
Accelerating Allreduce with
in-network reduction on Intel
PIUMA
Kartik Lakhotia†, Fabrizio Petrini‡, Rajgopal Kannan§, Viktor Prasanna†

†Department of Electrical and Computer Engineering, University of Southern California,
‡Intel Labs, §U.S. Army Research Lab
†{klakhoti, prasanna}@usc.edu, ‡fabrizio.petrini@intel.com, §rajgopal.kannan.civ@mail.mil

Abstract—The PIUMA system maps collective operations directly into the network switches and
supports pipelined embeddings for high throughput collective computation. Utilizing these
features and PIUMA’s network topology, we develop a methodology to generate extremely low
latency embeddings for in-network Allreduce. Our analysis shows that the proposed in-network
Allreduce is highly scalable, with less than 1µs single-element latency on 16K nodes. Compared
to host-based Allreduce, it exhibits 40× less latency and up to 3.5× higher throughput. With deep
neural network training as an example, we further demonstrate the benefits of our in-network
Allreduce on end-user applications.

Introduction
Allreduce is a key primitive used in sev-

eral parallel computing applications, including
scientific computing, graph processing, artificial
intelligence and others [1]–[3]. It computes a
reduction of individual inputs (or input vectors)
from participating processors called hosts, and
returns the result to every host. Allreduce can
become a performance bottleneck, even for com-
putationally intensive applications such as Deep
Neural Network training [2].

Several efficient Allreduce algorithms have
been proposed for distributed-memory sys-
tems [1], [4]. However, host-based algorithms
execute multiple rounds of software coordinated
communication, resulting in high latency. The
number of communication rounds further increase
with the system size, deteriorating the perfor-
mance scalability. In terms of throughput, host-
based Allreduces are suboptimal as they commu-
nicate partial sums in addition to inputs and out-
puts. Furthermore, they execute numerous con-

current point-to-point transfers which may result
in congestion issues.

This has motivated in-network aggregation
methods that use switches to reduce data packets
in-flight, to decrease the overall latency and
network traffic [5]–[8]. Most current approaches
either optimize short vector latency in message
passing systems [7], [8], or are designed for
small tightly knit clusters [6]. Mellanox’s SHARP
protocol for in-network computing supports high
throughput streaming aggregation [5]. However,
collective trees in SHARP are logical constructs
that may incur high latency and potential con-
gestion issues, especially if the logical tree does
not exactly overlap with the network topology.

In this paper, we present a high-performance
in-network Allreduce on the Intel Programmable
Integrated Unified Memory Architecture (PI-
UMA), which features a multi-level HyperX in-
terconnection network [9], [10]. We present novel
architectrual features of PIUMA switches that en-
able pipelined embedding of logical topologies in

IEEE Micro Published by the IEEE Computer Society © 2022 IEEE 1



direct networks, for high throughput computation.
We develop a scalable methodology to implement
extremely low latency Allreduce on large PIUMA
systems with several thousand nodes.

Our analysis shows that the proposed in-
network Allreduce significantly outperforms host-
based Allreduces, both in terms of the standalone
collective performance and the impact on user ap-
plication. In the context of in-network collectives,
we discuss directions for future research.

Background
Allreduce

Allreduce takes a binary associative operator⊕
and an input xi from a collection of host pro-

cessors Pi (0 ≤ i < n), and returns the reduction
value y =

⊕n−1
j=0 {xj} to all hosts. The single

value Allreduce can be generalized to multiple
values when the input xi is a vector of m ele-
ments {xi,0, xi,1...xi,m−1}, and the output y =
{y0, y1...ym−1} is an element-wise reduction of
all input vectors, i.e. yk =

⊕n−1
j=0 {xj,k}. While

traditional Allreduce implementations operate on
a single element (typically a norm computation to
determine numerical convergence) [3], [7], [8],
emerging AI applications perform Allreduce on
long vectors [2].

Performance of an Allreduce algorithm can be
broadly characterized by two parameters:

1) Number of communication rounds, which
affects critical-path computation latency.

