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Deep Learning Enables Exoboot Control to
Augment Variable-Speed Walking

Max K. Shepherd!, Member, IEEE, Dean D. Molinaro?®, Student Member, IEEE, Gregory S. Sawicki?,
Member, IEEE, and Aaron J. Young?, Member, IEEE

Abstract—Ankle exoskeletons have the potential to improve
mobility, but common controllers are often inflexible to variations
in tasks, such as changes in walking speed. To enable effective
variable-speed exoboot control, we developed and validated a two-
headed convolutional neural network trained to (1) classify stance
versus swing and (2) predict the phase during stance, which was
then mapped to a desired exoboot torque. This Machine Learning
Estimator (MLE) was trained from nine participants walking at
three speeds and four exoboot assistance levels. A Time-Based
Estimator (TBE) that predicted gait phase from the two previous
stride durations was used to apply realistic torques during MLE
training and served as a within—participant control condition. The
MLE was validated online with three new participants walking at
a range of speeds and torques, both interpolating within and
extrapolating outside the training set. Online validation accuracy
(RMSE) across tested speeds and torque levels was 3.9%. On a
simple walking task in which treadmill speed was varied
sinusoidally between 1.1 and 1.6 m/s with a 30 s period, the three
participants exhibited a mean 5.2% decrease in metabolic
expenditure with the MLE compared to no-exo (boots only), but
exhibited a 5.4% increase when walking with the TBE. The MLE
more accurately predicted heel strike and toe off events (heel strike
Mean Absolute Error: 9.6 ms; toe off MAE: 13.2 ms) than the TBE
(heel strike MAE: 19.1 ms; toe off MAE: 34 ms). These positive
results validated the potential of using a deep learning model for
gait state estimation to effectively control an ankle exoskeleton
across variable walking speeds.

Index Terms—Exoskeletons, Machine Learning

I. INTRODUCTION

owered ankle exoskeletons have successfully augmented

human energetics during walking [1]-[3]. Recent studies
have shown that these energetic benefits are highly sensitive to
assistance timing, favoring assistance strategies that provide
positive net joint work during stance (i.e., commanding
plantarflexion torque during late stance) [4]-[6]. Additionally,
failure to promptly disengage plantarflexion assistance after toe
off (i.e., as the leg enters swing) can lead to increased
antagonistic muscle activation and/or tripping. These
considerations can be accounted for via accurate stance phase
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estimation. Stance phase can be defined using a continuous gait
variable that monotonically increases from 0% at heel strike to
100% at toe off, and may be a function of time or a kinematic
phase variable [7]. Using a real-time estimate of stance phase,
ankle exoskeleton controllers can then compute desired
plantarflexion assistance using a predefined phase-based torque
trajectory.

Most simply, stance phase can be estimated in a feed-forward
manner using a Time-Based Estimator (TBE), which stores the
timing of heel strike and toe off events from previous strides in
memory. Heel strike and toe off events are measured from
onboard contact sensors, such as force sensitive resistors
(FSRs) [2], [8], [9], ground reaction forces [2], or IMU-based
heuristics [1], [10]. Using the data from previous strides, the
TBE computes an expected stance duration, often by
implementing a moving average filter over the previous
measured stance durations. Finally, stance phase is computed
by dividing the time since last heel strike by the expected stance
duration. Using a TBE, previous researchers have reduced the
metabolic cost of walking with ankle exoskeletons [1], 2], [10];
however, these studies have been limited to steady-state
ambulation (e.g., constant speed treadmill walking), since the
TBE assumes steady, periodic ambulation.

Alternatively, machine learning has become a popular
approach for estimating gait variables used in exoskeleton
controllers [11]-[15]. We previously investigated the efficacy
of various types of deep neural networks for estimating gait
phase using sensors onboard a robotic hip exoskeleton [11],
[12]. We found that using a Convolutional Neural Network
(CNN) significantly outperformed a TBE during overground
ambulation. Specifically, the CNN-based gait phase estimator
was able to instantaneously adapt gait phase estimates with
natural stride-to-stride changes, while the expected stride
duration of the TBE lagged, due to its reliance on previous
stride data. Though the principles of gait phase estimation
promise to be applicable for ankle exoskeletons, it remains
unclear if a machine learning stance phase estimator would
have similar benefits. Distal sensors may contain more
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Fig. 1. (Left) Picture of the Dephy Exoboots. (Right) The speeds and torques
collected as training data from nine participants (black error bars), and the
torque and speed levels tested during validation (blue x’s).

information about foot contact than proximal sensors, which
would be advantageous in detecting stance/swing transitions.
However, many ankle exoskeletons utilize unidirectional cable-
based transmissions, which enable light and efficient torque
amplification, but which necessitate mid-level state machines
capable of managing slack during swing [2], [16]-{18].
Because of this, it is critical to accurately detect heel strike and
toe off events in tandem with stance phase estimation to achieve
effective ankle exoskeleton assistance.

