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There is an ongoing need in the synthetic biology community for novel ways to regulate
gene expression. Protein switches, which sense biological inputs and respond with func-
tional outputs, represent one way to meet this need. Despite the fact that there is already
a large pool of transcription factors and signaling proteins available, the pool of existing
switches lacks the substrate specificities and activities required for certain applications.
Therefore, a large number of techniques have been applied to engineer switches with
novel properties. Here we discuss some of these techniques by broadly organizing them
into three approaches. We show how novel switches can be created through mutagen-
esis, domain swapping, or domain insertion. We then briefly discuss their use as biosen-
sors and in complex genetic circuits.

Introduction
Protein switches exist across all domains of life, serving the crucial role of sensing and responding to
an organism’s environment [1]. Broadly, a protein switch modulates an output function, such as
catalysis or binding, in response to an exogenous input, such as small molecule binding, a change in
pH or temperature, or exposure to light. Transcription factors represent one common type of protein
switch [2]. These proteins recognize and bind to their cognate DNA sequence and modulate transcrip-
tion at an adjacent promoter. They repress transcription by sterically blocking binding or transcription
of RNA polymerase and activate transcription by recruiting RNA polymerase to the promoter. The
DNA affinity, and therefore the strength of their repression or activation, can be modulated by a wide
variety of stimuli, but is most commonly affected by the binding of a small molecule.
Transcription factors are ubiquitously used across many fields of study [3]. While there are thou-

sands of known transcription factors, a relatively small portion of them are actually used for research
purposes. While this small pool of transcription factors is often sufficient, there are situations in
which novel transcription factors are necessary. This commonly occurs when a transcription factor
that responds to a specific compound of interest is required. Often transcription factors that recognize
that particular compound simply do not exist. The need for novel transcription factors is also appar-
ent when designing large, complex gene circuits. A pool of parts that recognize a wide variety of dif-
ferent compounds and promoters and have a large range of activities is important for the construction
of circuits with the desired properties. The tools that are commonly used today are often insufficient.
Nature can act as one source of novel transcription factors. Indeed, genome mining has identified

many potentially useful proteins. However, these transcription factors are often ineffective outside of
their native context and their utility is therefore limited [4]. Alternatively, novel transcription factors
that have customized properties can be engineered from existing transcription factors and regulatory
parts [5]. Gene expression engineering has been the subject of several recent reviews [5–8]. Here, we
focus on the engineering approaches to engineering novel one-component transcription factors that
function as protein switches. We broadly separate them into three approaches. Novel proteins can be

Version of Record published:
20 October 2020

Received: 21 July 2020
Revised: 28 September 2020
Accepted: 30 September 2020

© 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society 2205

Biochemical Society Transactions (2020) 48 2205–2212
https://doi.org/10.1042/BST20200441

D
ow

nloaded from
 http://portlandpress.com

/biochem
soctrans/article-pdf/48/5/2205/896555/bst-2020-0441c.pdf by Johns H

opkins U
niversity user on 01 O

ctober 2021

http://orcid.org/0000-0003-0900-3665
https://crossmark.crossref.org/dialog/?doi=10.1042/BST20200441&domain=pdf&date_stamp=2020-10-20


generated through mutation of a few residues, swapping of domains from existing transcription factors, and
insertion of regulatory domains into transcriptional effectors. We conclude by highlighting recent examples of
applications of these engineered protein switches.

Genetic switches made through mutagenesis
We start by considering protein switches that are engineered through mutagenesis of an existing transcription
factor to change its binding targets or activity (Figure 1A). We use engineered switches derived from the E. coli
lactose operon repressor protein, LacI, as prototypical examples for this section, as this protein is well studied
and extensive engineering has been performed on it [9–16]. LacI binds to the lac operator and represses tran-
scription at the lac promoter [17]. Binding of allolactose or the synthetic inducer IPTG, triggers a conform-
ational change in LacI that causes it to release the operator and allow for transcription at the lac promoter.
Mutating the substrate-binding domain of transcription factors allows researchers to expand the bank of

