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Subject-Independent, Biological Hip Moment
Estimation during Multimodal Overground
Ambulation using Deep Learning
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Abstract—Estimating biological joint moments using wearable
sensors could enable out-of-lab biomechanical analyses and
exoskeletons that assist throughout daily life. To realize these
possibilities, this study introduced a subject-independent hip
moment estimator using a temporal convolutional network (TCN)
and validated its performance and generalizability during
multimodal ambulation. Electrogoniometer and simulated IMU
data from sixteen participants walking on level ground, ramps and
stairs were used to evaluate our approach when benchmarked
against a fully-connected neural network, a long short-term
memory network, and a baseline method (i.e., using subject-
average moment curves based on ambulation mode and gait
phase). Additionally, the generalizability of our approach was
evaluated by testing on ground slopes, stair heights, and gait
transitions withheld during model training. The TCN
outperformed the benchmark approaches on the hold-out data
(p<0.05), with an average RMSE of 0.131+0.018 Nm/kg and R? of
0.880+0.030 during steady-state ambulation. When tested on the
20 leave-one-out slope and stair height conditions, the TCN
significantly increased RMSE only on the steepest (+18°) incline
(p<0.05). Finally, the TCN RMSE and R? was 0.152+0.027 Nm/kg
and 0.786+0.055, respectively, during mode transitions. Thus, our
approach accurately estimated hip moment and generalized to
unseen gait contexts using data from three wearable sensors.

Index Terms— Biomechanics estimation, machine learning,
multimodal ambulation, neural networks, wearable sensors

I. INTRODUCTION

OWER limb joint moment estimation using wearable

sensors could enable out-of-lab biomechanical analyses,
provide real-time joint dynamics for long-term health
monitoring, and could be used to modulate exoskeleton
assistance during a variety of daily activities. Conventionally,
biological joint moments are computed using inverse dynamics
of subject-specific anatomical models [ 1], which rely on motion
capture and ground reaction force measurements from
stationary, in-lab systems (i.e. motion capture systems and force
plates). This method has limited biomechanical analyses to
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space- and time-constrained studies and mitigates the
adoptability = of  biomechanically informed  clinical
interventions. Additionally, exoskeleton controllers typically
rely on hand-engineered gait variables (e.g., ambulation mode
and gait phase) to modulate assistance [2]-[6]. These
approaches have successfully augmented human ambulation
[7]-[10] but have been primarily limited to steady-state gait,
such as constant speed treadmill walking. Currently, it is
unknown how these robotic systems would affect human gait
during real-world ambulation, especially during gait that is not
well-defined by these hand-engineered variables.

To reduce these limitations inherent to previous
biomechanical analyses and exoskeleton controllers,
researchers have developed biological joint moment estimators
using anatomical, neuromusculoskeletal, and machine learning
models informed by wearable sensors. Of these methods,
machine learning approaches have the greatest potential to
remove the need for subject-specific calibration and to reduce
sensor suite complexity; however, model generalizability to a
variety of ambulation conditions remains a concern. For
instance, Stetter et al. found that a fully-connected neural
network (FCNN) did not maintain accurate knee moment
estimates when trained and tested across a wide variety of tasks
[11]. Further, previous research has not evaluated model
generalization to ambulatory conditions withheld from training,
despite its relevance for real-world implementation.

To address these limitations, we developed a novel joint
moment estimator using a temporal convolutional network
(TCN) [12] and evaluated its ability to estimate the biological
hip flexion/extension moment of novel subjects across a wide
variety of ambulatory tasks. These tasks included level ground,
ramp ascent/descent, and stair ascent/descent ambulation with
varying walking speeds, slopes, and stair heights. Since
machine learning models can estimate biological joint moments
using reduced sensor information, we limited the input of the
TCN model to data from trunk and thigh inertial measurement
units (IMUs) and a sagittal hip goniometer. We compared our

Technology, Atlanta, GA (correspondence email: dmolinaro3@gatech.edu). D.
D. Molinaro, I. Kang, J. Camargo, and A. J. Young are also with the George W.
Woodruff School of Mechanical Engineering, Georgia Institute of Technology,
Atlanta, GA. M. C. Gombolay is with the School of Interactive Computing,
Georgia Institute of Technology, Atlanta, GA.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

approach to three alternative hip moment estimation methods:
a FCNN, a long short-term memory network (LSTM), and a
non-machine learning baseline method. The baseline method
estimated instantanecous hip moment from subject-averaged,
mode-specific hip moment curves computed from the ground-
truth labels, which is an approach derived from biologically-
inspired torque controllers for wearable robots [8], [9]. The
hyperparameters of each neural network were optimized to the
task set to ensure a fair comparison among the estimators.

We hypothesized that the TCN would improve the estimation
root-mean-square  error (RMSE) and coefficient of
determination (R?) compared to the alternative neural networks
as the TCN used dilated, causal convolutional layers to encode
temporal information and learn features from the input data,
which has led to competitive performance of TCN models in
many previous sequence modeling tasks [12]. Additionally, we
hypothesized that our approach would improve estimation
RMSE and R? when compared to the baseline method, since the
inputs to the TCN contain stride-specific data. Finally, we
evaluated the ability of the TCN to estimate hip moments
during ambulation mode transitions, ramp slopes, and stair
heights withheld from the training set to quantify the ability of
the model to generalize to unseen conditions common in daily
ambulation. Therefore, our study introduces a novel biological
hip moment estimator and provides the first comprehensive
analysis of such a system to estimate biological hip moments
during level ground, ramp, and stair ambulation using a simple
kinematic sensor suite. Additionally, our study is the first to
quantify the generalizability of a joint moment estimation
model to unseen ambulatory contexts, which is an important
consideration for the implementation of these systems. In
general, our approach accurately estimated biological hip
moments and generalized well to unseen gait contexts,
indicating our approach is applicable for real-world contexts.

