
Reconfigurable Low-latency Memory System for
Sparse Matricized Tensor Times Khatri-Rao Product

on FPGA
Sasindu Wijeratne∗, Rajgopal Kannan†, Viktor Prasanna∗

∗Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, USA
†US Army Research Lab, Los Angeles, USA

Email: kangaram@usc.edu, rajgopal.kannan.civ@mail.mil, prasanna@usc.edu

Abstract—Tensor decomposition has become an essential tool
in many applications in various domains, including machine
learning. Sparse Matricized Tensor Times Khatri-Rao Product
(MTTKRP) is one of the most computationally expensive kernels
in tensor computations. Despite having significant computational
parallelism, MTTKRP is a challenging kernel to optimize due to
its irregular memory access characteristics. This paper focuses
on a multi-faceted memory system, which explores the spatial
and temporal locality of the data structures of MTTKRP.
Further, users can reconfigure our design depending on the
behavior of the compute units used in the FPGA accelerator.
Our system efficiently accesses all the MTTKRP data structures
while reducing the total memory access time, using a distributed
cache and Direct Memory Access (DMA) subsystem. Moreover,
our work improves the memory access time by 3.5× compared
with commercial memory controller IPs. Also, our system shows
2× and 1.26× speedups compared with cache-only and DMA-
only memory systems, respectively.

Index Terms—MTTKRP, Memory Systems, Shared Memory,
FPGA, Tensor Decomposition

I. INTRODUCTION

Tensors are the de-facto representation of high-dimensional
data. They have become the center for Machine Learning
techniques [1] such as recommender systems [2] [3] and neural
networks [4] [5]. Tensors are also used in other domains
including network analysis [6], chemistry [7], and signal
processing [8].

With the recent surge in Machine Learning, the attention
towards tensor decomposition grew exponentially. Canonical
polyadic decomposition (CPD) [9] is one of the popular meth-
ods for tensor decomposition. CPD approximates the tensor
as a sum of rank-one tensors. The alternating least squares
method (CP-ALS) is the most common algorithm which use
to compute CPD. CP-ALS computes a new factor matrix for
each mode in each iteration. Matricized tensor by Khatri-Rao
product (MTTKRP), kernel is the common bottleneck in this
computation.

Since the sparsity of the real-world tensors [10] [11] is
considerably high, specialized hardware accelerators are be-
coming common means of improving compute efficiency of
tensor computations. But external memory access time has
become the bottleneck due to irregular data access patterns.

There have been several techniques proposed in the litera-
ture to overcome the memory access time while accessing data

with irregular access patterns [12] [13] [14]. Caches [15] are
very productive in this regard if the required data fits in the
cache and the data has spatial and temporal locality [16]. The
ongoing approach for solving long memory access delays is
to use onboard Block RAM (BRAM) in the FPGA as a data
cache and facilitate data retrieval. An alternative solution is to
look at multiple memory requests DMA transfers [14] [17].

In this paper, we propose a memory system to significantly
reduce the total memory access time on sparse tensors while
performing MTTKRP. We also analyze the memory access
patterns of the data structures used in the sparse-MTTKPR
operation and suggest the best memory components to use
with them. To the best of our knowledge, no prior work has
proposed a memory system for sparse MTTKRP compute
fabrics while analyzing the memory access patterns of its data
structures.

The key contributions of this paper are:

• Analyzing Memory access patterns of sparse MT-
TKRP: We analyze the memory access patterns of differ-
ent data structures used in sparse MTTKPR computation.
Then we propose memory modules (e.g., DMA controller
and cache) that can use with the data structures to befit
from their memory access patterns.

• Reconfigurable memory system: We propose a Local
Memory Block (LMB) based memory system that can
reconfigure depending on the targeted compute fabric and
data layout used in the accelerator. We also experiment on
different types of MTTKRP Processing Elements (PEs)
and different memory system configurations, respectively.

