
GCN Inference Acceleration using High-Level Synthesis
Yi Chien Lin, Bingyi Zhang, Viktor Prasanna

University of Southern California, Los Angeles, California
Email: {yichienl, bingyizh, prasanna}@usc.edu

Abstract—GCN (Graph Convolutional Network) has become a
promising solution for many applications, such as recommenda-
tion systems, social data mining, etc. Many of these applications
requires low latency GCN inference.

In this paper, we provide a case study of a GCN inference
acceleration on FPGA. We explore high-level synthesis program-
ming model to achieve low-latency inference. First, we propose a
partition-centric mapping strategy to map the execution tasks of
GCN onto FPGA to exploit data reuse, which reduces external
memory access overhead. Second, we provide HLS-based kernel
design with improved memory performance and achieve massive
data parallelism. Third, we perform design space exploration
to facilitate feasible pre-placement which avoids potential Place-
and-Route (PnR) failures. We evaluate our design on a state-
of-the-art FPGA platform using three commonly used datasets:
Reddit, Yelp and Amazon-2M. We compare our design with
two state-of-the-art libraries PyTorch-Geometric (PyG) and Deep
Graph Library (DGL) running on high-end CPU and GPU
by evaluating their latency and energy efficiency to perform
full-batch GCN inference on a two-layer Vanilla-GCN model.
Compared with PyG CPU version, our design reduces the latency
by 59.95× and is 96.22× more energy efficient on the average.
Compared with DGL, our design achieves 2.9×−6.4× speedup
and is 5.87× more energy efficient compared with the CPU
version. Compared with the DGL GPU version, although the
latency of our design is 1.67 × −2.5× that of DGL GPU, our
design is 1.8× more energy efficient.

I. INTRODUCTION

Graph Convolutional Network (GCN) has become popu-
lar solutions for many cloud-based applications, such as e-
commerce [1] and recommendation systems [2]. Most GCN
applications like recommendation systems are deployed on
cloud. To achieve real-time performance, GCN acceleration
has been studied on application-specific integrated circuit
(ASIC) [3] and GPU platform [4]. FPGAs in the cloud become
a promising solution in terms of performance, energy effi-
ciency and flexibility. There are several challenges of deploy-
ing GCN on cloud-based FPGAs: (1) Heterogeneity of GCN
workload: There are two major computation kernels in GCN
[5]: aggregation and transformation. The aggregation kernel is
used for graph traversal, and involves large number of irregular
memory accesses. On the other hand, the transformation kernel
involves regular neural network computation, such as multi-
layer perceptron (MLP). Thus, GCN acceleration needs to ef-
ficiently utilize external memory bandwidth as well as achieve
massive computation parallelism. (2) Time to market: While
GCNs are widely used, their models evolve rapidly [6]–[8].
RTL-based accelerators [3], [9] are hard to adapt to new GCN
models and require significant development effort. HLS-based
kernel design can be easily adapted to evolving GCN models,

but requires careful optimizations to achieve high performance.
(3) Architectural constraints: FPGAs contain massive on-chip
resources. They are suitable for GCN acceleration, which
requires massive memory bandwidth and computation par-
allelism. However, state-of-the-art FPGAs usually consist of
multi-die with limited inter-die wire connections. The on-chip
resources, such as memory ports, block RAMs and DSPs are
unevenly distributed into different dies [10]. Thus, placing
a large design of GCN on state-of-the-art FPGAs frequently
causes PnR failures and timing violations.

To address the above challenges, we provide a case study
of GCN inference acceleration on a state-of-the-art FPGA.
We explore the programming model of HLS, dramatically
reducing the design efforts as well as achieving significant
speedup. Our main contributions are:

• We provide a partition-centric mapping strategy for map-
ping GCN inference onto FPGA. By deploying partition-
centric mapping, partitioned graph can be stored on-chip
and data reuse can be exploited. Based on our proposed
task mapping, we design synthesizable HLS-based kernel
functions for GCN with several pragma-driven optimiza-
tions to enhance the overall kernel performance.

• We perform design space exploration to facilitate feasible
design pre-placement. This avoids potential PnR failures
and also improves the timing performance.