II. BACKGROUND

Multiple approaches have been developed to estimate
biological joint moments using wearable sensors. One such
approach is to directly compute biological joint moments using
inverse dynamics based on wearable sensor data instead of
conventional motion capture and force plate data [13]-[18].
Biological joint kinematics can be measured using
electrogoniometers or rotary encoders located at each joint [19]
or computed using accelerometer and gyroscope data [15]-[17],
[19]. Additionally, the ground reaction forces and moments
(GRFs) can be estimated using instrumented footwear (e.g.,
pressure insoles) [13], [15], [20]-[22], model-based approaches
[14], [17], [18], and/or data-driven estimators [21]-[24]. One
benefit of the wearable sensor-based inverse dynamics
approach is that it is highly generalizable across activities,
including walking [13]-[15], [17], running [18] jumping [18],
and skiing [16]. Unfortunately, one major limitation of the
inverse dynamics approach is that it requires complete
kinematic and kinetic data of the anatomical model. This
requirement can lead to cumbersome and complicated
measurement systems, especially when estimating biological
joint moments close to the center of mass (e.g., at the hip joint),

limiting the practicality of this method.

Another model-based approach to estimate biological joint
moments is to use a forward dynamics neuromusculoskeletal
model informed by joint kinematics and electromyography
(EMG) [25]-[27]. This approach removes the need for GRF
measurements by modeling the muscle force dynamics about
the biological joint of interest, using an anatomical model and
EMG-driven muscle dynamics [26]. Unfortunately, this
approach still requires multi-joint kinematic measurements to
account for biarticular muscle dynamics and requires ground-
truth biological moments to calibrate the neuromusculoskeletal
model given a new subject or EMG electrode placement [25].
Additionally, EMG-informed forward dynamics models require
accurate placement of EMG electrodes to model muscle
activation dynamics, which requires previous training and
detailed setup. These limitations currently reduce the viability
of this approach for useful biological joint moment estimation.

Recently, data-driven methods have been implemented as an
alternative approach for estimating biological joint moments
using reduced sensor information [11], [22], [28]-32].
Accurate results are encouraging, since these machine learning
models could lead to large-scale, out-of-lab biomechanics
studies, health monitoring, and unified exoskeleton control,
using low-cost, simple sensor suites. For instance, in our
previous work, we implemented a FCNN and a XGBoost model
that could accurately estimate hip flexion/extension moments
during level and sloped walking using only kinematic
measurements onboard a hip exoskeleton [29]. Further, Mundt
et al. recently implemented a FCNN that could accurately
estimate lower limb joint moments of a novel subject using
inertial data during the stance phase of level walking [30],
potentially removing the need for subject-specific calibration.
Dorschky et al. expanded these findings by introducing a
convolutional neural network to estimate sagittal lower limb
joint moments of novel subjects during walking and running
using inertial input data [32]. Unfortunately, machine learning-
based joint moment estimation models may lose relevance
when evaluated on additional tasks. For instance, Stetter et al.
found that training a FCNN to estimate knee moments during a
multitude of tasks, including walking, running, turning, and
cutting maneuvers, based on IMU data resulted in decreased
model performance compared to previous neural networks that
were evaluated on a limited task set [11]. This concern
prompted our study, which proposed a novel joint moment
estimator and evaluated its generalizability to novel subjects
and several conditions common in community ambulation.

III. BIOMECHANICAL DATASET

A. Experimental Protocol & Measurements

Sixteen able-body participants (10 males, 6 females, height
of 1.70+0.07 m, body mass of 68.4+12.2 kg, and age of 22+4
years) provided written informed consent according to the
protocol approved by the Georgia Institute of Technology
Institutional Review Board for this study. Each participant
completed ten circuits of level ground (LG) walking at a slow,
self-selected, and fast walking speed (30 total LG circuits per
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participant). Each participant also completed 10 trials of ramp
ascent (RA), ramp descent (RD), stair ascent (SA), and stair
descent (SD) ambulation overground for each ground slope
(5.2°,7.8°,9.2°,11°, 12.4°, and 18°) and ADA compliant stair
height (10.2 cm, 12.7 cm, 15.2 cm, and 17.8 cm) (Fig. 1).
Transitions between each ascent/descent ambulation mode and
LG walking were also recorded for each slope and stair height
condition, with the right leg leading the transition. The
transition stride was segmented to start at the final right leg toe-
off of the previous ambulation mode and end at the first right
leg toe-off of the new ambulation mode. Further details about
the experimental collection are provided by Camargo et al. [33].