potential compounds to use as inducers. However, this strategy is typically limited to using compounds that are
structurally similar to existing inducers. To generate proteins that bind structurally dissimilar inducers would
require a change of the protein’s binding pocket that is too drastic for current methods to access. For example,
Taylor et al. [12] generated a large number of LacI mutants that could be induced by gentiobiose, fucose, lacti-
tol, or sucralose. Another common target for mutagenesis is the residues that impart DNA binding specificity.
Multiple groups have found that mutating a few key residues within the DNA recognition helix of LacI gener-
ates proteins that recognize varied three-nucleotide sequences along the lac promoter [9–11]. This change in
sequence specificity is enough to confer a substantial degree of orthogonality between the LacI variants [16].
Beyond changing substrate and DNA binding specificity, groups have also engineered LacI variants that
respond differentially to inducer [13–15]. These anti-Lac variants bind to the lac operator in the presence of
IPTG rather than the absence. Mutations that change DNA binding specificity and inducer response are largely
orthogonal [16]. That is, these mutations can be combined to generate an additional set of LacI variants that
both recognize an alternate promoter sequence and display a reversed response to IPTG. While the orthogonal-
ity of the substrate-binding domain mutations has not been demonstrated, it is likely that they will also be able
to be combined with other mutations to generate an even larger number of unique transcription factors.
Both rational mutagenesis and directed evolution have been used to identify mutations that alter ligand and

DNA affinity [9–16]. While not essential for engineering, structural information is useful for determining
where mutagenesis should occur. It is particularly important when using computational methods to predict
suitable mutants or site saturation mutagenesis. However, engineering can be performed in the absence of
structural information using techniques such as random mutagenesis or comprehensive codon mutagenesis.
Taylor et al. [12] used multiple library construction methods to generate LacI variants that recognized alterna-
tive inducers. This allowed them to compare the efficacy of each of these methods. They used computational
design, comprehensive single codon saturation mutagenesis, and random mutagenesis via error-prone PCR.

Figure 1. Protein switch approaches for generating novel transcription factors.

(A) Mutating a transcription factor to alter its allosteric effector or cognate DNA. (B) Swapping domains between homologous

transcription factors to produce proteins with novel combinations of effectors and cognate DNA sequences. (C) Inserting

regulatory domains into existing transcriptional regulators to introduce new exogenous inputs such as induced dimerization

(top) or small molecule binding (bottom).
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Generally, the most effective mutants had multiple mutations. These variants, which often had four or more
mutations were only accessible through the computational method. One benefit of using the other two
methods was that they were able to access mutations at distal regions that influence substrate binding, but are
difficult to predict using computational methods. That being said, the most effective variants, ones which
exhibited the largest change in gene expression upon induction and the greatest inducer specificity, were gener-
ated through multiple rounds of mutagenesis that combined these techniques.
Engineered switches with novel binding properties have also been made using other common transcription

factors such as XylR [18], TetR [19], and AraC [20]. More recent work has been directed to designing proteins
that respond to specific desired compounds including aromatic aldehydes such as vanillin and hydroxybenzal-
dehydes [21] and metalloids such as antimony [22]. Additionally, Rondon and Wilson recently performed
engineering on the E. coli regulatory protein BetI [4], which releases its target operator in the presence of
choline. This protein was previously unsuitable for use as a transcriptional regulator due to its poor response to
choline. They generated a library of variants that controlled gene expression over a wide range of choline con-
centrations, induced gene expression up to approximately 300-fold, and were both positively and negatively
regulated by choline. Similarly, Meyer et al. performed directed evolution to optimize 12 existing transcription
factors, increasing their sensitivity to inducer and dynamic range, while decreasing their baseline expression in
the absence of inducer and cross-reactivity to other inducers [23]. They subsequently incorporated each of
these mutated transcription factors into the E. coli genome to generate ‘Marionette’ strains. In principle, these
strains should allow for the independent regulation of 12 separate genes at once.
This review focuses on engineering single component transcription factor systems. However, the approaches

we outline can be applied to more complex systems such as two-component systems. For example, McClune
et al. [24] performed random mutagenesis on histidine kinases along with their corresponding response regula-
tors to generate protein pairs with novel interactions that were orthogonal to most or all of the existing E. coli
kinase systems. The large number of functional variants that they generated and the relative ease with which
they generated them led the authors to conclude that the sequence space of two-component E. coli kinases was
sparsely occupied. Further exploration of this space should yield more novel kinase variants.