2) Communication volume per host, which
affects throughput for vector Allreduce.

The Recursive doubling algorithm can com-
pute Allreduce in just log2 n rounds. However,
in all the rounds, hosts exchange an entire
vector with one of their neighbors in a logi-
cal hypercube. Consequently, every host incurs
O (m log2 n) communication volume.

The Ring and Rabenseifner algorithms are
throughput optimized algorithms that communi-
cate approximately 4m elements per host [1],
[4]. They compute Allreduce in two phases –
(1) a reduce-scatter phase that computes disjoint
m
n

-element segments of the result y, distributed
across the hosts, and (2) a subsequent all-gather
phase that collects these segments and delivers the
entire vector y to every host. In the Ring algo-
rithm, both phases require n− 1 communication

rounds, in which each host sends (and receives)
an m

n
-element vector segment to (and from) its

neighbor in a logical ring. The Rabenseifner algo-
rithm implements the two phases using recursive
halving and doubling, respectively, and requires
only 2 log2 n rounds .

Allreduce can also be computed on hosts
or switches arranged in a logical spanning tree.
Inputs are reduced as they move up a reduction
tree and the final result y computed at the tree
root is distributed to all hosts using a broadcast
tree. This approach is commonly adopted by in-
network Allreduces [5], [7].

Direct Networks and HyperX topology
In direct or glueless networks, each switch

is directly connected to a processor i.e. there
are no external switches. A HyperX is a direct
network that organizes compute nodes in a D-
dimensional logical grid such that the peer nodes
in each dimension are all-to-all connected [10].
Formally, if Ni denotes the node at grid co-
ordinates i = {i0, i1, ..., iD−1} in a HyperX,
there is a bidirectional link between Ni and
Nj (i ̸= j) if and only if there is a dimension d
such that ik = jk for all k ∈ {0, . . . , D} \ {d}.
Such all-to-all patterns in each dimension result
in small diameter and high bisection bandwidth.
This makes HyperX a scalable interconnection
topology for massively parallel systems.

Challenges for In-network Allreduce on Direct
Networks

Existing in-network Allreduces typically map
logical spanning trees onto physical tree net-
works [5], [7]. However, when there is a mis-
match between the logical tree and the underlying
network topology, the logical edges may not
map to disjoint paths in the network, potentially
leading to congestion. Furthermore, direct net-
works provide dense connectivity patterns that
can be used to reduce the dilation and, in turn,
the latency of Allreduce. However, embeddings
of pre-defined logical trees may not efficiently
utilize the physical network topology to optimize
Allreduce latency.

Architecture for in-network reductions
In this section, we describe the topology of the

Intel PIUMA network and the architecture of the

2 IEEE Micro



PIUMA switches that provide hardware support
for embedding logical trees into the network [9].
The proposed architecture is applicable to general
multi-level direct networks.

Network Overview
Each PIUMA node is a multi-socket pro-

cessing unit with multiple cores per socket. The
PIUMA system uses a multi-level direct network
consisting of a HyperX topology to connect the
nodes, and an on-chip mesh connecting compute
cores within each node. Specifically, peer nodes
in HyperX and sockets within each node are all-
to-all connected. In the context of in-network col-
lectives, such dense connectivity patterns provide
opportunities for performance optimizations.

A core within a node represents the lowest
level in the network and has an on-chip switch
exclusively connected to it for network access.
Thus, PIUMA has a direct network with one
endpoint per on-chip switch. Memory within each
node is organized in multiple modules, and each
core is directly connected to a memory module.
We refer to it as the local memory of the core. In
this paper we assume that each participating core
contributes an input xi to the Allreduce.

For low-latency data transfer and complete
network offloading of collectives, every switch
has direct access to the core’s local memory via
one of the ports. The remaining ports on these
switches collectively enable the required inter-
socket and inter-node connectivity [11].

