnitude to the steady-

state results of the baseline method. This comparable result 

suggests that the mode transition performance may be sufficient 

for exoskeleton control, since exoskeleton controllers similar to 

the baseline method have been shown to augment human 

walking [8], [9]. In future work, including transition data in the 

training set will likely improve these results. 

Though challenging to compare due to experimental 

differences, the LG validation performance of the TCN in our 

study was competitive with those of previous subject-

independent joint moment estimators that used wearable 

sensors. The TCN in our study resulted in an average RMSE 

and R2 of 0.118±0.042 Nm/kg and 0.904±0.050, respectively, 

for steady-state LG walking. Using an IMU-based CNN trained 

on LG walking and running data, Dorschky et al. reported a hip 

moment estimation RMSE and correlation coefficient of 0.17 

Nm/kg and 0.91 (approximate R2 of 0.82), respectively, during 

LG walking [32]. Similarly, Mundt et al. reported a sagittal hip 

moment correlation coefficient above 0.95 (approximate R2 

above 0.90) during the stance phase of LG walking; however, 

their IMU-based FCNN model was noncausal and only trained 

on LG walking data [30]. Additionally, the LG results of our 

TCN were comparable to those of inverse dynamics-based 

models that require additional wearable sensor input. For 

instance, Forner-Cordero et al. reported a sagittal hip moment 

RMSE of 0.15 Nm/kg and correlation coefficient of 0.92 

(approximate R2 of 0.85), using a linked-segment model and 

pressure insoles [13]. Therefore, the TCN model of our study 

maintained LG performance compared to previous literature, 

while proving to generalize to additional common ambulation 

modes. Additionally, we found that model performance was 

maintained despite the substantially reduced sensor suite, which 

is encouraging for future implementations of this joint moment 

estimation method, especially when onboard an exoskeleton. 

Since joint moment estimation of a novel subject during ramp 

and stair walking and during mode transitions has not been 

previously characterized, our results can stand as a benchmark 

for following joint moment estimation studies. 

This study contained multiple limitations. Due to 

experimental difficulties, we substituted the experimentally 

collected thigh and trunk IMU data with synthesized IMU data 

based on the OpenSim anatomical model and stride kinematics 

for each participant and trial (implementation details in 

Appendix A and validation in Supplement I). This approach 

assumed that the IMUs were placed at the same location and 

orientation among participants and that the IMU was rigidly 

connected to the skeletal system of the participant. In practice, 

it is likely that soft tissue deformation, changes in subject 

anthropometry, and sensor noise would induce additional 

complexity in the IMU data that was not included in our dataset. 

Another limitation of this study is that the entire training dataset 

was composed of steady-state ambulation data. It is likely that 

including additional mode transition data in the training dataset 

will improve model generalizability to additional ambulatory 

tasks; however, this was outside the scope of our current study. 

Finally, the neural networks implemented in this study required 

data from a goniometer, thigh-mounted IMU, and trunk-

mounted IMU. Though this is a much simpler sensor suite than 

those of alternative approaches (e.g., requiring complete 

kinematic and kinetic measurements of the distal joints or EMG 

measurements), currently existing technology (e.g., hip 

exoskeletons) may not measure sagittal hip kinematics and 

thigh and trunk IMU data by default. In this case, an analysis of 

the importance of each input sensor could be used to reduce the 

required sensor suite or wearable devices would need to be 

updated with additional sensors. 

VII. CONCLUSION 

This study proposed a novel, subject-independent biological 

hip moment estimator using the TCN framework and a limited 

set of kinematic wearable sensors localized around the hip joint. 

Our approach resulted in an average estimation RMSE of 

0.131±0.018 Nm/kg and R2 of 0.880±0.030 when tested on 

multimodal, overground walking. These results outperformed 

the FCNN and LSTM networks as well as the baseline method, 

which was representative of methods used by previous 

exoskeleton controllers [8], [9] (p<0.05). Not only did our 

model result in competitive performance with previous machine 

learning and inverse dynamics-based hip moment estimators in 

the literature, but the TCN also generalized well to a variety of 

ambulatory tasks and hold-out conditions. In general, the TCN 

was robust to withholding each slope and stair height from the 

training set, except for when tested on the steepest (+18°) slope 

(p<0.05). Additionally, the TCN RMSE and R2 was 

0.152±0.027 Nm/kg and 0.786±0.055, respectively, when 

tested on the ambulation mode transitions, which was worse 

than the steady-state ambulation results (p<0.05); however, the 

transition results were similar to the steady-state results of the 

baseline method, suggesting the TCN performance is suitable 

for exoskeleton control. In the future, this system should be 

validated in real-time for biomechanical analyses, health 

monitoring, and exoskeleton control. 