• We evaluate the system on a Xilinx Alveo U250 board. It
shows 3.5×, 2×, and 1.26× speedups in memory access
time compared with commercial memory controller IPs,
cache-only, and DMA-only memory systems.

The rest of the paper is organized as follows, Sections II
and III focus on understanding the sparse MTTKRP operation
and prior work. Section IV discusses the architecture of the
proposed memory design in-depth, while Section V presents
the evaluation results. Finally, the paper is concluded in
Section VI.



II. BACKGROUND

In this section, we first describe the notations used in
the paper. Then we investigate the basics and the usage of
MTTKRP kernel.

A. Notation

This paper follows the definitions and symbols used in
Tensor Algebra Compiler (TACO) [18]. The only difference
is, we use capital calligraphic letters (e.g., B) to represent
tensors with N dimensions.

Table I summarizes the symbols commonly used in the
paper.

TABLE I: Notation

Notation Description
B Tensor

A / C / D Matrix
Bi,j,k Element at (i, j, k) of B
Ai,j Element at index (i, j) of A
nnz Number of nonzeros in B

B. Use Cases of MTTKRP

MTTKRP is the core computation kernel in the alternating
least square (ALS) method, which is a popular method for
finding the factor matrices in CPD. The CPD, with R as the
decomposition rank, approximates tensor (B) as the sum of
R rank-one tensors: B ≈

∑R−1
r=0 ar ◦ dr ◦ cr, where ◦ denotes

the outer product, and a, c, d are the components of the factor
matrices A, C, and D. ALS method is a tensor approximation
method computes using the above equation. In ALS, one
of the factor matrices is updated at a time while fixing the
rest. Algorithm 1 shows the steps of CP-ALS algorithm. The
MTTKRP operation, which is the focus of this paper, takes
place in lines 2, 3, and 4 of Algorithm 1 to compute each of
the factor matrices of all modes.

Algorithm 1: CPD-ALS FOR THIRD-ORDER TEN-
SORS

Input: B ∈ RI×J×K

Output: A ∈ RI×R , C ∈ RK×R, D ∈ RJ×R

1 while no improvement or maximum iterations reached
do

2 A ← B(1)(D � C)(CTC ∗DTD)
3 D ← B(2)(A� C)(CTC ∗ATA)
4 C ← B(3)(D �A)(ATA ∗DTD)
5 Normalize columns of A,B,C and store in λ

6 return A, B, C

C. MTTKRP

MTTKRP consists of N-dimensional tensor multiply with
N-1 factor matrices. Here, N is the order of the tensor. Math-
ematically, mode-1 MTTKRP (for three-dimensional tensors)
can be expressed as Equation 1. In this equation, A, C, and
D are dense matrices while B is a three-dimensional tensor

(matricizied along with the first mode), and � denotes the
Khatri-Rao product.

(1)A = B(1)(D � C)

This operation can also express in index notation as Equa-
tion 2.

(2)Ai,r =
J−1∑
j=0

K−1∑
k=0

Bi,j,k ·Dj,r · Ck,r

In the following sections, we target 3D tensors since they are
easy to understand. Even though we focus on 3-dimensional
tensors as examples in this paper, we can expand our work
into higher dimensions without any extra work.

The sparsity of the tensors creates irregular data access
patterns, which makes the external memory access more chal-
lenging than the dense MTTKRP. All the real-world tensors
are sparse in nature. Algorithm 2 shows the sequential sparse
MTTKRP (spMTTKRP) approach for third-order tensors in
COO format [19] [20].

Algorithm 2: COO BASED SPMTTKRP FOR THIRD
ORDER TENSORS
Input: indI[nnz], indJ[nnz], indK[nnz], vals[nnz],

D[J][R], C[K][R]
Output: A[I][R]

1 for z = 0 to nnz do
2 i = indI[z]
3 j = indJ[z]
4 k = indK[z]
5 for r = 0 to R do
6 A[i][r] += vals[z] · D[j][r] · C[k][r]

7 return A

We use the term fibers throughout this paper. Fibers are the
building blocks of tensors. Fiber is a one-dimensional fragment
of a tensor obtained by fixing all indices but one. Tensor
fibers are a higher-order extension of matrix rows and columns.
The fibers of a three-dimensional tensor can be represented as
B:,j,k, Bi,:,k, and Bi,j,:. Similarly, for a matrix C, its rows
Ci,: and columns C:,j are its fibers. In Equation 3 and 4, the
term fiber corresponds to the rows of the factor matrices.

