
Efficient Neighbor-Sampling-based GNN Training
on CPU-FPGA Heterogeneous Platform

Bingyi Zhang∗, Sanmukh R. Kuppannagari∗, Rajgopal Kannan†, Viktor Prasanna∗
∗University of Southern California, Los Angeles, USA

†US Army Research Lab, Los Angeles, USA
Email: bingyizh@usc.edu, kuppanna@usc.edu, rajgopal.kannan.civ@mail.mil, prasanna@usc.edu

Abstract—Graph neural networks (GNNs) have become in-
creasingly important in many real-world applications. However,
training GNN on large-scale real-world graphs is still challenging.
Many sampling-based GNN training algorithms have been pro-
posed to facilitate the mini-batch style training process. The well-
known Neighbor-Sampling-base (NS) GNN training algorithms,
such as GraphSAGE, have shown great advantages in terms of
accuracy, generalization, and scalability on large-scale graphs.
Nevertheless, efficient hardware acceleration for such algorithms
has not been systematically studied.

In this paper, we conduct an experimental study to understand
the computational characteristics of NS GNN training. The
evaluation results show that neighbor sampling and feature
aggregation take the majority of the execution time due to
the irregular memory accesses and extensive memory traffic.
Then, we propose a system design for NS GNN training by
exploiting the CPU-FPGA heterogeneous platform. We develop
an optimized parallel neighbor sampling implementation and
an efficient FPGA accelerator to enable high-throughput GNN
training. We propose the neighbor sharing and task pipelining
techniques to improve the training throughput. We implement a
prototype system on an FPGA-equipped server. The evaluation
results demonstrate that our CPU-FPGA design achieves 12−21×
speedup than CPU-only platform and 0.4 − 3.2× speedup than
CPU-GPU platform. Moreover, our FPGA accelerator are 2.3×
more energy efficient than the GPU board.

Index Terms—Graph Neural Network, Training, Graph Sam-
pling, CPU-FPGA Heterogeneous Platform

I. INTRODUCTION

Graph Neural Networks (GNNs) have become a revolution-
ary machine learning technique for many real-world applica-
tions [1], [2] where the underlying data can be modeled as a
graph. GNNs were first proposed in [3] where the authors use
the entire graph as input to train the GNN model in each
training iteration. This technique is called full-graph GNN
training. However, it has poor scalability when graph sizes are
large, as it the case in most real world applications. Moreover,
full-graph GNN training can potentially lead to accuracy loss
due to overfitting [4].

To enable training of GNN models on large-scale graphs,
many sampling-based training methods [5], [6], [7] have
been proposed, which perform GNN training in mini-batches.
Among these methods, neighbor-sampling-based (NS) method
(e.g. GraphSAGE [5], PinSAGE [2]) have shown excellent
performance (in terms of accuracy) on large scale graph for a
variety tasks as evident from the leaderboard of the Open graph
benchmark [4]. In these algorithms, in each training iteration,

a batch of target vertices is selected from the input graph. The
neighbor sampler recursively samples the neighbors, starting
from the target vertices, according to a certain probability
distribution. Then, forward propagation and backpropagation
are performed on the sampled mini-batch. The GNN layer
weights are updated based on the calculated gradients. From
an algorithm perspective, the neighbor sampling technique
works as a drop-out mechanism [8] to resolve overfitting of the
model. From a computation perspective, by adopting the mini-
batch training, GNN training can be deployed on accelerators
such as GPUs with limited global memory size.

While NS GNN models are widely used in real-world
applications, the hardware acceleration for the training of
these models has not been systematically studied. In this
paper, we carry out an experimental study to understand the
computational characteristics of the training of NS GNNs. The
evaluation results show that the neighbor sampling and feature
aggregation are the major bottlenecks that take 81%-94% of
the total execution time.

In this paper, we propose a CPU-FPGA system to accelerate
NS GNN training. In the proposed system consists of a parallel
neighbor sampling algorithm running on the host processor
coupled with an optimized FPGA accelerator to execute GNN
operations. To achieve high throughput, We propose several
optimizations to improve the memory performance and com-
putation efficiency.

Our main contributions are summarized as follow:
• We perform a detailed experimental study to understand

the computational characteristics of the NS GNN training
methods.