Motion capture and 6-axis GRF data were collected using a
36-camera Vicon motion capture system (Oxford Metric,
Oxford, UK) and 10 Bertec force plates (Bertec, Columbus,
Ohio, USA), respectively. The 200 Hz motion capture data and
1000 Hz GRF data were filtered using a zero-lag, lowpass filter
with cutoff frequencies of 6 and 20 Hz, respectively. In
addition, wearable sensor data were also collected to be used as
input to the hip moment estimation models. Hip
flexion/extension angle of the right leg was measured using an
electrogoniometer (Biometrics Ltd, UK) at 1000 Hz. Motion
capture, GRF, and electrogoniometer data were sampled and
synchronized using a Vicon Lock Sync Box. Additionally,
accelerometer and gyroscope data were sampled from 6-axis
IMUs (Yost, Ohio, USA) mounted on the trunk and right thigh
of the participants. IMU data were sampled by and stored on a
Raspberry Pi 3 (Raspberry Pi Foundation, Cambridge, UK) at
200 Hz and synchronized with the remaining data by toggling a
digital signal directly wired to the Lock Sync Box with each
new sample. Unfortunately, the measured IMU data were
discarded due to data dropout and signal saturation throughout
the experimental data collection and were replaced by
synthesized IMU data based on the kinematics of each stride
(see Appendix A for implementation details and Supplement I
for validation).

B. OpenSim Hip Moment Labeling

Ground-truth sagittal hip moment was computed using the
opensource, musculoskeletal modeling software, OpenSim v4.1
[34], [35]. The Gait2354 lower limb model was scaled to fit
each participant’s segment dimensions and inertial properties
using the Scale Tool. Lower limb joint kinematics were
computed using the Inverse Kinematics Tool, which used
weighted least-squares optimization to minimize the squared
distance between the measured and modeled marker trajectories
as a function of joint position. Lower limb joint moments were
then computed for each trial using the Inverse Dynamics Tool,
which solved the equations of motion of the scaled anatomical
model using the joint kinematics and measured GRFs.

IV. MODEL OPTIMIZATION AND EVALUATION

A. Biological Hip Moment Estimators

Four hip moment estimation approaches were implemented
in this study: the TCN (our approach) shown in Fig. 2, the non-
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Fig. 1. Experimental setup. Participants walked on level ground, ramps and
stairs of several slopes and heights, shown in green. Force plates and a motion
capture system were used to collect conventional biomechanics data (red).
Wearable sensors were used to collect additional kinematic measurements
(blue). *The trunk and thigh inertial measurement unit (IMU) data were
replaced with simulated data due to experimental limitations.

machine learning baseline method, and two alternative neural
networks (i.e., the FCNN and the LSTM) used to benchmark
our approach. The output of each estimator was a scalar
estimate of the hip flexion/extension moment of the right leg.
We considered estimating hip flexion/extension dynamics for
this study, since the hip is a primary energy contributor during
multimodal ambulation [36] and would require the most
wearable sensors to estimate the biological moment using
inverse dynamics, compared to the ankle and knee joints.

The Baseline Method — was included in our study to provide
an approach representative of those used by exoskeleton
biological torque controllers [8], [9], which provide assistance
based on a predefined torque trajectory shaped by normative
biomechanical curves. The baseline method was computed as
the subject-average hip moment profile with respect to gait
phase per ambulation mode and mode transition, thus predicting
the average, mode-dependent torque profile for each stride. In
our study, the baseline method was informed by a perfectly
accurate oracle of both gait phase and ambulation mode. This
approach represented the performance of the baseline method
in a best-case, but unrealistic, scenario, since gait phase and
mode estimates also have error in practice [2]-[5].

Opposed to the baseline method, the neural networks did not
rely on gait phase and ambulation mode data. Instead, the inputs
to each neural network consisted of the synthesized trunk and
thigh 6-axis IMU data, the hip goniometer angle, and the hip
angular velocity (14 channels total) (Fig. 1). The hip velocity
was computed using first-order backward finite differencing
from the hip goniometer angle and was lowpass filtered using a
third order Butterworth filter with a cutoff frequency of 10 Hz,
which maintained causality of the input data. The ground-truth
hip moment computed using OpenSim was used as the label for
training and testing the models. Each model was implemented
in Python v3.6.9 using the deep learning framework, Pytorch
v1.6.0. The hyperparameters of the TCN, FCNN, and LSTM
were independently optimized using 16-fold leave-one-subject-
out validation (details in Appendix B). Each neural network
was trained using the Adam optimizer and an MSE loss
function. The optimized models for each type of neural network
were then trained for 300 epochs from random initialization
using a leave-one-subject-out approach. The results for all
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Fig. 2. The hip moment estimation network. The dilation factor is increased
after each residual connection, shown with a change in hue, to exponentially
increase the receptive field of the network with network depth. Residual
connections are used between increases in dilation to further stabilize the
network during training.