III. RELATED WORK

M. Asiatici et al. [21] [22] present miss optimized cache
system for FPGA accelerators. The key idea of their work is
to increase the reusability to serve multiple requests from the
compute fabric on the fly without relying on long-term storage
in cache. They also use cuckoo hash table-based MSHR
techniques to avoid the memory traffic due to secondary cache
misses. In our work, instead of having only a cache-based
system, we propose a cache + DMA system to accelerate
the external memory accesses. Instead of using MSHR, we
introduce an XOR hash-table-based Recent Request Status
Holder (RRSH) unit closer to the compute fabric. Unlike
MSHR, RRSH takes care of secondary cache misses while



Fig. 1: Overall Architecture

reducing the memory traffic between the cache and compute
units. Additionally, we want to emphasize that the focus of
our work is entirely on the MTTKRP kernel.

S. Aananthakrishnan et al. [23] have proposed a memory-
optimized large-scale graph processor on ASICs. This paper
emphasizes the importance of parallel support for bulk trans-
fers and cache transfers for graph workloads. Even though we
are focusing on a different domain of algorithms and proposing
an entirely different memory system, we still observed the
importance of supporting cache and DMA transfers simulta-
neously.

N. Srivastava et al. [24] [25] have implemented a tensor
computation library for FPGAs and CGRAs. These papers
describe compute fabrics to accelerate spMTTKRP using
novel algorithmic optimizations. In our paper, we explore the
memory optimizations we can implement using a multi-faceted
approach. The spMTTKRP algorithms describe in [24] [25]
can be used as the compute fabrics to our proposed memory
system.

IV. MEMORY SYSTEM ARCHITECTURE

We develop a unified memory system to share among
multiple PEs that process MTTKRP. The state-of-the-art MT-
TKRP compute accelerator designs execute either Equation
3 or Equation 4 in their compute fabrics. Here, fiberout
represent one or more output fibers of the output matrix,
fiberj and fiberk represent a single fiber from input matrices,
scalar represents a scalar value from high dimensional input
tensor, and ◦ is corresponding to the Hadamard product of
the two input vectors. Even though the internal construction
of PEs is different in different state-of-the-art accelerators,
they follow the same memory access pattern. The types of
memory accesses can be summarized as follows: (a) load the
input fibers of the matrices from the external memory, (b) load
the scalar of the input tensor from the external memory, (c)
store the output fiber to the external memory. In a parallel
and pipeline system, (a), (b), and (c) occurs in parallel for
multiple fibers. Favorably, our memory system can receive the
data from each step simultaneously.

(3)fiberout = scalar ·
∑
K

∑
J

(fiberk ◦ fiberj)

(4)fiberout =
∑
K

∑
J

fiberk ◦ (scalar · fiberj)

Fig. 2: DMA Engine

Our proposed architecture supports 2 types of memory
transfers:

1) cache-line transfers: Nurtures single memory accesses.
Load/store individual requests in minimum latency. The
access patterns with high spatial and temporal locality
are accessed using cache-line transfers. The element-
wise access of scalar values from the input tensor shows
spatial and temporal locality. Therefore, we use cache-
lines to load the scalars from external memory.

2) DMA transfers: Supports streaming accesses.
Load/store operations on all requested data with
minimum latency from memory. Loading and storing
matrix fibers is a streaming memory access process.
Therefore, we use the DMA engine to transfer matrix
fibers between FPGA and external memory.