• We propose a system targeting CPU-FPGA heteroge-
neous platform to accelerate NS GNN training.

• We propose several optimizations, such as neighbor shar-
ing and task pipelining, to improve the computation
efficiency of NS GNN training.

• We conduct experiments on an FPGA-equipped server to
evaluate the proposed system. The evaluation results show
that our proposed CPU-FPGA implementation achieves
12−21× speedup than CPU-only platform and 0.4−3.2×
speedup than CPU-GPU platform.

II. BACKGROUND

We define the required notations in Table I. Graph Neural
Networks (GNN) [3] are proposed for representation learning

TABLE I
GNN NOTATIONS

Notation Description Notation Description

G(V, E,X0) input graph vi ith vertex
V set of vertices eij edge from vi to vj
E set of edges L number of GNN layers
N number of vertices nnz number of edges

X0 ∈ RN×f0 feature matrix of V Xl ∈ RN×fl feature matrix of layer l
hl
i feature vector of vi N (i) neighbors of vi

on graphs. GNNs learn to generate low-dimensional vector
representation that capture the structural information (e.g.
edges E) and vertex features X0 of the graphs. The learned
vector representation can be used for many downstream tasks,
such as node classification [5], link prediction [9], etc. To
overcome the poor scalability of full-graph training, many
sampling-based GNN training algorithms have been proposed.
Broadly, the sampling techniques for GNN training can be
divided into two categories: (1) neighbor sampling , and (2)
subgraph sampling. In neighbor-sampling-based GNN training
[5], [2], the mini-batch sampler recursively samples the k-hop
neighbors for the target vertices. In each training iteration,
the GNN operation is performed on a batch of target vertices
within sampled k-hop neighbors. In subgraph-sampling-based
GNN training, the sampler samples a mini-batch subgraph
through graph partition [10], edge-based sampling [6] or
random walk [6]. The GNN operation is performed within the
sampled subgraph. The evaluation in [4] shows that there is no
one-fit-all sampling technique for various domains. GraphACT
[11] accelerates subgraph-sampling-based GNN training on
CPU-FPGA heterogeneous platform. Some previous work
[12], [13] focus on GNN inference. No existing works study
the hardware acceleration for neighbor-sampling-based GNN
training.

III. NEIGHBOR-SAMPLING-BASED GNN TRAINING

1

2 3

0

4

5 7

6
8

9

Input graph Mini-batch by neighbor sampling

2

1 3

5

7

0 2 4 8 9

Target
vertices

1-hop
Neighbors

2-hop
Neighbors

Fig. 1. A toy example of neighbor sampling.

Neighbor sampling is performed by recursively sampling
the k-hop neighbors from a batch of target vertices. The basic
sample function is denoted as:

Ns(v) = SAMPLE(N (v),P, d), (1)

where Ns(v) denotes the set of sampled neighbors for vertex
v. N (v) denotes the set of neighbors of vertex v. P is the
probability distribution function over vertices u ∈ N (v),
which denotes the probability of sampling a vertex u which is
a neighbor of v. d is the neighbor sampling budget which

denotes the number of neighbors of each vertex v to be
included in the sampled set. Figure 1 shows an example of
recursively sampling the 2-hop neighbors for target vertices
{2, 5}.

The overall neighbor-sampling-based GNN training algo-
rithm is shown in Algorithm 1. In each training iteration, a
set of target vertices V T is selected. Lines 7-14 show the
recursive neighbor sampling process for GNN layer construc-
tion {Bl : 0 6 l 6 L} based on V T . Bl denotes the set
of sampled l-hop neighbors for V T . After the sampling step,
GNN forward propagation and backpropagation operate within
the sampled L-hop neighbors {Bl : 0 6 l 6 L}. In forward
propagation (Line 16-21), GNN-layer operations consist of
two major computation kernels – feature aggregation and
feature update. Feature aggregation follows the message-
passing paradigm, and each vertex aggregates features from
the sampled neighbors. In feature update phase, the aggregated
feature vectors are transformed by a Multi-Layer Perceptron
with non-linear activation function. Backpropagation has a
similar computation pattern as forward propagation.