Switch Architecture for In-network Computing
The following components in PIUMA

switches provide hardware support for in-
network reduction:

Collective Engine
As shown in figure 1, each switch is equipped
with a Collective Engine (CENG) that can reduce
in-flight packets on multiple input ports. CENG
supports integer and floating point addition, mul-
tiplication, min, max, and several bitwise opera-
tors such as AND, NOR, XOR. It is implemented
as a pipelined tree of units to compute high radix
reductions at line rate with logarithmic latency.
Moreover, reductions are computed in a fixed
port order when all required inputs are available.
This ensures repeatability of results for a given

embedding, even for non-associative operators
such as floating point addition.

Collective Virtual Channel
Collective packets in PIUMA are routed on ded-
icated, higher priority vs point-to-point traffic,
virtual channels. The arbitration unit in each
switch prioritizes packet movement on this chan-
nel, providing a performance equivalent of an
empty network to in-network collectives, which
is unaffected by background network traffic.

Configuration Registers
Configuration registers within each switch deter-
mine the connectivity between the collective input
and output ports, and the operation performed
in the CENG. This provides fine-grained control
over the paths traversed by packets and com-
putations performed in a collective embedding.
Effectively, the problem of embedding Allreduce
boils down to setting the switch configurations in
such a way that resulting embedded paths and
reduction patterns represent a logical Allreduce
topology.

Crossbar

Ip Port

CENG

𝐼𝑝1

𝐼𝑝2

𝐼𝑝𝑁

Config Reg.

𝑂𝑝1

𝑂𝑝2

𝑂𝑝𝑁

𝐼𝑝

Memory 
Access VCs

Collective 
Request VC

A
rb

it
er

Collective 
Response VC

FIFO Buffers

Figure 1: PIUMA switches provide hardware sup-
port for in-network collectives.

Multiple In-network Collectives
PIUMA’s configuration register mechanism for-
bids congestion on the collective virtual chan-
nels i.e. logical edges in a topology must map
to disjoint physical paths. Every embedding in
PIUMA is associated with a collective identifier
and configuration registers are replicated for each
identifier. Therefore, multiple collectives can be

Jan 2022 3



mapped on a given identifier (and can be simul-
taneously operational) provided their embeddings
do not share physical links or reduction engines
at switches (spatially disjoint).

Additionally, collectives can be mapped
across multiple identifiers. Since each identifier
uses a unique replica of configuration registers,
overlapping embeddings can be simultaneously
configured on different identifiers. However, on
a given switch, only one of these collectives can
be executed at any time (temporally disjoint).
Hence, in-network collectives in PIUMA never
incur congestion. In this paper, we focus on a
global Allreduce that spans the entire system.

Request-response Mechanism
Two categories of packets are supported for col-
lective operations – request packets that carry
inputs and partial sums, and response packets
that carry collective output. Separate virtual chan-
nels and configuration registers are provided for
movement of request and response packets, as
shown in figure 1. This mechanism provides
flexibility for embedding collectives with varied
communication patterns (all-to-all, all-to-one and
one-to-all).

Pipelined Reduction
A vector Allreduce may generate numerous pack-
ets depending on the vector size. Movement of
these packets in the Allreduce embedding must
be pipelined for high throughput computation.

For efficient pipelining, PIUMA switches
employ a credit signal based mechanism to track
the buffer space on the neighboring switches. If
the buffer on a neighbor is full, the corresponding
output port is labeled unavailable, and the input
port(s) forwarding to that output port are
stalled by the scheduler. This enables pairwise
synchronization of adjacent switches (equivalent
to consecutive pipeline stages), thereby
preventing packet drops without the need
of complex reliability or reservation protocols.

In-network Allreduce on PIUMA
Logical Computation

We use a logical reduction tree to compute
the output y, followed by a broadcast tree to
distribute it. The leaves of the trees represent the
local memory endpoints of the participating cores.