Figure 1 shows the overall architecture of the proposed
memory system. The upstream logic designates the data path
from PEs to the external memory, while the downstream logic
shows the data path from external memory to the PEs. The
overall data path is symmetrical over the external memory.

The Local Memory Blocks (LMBs) are the basic building
blocks of our proposed memory system. A LMB has a Request
Reductor, non-blocking cache, and a DMA Engine. Each
LMB connects to one or more PEs. The complexity of the
connection between PEs and LMB exponentially increases
with the number of PEs connected to a single LMB. As shown
in Figure 1, we use multiple LMB distributed among all the
PEs to avoid such unnecessary complexity. Using more than
one LMB does not impact the memory consistency model of
the MTTKRP accelerators. The reasons behind maintaining
the consistency are: (a) Only the PEs connected to the same
LMB update the same output fiber, (b) The input fibers or



Fig. 3: Internals of Request Reductor

scalars do not update during the same MTTKRP operation.

A. DMA Engine

The DMA engine is in charge of communicating the fibers
of the matrices between PEs and the external memory. We
store the matrices in row-major order because the MTTKRP
algorithm encourages row-wise matrix accesses. The matrices
in row-major order make the fiber accesses into a bulk of
sequential memory transfers. Figure 2 shows the DMA engine
and its internals. It has several DMA buffers inside. Therefore,
it can support multiple fiber reads and writes simultaneously.
The number of DMA buffers is proportional to the number of
PEs connected to the same LMB. A large number of DMA
buffers in a LMB can reduce the maximum operating clock
frequency due to increased hardware routing complexities.

B. Cache

The cache focuses on satisfying a single memory request
with minimum latency. Within the cache engine, we explore
the spatial and temporal locality. It loads the scalars of the
tensor from the external memory.

Our non-blocking cache uses a 3-stage pipeline to achieve
high frequency. We keep the cache-line width similar to the
data width of DRAM Interface IP to avoid implementation
complexities. Instead of forwarding a single element from
the cache to PEs, the cache passes the complete cache-line
to the Request Reductor (RR). Then, the RR advances the
requested portion to each PE while storing the incoming cache-
line inside its temporary buffer.

C. Request Reductor (RR)

RR converts element-wise cache reads to cache-line ac-
cesses. As shown in Figure 3, the RR is a 2-stage pipeline. In
the first step, a temporary buffer stores the most recent memory
reads. It is a CAM-based memory implementation that keeps
the most recent external memory reads inside. Since CAMs
are hardware expensive, we keep the number of elements in
the buffer small.

If requested data is not in the temporary buffer, the read
request advances to the Recent Request Status Holder (RRSH).
RRSH keeps the status of recently forwarded requests to the
cache. If the incoming read request belongs to one of the
pending cache-line requests, the PE id and address are kept
in the RRSH. When a cache-reply from cache reaches the
RRSH, the pending requests corresponding to that cache line

Algorithm 3: PARALLEL-MTTKRP ALGORITHM

1 Let PEv denote the vth PE on FPGA, 0 ≤ v < p
2 Let Partitionq denote the qth partition, 0 ≤ i < p

Input: NNZ[M] = {indI[M], indJ[M], indK[M],
vals[M]}, B[J][R], C[K][R]

Output: Y[I][R]
3 while not done do
4 for each partitionq parallel do
5 for z = 0 to M/p do
6 i = indI[z]
7 j = indJ[z]
8 k = indK[z]
9 if currentI 6= indI then

10 for r = 0 to R do
11 Y[currentI ][r] = temp Y[r]

12 currentI = indI
13 for r = 0 to R do
14 temp Y[r] =

vals[z]×B[j][r]×C[k][r]

15 else
16 for r = 0 to R do
17 temp Y[r] +=

vals[z]×B[j][r]×C[k][r]

are satisfied by sending the corresponding data elements to
the requested PEs. RRSH helps to convert element-wise cache
access to cache-line-wise accesses. It drastically reduces the
memory traffic to the cache. RRSH logic can be implemented
using a hash table. In our work, we use XOR-base hash table
[26] considering its high throughput and scalability.