Algorithm 1 Neighbor-sampling-based mini-batch GNN train-
ing algorithm
Input: Input graph G(V, E ,X0), L: number of GNN layers,

SAMPLEl(): neighbor sampler for each layer with budget dl

(1 6 l 6 L) and probability distribution P. s: size of a mini-
batch. {W l : 1 6 l 6 L}: GNN layer weights.

Output: Trained GNN model with GNN-layer operation
{aggregatel(), updatel() : 1 6 l 6 L}.

1: repeat
2: Vertex-shuffling(V)
3: { % Training iteration %}
4: for i← 0 to N

s
− 1 do

5: V T = {vj : s ∗ i 6 j 6 s ∗ (i+ 1)− 1, vj ∈ V}
6: BL ← V T

7: { % Recursive neighbor sampling %}
8: for l← L to 1 do
9: Bl−1 ← Bl

10: for u ∈ Bl−1 do
11: N l−1

s (u) = SAMPLEl(N (u),P, dl)
12: Bl−1 ← Bl−1 ∪N l−1

s (u)
13: end for
14: end for
15: { % Forward propagation %}
16: for l← 1 to L do
17: for each u ∈ Bl do
18: zlu = aggregatel(hl−1

v : v ∈ N l−1
s (u))

19: hl
u = updatel(zlu, hl−1

u ,W l)
20: end for
21: end for
22: BackPropogation()
23: WeightUpdate()
24: end for
25: until convergence

IV. PERFORMANCE PROFILING

To study the computational characteristics of the neighbor-
sampling-based GNN training, we conduct experiments on the
CPU platform and CPU-GPU platform. The CPU platform
has an Intel i9-9900K processor with 8 cores and 16 threads.

Reddit Yelp Flickr ogb-products
0

20

40

60

80

100

Scatter_add_ Index_select aten::mm

aten::index ScatterAaddBackward Misc

Fig. 2. The breakdown execution time on the CPU platform

Reddit Yelp Flickr ogb-products
0

20

40

60

80

100

120

Sample_adj aten::to aten::index

misc

Fig. 3. The breakdown execution time on the CPU-GPU platform

The CPU-GPU platform has the same processor as the CPU
platform. It is equipped with an Nvidia RTX 3070 GPU.
We run the representative NS training algorithm GraphSAGE
[5] using Pytorch Geometric1. Four widely used datasets –
Reddit [5], Yelp [6], Flickr [6], ogb-products [4] – are used
for evaluation. The batch size is set to 1024.

The performance breakdowns of CPU platform and CPU-
GPU platform are shown in Figure 2 and Figure 3, re-
spectively. On the CPU platform, feature aggregation (Scat-
ter add , Index select, ScatterAddBackward) dominates the
execution time. This is because feature aggregation is
communication-intensive, and CPU platform only provides
limited memory bandwidth (<19.2 GB/s). Thus, feature ag-
gregation becomes the major bottleneck on the CPU platform.
On the CPU-GPU platform, neighbor sampling is performed
on the host CPU while the GNN operations are executed
on GPU. The performance breakdown shows that neighbor
sampling (Sample adj) and data copy (aten::to) take most
of the execution time. Because of the underlying irregular
graph structure, neighbor sampling leads to random mem-
ory accesses, thereby leading to degraded performance. The
sampled mini-batches are copied from host memory to GPU
global memory through PCIe connection, which usually has
limited bandwidth. Therefore, neighbor sampling and data
copy become the two major bottlenecks on the CPU-GPU
platform.

From the profiling results, we summarize two key take-
aways:

• In neighbor-sampling-based GNN training, neighbor sam-
pling, and feature aggregation are the major bottlenecks,

1https://github.com/rusty1s/pytorch geometric

due to the random memory accesses and intensive mem-
ory traffic.

• On a heterogeneous platform such as CPU-GPU, the
overhead of data movement between the host processor
and the accelerator is significant for neighbor-sampling-
based GNN training.