Computation is initiated when participating
cores call the collective intrinsic, specifying the
input vector address and the number of elements
m. Thereafter, switches fragment input elements
into request packets and insert them into the
reduction tree. These packets travel towards the
root vertex, getting reduced with other packets
at intermediate switches. The root computes the
final reduction and packetizes output elements
into response packets that are broadcast to the
leaves. A counter in each PIUMA switch tracks
the number of output elements written to the
local memory endpoint. When all m elements
are written, it notifies the core that the collective
computation is locally completed.

Allreduce Embedding
Reduction Tree
Allreduce latency is a function of the cumulative
link latencies in the embedded paths between
leaves and the root vertex. Therefore, the key to
achieving a low-latency Allreduce in PIUMA is
to shorten the longest leaf-to-root path.

To this purpose, we adopt a dynamic em-
bedding strategy that only maps the root of the
reduction tree to a switch within the minimum
eccentricity1 participant node, and constructs rest
of the logcal tree alongside the embedding. For a
global Allreduce on the PIUMA HyperX where
link latency is proportional to physical distance,
root is mapped to the node at midpoint coordi-
nates in each dimension, as shown in figure 2.
When embedding Allreduce on a subset of nodes,
it is advisable to map the root on a node partic-
ipating in that Allreduce, to avoid overlaps with
potential embeddings on other subsets of nodes.

All input vectors reach the root along the
shortest network paths between their source and
the root, thereby minimizing the leaf to root
latency. Since Allreduce does not impose a
specific order of aggregation, reduction vertices
are dynamically mapped to the switches where
multiple shortest paths intersect. These switches
reduce the packets on all incoming paths and
forward a single output towards the root.

First, we apply this strategy on the inter-
node HyperX. Here, all nodes send their contri-
bution (reduction of their internal inputs) towards

1Eccentricity of a node is the maximum distance to any other
node in the network.

4 IEEE Micro



the root node along dimension ordered shortest
paths in the HyperX [10]. Thus, the number of
inter-node hops from a memory endpoint to the
root node is upper bounded by HyperX dimen-
sionality. For the 2D HyperX shown in figure 2,
contribution of each node goes to the root via
the row-wise peer node in column y2, where it
intersects and is reduced with inputs from other
nodes in the same row. The root node reduces in-
puts coming from all peer nodes in every HyperX
dimension, acting as a high-radix switch. Such
high-radix reduction is feasible on a PIUMA node
as there are several switches within each node.

PIUMA
Node

PIUMA
Node

PIUMA
Node

Node

PIUMA
Node

PIUMA
Node

PIUMA
Node

Node

PIUMA
Node

PIUMA
Node

PIUMA
Node

Node

PIUMA
Node

PIUMA
Node

PIUMA
Node

Node

PIUMA
Node

PIUMA
Node

PIUMA
Node

PIUMA
Node𝑥0

𝑥1

𝑥2

𝑥3

𝑦0 𝑦1 𝑦2 𝑦3

Figure 2: Dimension ordered Allreduce embed-
ding in 2D PIUMA network

Next, we apply this strategy within each node.
Here, the root of the intra-node reduction tree
is mapped to a switch whose port(s) connect
directly to the parent node in the inter-node tree.
For example, in figure 3, the root of intra-node
reduction tree is mapped to top left switch in
socket 0. Inputs from memory endpoints reach
this switch via the corresponding shortest paths
in the intra-node mesh. They are reduced on
the way with other inputs from within the node
and external inputs from other nodes (if any).
Note that the logical topology finally embedded
in a node varies with the node’s coordinates
in PIUMA HyperX, and cannot be derived by
an algorithm which is oblivious to the network
topology. As an example, figure 3 shows the
resulting topology for one such node.

The dynamic embedding approach has several

benefits in addition to latency optimization. It
induces numerous path intersections close to the
input sources, thereby reducing the network traf-
fic generated by Allreduce. Moreover, it naturally
resolves congestion by dynamically mapping
reduction vertices. This significantly reduces
embedding complexity compared to embedding
a pre-defined network oblivious logical tree.