• We evaluate our work on three widely used large-
scale datasets. Experimental results show that compared
with PyG running on a state-of-the-art CPU, our de-
sign achieves 59.95× speedup and 96.22× energy ef-
ficiency on average. Compared with DGL-CPU, our
design achieves 2.9×−6.4× speedup and 5.87× energy
efficiency on average. Compared with DGL-GPU, latency
of our design is 1.67×−2.5×, and is 1.8× more energy
efficient.

II. PRELIMINARIES

Graph Convolutional Network (GCN) is a powerful machine
learning model operating on unstructured graphs. Vanilla-GCN
[5] is the first proposed GCN model, the Vanilla-GCN layer
operation is:

X l+1 = σ
(
AX lW l

)
, (1)

where A ∈ RN×N is the adjacency matrix of the input graph,
X l ∈ RN×fl is the 2-D input feature matrix, X l+1 ∈ R ∈
RN×fl+1 is the 2-D output feature matrix, W l ∈ Rfl×fl+1 is
the layer weight matrix and σ(·) is the element-wise activation
function. N denotes the number of vertices in the input

DDR_0

DDR_1

DDR_2

DDR_3

Static region

FPGA Board (Xilinx Alveo U200)

PC
Ie

 In
te

rf
ac

e

Dynamic Region

Host platform

CPU

Host
Memory

PCIe

applications

…

SpDMM Core

… …
GEMM

Core

GEMM
Core

SpDMM Core

… …

SpDMM Core

… …

SLR0

SLR1

SLR2

SLR0:
LUT:354962
REG:723353
BRAM:638
DSP:2265

SLR1:
LUT:160402
REG:332535
BRAM:326
DSP:1317

SLR2:
LUT:354962
REG:723353
BRAM:638
DSP:2265

int main(int argc, char** argv)
{ Read_Input_Graph();

Data_tiling&padding();
// Creating kernel objects, num is the number of data partitions
cl::Kernel spdmm_kernels(num);
cl::Kernel gemm_kernels(num)
// Create event object to ensure data dependency between kernels
Create_event(spdmm_kernels, gemm_krnls);
Copy_data_to_FPGA(); // Move data to FPGA global memory
for (l =0 ; I < L; l++) // GCN layer loop
{

Run_kernels(spdmm_kernels, mmult_kernels,
out_of_order_execution_mode

);
Synchronization();

}
Copy_data_to_host(); // Move data to Host memory from FPGA

}

OpenCL-based Host Program
void spdmm(features, CSRindptr,
CSRindexandvalue, output)
{ #pragma HLS dataflow

Read_sparse_matrix();
Read_dense_matrix();
Compute();
Write_result();

}

void gemm(input_features, weights,
output_features)
{ #pragma HLS dataflow

Load_weight_matrix();
Load_feature_matrix();
Compute();
Write_result();

}

SpDMM Kernel

GEMM Kernel

Fig. 1. End-to-end GCN inference using HLS programming model

graph, fl and fl+1 are the feature dimensions of GCN layers.
Basically, there are two main computational kernels in GCN
models: (1) Feature Aggregation (FA)-AX: AX is sparse-
dense matrix-multiplication (SpDMM), where A is extremely
sparse. For example, the adjacency matrix of PPI, Flickr,
Reddit datasets have 0.5%, 0.2%, 0.2% density respectively.
Such computation has poor data locality and large external
memory traffic. Moreover, the arbitrary distribution of non-
zero elements in A introduces irregular memory accesses, thus
causes large memory access latency. (2) Feature Transforma-
tion (FT)-(AX)W : Feature transformation requires general
dense-dense matrix multiplication (GEMM) of (AX) with
W . It has a regular computation pattern but suffers from large
computation complexity.

III. TASK MAPPING AND KERNEL OPTIMIZATIONS

A. System Overview

The overview of our proposed acceleration system is shown
on the right side of Fig. 1. GCN applications run on the host
platform with a OpenCL-based host program to manage kernel
execution. The FPGA board is deployed with the computation
cores built from HLS.

