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Abstract—Personalized PageRank (PPR) is used to measure
the importance of vertices with respect to a source vertex. PPR
is a key kernel used in many real-world applications, such as
information retrieval, recommendations, knowledge discovery,
etc. Local push algorithms have been widely used for developing
state-of-the-art fast PPR algorithms. In this paper, we analyze
the computational characteristics of local push algorithms at
the algorithm (error tolerance, damping factor) and hardware
architecture (available memory, cache features) levels. First,
we profile the algorithm to understand the effect of various
algorithm parameters. We study the trade-offs between latency
and accuracy of local push algorithms using various performance
metrics including Top-K accuracy and scalability. Then, we
perform our analysis on two state-of-the-art multi-core platforms
to understand the latency of the algorithm for PPR computation
on a single source vertex and its scalability for multiple vertices
using thread-level parallelism. We analyze the impact of error
tolerance and damping factor on the overall performance of the
algorithms.

Index Terms—Personalized PageRank, local push algorithm,
profiling, experimental study, multi-core platform

I. INTRODUCTION

Personalized PageRank (PPR) is a way of modeling the
importance of other vertices to a given source vertex in a
graph. Using PPR, recommendation systems can identify the
Top-K important vertices for a given source vertex, a process
called Top-K query. Obtaining an exact solution for PPR
requires matrix inversion [1], [2], which has high computation
complexity. Therefore, many approximate algorithms have
been proposed for fast PPR computation [3], such as Iterative
Equation solving, Bookmark Coloring algorithm, etc.

Recently, local push algorithms following the message-
passing paradigm have been used for developing state-of-the-
art (SOTA) approximate algorithms [4]–[9]. The authors of
[4]–[6] design fast algorithms that exploit the combination
of local push algorithms and Monte-Carlo Sampling. Local
push algorithms have unique characteristics which help in
processing large graphs: (1) information propagation only
happens in a small local region surrounding the source vertex
(hence the name ”local”), and (2) the key operations, namely
graph membership queries, are required for vertex message
updating.

In this paper, we conduct an experimental study to un-
derstand the characteristics of PPR computation and memory
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access patterns from an architectural perspective. The paper
makes the following contributions. We profile the execu-
tion of local push algorithms and identify two categories
of parameters that can be tuned to find highly optimized
implementations of the local push algorithms: algorithm level
parameters damping factor and error tolerance, and hardware
architecture parameters like cache structure and size and thread
count.

Our experiments show that:
• Graph membership queries are the major computation

bottleneck in local push algorithms (Section III). These
queries take majority (> 75%) of the total execution time.

• The latency-accuracy trade-off depends on the algorithm
parameters (Section IV-D). Smaller error tolerance ex-
pands the region of information propagation for process-
ing a target vertex, leading to an increased number of
graph membership queries and a higher overall latency.

• Local push algorithms have poor scalability when concur-
rently running PPR on multiple source or target vertices
using multiple threads concurrently (Section IV-B). The
poor scalability is due to the larger cache miss ratio when
more threads compete for the cache (Section IV-E).

II. BACKGROUND AND RELATED WORK

A. Personalized PageRank

Personalized PageRank is built upon the random walk
model. Starting from the source vertex s in the input graph
G(V, E), at each step, the random walker has the probability
α (0 6 α 6 1) of walking through any of the outgoing
edges from the current position and the probability 1 − α of
stopping at the current location. Each outgoing edge has a
uniform probability of being selected. Under the random walk
model, π(s, t) denotes the probability of the random walker
starting from vertex s and stopping at vertex t. The notation
α is called the damping factor. We use ~π(s) to denote the
PageRank vector for the source vertex s and the position t of
~π(s) is π(s, t). The following equation models the behavior
of the random walker starting at source vertex s:

~π(s) = αB~π(s) + (1− α)~1s, (1)

where B is the transition matrix of the input graph, and each
position B[i, j] denotes the probability of the random walker,
walking from vertex i to j. ~1s is a one-hot vector where



TABLE I
NOTATIONS

Notations Descriptions Notations Descriptions

G(V, E) Input graph V , |V| Set of vertices , # of vertices

E / |E| Set of edges, # of edges π̂(s.v) Estimation of π(s.v)

