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Abstract—Ankle exoskeletons have the potential to improve 

mobility, but common controllers are often inflexible to variations 

in tasks, such as changes in walking speed. To enable effective 

variable-speed exoboot control, we developed and validated a two-

headed convolutional neural network trained to (1) classify stance 

versus swing and (2) predict the phase during stance, which was 

then mapped to a desired exoboot torque. This Machine Learning 

Estimator (MLE) was trained from nine participants walking at 

three speeds and four exoboot assistance levels. A Time-Based 

Estimator (TBE) that predicted gait phase from the two previous 

stride durations was used to apply realistic torques during MLE 

training and served as a within–participant control condition. The 

MLE was validated online with three new participants walking at 

a range of speeds and torques, both interpolating within and 

extrapolating outside the training set. Online validation accuracy 

(RMSE) across tested speeds and torque levels was 3.9%. On a 

simple walking task in which treadmill speed was varied 

sinusoidally between 1.1 and 1.6 m/s with a 30 s period, the three 

participants exhibited a mean 5.2% decrease in metabolic 

expenditure with the MLE compared to no-exo (boots only), but 

exhibited a 5.4% increase when walking with the TBE. The MLE 

more accurately predicted heel strike and toe off events (heel strike 

Mean Absolute Error: 9.6 ms; toe off MAE: 13.2 ms) than the TBE 

(heel strike MAE: 19.1 ms; toe off MAE: 34 ms). These positive 

results validated the potential of using a deep learning model for 

gait state estimation to effectively control an ankle exoskeleton 

across variable walking speeds. 

 
Index Terms—Exoskeletons, Machine Learning 

I. INTRODUCTION 

owered ankle exoskeletons have successfully augmented 

human energetics during walking [1]–[3]. Recent studies 

have shown that these energetic benefits are highly sensitive to 

assistance timing, favoring assistance strategies that provide 

positive net joint work during stance (i.e., commanding 

plantarflexion torque during late stance) [4]–[6]. Additionally, 

failure to promptly disengage plantarflexion assistance after toe 

off (i.e., as the leg enters swing) can lead to increased 

antagonistic muscle activation and/or tripping. These 

considerations can be accounted for via accurate stance phase 
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estimation. Stance phase can be defined using a continuous gait 

variable that monotonically increases from 0% at heel strike to 

100% at toe off, and may be a function of time or a kinematic 

phase variable [7]. Using a real-time estimate of stance phase, 

ankle exoskeleton controllers can then compute desired 

plantarflexion assistance using a predefined phase-based torque 

trajectory. 

Most simply, stance phase can be estimated in a feed-forward 

manner using a Time-Based Estimator (TBE), which stores the 

timing of heel strike and toe off events from previous strides in 

memory. Heel strike and toe off events are measured from 

onboard contact sensors, such as force sensitive resistors 

(FSRs) [2], [8], [9], ground reaction forces [2], or IMU-based 

heuristics [1], [10]. Using the data from previous strides, the 

TBE computes an expected stance duration, often by 

implementing a moving average filter over the previous 

measured stance durations. Finally, stance phase is computed 

by dividing the time since last heel strike by the expected stance 

duration. Using a TBE, previous researchers have reduced the 

metabolic cost of walking with ankle exoskeletons [1], [2], [10]; 

however, these studies have been limited to steady-state 

ambulation (e.g., constant speed treadmill walking), since the 

TBE assumes steady, periodic ambulation. 

Alternatively, machine learning has become a popular 

approach for estimating gait variables used in exoskeleton 

controllers [11]–[15]. We previously investigated the efficacy 

of various types of deep neural networks for estimating gait 

phase using sensors onboard a robotic hip exoskeleton [11], 

[12]. We found that using a Convolutional Neural Network 

(CNN) significantly outperformed a TBE during overground 

ambulation. Specifically, the CNN-based gait phase estimator 

was able to instantaneously adapt gait phase estimates with 

natural stride-to-stride changes, while the expected stride 

duration of the TBE lagged, due to its reliance on previous 

stride data. Though the principles of gait phase estimation 

promise to be applicable for ankle exoskeletons, it remains 

unclear if a machine learning stance phase estimator would 

have similar benefits. Distal sensors may contain more 
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information about foot contact than proximal sensors, which 

would be advantageous in detecting stance/swing transitions. 