In this paper, we propose and validate a user-independent
Machine Learning Estimator (MLE) that simultaneously (1)
detects stance/swing transitions (binary classification) and (2)
estimates stance phase (regression) using a two-headed, deep
convolutional neural network. We validated this system by
quantifying stance phase and stance/swing transition accuracy
while using the MLE to control the Dephy ExoBoots (Dephy
Inc., Maynard, MA, USA), a commercially available bilateral
ankle exoskeleton (Fig. 1). To test the real-world efficacy of our
system, we evaluated its performance on three novel users
during constant-speed walking conditions within and outside of
the training set distribution and during variable-speed walking.
Additionally, we hypothesized that the benefits of machine
learning gait state estimation would lead to a reduction in
metabolic cost during variable speed walking compared to
using a TBE for exoskeleton control. Given the positive results
of our proposed framework, our study solves the problem of
stance phase estimation during real-world gait and
demonstrates the benefits of this framework during transient
ambulation. To reduce the barrier-to-entry for using our MLE
on the commercially available Dephy Inc. exoboots, we have
also released the trained parameters of our network, available
here: https://github.com/maxshep/exoboot-ml-gait-state-
estimator.

II. POWERED EXOBOOTS

A.  Exoboot Hardware

The Dephy ExoBoots (Model 504; Firmware v7.1, Dephy
Inc., Maynard, MA, USA) are powered boots, capable of
applying ~30 Nm of peak plantarflexion torque through shin
cuffs and carbon fiber keels embedded in the boots’ midsoles
(Fig. 1). A shank-mounted motor transmits torque to the ankle

through a nonlinear, unidirectional belt-driven transmission.
Additionally, a waist-mounted pack houses a Raspberry Pi 4B
microprocessor (Raspberry Pi Foundation, Cambridge, UK)
used to run the main control loop, a 5 V battery that powers the
microprocessor, and two 22.2 V lithium polymer batteries
wired in series to power the exoboot actuators. The exoboots
have built-in shank-mounted IMUs, and a 14-bit absolute
encoder at the ankle joint. The left IMU was transformed to
follow left-hand rule, and the absolute encoders were zeroed
based on kinematic hard stops (i.e., were not recalibrated
between participants). These adjustments mirrored sensor data
across the sagittal plane, and left/right data was effectively
indistinguishable. Each exoboot had mass 1.4 kg, and the waist-
mounted pack had a total mass of 1.9 kg.

B. Exoboot Controller

The main control loop ran sequentially on the Raspberry Pi
at 200 Hz using Python v3.7. To accommodate the change in
ankle dynamics between stance and swing, the controller was
implemented using a four-state finite-state machine. During leg
swing (state 1), the exoboots quickly decoupled the user’s ankle
joint from the motor’s reflected inertia by slacking (reeling-out)
the belt. Slacking the belt prevented any detrimental resistance
to swing-phase dorsiflexion, allowing for adequate ground
clearance of the toes. During this state, the actuators were
commanded using position control to minimize excessive slack
in the system, which could lead to delayed assistance onset. At
heel strike, the controller softly reeled-in the belt by
commanding voltage to mitigate rapid torque onset to the user
at heel strike (state 2). After reel-in, exoboot assistance torque
was commanded to the actuators using open-loop torque control
(state 3). The desired assistance torque was computed using a
predefined piecewise cubic hermite interpolating polynomial,
which was a function of the estimated stance phase. The nodes
of the assistance polynomial were tuned based on those
optimized by Zhang et al. [2]. The resulting assistance
polynomial maintained a bias torque of 3 Nm after reel-in until
33% of stance phase, then increased assistance until a peak
torque at 84% of stance.