Broadcast Tree
Allreduce output is broadcasted on the same
embedding, albeit with packet flow in opposite
direction on bidirectional PIUMA links. This is
achieved by setting the response configuration
registers to an inverse mapping of the request
configuration registers. The switches where re-
duction vertices are mapped in the reduction tree,
multicast the output to the corresponding ports in
the broadcast tree.

Analysis
Model
In-network Allreduce behaves like a single round
of communication between any pair of end-
points (cores) Pi and Pj . The input packets are
inserted into the network from local memory
module of Pi and traverse a given path into
the network (undergoing computations on the
way), before being written back to the memory
module of Pj as the Allreduce output. In a vector
Allreduce, packets containing individual elements
are pipelined, effectively behaving like a large
point-to-point message transfer. Therefore, the
cost of an m-element vector Allreduce T (m)
can be modeled as per the Hockney’s model i.e.
T (m) = α + βm, where α is the maximum
latency of the embedded path between any two
endpoints and β is the transfer time per element.

Note that there is no additional computation
cost because Allreduce reductions are a part of the
embedded pipeline. Therefore, computations over
any given message element overlap with concur-
rent transfer of other elements on the network.

System Parameters
We assume a D−dimensional (HyperX) system
with NP nodes, NS sockets per node and NC

cores per socket. For the given PIUMA system,
n = NPNSNC cores participate in the Allreduce
collective. For simplicity, we assume that the
latency of a link in a multi-level direct network

Jan 2022 5



Socket 0

C C

C C Socket 1

C C

C C

𝑥0 𝑥1

𝑥2 𝑥3

𝑥4 𝑥5

𝑥7𝑥6

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

a) Reduction tree embedding within a node b) Logical topology of embedding

Socket 2

C C

C C

𝑥8 𝑥9

𝑥11𝑥10

𝑥8 𝑥9 𝑥10 𝑥11

To external HyperX network To Inter-node 
reduction tree

Figure 3: Dynamic reduction tree embedding in a three socket PIUMA node and the resulting logical
Allreduce tree.

depends on its level – LP , LS and LC denote
the latency of inter-node links in HyperX, inter-
socket links within a node and the inter-core
links within a socket, respectively. The intra-
socket mesh has a diameter of dmax. BWlink and
BWmem denote the bidirectional link bandwidth
and memory bandwidth per core, respectively.

Latency
To compute Allreduce latency, we analyze the
longest embedded path from a leaf to the root of
the reduction tree. In the worst case, this path may
incur D inter-node hops. For each inter-node hop,
at most one inter-socket hop is required to reach
the port that connects to the destination node.
An additional inter-socket hop may be needed
to arrive at the root switch on the final node,
resulting in a total of D + 1 inter-socket hops.
For every inter-node or inter-socket hop, the path
may traverse at most dmax links within the socket
to reach the destination port. Therefore, Allreduce
latency which is twice that of the reduction tree,
is given by:

αar ≤ 2(LPD + LS(D + 1)

+ LCdmax(2D + 1))
(1)

Note that the upper bound on αar is twice the
maximum point-to-point latency in PIUMA, and
is independent of the number of nodes in each
HyperX dimension.

Throughput
Allreduce throughput is a function of link band-
width which determines transfer rate over net-
work, and memory bandwidth which determines
ingestion rate into the network. Our Allreduce
embedding uses duplex communication for simul-

taneous data transfer on both reduction and broad-
cast trees and incurs no congestion. Further, m
elements are concurrently read from and written
to the memory endpoints. Therefore, for s Byte
elements, per element transfer time is given by:

βar = max

(
2s

BWlink

,
2s

BWmem

)
(2)

Evaluation
Setup

To evaluate the in-network Allreduce, we
use an in-house simulator specifically designed
to model the switch architecture and network
topology of PIUMA.2 In addition to the
architectural parameters given in table 1, the
simulator also takes the configuration register
values of switches as an input to build a precise
rendition of the Allreduce embedding in PIUMA.
Since collective channel is prioritized above
point-to-point communication, our simulator
ignores any background network traffic.