B. Partition-centric Task Mapping and Scheduling

GCN inference contains consecutive L GCN-layer opera-
tions. Real-world input graphs are usually very large, consist-
ing of tens of millions of nodes and edges [11]. Thus, we
need to partition the execution task of GCN layers. Moreover,
the two computation kernels of GCN layer operation have
very different memory access pattern and computation pattern.
We provide a task partition strategy that exploits both task
parallelism and data parallelism. (1) Task Parallelism: We
divide the GCN layer operation into two types of computation
kernels–SpDMM and GEMM, to run feature aggregation and
feature transformation respectively. (2) Data Parallelism: We
partition the input graph. Each data partition Vi contains a set
of vertices, which can perform FA and FT independently in
a GCN layer. The proposed task mapping and coordination is
performed by the host processor indicated in the left side of
Fig. 1.

Using our proposed task mapping strategy, we create a
pool of tasks, which are enqueued into a task/command
queue managed by the host program. The host processor
schedules the execution of the tasks on the SpDMM cores

and GEMM cores that are deployed on the FPGA. To enable
task-level parallelism and ensure data dependency across FA
and FT kernels, we exploit the Bulk Synchronous Parallel
model [12] which performs several supersteps consisting of
local computation, global data communication and a barrier
synchronization at the end of each superstep.

C. Kernel Optimizations

Based on our proposed partition-centric task mapping, we
design SpDMM Core and GEMM Core to run the feature
aggregation and feature transformation respectively. Feature
Aggregation has low computation intensity but a large number
of random memory accesses. Thus, it requires large memory
bandwidth but a small number of computation units suffice. In
contrast, Feature Transformation has a regular memory access
pattern and requires large data parallelism. So, we need to
perform optimizations for the two kernels differently. Since
kernels are programmed in HLS, we can exploit the pragma-
driven optimizations. The architecture of the two computation
kernels are shown in Figure 2 and Figure 3 respectively.
SpDMM Core: SpDMM Cores perform multiplication of A
and X . Due to the high sparsity of A, it is typically stored in
compressed sparse row (CSR) format to save memory space.
CSR format maintains an indptr array, an index array, and a
value array. During SpDMM, matrix A is sequentially loaded
from external memory; on the other hand, loading feature
matrix X is dependent on the index array, incurring many
random memory accesses. As indicated in [13], HLS compiler
has inefficiency in dealing with random memory accesses.

Therefore, to improve the bandwidth utilization, we perform
several optimizations: (1) since the dimension of GCN layer
feature ranges from 100 − 4000 (usually greater than 16),
we exploit the parallelism along the feature dimension. By
bundling data into vectors of length 16 (each data is 32-
bit floating point), the memory ports of SpDMM Core are
arranged in 16 × 32 = 512-bit width, which maximize
bandwidth efficiency of external memory access. As a result
of vectorization, SpDMM computations are performed in a
SIMD fashion. (2) Since loading data is the bottleneck of
SpDMM, we want to keep the memory controller busy reading
data required. To achieve this goal, we carefully pipelined our
kernel using the pipeline pragma, and overlap computation and
memory access using the dataflow pragma, so the SpDMM
kernel can send out consecutive memory request. Furthermore,

for (int i = 0 ; i < R/16; i++)
for (int kk = 0; kk < C/16; kk++)

for (int hh = 0; hh < 16; hh++)
for(int ww = 0; ww < W/16; ww++)

#pragma HLS dependence variable=localC inter false
for (int j = 0; j < 16; j++)
#pragma HLS PIPELINE II=1 rewind

for(int ii = 0; ii < 16; ii++) // unroll
for(int jj = 0; jj < 16; jj++) //unroll

float last;
if (hh==0 && kk ==0) {last = 0;} else {last = localC[ii][jj][j][ww];
localC[ii][jj][j][ww] = last + localAX[ii][hh][j] * localW[hh][jj][kk][ww];

Weight
Buffer

Feature
Buffer L2

Feature
Buffer L1

MAC ARRAY
MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

Result
Buffer

GEMM Core

512b

512b

512b

HLS_Stream

BroadCast

AX

Weight

R

C

C

W

Data in L2 cache
Data in L1
cache

Pesudocode for Feature
Transformation

Fig. 2. GEMM Core
.