C. Time-Based Estimation of Gait Phase (TBE)

To collect data for our CNN-based gait state estimator, we
developed a baseline controller using a set of heuristics to
estimate gait phase, heel strike, and toe off suitable for constant
speed walking. Heel strike was detected as a peak in the
onboard sagittal plane angular rate gyro, with a 50 ms added
delay to better align with true heel strike; this delay was
determined from high-speed video (n=1). A Time-Based
Estimator (TBE) then used a moving average to track the two
previous stride durations and project forward to the next stride.
Notably, our TBE was more conservative (i.e., used fewer
previous strides) than most other TBEs; we wanted our TBE to
be highly adaptive to natural changes in walking speed during
our over-ground trials. Toe off was hardcoded at 62% of the
predicted stride duration, based also on high-speed video as
well as pilot participant feedback (n=1), and stance phase was
calculated from a linear interpolation in time between heel
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strike and toe off. Importantly, this method is open-loop; the
only external sensing is the heel strike detection via the
gyroscope, and stance phase and toe off were based entirely off
the previous two stride durations.

III. CNN-BASED GAIT STATE ESTIMATOR DEVELOPMENT

A. Training Data and Labeling

Nine participants (5 male, 4 female; height: 171 £ 10 cm;
body mass: 74 + 9 kg) participated in the training data
collections. All participants in this study provided informed
consent to participate, and this study was approved by the
Georgia Institute of Technology Institutional Review Board.
Training data trials consisted of a grid of walking speeds (0.9
m/s to 1.5 m/s) and exoboot torque levels (0, 10, 20, and 30 Nm)
(Fig. 1), with torque applied based on the TBE. The purpose of
applying torque during the training data collections was to
create more realistic sensor input for the model to be trained on;
subjects often change lower-limb kinematics when walking due
to added assistance [19], and the interface displaces due to soft
tissue compliance as well as flexing in the exoboots. Thus, it
was important to capture these effects in the training data by
mimicking the desired controller. Trials took place overground
in an 81 m hallway, and an experimenter set the pace (after
timed practice runs) while walking in front of the subject with
a stopwatch and target trial completion times.

Force-Sensing Resistors (FSRs) (Tekscan, Boston, Mass,
USA) were taped underneath the insoles, and approximately
under the heel and the head of the first metatarsal joint. FSR
data were debounced with a 40-sample median filter and
visually inspected and manually corrected for missed strides.
The stance/swing label was determined from the rising edge of
the heel FSR and the falling edge of the toe FSR, and the stance
phase label was calculated as a temporally-interpolated
percentage between heel strike (0% stance) and toe off (100%
stance).

B. Machine Learning Estimator of Gait State (MLE)
The purpose of the Machine Learning Estimator (MLE) was

to predict stance/swing (binary classification) and the percent
stance (regression) from a sliding window of unilateral exoboot
sensor data (Fig. 2). Based on our previous work, we
implemented a deep convolutional neural network (CNN) [11].
Inputs to the network included 3-axis linear accelerations and
3-axis angular velocities from the built-in, shank-mounted
IMU, ankle angle from an absolute magnetic encoder, and ankle
velocity, which was calculated via first-order finite differencing
and filtered with a causal 2" order 10 Hz Butterworth filter.
IMUs follow right-hand-rule on the right exoboot and are
mirrored to follow left-hand-rule on the left exoboot.

The neural network was trained in Tensorflow v2.3.0. The
ID CNN portion of the network consisted of three
convolutional layers (30 feature maps each, and kernel sizes of
20, 20, and 6), with ReLU activation functions. The input
consisted of a window of the 44 most recent samples (~220 ms).
Kernel sizes were chosen for the CNN to reduce the window to
a single neuron depth (by the 30 filters in the final layer). The
first and second convolutional layers were followed by batch
normalization. The network then split into two fully-connected
layers with 20 neurons each. One head predicted percent stance,
with a MSE loss function that ignored swing phase. The other
head detected stance/swing using a binary cross entropy loss
function. Losses were combined with a weighted average (80%
for the stance phase regression, 20% for the stance/swing
classification).

Training data consisted of 128-sample sequences. The model
was trained using data from both left and right exoboots
simultaneously. The model was optimized with Adam, an
adaptive learning rate optimization algorithm, and stopped after
12 epochs (determined from average performance on leave-
one-subject-out validation).