Genetic switches made through domain swapping
Next, we consider novel switches that are made by swapping domains of existing switches (Figure 1B). Many
switch proteins are made up of multiple, discrete domains [1]. The least complex of such proteins have one
domain that recognizes an input signal and another that returns a function based on the signal it receives.
Because these domains are often structurally distinct, input and output domains from separate switch proteins
can be swapped to introduce novel outputs for given inputs.
We once again use engineered switches derived from LacI and related proteins from the LacI/GalR family of

transcription factors as prototypical examples of this approach. Proteins in this family bind to a unique oper-
ator sequence on the DNA with a strength that is modulated by an allosteric effector [25]. They also have a
conserved tertiary structure. They contain a ∼40 amino acid N-terminal helix-turn-helix (HTH) domain that
recognizes operator DNA, followed by a ∼20 amino acid linker sequence, and a ∼300 amino acid C-terminal
regulatory domain that is responsible for binding to the allosteric effector as well as forming multimers.
Tungtur et al. [26] performed the initial work on LacI/GalR hybrids that we consider. They swapped the

C-terminal domain of LacI with the corresponding C-terminal domain of PurR. PurR, a member of the LacI/
GalR family, binds to its target operator and represses transcription in the presence of purines such as adenine.
The hybrid LacI-PurR protein showed a slight (two-fold) decrease in transcription at the lac promoter in the
presence of adenine. Additionally, this protein was toxic; in certain cell lines, they were unable to produce
detectable levels of protein or grow cells transformed with the plasmid containing the gene for the hybrid
protein. They hypothesized that the hybrid protein interacted with other critical E. coli operators, limiting
growth. For these reasons, they continued to generate iterative versions of this hybrid protein. It had previously
been shown that residues in the linker that connects the DNA and substrate-binding domains mediate interac-
tions between the two domains that are essential for allostery [27]. Therefore, in an attempt to identify variants
with a larger change in gene expression on exposure to adenine while also potentially generating less toxic var-
iants, Tungtur et al. [26] generated a series of LacI-PurR hybrids that contained mutated linker sequences.
Some of these variants were successful and had a larger (up to 10-fold) reduction in expression at the lac pro-
moter upon the addition of adenine. They were also able to generate variants that were less toxic but did not
perform follow-up investigations into possible causes of this change in toxicity. Nevertheless, this represents a
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potential complicating factor in engineering other, similar, systems. Meinhardt et al. [28] expanded on this
study to generate eight additional hybrid transcription factors that were comprised of the LacI DNA binding
and linker domains connected to a LacI/GalR substrate-binding domain. Their goal was to generate proteins
that responded to novel compounds such as, galactose, ribose, and cytidine while still recognizing the lac oper-
ator. These proteins showed variable responses, from over 100-fold induction to no response at all, to their cor-
responding effectors. Once again, the researchers were able to improve some of these proteins’ responses to
effector by introducing mutations to their linker regions. Recently, Dimas et al. [29] further expanded on this
work to create a much larger set of hybrid proteins. They combined eight DNA binding domains with five sub-
strate recognition domains from the LacI/GalR family to generate 35 novel transcription factors. They subse-
quently measured the expression of GFP under the control of these hybrid proteins and found low basil GFP
expression and high (greater than 10-fold) induction levels for 22 out of the 35 proteins. They also found only
a few interactions between hybrid proteins and off-target promoters, demonstrating the orthogonality of their
engineered transcription factors.
Recently, other groups have performed similar work on proteins from other families, such as the TetR [30]

and LuxR families [31]. These works generated hybrid proteins that recognized novel combinations of DNA
operators and small molecule effectors. They also demonstrated similar design constraints as the above studies,
such as the importance of the linker region and the need for iterative improvements to generate high-quality
variants. This hybrid protein approach can also be used to tune the properties of existing transcription factors.
For example, a hybrid LysR-type transcription factor was recently engineered, combining the DNA binding
domain from the Herbasperillum seropedicae protein FdeR and the substrate-binding domain of the
Sinorhizobium meliloti protein NodD1 [32]. While both proteins are flavonoid biosensors, the hybrid protein
combined the E. coli compatible promoter of FdeR with the greater substrate specificity of NodD1. Groups
have also used chimeric membrane proteins as another avenue for generating novel proteins to control gene
expression [33–35]. Often, the extracellular substrate-binding domain of one membrane protein is combined
with the intracellular effector domain of another. Common effector domains include kinases that activate tran-
scription factors [33] or proteases that release transcription factors from the membrane [34,35]. This strategy
provides an additional set of sensors and effectors to use and also eliminates the need for import of the sub-
strate of interest into the cells.