VIII. APPENDIX 

A. IMU Synthetization 

Due to saturation and dropout of the thigh and trunk IMUs, 

the accelerometer and gyroscope data were replaced using 

synthesized data from the OpenSim model during each 

recorded stride. The synthesized data was computed for each 

trial using the OpenSim API. First, the homogenous 

transformation matrix 𝑇𝐵
 

𝐺  from the reference frame of a given 

model body 𝐵 to the ground inertial reference frame 𝐺 was 

computed for the trunk and right femur as, 
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𝑇𝐵
 

𝐺 = [
𝑅𝐵
 

𝐺 𝑝𝐺𝐵

0⃑ 1
] , (4) 

 

where 𝑅𝐵
 

𝐺  is the rotation matrix from 𝐵 to 𝐺 and 𝑝𝐺𝐵  is the 

vector from 𝐺 to 𝐵. At each timestep, 𝑇𝐵
 

𝐺  was computed using 

the getTransformInGround() method of the OpenSim::Body 

class after updating the model coordinates based on the inverse 

kinematics results. 

 To synthesize the gyroscopic data, the angular velocity 

vector  𝜔𝐵
 

𝐺  of 𝐵 in 𝐺 was computed using the angular velocity 

tensor 𝑊 as, 

 

𝜔𝐵
 

𝐺 = [

𝜔𝑥

𝜔𝑦

𝜔𝑧

] , (5) 

  

𝑊 = [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
] =

𝑑 𝑅𝐵
 

𝐺

𝑑𝑡
∙ 𝑅𝐺

 
𝐵  , (6) 

  

𝑅𝐺
 

𝐵 = 𝑅𝐵𝑇
 

𝐺  . (7) 

 

 

The gyroscopic data 𝜔𝐵
 

𝐵  was then computed as the angular 

velocity vector in the local frame of the body using, 

 

𝜔𝐵
 

𝐵 = 𝑅𝐺 ∙ 
𝐵 𝜔𝐵

 
𝐺  . (8) 

 

Since the IMUs were not located at the origin of the bodies 

(i.e., the trunk and right femur), an additional vector 𝑝𝐵𝐶  was 

introduced to approximate the location of each IMU with 

respect to its corresponding body, where 𝐶 represents the IMU 

reference frame. Fig. 7 shows the body and IMU reference 

frames of the trunk and right femur used in our study, and Table 

III shows the locations of each IMU described by its 

corresponding reference frame. The vector from 𝐺 to 𝐶 was 

then computed as, 

 

𝑝𝐺𝐶 = 𝑝𝐺𝐵 + 𝑅𝐵
 

𝐺 ∙ 𝑝𝐵𝐶  . (9) 

 

The synthesized accelerometer data expressed in 𝐺 was then 

computed as, 

 

𝑎𝐺𝐶 = −
𝑑2𝑝𝐺𝐶

𝑑𝑡2
+ 𝑔 

𝐺  , (10) 

 

where 𝑔 
𝐺  is the gravity vector in 𝐺. Finally, the accelerometer 

data was then transformed into its local frame as, 

 

𝑎𝐶 = 𝑅𝐺
 

𝐶 ∙ 𝑎𝐺𝐶  , (11) 

 

where 

 

𝑅𝐺
 

𝐶 = 𝑅𝐺
 

𝐵 , (12) 

 

since 𝐵 and 𝐶 are located on the same rigid body. The 

synthesized accelerometer data was then converted from m/s2 

to g-force by dividing 𝑎𝐶  by the acceleration of gravity. 

 

B. Neural Network Hyperparameter Optimization 

To ensure a fair comparison between TCN, FCNN, and 

LSTM, the hyperparameters of each neural network variant 

were optimized using 16-fold leave-one-subject-out validation. 

Specifically, sixteen neural network models (one per subject) 

were trained per set of hyperparameters, while the validation 

subject data was withheld from the training set. The candidate 

values for each hyperparameter were decided based on 

preliminary sweeps of the hyperparameters during pilot testing. 