C. Offline Validation

Prior to online testing, we assessed sensitivity of offline
leave-one-participant-out  validation results to various
components of model architecture (e.g., CNN and DNN (Deep
Neural Network) width and depth, kernel sizes, normalization
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Fig. 2. Machine Learning Estimator (MLE) of gait state model architecture. A sliding 220 ms window of sensor data is input to the first convolutional layer
(kernel size: 20). Intermediate convolutional layers further compress until the network is flattened and split into two heads; one (bottom inset) concludes in a
binary classifier predicting stance/swing, and the other (top inset) estimates stance phase. The stance/swing classifier informs the four-state state machine, which

produces plantarflexion torque during stance based on the stance phase regressor.
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layer locations). Generally, increasing the number of CNN or
DNN layers did not lead to improvements in performance, nor
did low-pass filtering input data. Average offline Root Mean
Square Error (RMSE) for stance phase across participants was
3.8%.

IV. ONLINE VALIDATION

A. Online MLE Implementation

The MLE was implemented on an NVIDIA Jetson Nano
(NVIDIA, Santa Clara, CA, USA) for online inference using
Python v3.6.9, which accounted for 0.4 kg of the waist-mounted
system. Before running the network online, it was converted to
a TensorRT runtime engine to maximize inference speed using
TensorRT v7.1.3. The Jetson Nano (server) communicated with
the Raspberry Pi (client) via an ethernet cable using TCP/IP.
During operation, the Raspberry Pi streamed exoboot sensor
data of size R to the Jetson Nano, containing IMU and encoder
data of a single exoboot. Each packet also contained a flag
indicating the corresponding exoboot (left or right). The Jetson
Nano maintained a first-in-first-out buffer of exoboot sensor
data with size R***® for each exoboot, which was used as the
input to the MLE model. The MLE was sampled with each
incoming data packet from the Raspberry Pi. After inference,
the Jetson Nano streamed the MLE estimates along with the
side flag back to the Raspberry Pi with an approximate latency
of 6 ms from the time the corresponding data packet was sent
by the Raspberry Pi.

B. Online MLE Validation Protocol

Three participants (2 male, 1 female; height: 179 + 10 cm;
body mass: 66 = 11 kg), who did not participate in the training
data collection protocol, participated in each stage of the online
MLE validation protocol: 1) MLE accuracy testing at multiple
peak assistance torques; 2) MLE accuracy testing at multiple
constant walking speeds; 3) MLE and TBE accuracy testing and
human metabolic cost validation during variable-speed
treadmill walking. During Stage 1 of the protocol, each
participant walked for 1 min/trial on a Motek CAREN treadmill
at 1.2 m/s while the MLE-informed exoboots assisted the user
with each validation peak torque shown in Fig. 1 (10, 15, 20,
25, 30 Nm). During Stage 2 of the validation protocol, each
participant walked for 1 min/trial on the treadmill at each
validation speed shown in Fig. 1 (0.7, 0.9, 1.2, 1.5, 1.7 m/s)
while the MLE-informed exoboots assisted the user with a peak
torque of 20 Nm.

For Stage 3 of the validation protocol, each participant was
outfitted with a COSMED K5 metabolic system (COSMED
USA, Inc., Concord, CA, USA). A sinusoidally varying
treadmill speed profile was then prescribed, ranging from 1.1 to
1.6 m/s with a 30 s period. Subjects walked twice each in three
different conditions: 1) NO EXO (boots only with all exoboot
hardware removed); 2) Time-Based Estimator (TBE), in which
the exoboots provided assistance with a peak torque of 30 Nm
using a two-stride moving average TBE as described in Section
II.C; and 3) Machine Learning Estimator (MLE), in which the
exoboots provided assistance with a peak torque of 30 Nm

using our MLE as described in Section II1.B. Trials for the three
conditions were repeated in a  within-participant
counterbalanced design (i.e., ABC-CBA). Participants were
blinded to the condition, and the trial order was pseudo-
randomized, with the NO EXO condition either in the A or C
position to reduce exoboot don/doff time during the experiment.
The participants walked at each condition for 6 minutes and
metabolic cost was computed using a modified Brockway
equation [2], [20], which was a function of the VO2 and VCO2
data. Six minutes of quiet standing followed the walking trials,
to determine basal metabolic rate. The resulting steady-state
metabolic cost for each condition was computed as the average
metabolic cost computed over the last three minutes of each
trial, minus the metabolic cost of quiet standing.

V. RESULTS

The three validation participants completed all trials. One
participant completed the constant-speed trials and the varying-
speed trials on separate days, and one of the participants had an
FSR misplacement, and their left exoboot data were discarded.