Indptr
Load Unit

Index&Value
Load Unit

Feature
Load Unit

Result
Write Unit

MAC MAC MAC…

SpDMM Core

SIMD

512b 512b 512b

32b32b32b32b

AXI_M AXI_M AXI_M

32b32b32b32b32b32b 32b 32b

Weight
Buffer

Feature
Buffer L2

Feature
Buffer L1

MAC ARRAY
MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

Result
Buffer

GEMM Core

512b

512b

512b

HLS_Stream

BroadCast

For i

Fig. 3. SpDMM Core

memory accesses are buffered with FIFOs, which can avoid
stalling of memory request. (3) To take full advantage of the
external memory bandwidth, SpDMM Cores are connected to
different DDR memory bank to enable parallel memory access.
This can also reduce bank conflicts and improves bandwidth
utilization.
GEMM Core: The architecture of GEMM Core is shown
in Fig. 2. The computation kernel is a 2-D MAC (multiply-
and-accumulate) array. GEMM Core performs block matrix
multiplication of (AX) with W . In GCN, W is small; it can
be fully stored in a on-chip Weight Buffer to prevent redundant
access to external memory. The feature matrix is loaded from
the external memory. To maximize the on-chip data reuse, we
design a two-level cache hierarchy for (AX). As shown in the
right side of Fig.2, a blue block of matrix is loaded on-chip
into the L2 buffer, the loaded size depends on the available on-
chip memory (such as URAM or BRAM). High-end FPGAs
usually has different types of on-chip memories, we load the
orange part of the matrix to smaller but faster on-chip memory
such as LUTRAM, which is the L1 buffer. The orange matrix
blocks are data that will be computed soon. By implementing
the two-level memory structure, we can maximize data reuse
and reduce memory access latency. We also re-design the
datapath of block matrix multiplication as shown in Fig. 4. The
straight-forward implementation of block matrix multiplication
reads and writes to the same address repeatedly , which would
result in large initial interval of pipeline to resolve memory
dependency. Our re-design datapath avoids stalling by adapting
a different computation order that writes to different block of

1 2 3 4 1

2

3

4AX

X

Weight

=

1

2

3

1

2

3

AX

X

Weight

=

Result

Result

Re
-d
es
ig
n
Da

ta
pa
th

Or
ig
in
al
 D
at
ap
at
h

Fig. 4. Original Datapath and Re-designed Datapath

matrix every iteration. Note that though we compute different
blocks every iteration, these blocks are all stored in the L1
buffer, thus would not incur extra overhead to read different
blocks. With the new datapath and the two-level cache deploy,
we achieved 3× speedup within the GEMM core compared to
the original straight-forward design.

IV. DESIGN SPACE EXPLORATION

The SpDMM core and GEMM core work as a producer-
consumer model, where the input of GEMM core comes from
the output of SpDMM core. To avoid idling, the execution
time of the two core should be balanced. Thus, we can
decide the number of SpDMM and GEMM to be instantiated
using Equation 2. To estimate the execution time of the
two core, we set the numerators as the amount of FLOPs
performed by SpDMM and GEMM and the denominators are
the performance of the two core. N is the number of vertices,
deg is the average degree of the graph and fl is the feature
dimension of layer l, the product of the three is the amount
of FLOPS performed by SpDMM. Similarly, N × fl × fl+1

0

50

100

150

200

250

C++ HLS HLS(opt) RTL

Development Time (hours)

Fig. 5. Development time of two-layer Vanilla-GCN model using C++, HLS,
HLS(optimized) and RTL.

is the amount of FLOPS performed by GEMM. x and y are
the amount of SpDMM core and GEMM core instantiated. As
mentioned in III-B, data are vectorized and cores executes in
SIMD fashion, lvector indicated the length of data vector.

N × deg × fl
x× lvector × freq

=
N × fl × fl+1

y × lvector2 × freq
(2)

Equation 2 can be further simplified as:

x

y
=
deg × lvector

fl+1
(3)

The average degree of Reddit, Yelp and Amazon-2M ranges
from 40 to 50, and f1 is 128. The vector length lvector is set
to 16. Thus, to balance the execution time of two core, x/y
should be set around 5 to 6.25.