V. SYSTEM DESIGN

Host
Memory

Multi-core
Processor Accelerator

FPGA Global
Memory

CPU platform FPGA platform

Graph Sampling GNN operation

Graph Storage

1

2 3

0

4

5 7

6
8

9

High Bandwidth
Interconnection

1
2

9
………

Fig. 4. The proposed system design

Given the challenges, we propose a system design that
exploits the CPU-FPGA heterogeneous platform for neighbor-
sampling-based GNN training. The proposed system is com-
posed of three components that perform graph storage, graph
sampling and GNN operation. The graph sampling is per-
formed on the host processor as it requires complex data
structure and numeric operations, which are suitable to be
executed on the general purpose processor. On the FPGA
board, we build a customized accelerator to exploit the fine-
grained computation parallelism in GNN operations. The
system memory consists of host memory and FPGA global
memory. Host memory stores the graph structural information
to facilitate graph sampling on the multi-core processor, while
the vertex features are stored in the FPGA global memory
for GNN operations. The CPU platform and FPGA platform
are connected through a high bandwidth interconnection for
efficient data movement. For example, many high-speed inter-
connection technologies, such as Intel UPI, CXL are integrated
into the state-of-the-art FPGAs.

We summarize the benefits of using the FPGA platform for
GNN training: (1) FPGA platform is more energy efficient
than GPU platform in data center, thus it can potentially
save the energy cost for GNN training; (2) FPGA platform
allows fine grained customization that enables implementation
of application dependent memory access pattern and massive
computation parallelism; (3) FPGA platform can support large
local DRAM size. For example, a commercial FPGA board2

has up to 260 GB local DRAM. Therefore, we can store the
entire vertex features in the FPGA local DRAM. This can
reduce the overhead of data copy.

2https://gidel.com/acceleration-platforms/

A. Graph Sampling

1

2 3

0

4

5 7

6
8

9

Vertex
ID

Adjacency
List

0 1 3
1 0 2 3
2 1 3
3 0 1 2 4 5
4 3 6 8
5 3 7
6 4 8
7 5 8 9
8 4 6 7 9
9 7 8

Vertex
ID

Pruned
Adjacency List (L=3)

0 1 1 3
1 0 2 3
2 1 3 3
3 0 4 5
4 3 6 8
5 3 3 7
6 4 8 8
7 5 8 9
8 4 6 9
9 7 7 8

Adjacency Table Pruned Adjacency Table
Fig. 5. The table on the left is the adjacency table of input graph in Figure
1. The table on the right is the pruned adjancy table.

Graph sampling is performed by recursively traversing the
neighbors starting from a batch of target vertices. The neighbor
sampling process is similar to the multi-source Breath-first
search (BFS). Due to the irregular graph structure, fetching
the neighbors introduces random memory accesses, leading
to long memory latencies. While the random memory access
in BFS can be eliminated by the two-phase edge-centric
graph processing paradigm [14], [15], it cannot be easily
eliminated in neighbor sampling where the SAMPLE function
is usually randomized. Therefore, we exploit two techniques
to improve the efficiency of graph sampling: Look-up Table
based neighbor fetching and multi-threading.

Look-up Table based neighbor fetching: We map the
neighbor sampling process into the Look-up Table operation.
The graph structure can be represented using the adjacency
table, with each vertex having an adjacency list. The adjacency
list contains the neighbors of the vertex. However, each vertex
has an adjacency list of different lengths, making the address
of the adjacency list unpredictable. Obtaining the address
of the adjacency list requires extra random memory access.
Therefore, we propose to prune the adjacency list. We set a
parameter prunedLength, so that the adjacency list of each
vertex is pruned to be length of prunedLength. Using pruned
adjacency list, we can infer the address of the adjacency
list by vertex ID × prunedLength, which is represented
as the look-up table operation. The pruned adjacency list is
built by random sampling with replacement from the original
adjacency list. Note that the pruned adjacency table is built for
each training epoch. Each vertex has an equal probability of
being sampled into the pruned adjacency list, and the overhead
of building pruned adjacency table is amortized within the
training epoch. The evaluation results show that such a pruning
strategy has a negligible effect on the training accuracy.

Multi-threading: While the Look-up Table based neighbor
fetching strategy can eliminate the latency of obtaining the
address of vertex adjacency list, there is still large latency
of fetching the adjacency list due to the random memory
accesses. To hide the memory latency, we exploit the multi-
threading technique such that the samplers can work in par-
allel to perform neighbor sampling. When one sampler is
waiting for neighbor fetching, the other sampler is scheduled

to execute sampling. Each sampler samples a mini-batch
independently, and the sampled mini-batch is added to the
task pool. Note that using multiple threads to sample a single
mini-batch will introduce large overhead for synchronization
to avoid duplicate vertices, while our parallel sampling is lock-
free.