1) XOR-based Hash Tables: R. Zhang et al. [27] propose
XOR-based hash tables that can support multiple parallel
pipelines with high throughput. For stall-free execution, our
work requires 2 PE versions of the hash table. Each PE
connects to the cache interface and PE side separately. The
total number of entries in the hash table is proportional to
total number of entries in the local cache

local cache associativity . The width of a table is
proportional to (Tag width + Number of PEs) and it con-
nects with (RR × number of data elements per cache −
line).

D. Request Routers

The request router has 2 responsibilities. They are (a) re-
ceive memory requests from different LMB units and forward
them to the DRAM interface IP, (b) forward the data coming
from external memory to the LMB units.

E. Reconfigurability of the Overall Design

Users can configure our design during the synthesis step.
The configuration heavily depends on the characteristics of the
compute fabric and data layout. In the current literature, all
the FPGA or CGRA based implementations use a variation



TABLE II: Module Configuration and Resource Utilization

Module Specification Resource Utilization
Name LUT(%) FF(%) BRAM(%) URAM(%)

Configuration-A
Degree of set-associativity = 2

Cache No. of cache-lines = 8192 1.87 1.24 0.24 1.25
Cache-line width = 512

DMA No. parallel DMA supported = 4
Engine Size of single DMA buffer = 256 B 0.04 0.01 - 0.25
Request No. of entries in RRSH = 4096
Reductor No. of entries in Tempory Buffer = 8 0.08 0.10 - 1.25

Includes a cache, a DMA Engine,
LMB and a Request Reductor 2.03 1.41 0.24 2.75

Complete
System No. of LMBs = 1 2.25 1.54 0.24 2.75

Configuration-B
Degree of set-associativity = 1

Cache No. of cache-lines = 4096 0.65 0.64 0.06 0.63
Cache-line width = 512

DMA No. parallel DMA supported = 4
Engine Size of single DMA buffer = 256 B 0.04 0.01 - 0.25
Request No. of entries in RRSH = 4096
Reductor No. of entries in Tempory Buffer = 8 0.08 0.10 - 1.25

Includes a cache, a DMA Engine,
LMB and a Request Reductor 0.85 0.81 0.06 2.13

Complete
System No. of LMBs = 4 3.61 3.35 0.24 8.52

of COO Format (e.g., CISS) to store the high dimensional
tensors. Meanwhile, the dense matrices use a row-major for-
mat. We assume all the compute fabrics that use our memory
system use the same kind of memory layout. Under these
conditions: (a) the sparse tensors use the cache due to the
spatial and temporal locality of the data access pattern, (b)
The fibers of the matrices are accessed through DMAs due to
their high spatial locality and poor temporal locality.

In Section V-C, we dive deeper into configuring the number
of LMBs depending on the type of the compute fabric. Our
experiments show that the performance improvement due to
the total number of DMAs in an LMB saturates after 4 DMAs.
Increasing the number of DMAs also negatively impacts the
maximum operating frequency due to increased place and
route complexity. We further observed that the cache size also
influences the maximum operating frequency of the overall
design. We keep cache size including, the total number of
cache lines and cache line width, as configurable parameters.
We maintain the cache line width equal to the memory
interface IP’s data width since it avoids design complexities
of the cache.

V. EVALUATION

A. Experiment Methodology

We implement different configurations of the memory con-
troller on Xilinx Alveo U250 FPGA [28] using Verilog HDL.
This device has 1,728 K LUTs, 3,456 K Flip-flops, and 327
MB of URAM memory. Simulations, synthesis, and place-
and-route implementations are performed using Xilinx Vivado
Design Suite 2020.2. In our work, we focus on accessing
a single external DRAM component efficiently. We use the
Xilinx memory interface IP [29] to connect our design with the

external memory. For the Alveo U250 board, Xilinx provides
Memory Interface IP with 31-bit address width and 512-bit
data width (with ECC turned on).