We can instantiate many computation cores concurrently to
achieve task-level parallelism. However, directly instantiating
several computation cores may lead to many PnR failures and
poor timing performance because Cloud-based FPGAs usually
consists of multiple-dies, and the hardware resources are
unevenly distributed in different dies (or Super Logic Regions
(SLRs) in Xilinx’s terminology). As shown in the rightmost
part of Figure 1. For example, in Xilinx Alveo U200, SLR1 has
less BRAMs and DSPs than SLR0 and SLR2. Moreover, these
SLRs are connected through the Stacked Silicon Interconnect
(SSI) technology, which leads to two issues: (1) there are
limited number of wires across SLRs, and (2) the wires across
SLRs have long delay. Therefore, the design without proper
pre-placement can easily lead to (1) designs running out of
resources in the SLRs, (2) routing failures due to the limited
cross-die wires, and (3) low design frequency so the timing
requirements can be met.

Thus, in addition to deciding the amount of SpDMM and
GEMM, we enforce two types of constraints to find a feasible
pre-placement for our design:

• Placement constraint: We place each SpDMM core
and GEMM core into a specific SLR. The placement of
computation core crossing SLRs is not allowed, and so as
the cross-die DDR memory connections. This is done by
explicitly specifying the mapping of kernels onto SLRs,
and can prevent PnR failures.

0

500

1000

1500

C++ HLS HLS(opt) RTL

Source Code of Line (SCOL)

Fig. 6. Source code of lines of two-layer Vanilla-GCN using C++, HLS,
HLS(optimized) and RTL.

• Resource constraint: While there are several computa-
tion cores in an SLR, the total usages of the on-chip re-
sources, such as memory interface, BRAMs, UltraRAMs,
and DSPs, should not exceed the available resources. This
is done by explicitly specifying the mapping of hardware
resources and memory interface in the GEMM core and
SpDMM core .

V. EXPERIMENTS

A. Experimental Setting

We implement our kernel designs in Vitis-HLS and host
program in OpenCL. We used Xilinx Alveo U200 accelerator
card as the platform for evaluation. It has 77 GB/s external
memory bandwidth with 4 memory banks, 1182k Look-up
tables, 6840 DSPs, 75.9 Mb of BRAM and 270 Mb URAM.
We use Float32 as the data format. Vitis 2020.1 is used
for IP generation, hardware linkage and Vitis Analyzer is
used to obtain experimental data including resource utilization,
power consumption and execution time. We use three large-
scale graph datasets Reddit, Yelp and Amazon-2M [14] for
evaluation. These datasets are extracted from the cloud-based
GCN applications and their details are shown in Table I. We
use the two-layer Vanilla-GCN model [5] for evaluation. The
GCN-layer operation and GCN-layer dimensions (f0, f1, f2)
are specified in equation (1) and Table I, respectively.

TABLE I
STATISTICS OF THE DATASET AND GCN-LAYER DIMENSIONS

Dataset #Nodes #Edges f0 f1 f2

Reddit 232965 11606919 602 128 41
Yelp 716847 27907940 300 128 107

Amazon-2M 2449029 123718152 100 128 47

B. Development Effort

Using HLS, we are able to develop FPGA kernels in
a short amount of time. We first implement a two-layer
Vanilla-GCN model in C++, and then modify the C++ code
into synthesizable HLS code by adding some HLS pragmas
for parallelization and port connections. Finally, we perform
kernel optimizations as described in III-C to improve the

TABLE II
COMPARISON OF EXECUTION TIME

Execution Time (sec)

PyG-CPU PyG-GPU DGL-CPU DGL-GPU 1s1m 2s1m 4s2m 8s2m 16s2m

Amazon-2M OoM‡ OoM 36 OoM 73.63 37.34 18.79 9.57 5.63

Reddit 81 OoM 3.2 0.65 16.56 8.46 4.26 2.18 1.10

Yelp 56 OoM 3.5 0.47 9.74 5.44 2.61 1.74 1.21
‡ Cannot run due to limited memory.