B. GNN operation and accelerator design

To efficiently execute GNN operations, we develop a cus-
tomized accelerator on the FPGA board as shown in Figure
6. The FPGA local DRAM stores the vertex features and
GNN layer weights. The accelerator design consists of three
hardware modules – Feature Aggregation Module (FAM), Fea-
ture Transformation Module (FTM), Weight Update Module
(WUM). The memory controller handles the data transmis-
sions between FPGA local DRAM and hardware modules.

Feature Aggregation Module: In the feature aggregation
phase, vertices (destination vertices) aggregate features vec-
tors from the sampled neighbors (source vertices). We apply
the scatter-gather paradigm to execute feature aggregation in
FAM. In scatter phase, the edge weights are applied to the
source vertex features to generate messages in Message Gen-
erators. Then, messages are routed to the destination vertices
through the message shuffling network (MSN). We exploit the
butterfly network [16] for the message shuffling. The Message
Aggregators read the destination vertex from the vertex buffer
and apply the messages to the destination vertices. FAMs are
fully pipelined to increase the computation throughput. RAW
Resolvers resolve the potential read-after-write (RAW) data
hazards in Message Aggregators. To increase the computation
parallelism, Message Generators and Message Aggregators
are organized in SIMD fashion, so that they can process
multiple vertex features in each clock cycle. Note that in
GNN backpropagation, the vertices propagate gradients to the
sampled neighbors, which has a similar computation pattern
as feature aggregation. Therefore, the scatter-gather paradigm
can also be applied in backpropagation.

Feature Transformation Module: In the feature transfor-
mation phase, the vertex feature vectors are transformed by
the GNN layer weight. Several vertex feature vectors can be
processed in parallel to increase the computation parallelism.
We exploit the 2-D systolic array to execute the multiplication
between feature vectors and weight matrix.

Weight Update Module: After getting the gradients,
Weight Update Module calculates the gradients for the GNN
layer weights and apply the gradients to the weights according
to the selected weight updating strategy.

C. Optimizations

Neighbor Sharing: As shown in section IV, feature aggrega-
tion is a major bottleneck in GNN training due to the large
memory traffic. We notice that in neighbor sampling, target
vertices may share the common neighbors. So, we propose
to use the neighbor sharing technique by reusing the common
neighbors in the FPGA on-chip memory. Using Figure 1 as the
example, when propagating information from 2-hop neighbors

Host Multi-core processor

Core … Core

Host DRAM

Adjacency
Table

Pruned
Adjacency

Table

Vertex
Features

FPGA DRAM

weights

Feature
Aggregation

Module

SLR 0

SLR 1

System Overview

Vertex Buffer

MG MG MG MG

Message
Shuffling Network

RR RR RR RR

MA MA MA MA

Edge weights Vertex features

MG
Message

Generator

RR
RAW

Resolver

MA

Message
Aggregator

Feature Aggregation Module
FPGA board (U200)

Feature
Aggregation

Module

Feature
Transformation

Module

Feature
Aggregation

Module

SLR 2
Feature

Aggregation
Module

Feature
Transformation

Module

Weight Update
Module

PCIE

Static
Region

Fig. 6. The figure on the left demonstrate the system overview. The figure on the right shows the details of the feature aggregation module.

𝑣𝑣0
𝑣𝑣2
𝑣𝑣4
𝑣𝑣8
𝑣𝑣9

(𝑣𝑣0,𝑣𝑣1)
(𝑣𝑣2,𝑣𝑣1)
(𝑣𝑣2,𝑣𝑣3)
(𝑣𝑣4,𝑣𝑣3)
(𝑣𝑣8,𝑣𝑣7)
(𝑣𝑣9,𝑣𝑣7)