Table 1: PIUMA Network Parameters

Parameter Value

No. of cores per socket (NC) 8
No. of sockets per node (NS) 16
Intra-socket link latency (LC) 5 ns
Inter-socket link latency in a node (LS) 25 ns
Inter-node link latency (LP ) 50 ns
Memory bandwidth per core (BWmem) 51.2 Gbps
Unidirectional link bandwidth (BWlink) 64 Gbps

For host-based Allreduce, we individually de-
termine the latency in each round as a function of
the shortest path between communicating PIUMA

2Single node behavior was also functionally verified on Intel’s
production-level simulator.

6 IEEE Micro



cores. Further, given the shared-memory model of
PIUMA, we assume that each pair of communi-
cating cores exchange a flag between themselves
to indicate validity of data in their local collective
buffers. We ignore any potential congestion issues
in host-based Allreduce.

Baselines: For throughput comparison of vector
Allreduce, we use the throughput optimized
Rabenseifner algorithm as the baseline [1]. For la-
tency comparison, we use the Recursive Doubling
algorithm which requires only log2 n rounds.

Results
Allreduce Performance
Figure 4 shows a comparison of the latency and
unidirectional bandwidth achieved by in-network
and host-based Allreduces.

Latency: In-network Allreduce achieves more
than 40× reduction in latency over host-based
Allreduce. This is primarily because in-network
Allreduce requires single transfer of data from
memory to network and vice-versa. Thus, it
avoids synchronization costs and overheads of
multiple data transfers between network and
memory, as seen in host-based computation.
Overall, in-network Allreduce is highly scalable
with < 1µs latency on a cluster of 16K nodes.

Note that as expected, the latency of in-
network Allreduce is almost constant for a given
HyperX dimensionality. In contrast, the latency
of host-based Allreduce increases logarithmically
with the number of nodes due to an increase in
the number of communication rounds.

Throughput: The link bandwidth in PIUMA is
designed to be higher than local memory band-
width to support a large number of remote mem-
ory accesses [9]. Hence, the optimal Allreduce
throughput is limited by ingestion rate from local
memory endpoints. Another consequence of this
design is that the vector reduction in software
contributes significantly to the execution time of
host-based Allreduce.

On a cluster of 16 PIUMA nodes, our in-
network Allreduce achieves near optimal band-
width on large vectors, with a 3.5× increase
in the maximum throughput3 compared with the

3There is a typo in the abstract of our conference paper [11]
which mentions a 3.6× speedup.

Allreduce throughput on a 𝟏𝟔 node cluster

Latency of single element Allreduce

Allreduce throughput for 𝟏𝟐𝟖 KB vector size

Figure 4: Performance of in-network and host-
based Allreduce (AR)

host-based implementation. This is because it
communicates approximately 2× less data per
core compared to host-based Allreduce, and does
not incur computation cost for vector reductions.

For a (moderately long) 128KB vector, our
in-network Allreduce achieves near optimal band-
width even on extreme-scale systems. On a sin-
gle node, it is 3.9× faster than the host-based
Allreduce. As the system size increases from 1

Jan 2022 7



node to 16K nodes, its throughput drops by only
1.4%, unlike the host-based Allreduce whose
throughput drops by 26%. Due to congestion
issues in the host-based Allreduce, we expect its
empirical throughput to be even lower than the
analytical projections shown in figure 4.

Deep Learning Application Performance
Data-parallel Stochastic Gradient Descent (SGD)
is commonly used for training Deep Neural Net-
works (DNNs) on distributed systems [2]. Each
host stores a replica of the model and com-
putes local gradients using a small mini-batch
of training samples. These local gradients are
then aggregated using Allreduce to compute the
model updates in every epoch. On large systems,
Allreduce constitutes a significant fraction of the
overall DNN training time [5], [6].