further analyses were computed using this training method.
The FCNN - served as an additional comparison to our
approach, as it has effectively estimated lower limb biological
joint moments in previous studies [22], [28]—[30], but has so far
diminished in performance when trained on a large set of
ambulatory tasks [11]. FCNNs use a series of fully connected
layers comprising hidden nodes activated by a nonlinear
activation function to estimate the output. Based on our
hyperparameter optimization, the FCNN in our study consisted
of seven total layers — six hidden layers of size 30, activated by
the ReLU function, and an output layer. Batch normalization
after each hidden layer was also used to stabilize the network
during training. Unique to the FCNN, a feature extraction layer
that preceded the fully connected layers was included to reduce
the dimensionality and encode temporal relationships in the
input data. Specifically, the feature extraction layer computed
the mean, standard deviation, and latest value over a sliding
window for each input channel, which were the features found
to reduce hip moment estimation RMSE in our previous work
[29]. This reduced the dimensionality of the FCNN input space
from R4 to R*2, given the 100 frame (495 ms) window size
of the input data selected as a hyperparameter of the network.
The LSTM - was also used in our study as the final
benchmark to our approach. The LSTM is a type of recurrent
neural network (RNN), which are a class of neural networks
effective in time series regression tasks since they temporally
propagate information with each new estimate. This approach
allows RNNs to learn latent representations of time history
information during backpropagation [37]. LSTMs are
particularly useful since they also mitigate the problem of
vanishing gradients common to RNNs via the gated structure
and cell state within each LSTM node [38]. Since LSTMs
model temporal relationships in the data, we did not include a
feature extraction layer to the model. Specifically, the input data
to the LSTM at a given discrete time instance t was the raw
sensor data measured at t, which had dimension R and the
hidden and cell states output by each LSTM node at t-1. The
hidden and cell states were randomly initialized from a normal
distribution with zero mean and unit variance. The optimized
LSTM was composed of two LSTM layers of size 50 and a
fully-connected layer to reshape the network output to size one.
The TCN (Our Approach) — was proposed as our candidate
network for estimating biological hip moment (Fig. 2) due to
the benefits of dilated, causal convolution for joint moment
estimation. Firstly, convolutional layers learn feature
representations in the input data, removing the need for hand-
engineered methods [39]. Additionally, the fixed window size
of 1D causal, convolutional layers have been shown to retain
temporal information over longer input sequences in practice
compared to LSTMs [12]. These benefits of convolutional
networks have yielded impressive performance in a variety of
sequence modeling tasks [5], [6], [12], [32]. In this study, we
implemented the TCN as introduced by Bai ef al. [12], which
used dilated 1D convolution to exponentially increase the
receptive field of the model (h) with a linear increase in its
number of layers, which mitigates the total number of learnable
parameters of the model compared to a conventional
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convolutional network with the same receptive field.
Specifically, the j** output of the dilated 1D convolution
operation F (+) of a sequence x, is computed as

k-1

FG) =) fixjai, M

=0

where k is the kernel size, f; is the i*" weight of the learned 1D
kernel, and d is the dilation factor. From (1), it can be seen that
when d = 1, the dilated convolution is equivalent to a regular
1D convolutional layer and increasing d increases the range
over which the convolution spans the input sequence. From
[12], d was exponentially increased with each residual block in
the network (each consisting of two convolutional layers),
resulting in an exponential increase in h, computed as,

-1
h=1+ ) 2(k—1d;, 2
2
d;=2', 3)

where [ is the number of residual blocks in the network. This
approach preserved the resolution of the input sequence. In
other words, none of the inputs were “skipped” by the network
due to the dilation. Thus, the receptive field of the TCN was
determined by the number of layers and kernel size (constant
for all layers). The optimized TCN hyperparameters (five
residual block levels with channel size of 50 and kernel size of
four), resulted in a receptive field of 187 frames (930 ms). Thus,
the optimized TCN had an input space of R1*¥*187 for each hip
moment estimate in time.

B. Model Generalization to Unseen Gait Contexts

Each neural network variant was tested on the gait transitions
collected in the dataset (i.e., RA/RD/SA/SD to LG and LG to
RA/RD/SA/SD). Since the training set only included steady-
state strides, testing each model on the transition strides
evaluated its ability to generalize to a subset of non-cyclic gait.
To further test the generalization of the subject-independent
TCN, we also tested its performance on multiple hold-out
conditions. First, the model was evaluated using a leave-one-
ground-slope-out and leave-one-stair-height-out approach, in
which the model was trained after random initialization while
permuting through the hold-out conditions. With each
permutation, the hold-out condition was a single ground slope
or stair height, which was then used as the test condition for the
subject-independent models. This analysis quantified the

performance of the model when generalizing to unseen contexts
(i.e., novel ground slopes and stair heights).

C. Statistical Analysis

All statistical tests were completed using SPSS Statistics
21.0 (IBM, Amonk, NY, USA) with an a = 0.05 level of
significance. A one-way repeated measures analysis of variance
(ANOVA) was used to test for a significant effect among the
results of the four hip moment estimation methods during
steady-state ambulation and during mode transitions. A two-
way repeated measures ANOV A was used to compute main and
interaction effects between two hip moment estimators (i.e., the
TCN and baseline method) and ambulation modes. Similarly, a
two-way repeated measures ANOVA was used to compute
significant effects within the ground slope and stair height
analyses. A Greenhouse-Geisser correction was used to correct
for any violations in sphericity. A post hoc multiple
comparisons test was used to compute pairwise differences
within each comparison with a Bonferroni correction to control
the familywise error rate. Finally, a paired t-test was used to
compute statistical differences between the overall steady-state
and mode transition results of the TCN.

V. RESULTS

A. Steady-State Hip Moment Estimation Performance

The TCN significantly improved the leave-one-subject-out
validation RMSE and R? compared to the FCNN, LSTM, and
baseline method (Table 1) (p<0.05). Additionally, the FCNN
and LSTM models significantly reduced estimation RMSE
compared to the baseline method (p<0.05) but did not
statistically differ in R? compared to the baseline method. As
shown in Fig. 3, the TCN also reduced the average RMSE
during steady-state LG, RA, RD, SA, and SD ambulation by
29.1%, 31.8%, 21.8%, 12.1%, and 25.4%, respectively,
compared to the baseline method. These differences were
significant for all modes other than SA (Fig. 3) (p<0.05).
Additionally, the TCN resulted in an average R? of
0.904+0.050, 0.935+0.040, 0.895+0.050, 0.897+0.049, and
0.753+0.077 for the LG, RA, RD, SA, and SD modes,
respectively. Compared to the baseline method, the TCN
significantly increased R? for all modes other than RA and SA
(p<0.05). Fig. 4 shows the estimated hip moment of the TCN
and baseline method for representative strides of the steady-
state ambulation conditions.