𝑣𝑣1
𝑣𝑣3
𝑣𝑣7

2-hop
neighbors

1-hop
neighbors

Edges

Scatter Gather

Fig. 7. Data structure

to 1-hop neighbors, vertex 2 is shared by vertices 1 and 3.
Therefore, by caching vertex 2 in the on-chip memory, vertex
2 can be used twice. To enable neighbor sharing, we sort
the vertices by their indices and sort the edges (stored in
COO format, < source, destination >) by the indices of the
source. The data structure is shown in Figure 7. The feature
aggregation module sequentially reads the source vertices and
edges to generate the messages. Therefore, consecutive edges
could share the same source vertices. Then, the messages are
applied to the destination vertices, which are stored in the
Vertex Buffer.
Tasking pipelining: To improve the training throughput, we
pipeline the three tasks – graph sampling, data transmission
and GNN operations. Multiple parallel samplers are sampling
the mini-batches and transfer the mini-batches to the task
pool, which resides in the FPGA local memory. The data
transmission is through the high-bandwidth interconnection
between the host platform and FPGA platform. The FPGA
accelerators load the mini-batches from the task pool for GNN
operations.

VI. EXPERIMENTAL EVALUATION

A. Implementation

We deploy the proposed design on an FPGA-equipped
server for evaluation. The host processor of the server is Intel
Xeon Gold 5120 CPU. A Xilinx Alveo U200 FPGA board
is connected to the host processor through PCIe. Alveo U200
has three Super Logic Regions (SLRs), and the Xilinx FPGA
Shell is deployed in SLR1. The effective PCIe bandwidth
between the host processor and FPGA board is nearly 11.9

GB/s. We compare our implementation with two baseline
implementations:

• CPU-only: All the tasks are performed on the host
processor.

• CPU+GPU: The host processor is connected with a
high-end GPU – Titan XP. The host processor performs
the graph sampling and the GPU performs the GNN
operations.

The three implementations use the same host processor. For
the CPU-only and CPU+GPU platforms, we run the GNN
training using the state-of-the-art graph learning framework –
Pytorch Geometric (PyG). For the proposed system, we run
our parallel graph sampling implementation (Section V-A) on
the host processor, and we run the GNN operations on our
proposed FPGA accelerator. For the three implementations, we
train the 2-layer GraphSAGE model with parameters used in
[5]. The hidden dimension is set to 128. The sampling budgets
(d1, d2) for layers 1 and 2 are set to (10, 25). All the three
implementations use the 16 parallel neighbor samplers.

B. FPGA Resource Utilization

In each of SLR0 and SLR2, we deploy two Feature Ag-
gregation Modules and one Feature Transformation Module.
Each Feature Aggregation Module has two Message Gen-
erators, and each Message Generator can process 16 vertex
features per clock cycle. The Feature Transformation Module
is implemented using a systolic array of size 16 × 16. The
Weight Update Module is implemented using a multiply-
accumulate array of size 8 × 8 to accumulate the gradients
and update the layer weights. The design is developed using
Xilinx High-Level Synthesis (HLS). The FPGA accelerator
uses 652K LUTs, 1592 BRAMs, 512 UltraRAMs, and 3456
DSPs. The running frequency is 270 MHz. The reported
resource utilization and frequency are obtained from Xilinx
Vitis 2020.1 after Place & Route.

C. Comparison of Training Throughput

For the comparison of throughput, we run the GNN training
using three widely used datasets Reddit, Filckr and Yelp as
shown in Table II. We run the GNN training for 10 epochs

(a) Reddit (b) Flickr (c) Yelp

Fig. 8. The comparison of performance under various platforms

TABLE II
DATASET STATISTICS

Dataset Vertices Edges Features Classes Degree

Flickr [6] 89250 899756 500 7 10
Reddit [5] 232965 116069191 602 41 50
Yelp [6] 716847 6977410 300 100 10

to measure the average training throughput. The training
throughput is calculated by:

Throughput =
(# of vertices)× (# of epochs)

Execution Time
(2)

For the CPU-only implementation, both the graph structural
information and the vertex features are stored in the Host
DRAM. For the CPU-FPGA and CPU-GPU implementation,
the graph structural information is stored in the Host DRAM,
and the vertex features are stored in the GPU/FPGA local
DRAM. We measure the training throughput under different
batch sizes, 64, 128, 256, 512, 1024, 2048, 4096. The evalu-
ation results are shown in Figure 8.