1) Datasets: Table III summarizes the characteristics of the
synthetic 3D tensors we use in our experiments. Most of the
state-of-the-art accelerators use a variation of the COO format
to store data. For example, N. Srivastava et al. [24] [25] use
Compressed Interleaved Sparse Slice (CISS) format, which is
also a variation of COO format. In this section, the tensors
use variations of the COO format. Each element in the tensor
includes its coordinate vector following the value. The total
size of one 3D tensor element is 16 Bytes. We use 32 bits to
store each coordinate and value. The dense matrices are stored
in row-major order while keeping each element 4 Byte. We
set the number of elements in a row of a matrix to 32.

TABLE III: Sparse 3D Tensor Datasets

Tensor Dimensions Nonzeros Density
Synth˙01 22K × 22K × 23M 28M 2.37E-09
Synth˙02 3M × 2M × 25M 144M 9.05E-13

B. Baselines

We compare our proposed memory system with 3 ap-
proaches.

1) Memory Controller IP Only: : Commercial memory
interface IP [29] [30] directly connected to a compute fabric
of a given accelerator. It is the naı̈ve method of connecting
the external memory.

2) Cache-only: : Compute fabric of the accelerator con-
nects to the external memory through a cache. This approach
is identical to replacing the LMB in our system with the cache.



3) DMA-only: : All the requests of the accelerator are ac-
cessed through a DMA. This approach is identical to replacing
the LMB in our system with DMAs. Here, a DMA engine can
load/store a single DMA request at a time.

C. Configurations of the Proposed System

There are 2 types of spMTTKRP kernel accelerators based
on the communication between external memory and compute
fabric.
Type-1: The systolic array-based spMTTKRP compute fabrics
[24] [25] in the current literature have a single point of access
to the external memory for each type of data structure. After
loading the data to the compute fabric, they are shared among
PEs using the PEs near the memory system. For instance, [25]
use shared Loading and Storing Units for each type of data
structure (i.e., Matrix Loading Unit (MLU), Tensor Loading
Unit (TLU), and Matrix Store Unit (MSU)) and share the data
among PEs using the edge PEs.
Type-2: The compute fabrics with multiple points of access
to external memory fall into this category. For instance, Algo-
rithm 3 can be mapped into a compute fabric with multiple PEs
with independent memory accesses. Here, the computations
executed by each PE are independent of others. The memory
system should be sophisticated enough to handle this type of
compute fabric.

In the experiments, we use 2 types of configurations de-
pending on the above communication types between external
memory and compute fabric.
Configuration-A: For Type-1, having multiple LMBs does
not help because their data structures only have a single point
of access to the external memory. Therefore, with Type-1
compute fabrics, we use a single Large LMB. Table II shows
the resource utilization of each module in the memory system
that we used in our experiments.
Configuration-B: For Type-2, multiple LMBs can increase
the performance. Their compute fabric has several points of
access for each of the data structures. In our experiments,
we use 4 LMBs, with each LMB connected to a PE. Table
II summarizes the resource utilization of each module in the
design we used in our experiments.

D. Performance

As we discussed previously, we ran the experiments on dif-
ferent datasets with different memory system configurations.
Figure 4 shows the improvement after using our proposed
memory systems over other alternatives. We compute the
memory access speedup by comparing the total memory access
time with the commercial memory controller IP-only setting.
Our proposed system achieved around 3.5x speedup compared
to the commercial memory controller IP-only setting. Also,
compared with cache-only and DMA-only memory systems,
our approach achieved around 2x and 1.26x speedup, respec-
tively.