The TCN RMSE did not statistically differ among
ambulation modes, but RMSE of the baseline method for RA
was significantly higher than that of SA (p<0.05). The resulting
TCN R? for SD was significantly lower than the TCN R? for the

TABLEI
HiP MOMENT ESTIMATION RESULTS FOR STEADY-STATE AMBULATION
Our Approach .
(TCN) FCNN LSTM Baseline Method
RMSE (Nm/kg) 0.131+0.018* 0.150+0.024*F 0.149+0.020*+ 0.173+0.015%
R? 0.880+0.030* 0.848+0.039} 0.842+0.037} 0.793+0.061}

*and T represent a statistical difference from the baseline method and TCN estimates, respectively (p<0.05). All other comparisons were not statistically different.
Best performance according to RMSE and R? is bolded. Results are presented as the leave-one-subject-out average + 1 standard deviation.
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Fig. 3. Hip moment estimation results per ambulation mode. The (a) RMSE
(lower is better) and (b) R? (higher is better) results of the temporal
convolutional network (TCN) and baseline method are shown. Results are
presented for the level ground (LG), ramp ascent (RA), ramp descent (RD),
stair ascent (SA), and stair descent (SD) ambulation modes. The error bars
represent +1 standard deviation. * represents statistical difference (p<0.05).
Statistical comparisons among ambulation modes are not shown.

other ambulation modes (p<0.05). Similarly, the R? of the
baseline method was significantly lower for SD compared to
the other ambulation modes (p<0.05). The difference in
baseline R? between RA and RD was also significant (p<0.05).

B. Model Generalization

As shown in Table II, the TCN significantly improved the
leave-one-subject-out validation RMSE and R? compared to the
alternative approaches when tested on the mode transition
dataset (p<0.05). Additionally, the LSTM model significantly
increased R? compared to the baseline method (p<0.05), but all
other comparisons were not statistically significant. Further, the
average RMSE of the TCN estimate on the transition dataset
was 0.152+0.027 Nm/kg, which was 16.3% larger than the
average steady-state RMSE (Fig. 5a) (p<0.05). As shown in
Fig. 5b, the average RMSE of the mode transitions ranged from
0.129+0.034 Nm/kg (SA to LG) to 0.186+0.046 Nm/kg (LG to
RA). Additionally, the TCN estimate on the transition dataset
resulted in an R? of 0.786+0.055 (Fig. 5c), which was
significantly lower than the R? of the steady-state result
(p<0.05). The average R? of each mode transition is shown in
Fig. 5d, which ranged from 0.537+0.165 (SD to LG) to
0.918+0.028 (LG to RA).

Fig. 6 shows the TCN results of the ground slope and stair

height hold-out analyses. The two-way ANOVA resulted in
significant main and interaction effects among the ground slope
and hold-out factors when tested on the RMSE and R? results
(p<0.05); however, the 18° hold-out condition was the only
condition to significantly reduce model performance according
to the multiple comparisons test, increasing the average +18°
validation RMSE by 0.077 Nm/kg (p<0.05). The remaining
leave-one-slope-out comparisons were not statistically
significant, resulting in an average increase in RMSE within
0.024 Nm/kg and decrease in R? within 0.033, compared to
including each hold-out slope in the training set.

When testing the results of the stair height hold-out analysis,
the two-way ANOVA resulted in significant main effects
among the stair height and hold-out factors (p<0.05); however,
none of the hold-out conditions resulted in statistical
significance during the post hoc pairwise comparisons. In
general, withholding each stair height increased TCN RMSE
within 0.016 Nm/kg and decreased R? within 0.034, compared
to including each held-out stair height in the training set.

VI. DISCUSSION

This study introduced a novel biological hip moment
estimator using a TCN framework, compared its performance
to three alternative estimators, and evaluated its generalizability
to a variety of overground ambulatory conditions. As
hypothesized, the TCN outperformed the FCNN, LSTM, and
baseline method when tested on the steady-state ambulation
data and mode transition data with respect to RMSE and R?
(Tables I and II) (p<0.05). Additionally, the TCN improved
RMSE and R? results for each steady-state ambulation mode
compared to the baseline method (Fig. 3), significantly
improving these outcomes for the LG, RD, and SD ambulation
modes (p<0.05). Thus, the TCN better captured the changes in
hip moment per stride, despite that the baseline method was
informed by a perfectly accurate gait phase and ambulation
mode oracle. In practice, these estimates also have error, which
would further reduce the accuracy of the baseline method [2]—
[5]. Therefore, the performance of the TCN is sufficient for
modulating exoskeleton assistance, since it outperformed the
baseline method, and maintains the potential to generalize
across ambulatory tasks.
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Fig. 4. Representative single stride results. Hip flexion/extension moment estimated by the temporal convolutional network (TCN) and the baseline method (BASE)
are shown for representative strides of each ambulation condition. The ground-truth hip moment for each stride is also shown. The resulting RMSE (Nm/kg) of the
TCN and BASE method for each selected stride is included for reference. Heel strike denotes the start of the gait cycle.
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TABLEII
HiP MOMENT ESTIMATION RESULTS DURING AMBULATION MODE TRANSITIONS
Our Approach .
(TCN) FCNN LSTM Baseline Method
RMSE (Nm/kg) 0.152+0.027* 0.173+0.035+ 0.169+0.026+ 0.177+0.0237
R? 0.786+0.055* 0.738+0.067} 0.757+0.046*+ 0.712+0.0477

* and T represent a statistical difference from the baseline method and TCN estimates, respectively (p<0.05). All other comparisons were not statistically different.
Best performance according to RMSE and R? is bolded. Results are presented as the leave-one-subject-out average + 1 standard deviation.