Genetic switches made through regulatory domain
insertion
Lastly, we consider engineered protein switches made through domain insertion, i.e. switches that are made by
inserting a regulatory domain into a protein that is already capable of influencing gene expression (Figure 1C). We
primarily use engineering performed on the CRISPR associated protein, Cas9, as an example of this type of work
[36]. Cas9 is an endonuclease native to a variety of bacterial species and is responsible for identifying and cleaving
foreign DNA. It targets DNA in a sequence-specific manner through normal Watson–Crick base-pairing interac-
tions between the target DNA and a short guide RNA molecule that the protein forms a complex with. This
protein can therefore flexibly target a wide variety of sequences simply by changing the sequence of the guide
RNA. Most of our discussion centers around the nuclease-null mutant (D10A and H840A) Streptococcus pyogenes
Cas9 protein, which is referred to as dCas9 [37]. This variant binds DNA but does not cleave. This engineered
transcription factor silences gene expression when it targets select sites in the gene’s coding region or promoter.
A wide variety of regulatory domains have been incorporated into Cas9 and dCas9 to confer switching

behavior [38–44]. Systems that use Cas9 rather than dCas9 measure switching based on DNA cleavage or gene
editing efficiency [38,39,41,43,44]. In some of these systems, switching with dCas9 has not been explicitly
demonstrated [43,44]. However, results with systems that have been tested with both Cas9 and dCas9 indicate
that a Cas9 variant that acts as a switch will still act as a switch when mutated to dCas9 [38,39,41]. Many of
the regulatory domains that we will discuss respond to small molecules in a similar manner to existing tran-
scription factors [38–40]. For example, Oakes et al. [38] generated a dCas9 variant that represses gene expres-
sion in the presence of 4-hydroxytamoxifen. This variant was identified by randomly inserting the
ligand-binding domain of the human estrogen receptor-α [45] into the dCas9 gene and screening the library
for variants that displayed 4-hydroxytamoxifen-dependent changes in expression of a reporter gene. A large
number of dCas9 switches have also been created through the use of domains that dimerize in the presence of
a small molecule [39,40] or light [41,42]. Researchers start by identifying a point on the protein, usually
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located between two domains, to split dCas9 into two fragments. Compared with the domain swapping
approach, where it is often clear where the break should be made, researchers usually need to test multiple sets
of fragments split at different locations, as the fragments should have no activity on their own, but still be
capable of functional assembly in the right context. Next, researchers fuse a set of heterologous dimerization
domains to each of the fragments [39,41,42]. In the presence of the appropriate inducer, the domains dimerize,
bringing the dCas9 fragments together into an active complex. Alternatively, dimerization domains have been
attached to intact dCas9 and transcriptional activators or repressors [40]. In this case, dCas9 always binds to its
target DNA, but only affects transcription when the regulatory domain is recruited through induced dimeriza-
tion. Other methods of controlling dCas9 activity include inserting domains that affect its stability or its
folding [43,44]. For example, fusing the FKBP12-derived destabilizing domain [46] to dCas9’s N-terminal
increases its susceptibility to proteasome cleavage [43]. This tag reduces Cas9 stability and lowers its activity in
cells to undetectable levels. The synthetic ligand, Shield-1, binds to the destabilizing domain, stabilizing it and
preventing degradation of the protein. Therefore, upon the addition of this ligand, Cas9 activity is restored.
Cas9’s folding can be disrupted by inserting a ligand-responsive intein domain [44,47]. When splicing is trig-
gered through the addition of ligand, Cas9 folding and activity is restored. However, in contrast with other
systems, we have discussed so far, this intein-based switch is irreversible due to the nature of the splicing
reaction.
Similar strategies have been applied to other artificial transcription factors as well as natural transcription

factors. For example, Slomovic and Collins inserted trans-splicing inteins [48] into a zinc finger (ZF) DNA
binding domain and the mammalian transcriptional activator, VP64 [49]. When the two domains are within
close proximity to one another, splicing occurs, and the ZF is joined to the transcriptional activator, leading to
increased expression at a targeted promoter. The two inteins are brought together by additional ZF domains.
This allows for the recognition of intracellular DNA, such as viral DNA. Additionally, Moon et al. [50] fused
light-oxygen-voltage (LOV) domains to the tetracycline repressor protein, TetR [51]. This protein’s switching
mechanism contrasts with that of the other light-induced switches we have mentioned so far. In the presence
of blue light, rather than dimerizing, these domains undergo a conformational change, altering the protein’s
affinity for DNA. The affinity change was minor compared with the change associated with tetracycline
binding; exposure to light changed the protein’s dissociation constant only by approximately two-fold.
However, the conformational changes associated with the LOV domains allowed for fine tuning of TetR’s
activity.