Stance phase Root Mean Square Error (RMSE) across all
tested constant speeds and torque levels was 3.9% for the MLE,
which was close to the RMSE found in our offline leave-one-
participant-out analysis (3.8%) (Fig. 3). There was a large
participant-specific effect on stance phase RMSE, which may
have been due to either participant-specific gait patterns or FSR
placement.

During the variable-speed trials, commanded torque RMSE
relative to the FSR-based retrospective ground truth was 2.6 +
0.2 Nm and 3.3 £ 0.2 Nm for the MLE and TBE, respectively
(Fig. 4a). Similarly, the MLE more accurately estimated peak
assistance timing compared to the TBE, resulting in an average
peak assistance timing Mean Absolute Error (MAE) of 19 + 8
ms and 27 £ 2 ms, respectively (Fig. 4b). Additionally, there
were large disparities in heel strike and toe off accuracy and
consistency (Fig. 4d and 4¢). On average, the TBE was early in
detecting heel strike (14 + 19 ms early) and late in detecting toe
off (24 + 33 ms late), with larger between-stride variability. The
MLE, by contrast, was late but more consistent in detecting
both heel strike (9.3 + 7.1 ms), and toe off (7.7 + 15 ms). There
was also a one-cycle delay in communication between the
Raspberry Pi and Jetson Nano, which would account for 5 ms
of the MLE delay on average. The MAE for the MLE’s heel
strike and toe off detector were 9.6 ms and 13.2 ms,
respectively, compared to the TBE’s heel strike (MAE: 19.2
ms) and toe off detector (MAE: 34.0 ms).

Finally, all three participants reduced their metabolic cost
while wearing the exoboots when using the MLE compared to
NO EXO (mean: 5.2% decrease; [-7.2%, -3.3%, -5.1%]; Fig.
4c). The TBE that was used to collect realistic training data did
not show an improvement in metabolic cost compared to the
NO EXO condition (mean: 5.4% increase; [+8.7%, +6.7, -
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2.9%]; Fig 4c). Average basal metabolic rate was 1.16 = 0.21
Wikg.

VI. DISCUSSION

This study introduced and validated an end-to-end user-
independent Machine Learning Estimator (MLE) that
instantaneously detected stance/swing transitions and estimated
stance phase during variable-speed walking for ankle exoboot
control. Our approach used a two-headed convolutional neural
network capable of estimating gait state using onboard exoboot
sensors without the need for user-specific calibration. To
validate our system, the MLE was evaluated online as novel
users walked with the MLE-informed exoboot controller during
both constant-speed and variable-speed walking. In general, the
MLE performed well, leading to a mean 5.2% reduction in
metabolic cost during variable-speed walking compared to the
NO EXO condition (n=3: -7.2%, -3.3%, -5.1%, Fig. 4c). This
result was accompanied with an average commanded torque
RMSE of 2.6 Nm (peak assistance torque was 30 Nm) and an
average peak assistance timing MAE of 19 ms. Thus, our
proposed method generalized well to speeds and accelerations
representative of natural gait [21].

Using the MLE to control the exoboots reduced the metabolic
cost of walking by a total of 10.6% compared to using the TBE
during the variable-speed trial (n=3: 15%, 9.7%, 2.3%; Fig. 4c).
This was expected since the TBE relied on data from the
previous two strides to estimate the expected duration of the
current stride. As the walking speed changed, the expected
stride duration of the TBE consistently lagged the correct value.
Surprisingly, this discrepancy completely removed the
energetic benefit of the exoboots, as the MLE condition reduced
the metabolic cost of walking compared to not wearing the
exoboots while the TBE condition increased it. Further, all three
validation participants strongly preferred the MLE compared to
the TBE during these tests, despite being blinded to the

controller conditions.

During the variable-speed trials, the TBE misidentified toe
off timing more frequently, with toe off error distributions of 24
+ 33 ms compared to the MLE: 7.7 £ 15 ms (Fig. 4¢). Similarly,
the TBE had larger error in peak torque timing than the MLE
(Fig. 4b). These results reinforce the findings from previous
ankle exoskeleton studies [2], [8] that late stance phase
estimation accuracy is critical for effective ankle exoskeleton
control. Additionally, we found that the MLE error distribution
about heel strike was smaller than that about toe off. It is likely
that the impact of heel strike provided richer information in the
exoskeleton sensor data compared to during toe off. To further
prioritize accurate late stance phase estimation and toe off
detection, it is possible to customize the loss function to weight
the relative importance of estimation accuracy throughout
stance and between heel strike and toe off detection.