However, many ankle exoskeletons utilize unidirectional cable-

based transmissions, which enable light and efficient torque 

amplification, but which necessitate mid-level state machines 

capable of managing slack during swing [2], [16]–[18]. 

Because of this, it is critical to accurately detect heel strike and 

toe off events in tandem with stance phase estimation to achieve 

effective ankle exoskeleton assistance.  

In this paper, we propose and validate a user-independent 

Machine Learning Estimator (MLE) that simultaneously (1) 

detects stance/swing transitions (binary classification) and (2) 

estimates stance phase (regression) using a two-headed, deep 

convolutional neural network. We validated this system by 

quantifying stance phase and stance/swing transition accuracy 

while using the MLE to control the Dephy ExoBoots (Dephy 

Inc., Maynard, MA, USA), a commercially available bilateral 

ankle exoskeleton (Fig. 1). To test the real-world efficacy of our 

system, we evaluated its performance on three novel users 

during constant-speed walking conditions within and outside of 

the training set distribution and during variable-speed walking. 

Additionally, we hypothesized that the benefits of machine 

learning gait state estimation would lead to a reduction in 

metabolic cost during variable speed walking compared to 

using a TBE for exoskeleton control. Given the positive results 

of our proposed framework, our study solves the problem of 

stance phase estimation during real-world gait and 

demonstrates the benefits of this framework during transient 

ambulation. To reduce the barrier-to-entry for using our MLE 

on the commercially available Dephy Inc. exoboots, we have 

also released the trained parameters of our network, available 

here: https://github.com/maxshep/exoboot-ml-gait-state-

estimator. 

II. POWERED EXOBOOTS 

A.  Exoboot Hardware 

The Dephy ExoBoots (Model 504; Firmware v7.1, Dephy 

Inc., Maynard, MA, USA) are powered boots, capable of 

applying ~30 Nm of peak plantarflexion torque through shin 

cuffs and carbon fiber keels embedded in the boots’ midsoles 

(Fig. 1). A shank-mounted motor transmits torque to the ankle 

through a nonlinear, unidirectional belt-driven transmission. 

Additionally, a waist-mounted pack houses a Raspberry Pi 4B 

microprocessor (Raspberry Pi Foundation, Cambridge, UK) 

used to run the main control loop, a 5 V battery that powers the 

microprocessor, and two 22.2 V lithium polymer batteries 

wired in series to power the exoboot actuators. The exoboots 

have built-in shank-mounted IMUs, and a 14-bit absolute 

encoder at the ankle joint. The left IMU was transformed to 

follow left-hand rule, and the absolute encoders were zeroed 

based on kinematic hard stops (i.e., were not recalibrated 

between participants). These adjustments mirrored sensor data 

across the sagittal plane, and left/right data was effectively 

indistinguishable. Each exoboot had mass 1.4 kg, and the waist-

mounted pack had a total mass of 1.9 kg. 

B. Exoboot Controller 

The main control loop ran sequentially on the Raspberry Pi 

at 200 Hz using Python v3.7. To accommodate the change in 

ankle dynamics between stance and swing, the controller was 

implemented using a four-state finite-state machine. During leg 

swing (state 1), the exoboots quickly decoupled the user’s ankle 

joint from the motor’s reflected inertia by slacking (reeling-out) 

the belt. Slacking the belt prevented any detrimental resistance 

to swing-phase dorsiflexion, allowing for adequate ground 

clearance of the toes. During this state, the actuators were 

commanded using position control to minimize excessive slack 

in the system, which could lead to delayed assistance onset. At 

heel strike, the controller softly reeled-in the belt by 

commanding voltage to mitigate rapid torque onset to the user 

at heel strike (state 2). After reel-in, exoboot assistance torque 

was commanded to the actuators using open-loop torque control 

(state 3). The desired assistance torque was computed using a 

predefined piecewise cubic hermite interpolating polynomial, 

which was a function of the estimated stance phase. The nodes 

of the assistance polynomial were tuned based on those 

optimized by Zhang et al. [2]. The resulting assistance 

polynomial maintained a bias torque of 3 Nm after reel-in until 

33% of stance phase, then increased assistance until a peak 

torque at 84% of stance. 