Applications of engineered genetic switches
There is an ongoing need in the field of synthetic biology for new, effective protein switches for controlling
gene expression [5,6,52]. Often these switches are used as biosensors [22,33]. For example, a switch that
responds to a specific compound can be used to control the expression of a reporter gene such as GFP.
Researchers are then able to monitor the presence of that particular compound based on fluorescence. In doing
so, they have a way to screen for desirable cellular phenotypes such as the production of that compound or
disease states associated with changes in that compound’s concentration. For example, Rogers and Church used
the acrylate-sensing protein, AcuR [53], along with two helper proteins which converted 3-hydroxypropionate
(3HP) to acrylate to identify growth conditions that maximized production of 3HP [54]. Fluorescent reporter
systems for identifying compound production are faster and more efficient than methods such as HPLC and
mass spectrometry [55]. This allows for high-throughput screening of a large number of conditions. More
recently, two groups have engineered transcription factors for more sensitive detection of natural products such
as macrolides [56] and the antibiotic pamamycin [57]. Alternatively, rather than inducing expression of a
reporter protein, these biosensors can be used to induce the expression of a protein effector that controls the
flux of a metabolic pathway, acts as a therapeutic for treating disease, or performs some other beneficial
function [5]. Recently, Bojar et al. [58] developed a set of caffeine biosensors that used the caffeine-binding
single-domain antibody, aCaffVHH. Using this system, they were able to induce expression of the synthetic
human glucagon-like peptide, which can be used for the treatment of type 2 diabetes [59], in diabetic mice.
When the mice were fed caffeine, the researchers found significant changes in the concentration of glucose and
insulin within the mice’s bloodstream [58].
A diverse set of transcription factors is also useful for creating genetic circuits in which multiple inputs inter-

act to influence one or more outputs [7]. The set of LacI/GalR chimeras created by Meinhardt et al. [28] was
used in conjunction with LacI DNA binding domain mutants generated by Daber and Lewis [9] to generate
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multi-input logic gates [60]. They were able to create AND gates using two or more chimeras (up to four) that
recognized the same promoter. The reporter gene under the control of this promoter was expressed only when
all of the inducers were present. They could maintain an additional, orthogonal AND gate when an additional
promoter that is recognized by mutant LacI variants was used. These gates were able to act independently and
showed low expression in the absence of one or more inducer. Recently, in a separate study, these chimeras
were used to generate ‘passcode’ circuits, which allowed for cell survival only in the presence of a unique com-
bination of orthogonal inducers [61]. This circuit can be used to ensure the biocontainment of engineered cell
lines. Because the inducers were not naturally occurring, any cells that escape into the natural environment will
be unable to survive. Gao et al. [40] were able to generate AND and OR circuits in mammalian cells using the
dCas9 variants that dimerized with transcriptional activators or repressors in the presence of a small molecule
effector. Multiple circuits could be used simultaneously when two dCas9 orthologs that recognize different
guide RNA sequences were employed.
Chimeric transcription factors have also recently been used as a tool to aid in natural product discovery [31].

Genome mining has revealed many biosynthetic gene clusters in bacteria. However, many of them are not
expressed under normal laboratory conditions and the requirements to induce expression are unknown [62].
Mukherji et al. [31] identified a ‘silent’ gene cluster that was regulated by PseR, a LuxR family transcription
factor with an unknown inducer. They replaced this protein’s substrate-binding domain with the substrate-
binding domain from another LuxR family transcription factor, LasR, which activates transcription of its target
operator in the presence of 3-oxo-C10 HSL. This chimeric protein was able to activate transcription at the
silent gene cluster and Mukherji et al. were able to characterize a novel natural product, which they called
pseudomonal.

Perspectives
• Synthetic biologists need novel genetic parts that can produce varied responses to a wide

variety of signals.

• As a result of this need, many different approaches have been developed to modify existing
switches to create novel ones with desired properties. These approaches vary by the degree
of changes made to the original switch.

• As these approaches continue to develop, our bank of useful tools will grow, as will our ability
to quickly and easily create new switches.
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