TABLE III
RESOURCE UTILIZATION FOR VARIOUS CONFIGURATIONS

Design Resource Utilization

LUTs BRAMs URAMs DSPs

1s1m 126k (10.63%) 53 (2.45%) 304 (31.7%) 1383 (20.22%)

2s1m 147k (12.24%) 83 (3.84%) 304 (32.7%) 1470 (21.49%)

4s2m 289k (24.48%) 166 (7.68%) 608 (63.3%) 2940 (42.98%)

8s2m 366k (30.39%) 286 (13.34%) 608 (63.3%) 3288 (48.06%)

16s2m 520k (43.88%) 526 (24.53%) 608 (63.3%) 3984 (58.16%)

TABLE IV
COMPARISON OF ENERGY EFFICIENCY (KJ/INFERENCE)

Our design (16s2m) PyG-CPU DGL-CPU DGL-GPU

Amazon-2M 0.47 OoM‡ 3.78 OoM

Reddit 0.1 8.4 0.34 0.16

Yelp 0.06 5.9 0.37 0.12

‡ Cannot run due to limited memory.

overall performance. As shown in Figure 5, implementing a
Vanilla-GCN takes about 4 hours using C++; modification
into synthesizable HLS code takes another 4 hours, thus
implementing Vanilla-GCN using HLS takes 8 hours in total.
The optimizations for HLS takes approximately 50 hours.
We also compare development effort with another two-layer
Vanilla-GCN accelerator implemented in RTL [15]. Though
the RTL implementation is not exactly the same as our design,
design of SpDMM and GEMM kernel are similar. Result
shows that it takes 4× development time to implement a
similar design in RTL compared with HLS.

HLS kernel development features C style coding, so func-
tions can be expressed using less lines of code compared
with RTL style coding. We compared the source code of lines
(SCOL) for implementing a two-layer vanilla-GCN using C++,
HLS and RTL. As shown in Figure 6, C++ and HLS takes
similar amount of codes to implement this design, and is 3.3×
less than RTL.

C. Resource utilization

The hardware resource utilization is reported in Table III.
We set various design configurations for evaluation. Using
xsym as the notation to represent a design configuration, x
denotes number of SpDMM Cores and y denotes number of
GEMM cores. A design footprint is shown in Figure 7.

Fig. 7. FPGA footprint of our design. GEMM Cores are placed in the purple
regions and SpDMM Cores are placed in the fluorescent green regions. The
orange region is reserved as the FPGA shell.

D. Scalability

In order to evaluate the scalability of our design, we com-
pare the execution time under various design configurations.
Given the resource constraint, we instantiate two GEMM
cores. Based on Equation 3, suggested amount of SpDMM
would be 2 × 6.25 = 12.5. However, there might be perfor-
mance degrade for SpDMM due to the uncertain latency of
irregular memory access. Thus, we instantiate more than 12
cores of SpDMM in our design. The results are reported in
Table II, it shows strong scaling as more compute units are
deployed.

E. Cross-platform Comparison

Execution time: We compare the execution time to perform
a full-batch GCN inference using a two-layer Vanilla-GCN
model on different platforms. For GPU platform, We assume
the graphs can fit in the GPU memory so full-batch inference
can be performed. We compare our FPGA implementation
with the baseline implementations using PyTorch Geometric
(PyG) [16] and the highly-optimized framework Deep Graph
Library (DGL) [17]. The CPU baselines are executed on an
Intel Xeon Gold 5120 CPU platform, which has 28 cores with
56 threads, and 19.25 MB L3 cache. The GPU baselines are
executed on Nvidia Titan Xp, a high-end GPU which consists
of 3840 CUDA cores running at 1405 MHz, and memory
bandwidth up to 547.7 GB/sec.

As shown in Table II, our design using 16s2m achieves
73.63×, 46.28× speedup on Reddit, Yelp compared with PyG
[16]. The speedup comes from our optimization for memory
bandwidth utilization and storing data on-chip for data reuse.
On the other hand, PyG frequently store and load the inter-
mediate results which causes large memory access overhead.
Our design achieves 2.9 × − 6.4× speedup compared with
the CPU version of DGL. For GPU version, latency of our