C. Time-Based Estimation of Gait Phase (TBE) 

To collect data for our CNN-based gait state estimator, we 

developed a baseline controller using a set of heuristics to 

estimate gait phase, heel strike, and toe off suitable for constant 

speed walking. Heel strike was detected as a peak in the 

onboard sagittal plane angular rate gyro, with a 50 ms added 

delay to better align with true heel strike; this delay was 

determined from high-speed video (n=1). A Time-Based 

Estimator (TBE) then used a moving average to track the two 

previous stride durations and project forward to the next stride. 

Notably, our TBE was more conservative (i.e., used fewer 

previous strides) than most other TBEs; we wanted our TBE to 

be highly adaptive to natural changes in walking speed during 

our over-ground trials. Toe off was hardcoded at 62% of the 

predicted stride duration, based also on high-speed video as 

well as pilot participant feedback (n=1), and stance phase was 

calculated from a linear interpolation in time between heel 

 
 
Fig. 1. (Left) Picture of the Dephy Exoboots. (Right) The speeds and torques 

collected as training data from nine participants (black error bars), and the 

torque and speed levels tested during validation (blue x’s).  

https://github.com/maxshep/exoboot-ml-gait-state-estimator
https://github.com/maxshep/exoboot-ml-gait-state-estimator


SHEPHERD et al.: DEEP LEARNING ENABLES EXOBOOT CONTROL TO AUGMENT VARIABLE-SPEED WALKING 3 

strike and toe off. Importantly, this method is open-loop; the 

only external sensing is the heel strike detection via the 

gyroscope, and stance phase and toe off were based entirely off 

the previous two stride durations.  

III. CNN-BASED GAIT STATE ESTIMATOR DEVELOPMENT 

A. Training Data and Labeling 

Nine participants (5 male, 4 female; height: 171 ± 10 cm; 

body mass: 74 ± 9 kg) participated in the training data 

collections. All participants in this study provided informed 

consent to participate, and this study was approved by the 

Georgia Institute of Technology Institutional Review Board. 

Training data trials consisted of a grid of walking speeds (0.9 

m/s to 1.5 m/s) and exoboot torque levels (0, 10, 20, and 30 Nm) 

(Fig. 1), with torque applied based on the TBE. The purpose of 

applying torque during the training data collections was to 

create more realistic sensor input for the model to be trained on; 

subjects often change lower-limb kinematics when walking due 

to added assistance [19], and the interface displaces due to soft 

tissue compliance as well as flexing in the exoboots. Thus, it 

was important to capture these effects in the training data by 

mimicking the desired controller. Trials took place overground 

in an 81 m hallway, and an experimenter set the pace (after 

timed practice runs) while walking in front of the subject with 

a stopwatch and target trial completion times.  

Force-Sensing Resistors (FSRs) (Tekscan, Boston, Mass, 

USA) were taped underneath the insoles, and approximately 

under the heel and the head of the first metatarsal joint. FSR 

data were debounced with a 40-sample median filter and 

visually inspected and manually corrected for missed strides. 

The stance/swing label was determined from the rising edge of 

the heel FSR and the falling edge of the toe FSR, and the stance 

phase label was calculated as a temporally-interpolated 

percentage between heel strike (0% stance) and toe off (100% 

stance).  

B. Machine Learning Estimator of Gait State (MLE) 

The purpose of the Machine Learning Estimator (MLE) was 

to predict stance/swing (binary classification) and the percent 

stance (regression) from a sliding window of unilateral exoboot 

sensor data (Fig. 2). Based on our previous work, we 

implemented a deep convolutional neural network (CNN) [11]. 