To evaluate the benefits of in-network Allre-
duce on deep learning, we model the performance
of VGG16 training (4 Byte weights) on Imagenet
dataset (224 × 224 × 3 images). Each training
epoch for VGG-16 aggregates 550MB of local
gradients using Allreduce. Due to the computa-
tionally demanding nature of the application, it is
important to get a perspective on the device used
for training. PIUMA is tailored for sparse data
analytics and prioritizes memory and network
over compute performance [9]. As a result, lo-
cal gradient computation dominates training and
we observe that a cluster of 16 PIUMA nodes
spends only 7% of the training time in Allre-
duce (figure 5a). For a more meaningful analysis,
we evaluate the impact that PIUMA’s in-network
collectives can have on deep learning accelerators
such as GPUs. We envision a hypothetical device
with a direct network similar to PIUMA (on-
chip and external) but compute capability and
memory bandwidth per node equivalent to the
Nvidia A100 GPU – 156 TFLOPS for TF32
format and 1.56 TBps, respectively4. We assume
that the switches on such a device would support
in-network reduction of TF32 datatype elements.
We refer to this device as PIUMA A100.

Figure 5a shows the fraction of training
time (on a 16 node cluster) spent in computing
Allreduce, as a function of minibatch size per
node. Minibatch sizes of 256 or 512 images
per GPU are commonly used in distributed

4https://www.nvidia.com/en-us/data-center/a100

training [12]. Scaling training to large clusters
and large batch sizes is an active area of
research [12]. Large minibatch sizes boost per
epoch performance, but adversely affect the
accuracy and convergence. Conversely, a small
minibatch can improve accuracy but increase
training time and relative cost of Allreduce
per epoch. For example, with a minibatch of
128 images, the cluster of 16 PIUMA A100
nodes could spend > 55% of the training time
on host-based Allreduce. Using in-network
Allreduce decreases this contribution to 25%.

0

2

4

6

8

128 256 512 1024

Ti
m

e 
sp

en
t 

in
 A

R
 (

%
)

Minibatch size per Node

16 PIUMA Nodes

0

15

30

45

60

128 256 512 1024

Minibatch size per Node

16 PIUMA_A100 Nodes

(a) Percentage of total training time spent in Allreduce (AR)

1

1.02

1.04

1.06

1.08

1.1

128 256 512 1024

Sp
ee

d
u

p

Minibatch size per Node

16 PIUMA Nodes

0

0.5

1

1.5

2

2.5

128 256 512 1024

Minibatch size per Node

16 PIUMA_A100 Nodes

(b) Training speedup achieved by using in-network Allreduce

Figure 5: Impact of in-network Allreduce on
DNN training

Apart from collective acceleration, network
offloading also enables overlap between local
computation and Allreduce collective. To study
the impact of such overlap, we model a training
algorithm that instantiates individual Allreduces
for gradients of each layer, and concurrently
executes backpropagation on other layers.

As shown in figure 5b, overlapping in-network
Allreduce accelerates DNN training by upto
2.2× compared to host-based Allreduce. Notably,
we observed an almost perfect overlap between
Allreduce and gradient computation. This is be-
cause backpropagation first processes dense lay-
ers that generate a large number of gradients
but require little computation. Allreduce on these

8 IEEE Micro



gradients completely overlaps with backpropaga-
tion on subsequent convolutional layers, which
is computationally expensive but generates few
gradients.

Discussion
Allreduce is widely used in parallel comput-

ing applications. In this paper, we presented an
approach to realize high performance in-network
Allreduce on multi-level direct network of the In-
tel PIUMA system. Our analysis showed that the
proposed in-network Allreduce can achieve more
than an order of magnitude reduction in latency
and up to 3.5× higher throughput compared to
state-of-the-art host-based algorithms.

Our current approach employs a single leader
design where each node communicates the entire
reduction vector of its internal inputs on one of
the HyperX links. Hence, we utilize a fraction of
the available network bandwidth on each node.
Allreduce throughput can be further improved by
employing multiple embeddings that concurrently
compute disjoint segments of the output vector.