design is 1.67× and 2.5× on Reddit and Yelp; notice that
the peak performance of Nvidia Titan Xp is 9.3 TFLOPs/sec,
while our design is only 153.6 GFLOPs/sec, and the GPU has
547 GB/sec of memory bandwidth, which is 7.1× more than
FPGA’s 77 GB/sec bandwidth.
Energy efficiency: We define energy efficiency as energy con-
sumed per inference (KJ/Inference). We compare the energy
efficiency of our design with PyG. We measure the energy
consumption of FPGA by enabling power-profile option in
Xilinx XRT [18] to perform fine-grained energy profiling. We
use the Thermal Design Power (TDP) [19] to estimate the
CPU and GPU power consumption. TDP indicates the power
consumption of a CPU or GPU under maximum theoretical
load, which is suitable in our case during GCN inference. We
derive the energy consumption by multiplying the TDP with
time for inference. The results are shown in Table IV. The
results show that our FPGA implementation is 84×, 97.9×
more energy efficient using Reddit, Yelp than PyG-CPU. For
DGL, our design is 5.87× more energy efficient on average
compared with CPU version, and 1.8× more energy efficient
on average compared with GPU version.

VI. CONCLUSION

In this paper, we performed a detailed case-study of GCN
inference acceleration on a state-of-the-art FPGA using HLS.
We explored HLS-based optimizations for our kernels and per-
formed design space exploration. We evaluated our design on
three commonly used datasets and achieved average speedup
of 59.95×, 4.40× and 0.5× compared with PyG-CPU, DGL-
CPU and DGL-GPU respectively.

For the future, we plan to build Application Programming
Interfaces (APIs) so a general N -layer GCN model can be eas-
ily implemented. We also plan to exploit the High Bandwidth
Memory to achieve more speedup for GCN inference.

VII. ACKNOWLEDGEMENT

This work is sponsored by the U.S. National Science Foun-
dation under grant numbers OAC-1911229 and CCF-1919289.
Equipment and support by Xilinx are greatly appreciated.

REFERENCES

[1] H. Yang, “Aligraph: A comprehensive graph neural network platform,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 3165–3166.

[2] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, 2018.

[3] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in 2020
IEEE HPCA, 2020, pp. 15–29.

[4] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“Neugraph: parallel deep neural network computation on large graphs,”
in 2019 USENIX Annual Technical Conference.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[6] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” 2017.

[7] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional
networks,” Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, Jul 2018.

[8] F. Wu, T. Zhang, A. H. de Souza Jr., C. Fifty, T. Yu, and K. Q.
Weinberger, “Simplifying graph convolutional networks,” 2019.

[9] B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large
scale gcn inference,” in 2020 IEEE 31st International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
2020, pp. 61–68.

[10] Xilinx, “Alveo u200 and u250 data center accelerator cards
data sheet,” https://www.xilinx.com/support/documentation/data sheets/
ds962-u200-u250.pdf, 2020.

[11] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” in Interna-
tional Conference on Learning Representations, 2020.

[12] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, p. 103–111, Aug. 1990. [Online]. Available:
https://doi.org/10.1145/79173.79181

[13] Y.-k. Choi, Y. Chi, J. Wang, L. Guo, and J. Cong, “When hls meets
fpga hbm: Benchmarking and bandwidth optimization,” arXiv preprint
arXiv:2010.06075, 2020.

[14] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn,” Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, Jul 2019.
[Online]. Available: http://dx.doi.org/10.1145/3292500.3330925

[15] B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large
scale gcn inference,” in 2020 IEEE 31st ASAP. IEEE, 2020, pp. 61–68.

[16] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

[17] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[18] Xilinx, “Xilinx runtime,” https://github.com/Xilinx/XRT, 2020.
[19] Intel, “Measuring processor power: Tdp vs. acp,” 2011.

https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds962-u200-u250.pdf
https://doi.org/10.1145/79173.79181
http://dx.doi.org/10.1145/3292500.3330925
https://github.com/Xilinx/XRT

	Introduction
	Preliminaries
	Task Mapping and Kernel Optimizations
	System Overview
	Partition-centric Task Mapping and Scheduling
	Kernel Optimizations

	Design Space Exploration
	Experiments
	Experimental Setting
	Development Effort
	Resource utilization
	Scalability
	Cross-platform Comparison

	Conclusion
	Acknowledgement
	References