Our approach always achieves higher speedup compared to
the cache-only setting. In MTTKRP, the consecutive secondary
cache misses to the same cache line occur while accessing the

Fig. 4: Speedup with different memory systems over direct
connection to commercial Xilinx memory controller IP as
the baseline. The naming convention of each category is
(<configuration of proposed system> <type of the compute
fabric> <dataset>).

fibers. In modern caches, secondary misses are avoided using
Miss Status Holding Registers (MSHR). But conventional
MSHR can not handle a large number of secondary cache
misses without losing the performance. Further, the memory
traffic between the cache and compute fabric can also reduce
the performance in the cache-only setting. In our method, we
reduce this traffic while avoiding secondary misses using the
Request Reductor.

DMAs do not exploit the temporal locality of data. Further,
there can be garbage data in DMA transactions when the
length of the data requests is shorter than the width of the
memory interface IP. Our proposed system outperforms the
DMA-only setting simply because it avoids the above issues
with DMAs.

VI. CONCLUSION

In this paper, we propose a multifaceted memory system that
reduces the total memory access time of MTTKRP on FPGAs.
Our unified hardware can be reconfigured in the compile-
time, depending on the orientation of the computing units and
memory layout of tensors. The scalable Local Memory Blocks
can handle the memory access pattern of MTTKRP efficiently
while achieving 3.5× speedup compared to the commercial
memory controller IPs. Also, our system shows 2× and 1.26×
speedups compared with cache-only and DMA-only memory
systems, respectively.

VII. ACKNOWLEDGMENT

This work was supported by the U.S. National Science
Foundation (NSF) under grant OAC-1911229 and CNS-
2009057.

REFERENCES

[1] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.



[2] Z. Chen, Z. Xu, and D. Wang, “Deep transfer tensor decomposition with
orthogonal constraint for recommender systems,” 2021.

[3] T. G. Kolda and D. Hong, “Stochastic gradients for large-scale tensor
decomposition,” SIAM Journal on Mathematics of Data Science, vol. 2,
no. 4, pp. 1066–1095, 2020.

[4] M. Mondelli and A. Montanari, “On the connection between learning
two-layer neural networks and tensor decomposition,” in The 22nd In-
ternational Conference on Artificial Intelligence and Statistics. PMLR,
2019, pp. 1051–1060.

[5] Z. Cheng, B. Li, Y. Fan, and Y. Bao, “A novel rank selection scheme
in tensor ring decomposition based on reinforcement learning for deep
neural networks,” in ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020,
pp. 3292–3296.

[6] S. Fernandes, H. Fanaee-T, and J. Gama, “Tensor decomposition for
analysing time-evolving social networks: An overview,” Artificial Intel-
ligence Review, pp. 1–26, 2020.

[7] Y. Taguchi, “Drug candidate identification based on gene expression
of treated cells using tensor decomposition-based unsupervised feature
extraction for large-scale data,” BMC bioinformatics, vol. 19, no. 13, pp.
27–42, 2019.

[8] F. Wen, H. C. So, and H. Wymeersch, “Tensor decomposition-based
beamspace esprit algorithm for multidimensional harmonic retrieval,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 4572–4576.

[9] D. Hong, T. G. Kolda, and J. A. Duersch, “Generalized canonical
polyadic tensor decomposition,” SIAM Review, vol. 62, no. 1, pp. 133–
163, 2020.

[10] J. Bennett, C. Elkan, B. Liu, P. Smyth, and D. Tikk, “Kdd cup and
workshop 2007,” SIGKDD Explor. Newsl., vol. 9, no. 2, p. 51–52, Dec.
2007. [Online]. Available: https://doi.org/10.1145/1345448.1345459

[11] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, and T. M.
Mitchell, “Toward an architecture for never-ending language learning,”
in Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, ser. AAAI’10. AAAI Press, 2010, p. 1306–1313.

[12] S. A. McKee, “Reflections on the memory wall,” in Proceedings of the
1st Conference on Computing Frontiers, ser. CF ’04. New York, NY,
USA: Association for Computing Machinery, 2004, p. 162. [Online].
Available: https://doi.org/10.1145/977091.977115

[13] S. Volos, D. Jevdjic, B. Falsafi, and B. Grot, “An effective dram cache
architecture for scale-out servers,” Tech. Rep., April 2016.