π(s.v)
PPR of vertex v
with respect to s π(s)

PPR vector for
a source vertex s

π(, t)
PPR vector for
a target vertex t π̂(s) Estimation of π(s)

π̂(, t) Estimation of π(, t) ε Error tolerance

α Damping factor du Degree of vertex u

r̂(, t)
Residual vector for
the target vertex t nnz() Number of non-zero elements

position s has value 1. Having the PageRank vector ~π(s),
we can obtain the Top-K important vertices with respect to
vertex s ranked by their PageRank values. Notations have been
defined in Table I.

B. Local push algorithms

Algorithm 1 ForwardPush
Input: (s, G(V, E), α, ε )
Output: The estimated PPR vector π̂(s) for source vertex s

1: Initialize the estimate vector π̂(s)← −→0
2: Initialize the residual vector r̂(s)← −→0
3: r̂(s, s)← 1
4: while ∃u ∈ V s.t. r̂(s,u)

du
> ε do

5: for each u→ v do
6: r̂(s, v)+ = (1− α)r̂(s, u)/du
7: end for
8: π̂(s, u)+ = αr̂(s, u)
9: r̂(s, u) = 0

10: end while

Algorithm 2 ReversePush
Input: (t, G(V, E), α, ε )
Output: The estimated PPR vector π̂(t) for source vertex t

1: Initialize the estimate vector π̂(, t)← −→0
2: Initialize the residual vector r̂(, t)← −→0
3: r̂(t, t)← 1
4: while ∃u ∈ V s.t. r̂(u, t) > ε do
5: for each v → u do
6: r̂(v, t)+ = (1− α)r̂(u, t)/dv
7: end for
8: π̂(u, t)+ = αr̂(u, t)
9: r̂(u, t) = 0

10: end while

Jeh and Widom first proposed the local push algorithm [10].
Given an input graph G(V, E), to estimate the PPR vector ~π(s)
for the source vertex s, each vertex t maintains an estimation
value π̂(s, t) and a residual value r̂(s, t). Based on the
direction of the information push operation, we divide the local
push algorithms into the ForwardPush (Algorithm 1), propaga-
tion along the outgoing edges and the ReversePush (Algorithm
2), propagation along the incoming edges. Starting with a
residual value 1 assigned to the source vertex: r̂(s, s) = 1, the

TABLE II
PLATFORMS SPECIFICATIONS

Platform 1 (Skylake) Platform 2 (Zen)

Processor

Intel (R) Xeon
Gold 5120 CPU

@ 2.20 GHz
14 Cores / 28 Threads per socket

2 Sockets

AMD Ryzen
Threadripper 3990X

@ 2.90 GHz
64 Cores, 128 Threads

1 Socket

Cache
per socket

L1d cache: 32 KB
L1i cache: 32 KB
L2 cache: 32 KB

L3 cache: 19.25 MB

L1d cache: 32 KB
L1i cache: 32 KB
L2 cache: 512 KB
L3 cache: 256 MB

DDR
Memory

Type: DDR4
Frequency: 2400 MHz

Capacity: 128 GB
Bandwidth: 89 GB/s

Type: DDR4
Frequency: 3200 MHz

Capacity: 256 GB
Bandwidth: 102 GB/s

local push operation iteratively pushes the residual value to the
neighbors from the current vertex, and at the same time, the
current vertex absorbs some residual value into its estimation
π̂(s, t). ε is the manually specified error threshold. Andersen
et. al. [11] proves that after the algorithm terminates, all the
vertices v ∈ V have the estimation error |π̂(s, v)−π(s, v)| 6 ε.
There are two major features of local push algorithms: (1)
Spatial Locality: In large graphs, local push algorithms usually
involve vertices in a small local range surrounding the source
vertex. Therefore, the estimation array and the residual array
have high sparsity. (2) Graph Membership Query: Local push
algorithms search for the estimation and residual values based
on the index of the vertex.

III. PROFILING, IMPLEMENTATIONS, OPTIMIZATIONS

In this section, we first introduce the specifications of
profiling platforms. Then, we show the initial breakdown
profiling results of the local push algorithms, which motivate
our detailed experimental study.