There were no significant differences in TCN estimation
RMSE among the steady-state ambulation modes. We expected
this result since the network was trained using the MSE loss
function, weighting each ambulation mode with equal
importance. However, the SD R? (0.753+0.077) was
significantly lower than that of all other steady-state ambulation
modes, which had an average R? of 0.908 (p<0.05). Similarly,
the resulting R? results of the LG to SD and SD to LG
transitions were lower than those the other mode transitions
(Fig. 5d). The reduction in R? of the SD conditions was a result
of the decreased range in hip moment along the SD strides
compared to the other modes. Therefore, the model maintained
performance with respect to the selected loss function;
however, it may be important to use a loss function that
normalizes loss among ambulation modes if relative estimation
performance of each ambulation mode is more important than
absolute error. For instance, normalizing loss across ambulation
modes may be an important consideration when developing a
biological moment estimator to be used for multimodal, out-of-
lab biomechanical analyses; however, it may be more
appropriate to minimize absolute error when developing a
similar system for exoskeleton control.

The TCN was robust to 19 of the 20 ground slope and stair
height hold-out conditions (Fig. 6), resulting in a maximum
increase in RMSE within 0.024 Nm/kg and decrease in R?
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Fig. 5. Ambulation mode transition results. The overall (a) RMSE (lower is
better) and (c) R? (higher is better) results of the temporal convolutional
network (TCN) are shown for the steady-state and ambulation mode transition
data. Additionally, the TCN (b) RMSE and (d) R? results of each ambulation
mode transition involving level ground (LG), ramp ascent (RA), ramp descent
(RD), stair ascent (SA), and stair descent (SD) are shown. The error bars
represent £1 standard deviation. * represents statistical difference (p<0.05).

within 0.034, other than for the +18° hold-out condition. The
reduced performance on the +18° hold-out was expected since
this condition was 45% steeper than the second most severe
ground slope condition of 12.4°. Therefore, it is important to
prioritize collecting training data at steep inclines if these
conditions are within the test set distribution (e.g., if using a
neural network to estimate joint moments during hiking);
however, a reduced set of ramp conditions can be used in the
training dataset if this is less of a concern (e.g., for joint moment
estimation during typical community ambulation), since the
model generalized well when holding out less severe ground
slopes. Additionally, the TCN was robust against the stair
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Fig. 6. Leave-out analysis results. The (a) RMSE (lower is better) and (b) R?
(higher is better) results of the temporal convolutional network (TCN) are
shown with and without withholding each ground slope condition from the
training set. The (c) RMSE and (d) R? results of the TCN with and without
withholding each stair height from the training dataset are also shown. The error
bars represent +£1 standard deviation. * represents statistical difference
comparing the results when each ground slope and stair height was and was not
included in the training dataset (p<0.05).
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height hold-out conditions, which encompassed the complete
range of ADA compliant stair heights. Therefore, it is unlikely
that additional stair height conditions would need to be included
in the training dataset to ensure the model can generalize to stair
ascent/descent; however, additional SD data and improved
model training methods may improve estimation R? on the SD
trials in general.

While the TCN model performed significantly worse on the
ambulation mode transition data compared to the overall
steady-state results, as shown in Fig. 5a and 5c (p<0.05), the
transition data results were of similar magnitude to the steady-
state results of the baseline method. This comparable result
suggests that the mode transition performance may be sufficient
for exoskeleton control, since exoskeleton controllers similar to
the baseline method have been shown to augment human
walking [8], [9]. In future work, including transition data in the
training set will likely improve these results.

Though challenging to compare due to experimental
differences, the LG validation performance of the TCN in our
study was competitive with those of previous subject-
independent joint moment estimators that used wearable
sensors. The TCN in our study resulted in an average RMSE
and R? of 0.118+0.042 Nm/kg and 0.90440.050, respectively,
for steady-state LG walking. Using an IMU-based CNN trained
on LG walking and running data, Dorschky et al. reported a hip
moment estimation RMSE and correlation coefficient of 0.17
Nm/kg and 0.91 (approximate R? of 0.82), respectively, during
LG walking [32]. Similarly, Mundt ef al. reported a sagittal hip
moment correlation coefficient above 0.95 (approximate R?
above 0.90) during the stance phase of LG walking; however,
their IMU-based FCNN model was noncausal and only trained
on LG walking data [30]. Additionally, the LG results of our
TCN were comparable to those of inverse dynamics-based
models that require additional wearable sensor input. For
instance, Forner-Cordero ef al. reported a sagittal hip moment
RMSE of 0.15 Nm/kg and correlation coefficient of 0.92
(approximate R? of 0.85), using a linked-segment model and
pressure insoles [13]. Therefore, the TCN model of our study
maintained LG performance compared to previous literature,
while proving to generalize to additional common ambulation
modes. Additionally, we found that model performance was
maintained despite the substantially reduced sensor suite, which
is encouraging for future implementations of this joint moment
estimation method, especially when onboard an exoskeleton.
Since joint moment estimation of a novel subject during ramp
and stair walking and during mode transitions has not been
previously characterized, our results can stand as a benchmark
for following joint moment estimation studies.