Inputs to the network included 3-axis linear accelerations and 

3-axis angular velocities from the built-in, shank-mounted 

IMU, ankle angle from an absolute magnetic encoder, and ankle 

velocity, which was calculated via first-order finite differencing 

and filtered with a causal 2nd order 10 Hz Butterworth filter. 

IMUs follow right-hand-rule on the right exoboot and are 

mirrored to follow left-hand-rule on the left exoboot.  

The neural network was trained in Tensorflow v2.3.0. The 

1D CNN portion of the network consisted of three 

convolutional layers (30 feature maps each, and kernel sizes of 

20, 20, and 6), with ReLU activation functions. The input 

consisted of a window of the 44 most recent samples (~220 ms). 

Kernel sizes were chosen for the CNN to reduce the window to 

a single neuron depth (by the 30 filters in the final layer). The 

first and second convolutional layers were followed by batch 

normalization. The network then split into two fully-connected 

layers with 20 neurons each. One head predicted percent stance, 

with a MSE loss function that ignored swing phase. The other 

head detected stance/swing using a binary cross entropy loss 

function. Losses were combined with a weighted average (80% 

for the stance phase regression, 20% for the stance/swing 

classification).  

Training data consisted of 128-sample sequences. The model 

was trained using data from both left and right exoboots 

simultaneously. The model was optimized with Adam, an 

adaptive learning rate optimization algorithm, and stopped after 

12 epochs (determined from average performance on leave-

one-subject-out validation).  

C. Offline Validation 

Prior to online testing, we assessed sensitivity of offline 

leave-one-participant-out validation results to various 

components of model architecture (e.g., CNN and DNN (Deep 

Neural Network) width and depth, kernel sizes, normalization 

 

Fig. 2. Machine Learning Estimator (MLE) of gait state model architecture. A sliding 220 ms window of sensor data is input to the first convolutional layer 
(kernel size: 20). Intermediate convolutional layers further compress until the network is flattened and split into two heads; one (bottom inset) concludes in a 

binary classifier predicting stance/swing, and the other (top inset) estimates stance phase. The stance/swing classifier informs the four-state state machine, which 

produces plantarflexion torque during stance based on the stance phase regressor. 
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layer locations). Generally, increasing the number of CNN or 

DNN layers did not lead to improvements in performance, nor 

did low-pass filtering input data. Average offline Root Mean 

Square Error (RMSE) for stance phase across participants was 

3.8%.  

IV. ONLINE VALIDATION 

A. Online MLE Implementation 

The MLE was implemented on an NVIDIA Jetson Nano 

(NVIDIA, Santa Clara, CA, USA) for online inference using 

Python v3.6.9, which accounted for 0.4 kg of the waist-mounted 

system. Before running the network online, it was converted to 

a TensorRT runtime engine to maximize inference speed using 

TensorRT v7.1.3. The Jetson Nano (server) communicated with 

the Raspberry Pi (client) via an ethernet cable using TCP/IP. 

During operation, the Raspberry Pi streamed exoboot sensor 

data of size ℝ9 to the Jetson Nano, containing IMU and encoder 

data of a single exoboot. Each packet also contained a flag 

indicating the corresponding exoboot (left or right). The Jetson 

Nano maintained a first-in-first-out buffer of exoboot sensor 

data with size ℝ44𝑥8 for each exoboot, which was used as the 

input to the MLE model. The MLE was sampled with each 

incoming data packet from the Raspberry Pi. After inference, 

the Jetson Nano streamed the MLE estimates along with the 

side flag back to the Raspberry Pi with an approximate latency 

of 6 ms from the time the corresponding data packet was sent 

by the Raspberry Pi. 