An in-network Allreduce can be directly ex-
tended for Reduce, Broadcast and Barrier col-
lectives. Additionally, PIUMA’s generic hardware
support for in-network computing can also be
used to offload complex collectives, such as Pre-
fix Scan. This can benefit several applications
including sorting, sequence analysis, and load
balancing. However, Prefix Scan requires a spe-
cific order of input aggregation unlike Allreduce.
This makes congestion-avoidance challenging as
reductions cannot be mapped on arbitrary path
intersections.

Acknowledgement
This work was supported in part by the

Defense Advanced Research Projects Agency
(DARPA) under contract HR0011-17-3-0004, and
the National Science Foundation (NSF) under
grant OAC-1911229.

REFERENCES
1. R. Rabenseifner, “Optimization of collective reduction

operations,” in International Conference on Computa-

tional Science. Springer, 2004, pp. 1–9.

2. A. Sergeev and M. Del Balso, “Horovod: fast and easy

distributed deep learning in tensorflow,” arXiv preprint

arXiv:1802.05799, 2018.

3. K. E. Prikopa, W. N. Gansterer, and E. Wimmer, “Par-

allel iterative refinement linear least squares solvers

based on all-reduce operations,” Parallel Computing,

vol. 57, pp. 167–184, 2016.

4. P. Patarasuk and X. Yuan, “Bandwidth optimal all-

reduce algorithms for clusters of workstations,” Journal

of Parallel and Distributed Computing, vol. 69, no. 2, pp.

117–124, 2009.

5. R. Graham, L. Levi, D. Burredy, G. Bloch, G. Shainer

et al., “Scalable hierarchical aggregation and reduc-

tion protocol (sharp) streaming-aggregation hardware

design and evaluation,” in International Conference on

High Performance Computing. Springer, 2020, pp. 41–

59.

6. B. Klenk, N. Jiang, G. Thorson, and L. Dennison, “An

in-network architecture for accelerating shared-memory

multiprocessor collectives,” in International Symposium

on Computer Architecture. IEEE, 2020, pp. 996–1009.

7. A. Faraj, S. Kumar, B. Smith, A. Mamidala, and J. Gun-

nels, “Mpi collective communications on the blue gene/p

supercomputer: Algorithms and optimizations,” in Sym-

posium on High Performance Interconnects. IEEE,

2009, pp. 63–72.

8. A. Moody, J. Fernandez, F. Petrini, and D. K. Panda,

“Scalable NIC-based Reduction on Large-scale Clus-

ters,” in ACM/IEEE conference on Supercomputing,

November 2003.

9. S. Aananthakrishnan, N. Ahmed, V. Cave, M. Cin-

tra, Y. Demir et al., “Piuma: Programmable inte-

grated unified memory architecture,” arXiv preprint

arXiv:2010.06277, 2020.

10. J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.

Schreiber, “Hyperx: topology, routing, and packaging of

efficient large-scale networks,” in Proceedings of the

Conference on High Performance Computing Network-

ing, Storage and Analysis, 2009, pp. 1–11.

11. K. Lakhotia, F. Petrini, R. Kannan, and V. Prasanna,

“In-network reductions on multi-dimensional hyperx,” in

2021 IEEE Symposium on High-Performance Intercon-

nects (HOTI). IEEE, 2021, pp. 1–8.

12. Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and

K. Keutzer, “Imagenet training in minutes,” in Proceed-

ings of the 47th International Conference on Parallel

Processing, 2018, pp. 1–10.

Jan 2022 9


	Introduction
	Background
	Allreduce
	Direct Networks and HyperX topology
	Challenges for In-network Allreduce on Direct Networks

	Architecture for in-network reductions
	Network Overview
	Switch Architecture for In-network Computing

	In-network Allreduce on PIUMA
	Logical Computation
	Allreduce Embedding

	Analysis
	Evaluation
	Setup
	Results

	Discussion
	Acknowledgement
	REFERENCES