A. Platforms

We profile the performance of the local push algorithms
on two SOTA multi-core platforms. The specifications of the
platforms are shown in Table II. For simplicity, we denote
platform 1 as Skylake and call platform 2 as Zen.

We use Vtune 2021.3 [12] to profile the execution of programs
on Skylake and AMD uProf [13] to profile the execution of
programs on Zen. We measure memory consumption, extent of
threading and parallelism, and cache miss ratio (Section IV-A)
under various algorithm parameters on the two platforms.

B. Data Structures

Graph Data Structure: In ForwardPush and ReversePush
algorithms, fetching the neighbors of a vertex is the basic
operation. To efficiently support the neighborhood fetching
operations, we use the Adjacency list format to store the
input graphs. For undirected graphs, each vertex v has a
single adjacency list N (v) to store its neighborhood. For
directed graphs, each vertex has two adjacency lists Nin(v)



TABLE III
DATASET STATISTICS

Name # of Nodes # of Edges Type

DBLP 613,586 1,990,159 undirected
LiveJournal 4,846,609 68,475,391 directed

Orkut 3,072,441 117,185,083 undirected
Web Stanford 281,904 2,312,497 directed

Pokec 1,632,803 30,622,564 directed

and Nout(v). Nin(v) stores the neighbors connected by the in-
coming edges of v and Nout(v) stores the neighbors connected
by the outgoing edges of v.

C. Benchmark Datasets

We conduct experiments on five commonly used datasets
[14]: DBLP [15], Web Stanford (Web-st) [16], Orkut [15], Live
Journal (LJ) [17], Pokec [18]. DBLP and Orkut are undirected
graphs and the other three (Lj, Pokec, Web-st) are directed
graphs. For each graph, we label the vertex ids from 1 to |V|.

Graph Membership Query: Graph membership query op-
erations index the estimation value π̂(s, v) and residual value
r̂(s, v) from ~π(s) and ~r(s) based on the vertex ID of v. Gener-
ally, local push algorithms will only touch a small proportion
of total vertices V , which means that the majority of the values
in vector ~π(s) (~r(s)) are zeros. Therefore, we exploit the hash
table to store ~π(s) (~r(s)). We use a SOTA open-sourced hash
table implementation IMAP [19]. The vertices of the input
graph are mapped to the IDs: 1, 2, 3, ..., |V|. To store ~π(s)
(~r(s)), the IMAP allocates an array having a size proportional
to the number of total vertices O(|V|). The position t of the
array stores r̂(s, t) (~π(s, t)) of vertex t.

Fig. 1. Breakdown of execution time for ForwardPush algorithm on Pokec
and Orkut when α = 0.2.

To analyze the computation bottlenecks of local push
algorithms, we perform initial profiling on Skylake. The
breakdown execution time of each basic operation is shown
in Figure 1. We observe that hash table operations (consist
of operator [] and exist()) take more than 75% of the total
execution time. Hashtable[key] indexes the value of the
element which has the key value key. The exist() function
checks if an element is in the hash table. As demonstrated
by profiling results, hash table operations are memory-bound,

and 64% − 82% of the execution time is caused by memory
load/store instructions of hash functions. Besides hash table
operations, neighborhood fetching and calculation of residual
values also consume a non-negligible portion of the total
execution time. In conclusion, the profiling results show that
hash table operations are the major bottleneck in local push
algorithms.

IV. METRICS AND ANALYSIS

A. Performance Metrics

We define several performance metrics that are used in our
experiments:
Throughput: The number of source or target vertices that
can be processed by the platform given a specific time period.
Throughput is calculated by:

Throughput =
# of source vertices processed

Execution Time
(2)

Top-K Accuracy: After computing the estimation array π̂(s)
(π̂(, t)), the largest top K values in π̂(s) (π̂(, t)) correspond
to the Top-K important vertices with respect to the source
vertex s (destination vertex t). TK(s) (TK(t)) denotes the
set of estimated Top-K important vertices and GK(s) (GK(t))
denotes the ground truth. The ground truth is calculated
using matrix inversion (Equation1). The Top-K accuracy is
calculated by:

Top-K Accuracy =
|TK(s) ∩GK(s)|
|GK(s)|

× 100% or

Top-K Accuracy =
|TK(t) ∩GK(t)|
|GK(t)|

× 100%

(3)

Note that when evaluating the Top-K accuracy, we set the same
damping factor for TK(s) (TK(t)) and GK(s) (TK(t)).
Memory Usage: The main memory usage is to store non-
zero elements in π̂(s) and r̂(s). nnz(r̂(s)) and nnz(π̂(s)) are
called as the number of vertices touched by the algorithm.
We measure the memory usage of local push algorithms using
nnz(r̂(s)) and nnz(π̂(s)) after the algorithm terminates.
Cache miss ratio: It is calculated by dividing the number of
cache misses by the total number of load/store operations.

B. Multi-thread Implementation

Algorithm 3 Parallel Multi-source ForwardPush
Input: p: number of threads, G(V, E): input graph, α, ε
Output: Estimated PPR vector for each vertex

1: for i = 1 : |V|
p

do
2: for each s ∈ V[i ∗ p+ 1 : (i+ 1) ∗ p] Parallel do
3: π̂(s) = ForwardPush(s,G(V, E), α, ε)
4: end for
5: end for

To evaluate the scalability of local push algorithms, we exe-
cute the ForwardPush and ReversePush algorithms for multiple
source vertices in parallel. The parallel multi-source Forward-
Push and ReversePush algorithms are shown in Algorithm 3



Algorithm 4 Parallel Multi-target ReversePush
Input: p: number of threads, G(V, E): input graph, α, ε
Output: Estimated PPR vector for each vertex

1: for i = 1 : |V|
p

do
2: for each t ∈ V[i ∗ p+ 1 : (i+ 1) ∗ p] Parallel do
3: π̂(, t) = ReversePush(t,G(V, E), α, ε)
4: end for
5: end for

and Algorithm 4 respectively. We use the OpenMP library to
parallelize the execution of multiple source or target vertices.
We remove any potential memory initialization overheads in
the evaluation results.

C. Comparison of ForwardPush and ReversePush

ForwardPushReversePush

v2v1v3v4 v0

Source/Target

Fig. 2. ForwardPush operation and ReversePush operation in a directed graph.

Fig. 3. Comparison of ForwardPush and ReversePush: Throughput and # of
touched vertices of a) Orkut b) DBLP datasets (α = 0.2).

ForwardPush algorithm estimates the probabilities
{π̂(s, v) : v ∈ V} of the random walker stopping at other
vertices starting from the source vertex s. ReversePush
algorithm estimates the probabilities {π̂(v, t) : v ∈ V} of the
random walker starting from other vertices and stopping at
the target vertex. Essentially, π̂(s, v) 6= π̂(v, t) when s = t,
because ForwardPush and ReversePush propagate residuals
along different directions as demonstrated in Algorithm 2.
Therefore, it is not feasible to compare ForwardPush and
ReversePush from an algorithmic perspective. Nevertheless, it
is still possible to evaluate their performance using undirected
graphs since the two algorithms behave similarly for these
graphs.

lim
ε→0
|π̂(s, v)− π̂(v, t)| = 0,when s = t.

We evaluate the ForwardPush and ReversePush algorithms on
two undirected graphs – Orkut and DBLP. From the evaluation
results (Figure 4), we observe that under the same algorithm
parameters (α, ε), ReversePush has a higher accuracy than

the ForwardPush algorithm. This is because the ReversePush
algorithm has a stricter convergence criteria, as shown in line
4 of Algorithm 1 and Algorithm 2. Because of the stricter
convergence criteria, the ReversePush algorithm touches more
vertices and has more execution iterations. Therefore, Re-
versePush shows lower throughput (Figure 3) under the same
algorithm parameters and platforms.