B. Online MLE Validation Protocol 

Three participants (2 male, 1 female; height: 179 ± 10 cm; 

body mass: 66 ± 11 kg), who did not participate in the training 

data collection protocol, participated in each stage of the online 

MLE validation protocol: 1) MLE accuracy testing at multiple 

peak assistance torques; 2) MLE accuracy testing at multiple 

constant walking speeds; 3) MLE and TBE accuracy testing and 

human metabolic cost validation during variable-speed 

treadmill walking. During Stage 1 of the protocol, each 

participant walked for 1 min/trial on a Motek CAREN treadmill 

at 1.2 m/s while the MLE-informed exoboots assisted the user 

with each validation peak torque shown in Fig. 1 (10, 15, 20, 

25, 30 Nm). During Stage 2 of the validation protocol, each 

participant walked for 1 min/trial on the treadmill at each 

validation speed shown in Fig. 1 (0.7, 0.9, 1.2, 1.5, 1.7 m/s) 

while the MLE-informed exoboots assisted the user with a peak 

torque of 20 Nm. 

For Stage 3 of the validation protocol, each participant was 

outfitted with a COSMED K5 metabolic system (COSMED 

USA, Inc., Concord, CA, USA). A sinusoidally varying 

treadmill speed profile was then prescribed, ranging from 1.1 to 

1.6 m/s with a 30 s period. Subjects walked twice each in three 

different conditions: 1) NO EXO (boots only with all exoboot 

hardware removed); 2) Time-Based Estimator (TBE), in which 

the exoboots provided assistance with a peak torque of 30 Nm 

using a two-stride moving average TBE as described in Section 

II.C; and 3) Machine Learning Estimator (MLE), in which the 

exoboots provided assistance with a peak torque of 30 Nm 

using our MLE as described in Section III.B. Trials for the three 

conditions were repeated in a within-participant 

counterbalanced design (i.e., ABC-CBA). Participants were 

blinded to the condition, and the trial order was pseudo-

randomized, with the NO EXO condition either in the A or C 

position to reduce exoboot don/doff time during the experiment. 

The participants walked at each condition for 6 minutes and 

metabolic cost was computed using a modified Brockway 

equation [2], [20], which was a function of the VO2 and VCO2 

data. Six minutes of quiet standing followed the walking trials, 

to determine basal metabolic rate. The resulting steady-state 

metabolic cost for each condition was computed as the average 

metabolic cost computed over the last three minutes of each 

trial, minus the metabolic cost of quiet standing.  

V. RESULTS 

The three validation participants completed all trials. One 

participant completed the constant-speed trials and the varying-

speed trials on separate days, and one of the participants had an 

FSR misplacement, and their left exoboot data were discarded.  

Stance phase Root Mean Square Error (RMSE) across all 

tested constant speeds and torque levels was 3.9% for the MLE, 

which was close to the RMSE found in our offline leave-one-

participant-out analysis (3.8%) (Fig. 3). There was a large 

participant-specific effect on stance phase RMSE, which may 

have been due to either participant-specific gait patterns or FSR 

placement.  

During the variable-speed trials, commanded torque RMSE 

relative to the FSR-based retrospective ground truth was 2.6 ± 

0.2 Nm and 3.3 ± 0.2 Nm for the MLE and TBE, respectively 

(Fig. 4a). Similarly, the MLE more accurately estimated peak 

assistance timing compared to the TBE, resulting in an average 

peak assistance timing Mean Absolute Error (MAE) of 19 ± 8 

ms and 27 ± 2 ms, respectively (Fig. 4b). Additionally, there 

were large disparities in heel strike and toe off accuracy and 

consistency (Fig. 4d and 4e). On average, the TBE was early in 

detecting heel strike (14 ± 19 ms early) and late in detecting toe 

off (24 ± 33 ms late), with larger between-stride variability. The 

MLE, by contrast, was late but more consistent in detecting 

both heel strike (9.3 ± 7.1 ms), and toe off (7.7 ± 15 ms). There 

was also a one-cycle delay in communication between the 

Raspberry Pi and Jetson Nano, which would account for 5 ms 

of the MLE delay on average. The MAE for the MLE’s heel 

strike and toe off detector were 9.6 ms and 13.2 ms, 

respectively, compared to the TBE’s heel strike (MAE: 19.2 

ms) and toe off detector (MAE: 34.0 ms). 