Early stopping with a patience of 50 epochs and stopping 

criteria based on validation loss was used to prevent overfitting 

during the hyperparameter sweep. Each model was trained 

using the Adam optimizer and the mean-square-error loss 

function. The average RMSE among the sixteen models was 

used to score each set of hyperparameters. The final set of 

hyperparameters for each type of neural network was selected 

as the set that scored within 1% of the best validation RMSE 

among all hyperparameter combinations and that minimized the 

number of learnable parameters of the network. The number of 

learnable parameters was computed as the total number of 

elements among network parameters with a true requires_grad 

flag in Pytorch v1.6.0. This approach maintained model 

performance while minimizing training time and the likelihood 

of overfitting to the training set distribution. 

 
 

Fig. 7. Synthesized IMU locations. The reference frames of the (a) trunk and 
(b) thigh are shown in red. Additionally, the reference frames of the synthesized 

trunk and thigh IMUs are shown in blue. 

TABLE III 
SYNTHESIZED IMU LOCATIONS 

Model Body 

X-Axis 

Translation 

(mm) 

Y-Axis 

Translation 

(mm) 

Z-Axis 

Translation 

(mm) 

Trunk -52 415 0 

Right Thigh 76 -206 12 

Translations are expressed in terms of the reference frame of the model body. 
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1) TCN Hyperparameter Optimization 

The number of levels (two 1D convolutional layers per 

level), channel size, kernel size, dropout probability, and 

learning rate of the TCN were optimized (Table IV). To 

maintain a tractable number of hyperparameter combinations, 

the hyperparameter optimization was separated into two steps. 

During the first step, the number of levels, number of channels 

per hidden layer, and kernel size were optimized using a 

dropout probability of 0.2 and learning rate of 0.0001, which 

were selected from pilot results. Additionally, combinations of 

hyperparameters that resulted in a model receptive field above 

1000 ms were omitted since the motion capture data used to 

synthesize the IMUs were often unreliable outside of these 

bounds due to limitations of the capture space. The best model 

from this sweep resulted in a validation RMSE of 0.132±0.016 

Nm/kg using 237,761 learnable parameters; however, the 

selected model resulted in a validation RMSE of 0.133±0.017 

Nm/kg (within 1% of best model RMSE) using 94,601 

learnable parameters. Using the number of levels, channel size, 

and kernel size of the selected model, the dropout probability 

and learning rate were then optimized during the second step of 

the hyperparameter optimization by sweeping the candidate 

values shown in Table IV. The finalized TCN model resulted in 

a validation RMSE of 0.131±0.016 Nm/kg. 

 

2) FCNN Hyperparameter Optimization 

The number of layers, hidden size, dropout probability, input 

window size, and learning rate of the FCNN were optimized 

(Table V). Additionally, batch normalization after the hidden 

layers of the model was also tested for each combination of 

hyperparameters. Based on pilot results, the initial window size 

and learning rate were fixed to 500 ms and 0.0001, respectively, 

to maintain a tractable number of hyperparameter 

combinations. Using these values, each combination of the 

remaining hyperparameter candidate values was evaluated. The 

best model from this sweep resulted in a validation RMSE of 

0.148±0.016 Nm/kg using 35,501 learnable parameters; 

however, the selected model resulted in a validation RMSE of 

0.149±0.018 Nm/kg (within 1% of best model RMSE) using 

6,331 learnable parameters. Using the number of layers, hidden 

size, and dropout probability of the selected model, the final 

window size and learning rate were then determined by 

sweeping the candidate values shown in Table V. The finalized 

FCNN model resulted in a validation RMSE of 0.146±0.018 

Nm/kg using the hyperparameters shown in Table V. 

 

3) LSTM Hyperparameter Optimization 

The number of layers, number of LSTM cells per hidden 

layer, dropout probability, and learning rate of the LSTM 

network were optimized (Table VI). To maintain a tractable 

number of hyperparameter combinations, the hyperparameter 

optimization was separated into two steps. During the first step, 

the number of layers, number of cells per hidden layer, and 

dropout probability were optimized using a learning rate of 

0.0001, which was selected from pilot results. The best model 

from this sweep resulted in a validation RMSE of 0.150±0.021 

Nm/kg using 33,651 learnable parameters. This model 

architecture also had the lowest number of learnable parameters 

compared to all other models that resulted in a validation RMSE 

within 1% of the best model. Using the number of layers, 

number of cells per layer, and dropout probability of the 

selected model, the learning rate was then optimized during the 

second step of the hyperparameter optimization by sweeping 

the candidate values shown in Table VI. The finalized LSTM 

model resulted in a validation RMSE of 0.149±0.018 Nm/kg. 
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