D. Algorithm Parameters

Error tolerance ε and damping factor α are two major
algorithm parameters of local push algorithms. We evaluate
how the two parameters affect the Top-K accuracy and the
local push algorithms’ average number of touched vertices.
For simplicity, we only show the evaluation results of For-
wardPush, since ReversePush follows a similar trend.
Error tolerance: Error tolerance ε is the criteria that controls
the convergence of local push algorithms. We evaluate the Top-
100 accuracy and the average number of touched vertices.
As demonstrated in Figure 5, with smaller error tolerance,
ForwardPush has higher accuracy and touches more vertices
because it needs to propagate the residual to more neighbors
in order to degrade the residual value. Generally, when the
residual ε < 10−5, the Forward Push algorithm has > 80%
Top-100 accuracy, and it can touch > 103 vertices. The
number of touched vertices decides the memory consumption
of π̂(s) and r̂(s). Therefore, a reasonable assumption is that
when π̂(s) and r̂(s) can fit in the on-chip memory (e.g., cache)
of the processor, the local push algorithms can directly fetch
the elements from the hash table with low latency. When the
size of π̂(s) and r̂(s) is larger than the on-chip memory,
the processor needs to constantly load the elements of the
hashtable from the external memory. To summarize, a latency-
accuracy tradeoff exists that necessitates the need to touch
more vertices to get a higher accuracy.
Damping factor: Damping factor α (0 6 α 6 1) is an
application-specific parameter indicating the centrality of the
source or target vertex. A higher α means that the random
walker has a higher probability of jumping back to the
source/target vertices. We evaluate the number of touched ver-
tices for different damping factor values, since the number of
touched vertices indicates the extent of memory consumption
irrespective of other architectural parameters. As shown in
Figure 6, when the Damping factor becomes larger, the local
push algorithms touch a smaller number of vertices. This is
because the decay of the residual is faster as the damping
factor becomes larger. The execution time is proportional to
the number of vertices touched. Thus, we observe very high
execution times when the Damping Factor is low, which is in
turn due to a higher number of touched vertices.

E. Scalability

In a production-scale data center, PPR is usually processed
in a batched manner, which means that multiple threads
process multiple source vertices in parallel. We evaluate
the scalability of local push algorithms on the Skylake and
Zen platforms. The number of parallel threads is set as



Fig. 4. Top-K (K = 20, 60, 100) accuracy of ForwardPush and ReversePush algorithms on Orkut (Left) and DBLP (Right) dataset.

Fig. 5. Top-100 accuracy and the average # of touched vertices with respect
to the error tolerance.

1, 4, 8, 16, 32, which is smaller than the total count of physical
threads which can be used in Skylake. As shown in Figure 7,
the throughput of PPR scales linearly when the number of
threads is small. However, we observe that there is a variation
in this trend when the thread count increases. We observe that
when the number of threads increases from 16 to 32, there is
no improvement in the throughput. The poor scalability can
be explained by the cache miss ratio shown in Figure 8. As
the number of parallel threads increases, the threads start to
compete for the cache, leading to a significantly higher cache
miss ratio.

F. Cross-platform comparison

We evaluate local push algorithms on two state-of-the-art
production-scale multi-core platforms – Skylake and Zen. The
comparison of throughput is shown in Figure 9. For a fair
comparison, both the platforms run PPR using 32 threads
(lesser than the number of physical threads). Zen has 0.14×
more memory bandwidth and a larger L2 and L3 cache size
as compared to Skylake. Since computation takes only a small
portion of the total execution time, the frequency of the com-

putational core will not dramatically affect it. The evaluation
results show that when the epsilon is within (10−2, 10−5), Zen
achieves a speedup 1.5-2.3× that of Skylake. The observed
speedup is partially due to the smaller cache miss ratio on the
Zen platform as shown in Figure 8.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we performed a detailed analysis of local push
algorithms for PPR using various parameter settings. Experi-
mental studies showed that hash table operations consume a
majority of the total execution time. Based on the evaluation
results, we suggest several future directions for accelerating
local push algorithms:
• Efficient hash table data structures need to be developed

for reducing the overhead of group membership queries.
• Some general methodologies, such as partition-centric

graph processing [20] used for graph analytics can be
exploited to accelerate local push algorithms.

• Apart from thread-level parallelism, fine-grained data
parallelism for a single source or target vertex can be
explored to reduce the execution time.
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