Finally, all three participants reduced their metabolic cost 

while wearing the exoboots when using the MLE compared to 

NO EXO (mean: 5.2% decrease; [-7.2%, -3.3%, -5.1%]; Fig. 

4c). The TBE that was used to collect realistic training data did 

not show an improvement in metabolic cost compared to the 

NO EXO condition (mean: 5.4% increase; [+8.7%, +6.7, -
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2.9%]; Fig 4c). Average basal metabolic rate was 1.16 ± 0.21 

W/kg. 

VI. DISCUSSION 

This study introduced and validated an end-to-end user-

independent Machine Learning Estimator (MLE) that 

instantaneously detected stance/swing transitions and estimated 

stance phase during variable-speed walking for ankle exoboot 

control. Our approach used a two-headed convolutional neural 

network capable of estimating gait state using onboard exoboot 

sensors without the need for user-specific calibration. To 

validate our system, the MLE was evaluated online as novel 

users walked with the MLE-informed exoboot controller during 

both constant-speed and variable-speed walking. In general, the 

MLE performed well, leading to a mean 5.2% reduction in 

metabolic cost during variable-speed walking compared to the 

NO EXO condition (n=3: -7.2%, -3.3%, -5.1%, Fig. 4c). This 

result was accompanied with an average commanded torque 

RMSE of 2.6 Nm (peak assistance torque was 30 Nm) and an 

average peak assistance timing MAE of 19 ms. Thus, our 

proposed method generalized well to speeds and accelerations 

representative of natural gait [21]. 

Using the MLE to control the exoboots reduced the metabolic 

cost of walking by a total of 10.6% compared to using the TBE 

during the variable-speed trial (n=3: 15%, 9.7%, 2.3%; Fig. 4c). 

This was expected since the TBE relied on data from the 

previous two strides to estimate the expected duration of the 

current stride. As the walking speed changed, the expected 

stride duration of the TBE consistently lagged the correct value. 

Surprisingly, this discrepancy completely removed the 

energetic benefit of the exoboots, as the MLE condition reduced 

the metabolic cost of walking compared to not wearing the 

exoboots while the TBE condition increased it. Further, all three 

validation participants strongly preferred the MLE compared to 

the TBE during these tests, despite being blinded to the 

controller conditions.  

During the variable-speed trials, the TBE misidentified toe 

off timing more frequently, with toe off error distributions of 24 

± 33 ms compared to the MLE: 7.7 ± 15 ms (Fig. 4e). Similarly, 

the TBE had larger error in peak torque timing than the MLE 

(Fig. 4b). These results reinforce the findings from previous 

ankle exoskeleton studies [2], [8] that late stance phase 

estimation accuracy is critical for effective ankle exoskeleton 

control. Additionally, we found that the MLE error distribution 

about heel strike was smaller than that about toe off. It is likely 

that the impact of heel strike provided richer information in the 

exoskeleton sensor data compared to during toe off. To further 

prioritize accurate late stance phase estimation and toe off 

detection, it is possible to customize the loss function to weight 

the relative importance of estimation accuracy throughout 

stance and between heel strike and toe off detection. 

During the online validation trials, the MLE generalized well 

to changes in walking speed and peak exoboot assistance. This 

validation included walking speeds both within and outside of 

the training set, as well as a wide range of peak assistance 

torques including the maximum torque capable of the exoboots 

(30 Nm), suggesting that the MLE generalized well to a variety 

of conditions experienced during level ground walking. Further, 

the stance phase RMSE and stance/swing error distributions of 

the MLE were similar when comparing the results of the 

constant speed validation trials (Fig. 3) to the variable-speed 

trials (Fig. 4), in which the participant was continuously 

accelerating or decelerating their walking speed. Of these 

conditions, the MLE performed worst during the slowest 

walking speed (0.7 m/s). This may be caused by increased 

stride-to-stride variability in walking at low speeds [22], or the 

decrease in signal to noise ratio of the kinematic exoboot 

sensors during this condition compared to the others. More 

generally, phase-based approaches will require a high-level 

controller to govern behavior during non-cyclic or quasi-cyclic 

tasks like shuffling, and may need to switch to other mid-level 

 
 