This study contained multiple limitations. Due to
experimental difficulties, we substituted the experimentally
collected thigh and trunk IMU data with synthesized IMU data
based on the OpenSim anatomical model and stride kinematics
for each participant and trial (implementation details in
Appendix A and validation in Supplement I). This approach
assumed that the IMUs were placed at the same location and
orientation among participants and that the IMU was rigidly
connected to the skeletal system of the participant. In practice,

it is likely that soft tissue deformation, changes in subject
anthropometry, and sensor noise would induce additional
complexity in the IMU data that was not included in our dataset.
Another limitation of this study is that the entire training dataset
was composed of steady-state ambulation data. It is likely that
including additional mode transition data in the training dataset
will improve model generalizability to additional ambulatory
tasks; however, this was outside the scope of our current study.
Finally, the neural networks implemented in this study required
data from a goniometer, thigh-mounted IMU, and trunk-
mounted IMU. Though this is a much simpler sensor suite than
those of alternative approaches (e.g., requiring complete
kinematic and kinetic measurements of the distal joints or EMG
measurements), currently existing technology (e.g., hip
exoskeletons) may not measure sagittal hip kinematics and
thigh and trunk IMU data by default. In this case, an analysis of
the importance of each input sensor could be used to reduce the
required sensor suite or wearable devices would need to be
updated with additional sensors.

VII. CONCLUSION

This study proposed a novel, subject-independent biological
hip moment estimator using the TCN framework and a limited
set of kinematic wearable sensors localized around the hip joint.
Our approach resulted in an average estimation RMSE of
0.131+0.018 Nm/kg and R? of 0.880+0.030 when tested on
multimodal, overground walking. These results outperformed
the FCNN and LSTM networks as well as the baseline method,
which was representative of methods used by previous
exoskeleton controllers [8], [9] (p<0.05). Not only did our
model result in competitive performance with previous machine
learning and inverse dynamics-based hip moment estimators in
the literature, but the TCN also generalized well to a variety of
ambulatory tasks and hold-out conditions. In general, the TCN
was robust to withholding each slope and stair height from the
training set, except for when tested on the steepest (+18°) slope
(p<0.05). Additionally, the TCN RMSE and R? was
0.152+0.027 Nm/kg and 0.786+0.055, respectively, when
tested on the ambulation mode transitions, which was worse
than the steady-state ambulation results (p<0.05); however, the
transition results were similar to the steady-state results of the
baseline method, suggesting the TCN performance is suitable
for exoskeleton control. In the future, this system should be
validated in real-time for biomechanical analyses, health
monitoring, and exoskeleton control.

VIII. APPENDIX

A. IMU Synthetization

Due to saturation and dropout of the thigh and trunk IMUs,
the accelerometer and gyroscope data were replaced using
synthesized data from the OpenSim model during each
recorded stride. The synthesized data was computed for each
trial using the OpenSim API. First, the homogenous
transformation matrix “T® from the reference frame of a given
model body B to the ground inertial reference frame G was
computed for the trunk and right femur as,
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GpB
o8 =[ g p‘l;B]. )

where ¢RE is the rotation matrix from B to G and pgp is the
vector from G to B. At each timestep, “T? was computed using
the getTransformInGround() method of the OpenSim::Body
class after updating the model coordinates based on the inverse
kinematics results.

To synthesize the gyroscopic data, the angular velocity
vector “w? of B in G was computed using the angular velocity
tensor W as,

wx
GwB = |wY] ) (5)
Wy
0 -w, o, dCRE
W=|w, 0 —wyl= 7l BRG, (6)
—Wy, Wy 0 t
BRG — GpBT (7)

The gyroscopic data Bw® was then computed as the angular
velocity vector in the local frame of the body using,

BB — BRG . G

w?B . ®)

Since the IMUs were not located at the origin of the bodies
(i.e., the trunk and right femur), an additional vector pg, was
introduced to approximate the location of each IMU with
respect to its corresponding body, where C represents the IMU
reference frame. Fig. 7 shows the body and IMU reference
frames of the trunk and right femur used in our study, and Table
IIT shows the locations of each IMU described by its
corresponding reference frame. The vector from G to C was
then computed as,

Fig. 7. Synthesized IMU locations. The reference frames of the (a) trunk and
(b) thigh are shown in red. Additionally, the reference frames of the synthesized
trunk and thigh IMUs are shown in blue.

TABLE III
SYNTHESIZED IMU LOCATIONS
X-Axis Y-Axis Z-Axis
Model Body Translation Translation Translation
(mm) (mm) (mm)
Trunk -52 415 0
Right Thigh 76 -206 12

Translations are expressed in terms of the reference frame of the model body.

Pec = P + “R® - ppc - 9)

The synthesized accelerometer data expressed in G was then
computed as,

dszC

T2 (10)

agc = — +6g,
where ¢g is the gravity vector in G. Finally, the accelerometer
data was then transformed into its local frame as,

Ac = CRG *Agc

(11)
where

CRG = BRG, (12)
since B and C are located on the same rigid body. The
synthesized accelerometer data was then converted from m/s?
to g-force by dividing a. by the acceleration of gravity.