During the online validation trials, the MLE generalized well
to changes in walking speed and peak exoboot assistance. This
validation included walking speeds both within and outside of
the training set, as well as a wide range of peak assistance
torques including the maximum torque capable of the exoboots
(30 Nm), suggesting that the MLE generalized well to a variety
of conditions experienced during level ground walking. Further,
the stance phase RMSE and stance/swing error distributions of
the MLE were similar when comparing the results of the
constant speed validation trials (Fig. 3) to the variable-speed
trials (Fig. 4), in which the participant was continuously
accelerating or decelerating their walking speed. Of these
conditions, the MLE performed worst during the slowest
walking speed (0.7 m/s). This may be caused by increased
stride-to-stride variability in walking at low speeds [22], or the
decrease in signal to noise ratio of the kinematic exoboot
sensors during this condition compared to the others. More
generally, phase-based approaches will require a high-level
controller to govern behavior during non-cyclic or quasi-cyclic
tasks like shuffling, and may need to switch to other mid-level
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shown, along with the resulting metabolic cost of walking without wearing the
exoboots (NO EXO). (d) The TBE also had larger errors in heel strike
estimation and (e) toe off estimation compared to the MLE.

control methods not requiring defined phase, such as biological
torque estimation [23], [24].

It’s likely that the MLE could be further improved with more
participants in the training data, more spline timing parameters
in the training data (e.g. the stance percentage mapped to peak
torque), and the introduction of data from the contralateral limb.
While the overground training likely added useful natural
variability to the model, the training protocol could also be
designed to include accelerations/decelerations, or explicit
variations in step length/step width. Metabolic effects of the
exoboots may depend on training and adaptation; a user’s
ability to synergistically activate their plantarflexors with the
device may improve over time, and required training may be
highly user-specific [25], [26]. Understanding how simple time-
based gait state estimation versus learned kinematic-based gait
state estimation affect user adaptation is an important direction
for future research.

A major limitation in this study is that the TBE parameters
were not perfectly tuned or optimized, and the TBE is an
imperfect control condition (i.e., there is no perfect ground
truth). The TBE gyro-based heel strike detector was tuned
based on high-speed video but was biased to be earlier than the
FSRs indicated. Similarly, the TBE toe off was hardcoded at
62% of the stride rather than the ~60% that we found from the
FSRs, which likely explains the delayed average toe off. The
delayed toe off, in combination with the TBE’s expected over-

prediction of stance duration during treadmill accelerations,
caused peak torque and reel-out to occur exceptionally late.
Anecdotally, this induced visible compensatory mechanisms to
prevent toe scuffing. We wanted both controller conditions to
be user-independent, but the heel strike delay parameter and toe
off percentage would likely have been improved had they been
tuned on an individual-basis. Also, the use of two previous
strides in the TBE, compared to the greater number used in
other (albeit steady-state) studies, allowed quicker controller
adaptation to gait speed, but may not have adequately filtered
natural stride-to-stride variability.

A large portion of the total error was likely due to noise in
the FSR signals, stemming from placement inconsistencies and
sensor degradation. Future experiments could use a force-
instrumented treadmill to obtain more reliable estimates of heel
strike and toe off events, though we noted substantial cross-
stepping during our validation tests. With only three validation
participants, it is unknown whether the metabolic trends would
apply to a larger sample of users, and we do not have statistical
power to test this trend. Finally, in approximately 10% of the
training and validation trials, the exoboot firmware had critical
errors that caused the exoboots to go unstable; these
experiences may have prevented subjects from fully trusting the
devices, and they may have altered their gait to ensure stability.

Though the participants in the validation trials were on
average 8 kg lighter and 8 cm taller than in the training group
(with one validation participant being the tallest and another
being the lightest of all participants), the model successfully
extrapolated to their anthropometrics. However, it’s unknown
how well the model would perform with people further outside
of these distributions in terms of height, weight, age, or
ambulatory ability. In particular, we expect user-dependent
models would need to be trained for individuals with
asymmetric gait impairments, and using the same model for
both the left and right sides may fail.

In future studies, we plan to add ambulation modes such as
ramps and stairs, as well as a high-level state machine capable
of predicting activity mode. The MLE we introduced here is
also suitable for user-specific optimization of metabolic cost
and/or preferred walking speed.
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