Fig 3. (Left) Data from the MLE stance/swing classifier (top), the stance phase estimator (middle), and the resulting commanded torque profile (bottom) are 

shown for a representative participant walking at multiple speeds. Ground truth profiles (blue) are derived from FSR labeling. (Right) RMSE vs. peak torque 

(top), and RMSE vs. walking speed (bottom) for the three validation participants . Markers denote individual participant means. Note: FSR data from the left 

exoboot of the participant denoted with ‘x’ was discarded due to sensor failure, so their data had a lesser effect on the mean. 
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control methods not requiring defined phase, such as biological 

torque estimation [23], [24].  

It’s likely that the MLE could be further improved with more 

participants in the training data, more spline timing parameters 

in the training data (e.g. the stance percentage mapped to peak 

torque), and the introduction of data from the contralateral limb. 

While the overground training likely added useful natural 

variability to the model, the training protocol could also be 

designed to include accelerations/decelerations, or explicit 

variations in step length/step width. Metabolic effects of the 

exoboots may depend on training and adaptation; a user’s 

ability to synergistically activate their plantarflexors with the 

device may improve over time, and required training may be 

highly user-specific [25], [26]. Understanding how simple time-

based gait state estimation versus learned kinematic-based gait 

state estimation affect user adaptation is an important direction 

for future research.  

 A major limitation in this study is that the TBE parameters 

were not perfectly tuned or optimized, and the TBE is an 

imperfect control condition (i.e., there is no perfect ground 

truth). The TBE gyro-based heel strike detector was tuned 

based on high-speed video but was biased to be earlier than the 

FSRs indicated. Similarly, the TBE toe off was hardcoded at 

62% of the stride rather than the ~60% that we found from the 

FSRs, which likely explains the delayed average toe off. The 

delayed toe off, in combination with the TBE’s expected over-

prediction of stance duration during treadmill accelerations, 

caused peak torque and reel-out to occur exceptionally late. 

Anecdotally, this induced visible compensatory mechanisms to 

prevent toe scuffing. We wanted both controller conditions to 

be user-independent, but the heel strike delay parameter and toe 

off percentage would likely have been improved had they been 

tuned on an individual-basis. Also, the use of two previous 

strides in the TBE, compared to the greater number used in 

other (albeit steady-state) studies, allowed quicker controller 

adaptation to gait speed, but may not have adequately filtered 

natural stride-to-stride variability. 

A large portion of the total error was likely due to noise in 

the FSR signals, stemming from placement inconsistencies and 

sensor degradation. Future experiments could use a force-

instrumented treadmill to obtain more reliable estimates of heel 

strike and toe off events, though we noted substantial cross-

stepping during our validation tests. With only three validation 

participants, it is unknown whether the metabolic trends would 

apply to a larger sample of users, and we do not have statistical 

power to test this trend. Finally, in approximately 10% of the 

training and validation trials, the exoboot firmware had critical 

errors that caused the exoboots to go unstable; these 

experiences may have prevented subjects from fully trusting the 

devices, and they may have altered their gait to ensure stability.  

Though the participants in the validation trials were on 

average 8 kg lighter and 8 cm taller than in the training group 

(with one validation participant being the tallest and another 

being the lightest of all participants), the model successfully 

extrapolated to their anthropometrics. However, it’s unknown 

how well the model would perform with people further outside 

of these distributions in terms of height, weight, age, or 

ambulatory ability. In particular, we expect user-dependent 

models would need to be trained for individuals with 

asymmetric gait impairments, and using the same model for 

both the left and right sides may fail. 

In future studies, we plan to add ambulation modes such as 

ramps and stairs, as well as a high-level state machine capable 

of predicting activity mode. The MLE we introduced here is 

also suitable for user-specific optimization of metabolic cost 

and/or preferred walking speed. 
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