Compared with the CPU-only implementation, our CPU-
FPGA implementation achieves 18 − 19×, 13 − 21×, 12×
speedup on Reddit, Flickr, Yelp, respectively. The achieved
speedup is due to more computation resources introduced by
the FPGA accelerator. Compared with the CPU-GPU imple-
mentation, our CPU-FPGA implementation achieves 0.4 −
3.2× speedup. CPU-FPGA achieves better performance than
CPU-GPU when batch size is small. When the batch size
is small, the memory bandwidth and the computation power
of GPU are not saturated. When the batch size is larger
than 2048, GPU becomes saturated, and our CPU-FPGA
implementation can still achieve 40% performance of CPU-
GPU implementation in the worst case. Note that the FPGA
board (Alveo U200) only has 77 GB/s memory bandwidth and
the GPU board (Titan X) has 547 GB/s memory bandwidth.
Moreover, our implemented FPGA accelerator has the peak
performance of 0.241 TFLOPS, and the GPU board has the
peak performance of 9.3 TFLOPS. Therefore, our CPU-FPGA
implementation has higher computation efficiency than CPU-
GPU implementation. The training throughput of our CPU-
FPGA implementation increases with larger batch size. This

is because when the batch size becomes larger, the neighbor
sharing becomes more prominent leading to increased data
reuse. Note that CPU-FPGA implementation has more speedup
on Flickr than on Reddit and Yelp. Because Flickr has small
average degree and small number of vertices, leading to more
neighbor sharing for FPGA implementation. The CPU-GPU
implementations does not exploit the neighbor sharing.

To compare energy efficiency of GPU and our proposed
FPGA accelerator, we estimate the power consumption of
GPU using the thermal design power (TDP). The power
consumption of the FPGA board is measured using Xilinx
XRT. The TDP of GPU is 250W, while the FPGA board has
an average power consumption of 42W, including the power
consumption of PCIe. The energy effciency is caculated by:
Energy Efficiency = Throughput

Power . The evaluation result shows
the proposed FPGA accelerator is 2.3× more energy efficient
than the GPU board.

VII. CONCLUSION

In this paper, we provide an optimized implementation for
the neighbor-sampling-based GNN training on CPU-FPGA
heterogeneous platform. We propose a parallel neighbor sam-
pling algorithm to improve the efficiency of graph sam-
pling and we develop an optimized GNN accelerator for the
high-throughput and energy-efficient GNN operations. The
evaluation results show that our CPU-FPGA implementation
achieves 12−21× and 0.4−3.2× speedup than the CPU-only
and CPU-GPU implementations, respectively. In the future,
we intend to support more GNN training algorithms, such as
subgraph-based GNN training algorithms.

VIII. ACKNOWLEDGEMENT

This work has been sponsored by the U.S. National Sci-
ence Foundation under grant numbers OAC-1911229, CNS-
2009057 and CCF-1919289. Equipment and support by Xilinx
are greatly appreciated.

REFERENCES

[1] H. Yang, “Aligraph: A comprehensive graph neural network platform,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 3165–3166.

[2] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2018, pp.
974–983.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[4] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

[5] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” arXiv preprint arXiv:1706.02216, 2017.

[6] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” arXiv preprint
arXiv:1907.04931, 2019.

[7] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[9] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in Neural Information Processing Systems, vol. 31,
pp. 5165–5175, 2018.

[10] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 257–266.

[11] H. Zeng and V. Prasanna, “Graphact: Accelerating gcn training on cpu-
fpga heterogeneous platforms,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2020,
pp. 255–265.

[12] B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large
scale gcn inference,” in 2020 IEEE 31st International Conference
on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 2020, pp. 61–68.

[13] B. Zhang, R. Kannan, and V. Prasanna, “Boostgcn: A framework
for optimizing gcn inference on fpga,” in 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2021, pp. 29–39.

[14] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu,
“Hitgraph: High-throughput graph processing framework on fpga,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 10, pp.
2249–2264, 2019.

[15] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and F. Franchetti,
“Efficient spmv operation for large and highly sparse matrices us-
ing scalable multi-way merge parallelization,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 347–358.

[16] Y.-k. Choi, Y. Chi, W. Qiao, N. Samardzic, and J. Cong, “Hbm
connect: High-performance hls interconnect for fpga hbm,” in The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2021, pp. 116–126.