[14] S. Wijeratne, S. Pattnaik, Z. Chen, R. Kannan, and V. Prasanna,
“Programmable fpga-based memory controller,” 2021.

[15] A. S. Gil, J. B. Benitez, M. H. Calviño, and E. H. Gómez, “Reconfig-
urable cache implemented on an fpga,” in 2010 International Conference
on Reconfigurable Computing and FPGAs, 2010, pp. 250–255.

[16] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance
and optimizations of blocked algorithms,” in Proceedings of the Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS IV. New York, NY,
USA: Association for Computing Machinery, 1991, p. 63–74. [Online].
Available: https://doi.org/10.1145/106972.106981

[17] X. Ma, D. Zhang, and D. Chiou, “Fpga-accelerated transactional
execution of graph workloads,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 227–236. [Online]. Available:
https://doi.org/10.1145/3020078.3021743

[18] F. Kjolstad, P. Ahrens, S. Kamil, and S. Amarasinghe, “Tensor algebra
compilation with workspaces,” in 2019 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO), 2019, pp. 180–192.

[19] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with
sparse and factored tensors,” SIAM Journal on Scientific Computing,
vol. 30, no. 1, pp. 205–231, December 2007.

[20] I. Nisa, J. Li, A. Sukumaran-Rajam, R. Vuduc, and P. Sadayappan,
“Load-balanced sparse mttkrp on gpus,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2019, pp. 123–
133.

[21] M. Asiatici and P. Ienne, “Stop crying over your cache miss rate:
Handling efficiently thousands of outstanding misses in fpgas,” in
Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 310–319.
[Online]. Available: https://doi.org/10.1145/3289602.3293901

[22] M. Asiatci and P. Ienne, “Dynaburst: Dynamically assemblying dram
bursts over a multitude of random accesses,” in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL),
2019, pp. 254–262.

[23] S. Aananthakrishnan, N. K. Ahmed, V. Cavé, M. Cintra, Y. Demir,
K. D. Bois, S. Eyerman, J. B. Fryman, I. Ganev, W. Heirman,
H. Hoppe, J. Howard, I. Hur, M. Kodiyath, S. Jain, D. S.
Klowden, M. M. Landowski, L. Montigny, A. More, P. Ossowski,
R. Pawlowski, N. Pepperling, F. Petrini, M. Sikora, B. Seshasayee,
S. Smith, S. Szkoda, S. Tayal, J. J. Tithi, Y. Vandriessche, and
I. P. Wrosz, “PIUMA: programmable integrated unified memory
architecture,” CoRR, vol. abs/2010.06277, 2020. [Online]. Available:
https://arxiv.org/abs/2010.06277

[24] N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang, D. Al-
bonesi, V. Sarkar, W. Chen, P. Petersen, G. Lowney, A. Herr, C. Hughes,
T. Mattson, and P. Dubey, “T2s-tensor: Productively generating high-
performance spatial hardware for dense tensor computations,” in 2019
IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2019, pp. 181–189.

[25] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020, pp. 689–702.

[26] R. Zhang, S. Wijeratne, Y. Yang, S. R. Kuppannagari, and
V. K. Prasanna, “The hardware implementation of high
throughput parallel hash table on fpga using xor-based memory,”
https://github.com/pgroupATusc/XOR-hash.

[27] ——, “A high throughput parallel hash table on fpga using xor-
based memory,” in 2020 IEEE High Performance Extreme Computing
Conference (HPEC), 2020, pp. 1–7.

[28] Xilinx, “Alveo u250 data center accelerator card,”
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html.

[29] ——, “Ultrascale architecture-based fpgas memory ip v1.4,”
https://www.xilinx.com/support/documentation/ip documentation/
ultrascale˙memory ip/v1˙4/pg150-ultrascale-memory-ip.pdf.

[30] Intel, “External memory interfaces intel arria 10 fpga ip user guide,”
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/ug/ug-20115.pdf.