B. Neural Network Hyperparameter Optimization

To ensure a fair comparison between TCN, FCNN, and
LSTM, the hyperparameters of each neural network variant
were optimized using 16-fold leave-one-subject-out validation.
Specifically, sixteen neural network models (one per subject)
were trained per set of hyperparameters, while the validation
subject data was withheld from the training set. The candidate
values for each hyperparameter were decided based on
preliminary sweeps of the hyperparameters during pilot testing.
Early stopping with a patience of 50 epochs and stopping
criteria based on validation loss was used to prevent overfitting
during the hyperparameter sweep. Each model was trained
using the Adam optimizer and the mean-square-error loss
function. The average RMSE among the sixteen models was
used to score each set of hyperparameters. The final set of
hyperparameters for each type of neural network was selected
as the set that scored within 1% of the best validation RMSE
among all hyperparameter combinations and that minimized the
number of learnable parameters of the network. The number of
learnable parameters was computed as the total number of
elements among network parameters with a true requires_grad
flag in Pytorch v1.6.0. This approach maintained model
performance while minimizing training time and the likelihood
of overfitting to the training set distribution.
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1) TCN Hyperparameter Optimization

The number of levels (two 1D convolutional layers per
level), channel size, kernel size, dropout probability, and
learning rate of the TCN were optimized (Table IV). To
maintain a tractable number of hyperparameter combinations,
the hyperparameter optimization was separated into two steps.
During the first step, the number of levels, number of channels
per hidden layer, and kernel size were optimized using a
dropout probability of 0.2 and learning rate of 0.0001, which
were selected from pilot results. Additionally, combinations of
hyperparameters that resulted in a model receptive field above
1000 ms were omitted since the motion capture data used to
synthesize the IMUs were often unreliable outside of these
bounds due to limitations of the capture space. The best model
from this sweep resulted in a validation RMSE of 0.132+0.016
Nm/kg using 237,761 learnable parameters; however, the
selected model resulted in a validation RMSE of 0.133+0.017
Nm/kg (within 1% of best model RMSE) using 94,601
learnable parameters. Using the number of levels, channel size,
and kernel size of the selected model, the dropout probability
and learning rate were then optimized during the second step of
the hyperparameter optimization by sweeping the candidate
values shown in Table IV. The finalized TCN model resulted in
a validation RMSE of 0.1314+0.016 Nm/kg.

2) FCNN Hyperparameter Optimization

The number of layers, hidden size, dropout probability, input
window size, and learning rate of the FCNN were optimized
(Table V). Additionally, batch normalization after the hidden
layers of the model was also tested for each combination of
hyperparameters. Based on pilot results, the initial window size
and learning rate were fixed to 500 ms and 0.0001, respectively,
to maintain a tractable number of hyperparameter
combinations. Using these values, each combination of the
remaining hyperparameter candidate values was evaluated. The
best model from this sweep resulted in a validation RMSE of
0.148+0.016 Nm/kg using 35,501 Ilearnable parameters;
however, the selected model resulted in a validation RMSE of
0.149+0.018 Nm/kg (within 1% of best model RMSE) using
6,331 learnable parameters. Using the number of layers, hidden
size, and dropout probability of the selected model, the final
window size and learning rate were then determined by
sweeping the candidate values shown in Table V. The finalized
FCNN model resulted in a validation RMSE of 0.146+0.018
Nm/kg using the hyperparameters shown in Table V.

TABLE IV
TCN HYPERPARAMETER OPTIMIZATION

Hyperparameter Candidate Values Selected Value
# of Levels 1,2,3,4,5 5
# of Channels per
Hidden Layer 10, 30, 50, 80 50
Kernel Size 4,5,7,10,20 4
Dropout Probability* 0,0.1,0.2,0.3,04,0.5 0.3
Learning Rate® le-4, 5e-4, 1e-3 Se-4
# of Learnable N/A 94,601

Parameters

TABLE V
FCNN HYPERPARAMETER OPTIMIZATION
Hyperparameter Candidate Values Selected Value
# of Layers 1,2,5,7,10 7
# of Nodes per Hidden 10, 30, 50, 80, 100 30
Layer
Batch Normalization True, False True
Dropout Probability 0,0.2,0.4,0.6 0
. . . 10, 20, 50, 80, 100, 120,
Window Size (frames) 150, 180, 200 100
Learning Rate® 5e-5, le-4, 2e-4, 5e-4, 1e-3, Sed
S5e-3
# of Learnable N/A 6.331

Parameters

*The window size and learning rate were tuned during the second optimization
step after tuning the remaining hyperparameters.

3) LSTM Hyperparameter Optimization

The number of layers, number of LSTM cells per hidden
layer, dropout probability, and learning rate of the LSTM
network were optimized (Table VI). To maintain a tractable
number of hyperparameter combinations, the hyperparameter
optimization was separated into two steps. During the first step,
the number of layers, number of cells per hidden layer, and
dropout probability were optimized using a learning rate of
0.0001, which was selected from pilot results. The best model
from this sweep resulted in a validation RMSE of 0.150+0.021
Nm/kg wusing 33,651 learnable parameters. This model
architecture also had the lowest number of learnable parameters
compared to all other models that resulted in a validation RMSE
within 1% of the best model. Using the number of layers,
number of cells per layer, and dropout probability of the
selected model, the learning rate was then optimized during the
second step of the hyperparameter optimization by sweeping
the candidate values shown in Table VI. The finalized LSTM
model resulted in a validation RMSE of 0.149+0.018 Nm/kg.
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