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Abstract—Twisted and coiled actuators (TCAs) have recently
emerged as a promising artificial muscle for various robotic
applications because they are strong, low-cost, and customizable.
To better facilitate the applications, it is critical to establish
general and precise models for different types of TCAs (e.g.,
self-coiled, free-stroke, conical, etc.). Although several modeling
methods have been proposed recently, existing models either fail
to capture the nonlinearity during large deformations or cannot
model TCAs with non-uniform geometries. In this work, we
establish a general framework for modeling TCAs using Cosserat
rod theory that can capture the nonlinearity of large deformations
and simulate TCAs with non-uniform geometries. Furthermore,
we show existing methods are special cases of our general model.
Comprehensive statics and dynamics experiments are conducted
to verify the proposed model, and the results demonstrate that
the model is more accurate than existing ones, especially when a
TCA is subject to large deformations. Given the wide applications
of TCAs, our general model can help to better design, optimize,
and control systems/robots/devices driven by different types of
TCAs.

Index Terms—Artificial Muscle, Twisted-and-Coiled Actuators,
Statics and Dynamics, Cosserat Rod Theory

I. INTRODUCTION

WISTED-and-coiled actuators (TCAs) have recently

emerged as a promising artificial muscle [1]-[3], ex-
hibiting several unique advantages compared with other types
of muscles (e.g., dielectric elastomers, shape memory alloy,
liquid crystal elastomer, etc.). They can be conveniently fab-
ricated by continuously twisting polymer fibers into coiled
spring-like shapes. They are low cost since the polymer fibers
required for fabrication can be commonly used household
fibers (e.g., sewing threads or fishing lines). They have a large
work density (27.1 kW/kg), capable of lifting more than 1000
times their own weight [1]. They can be directly actuated by
electricity with a small voltage (a few volts) [4]. They can also
sense their own deformations through the change of electrical
properties (e.g., resistance) [S]-[7].

Besides the advantages, TCAs can also be fabricated to
have different configurations (Fig. 1) such as self-coiled, free-
stroke, conical, etc. Generally, TCAs are fabricated through
a two-step process. The first step is the same: twisting a
polymer fiber to generate a twisted fiber, whereas the second
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Fig. 1: The photos of three types of TCAs made of conductive
sewing threads. (a) Self-coiled TCA. (b) Free-stroke TCA. (c)
Conical TCA.

step differs: using the twisted fiber to generate a coiled shape.
Self-coiled TCAs (Fig. 1a) are fabricated by self-coiling in the
second step. Such TCAs can produce large forces but have
relatively small strokes (around 10% to 20%) and normally
require prestretch before usage [1]. Free-stroke TCAs (Fig. 1b)
are fabricated by coiling a twisted fiber along a mandrel with
helical grooves in the second step. They can provide moderate
actuation forces with relatively large strokes (> 50%) without
prestretch [8], [9]. Conical TCAs (Fig. 1c) are fabricated by
coiling a twisted fiber along a conical mandrel. They can
generate weak forces but with large, even dual-side strokes
when the coils pass each other [10].

Due to TCAs’ merits and wide customizabilities, they have
been recently used in many robotic systems, either rigid
or soft/compliant ones. Rigid systems include: an assistive
wrist orthosis [11], fingers/hands [12]-[14], a musculoskeletal
system [15], a joint mechanism [16], and morphing linkages
[17]. Soft/compliant systems include: bending beams [18], soft
crawlers [19], [20], soft robotics arms [9], soft skin [21], shape
morphing skin [22], and robotic jellyfish [23].

To better design, optimize, and control TCAs for various
applications, it is critical to establish precise models for
TCAs. A list of existing models are presented in Table I. We
are particularly interested in physics-based models based on
TCAs’ physical parameters as opposed to system identification
methods [13], since such physics-based models are expected to
be more general. Although some of the existing physics-based
models can provide enough accuracy for special types of TCAs
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Reference TCA type Twisted Fiber Thermal Model Fiber Actuation | Coil Kinematics | Coil Statics Elastic Moduli
Yang [24] Self-coiled Fishing line None Concentric CST CST Constant
helical laminate
CTE dn. T

Yip [13], Cho [25], | Self-coiled Sewing thread Convection None Characterized, Measured None

Oiwa [26] linear with T constant

Luong [27] Self-coiled Sewing thread, | Convection, None Characterized Measured None

Spandex yarn damping linear with T constant

Masuya [28] Self-coiled Sewing thread Convection, radi- | None Characterized, Measured None
ation, damping linear with T' constant

Abbas [29] Self-coiled Sewing thread Convection Single  Helix, | CST CST Calculated,

constant CTE dn. T

Lamuta [30] Self-coiled Carbon Convection Fiber radius in- | CST CST Calculated

Fiber/PDMS crease constant

Wu [31] Mandrel- Sewing thread None Convection Love’s Equation | Calculated Con- | Constant

coiled stant (Wahl)

Karami [32] Self-coiled Sewing thread Convection, Single  Helix, | Linear CST Calculated d.n.
resistance CTE dnn. T Fe and T
change

Kotak [33] Conical Fishing line Convection Single  Helix, | Linear Calculated Con- | Constant

CTE dn. T stant (Wahl)
Our work Self-coiled, Sewing thread Convection, Single  Helix, | Cosserat Cosserat Rod | Calculated d.n.
freek-stroke monitored power | CTE d.n. T Rod, Love’s | Love’s Equation, strain and T
conical Equation, CST CST

CTE: Coefficient of Thermal Expansion; d.n.: depending on; CST: Castigoliano’s Second Theorem.

TABLE I: The comparisons between existing models for TCAs

Kinetostatic ™.

1
|
1
Input Power Thermal Temperature > Fiber Fiber untwisting Coil !
! Model ! Actuation Kinematic !
: E 1Displacement
i |
1 '
: beeediiieiiioeoo_..___Temperature _ > :
Force ! B Coil Static E
1 \ . h 1
! ... Mechanical Model A

Fig. 2: The schematic for the modeling overview. The input is the input power and the external force, and the output is the
TCA’s displacement. The whole TCA model is boxed with black dashed lines, and the mechanical model is boxed by red
dashed lines. The mechanical model can be a TCA statics or TCA dynamics.

(e.g., self-coiled ones), a general model for different types
of TCAs (self-coiled, free-stroke, conical) is still missing. In
the following, we briefly review pioneering works and discuss
their limitations.

A. State-of-the-Art for TCA modeling

As shown in Fig. 2, the existing modeling of TCAs can
be divided into two sequential models: a thermal model and
a mechanical model. The thermal model first solves a TCA’s
temperature given the input power, and then the mechanical
model takes the temperature and external forces to solve the
state of the TCA (displacement, velocity, and acceleration,
etc.).

For the thermal model, the most common ones treat a TCA
as a single body with a uniform temperature. This model
considers the natural convection in the air as only energy
dissipation, and the heat source is Joule heating from elec-
tricity [13], [25]-[27], [29], [30]. Besides the common ones,
some models consider a more complicated process. Masuya
et al. [34] included the radiation and the heat generated from

damping to the model. Karami et al. [32], [35] assumed the
resistance of TCAs made of conductive sewing thread changed
with respect to temperature linearly.

For the mechanical model, we divide it into three sub-
models according to the working principle of TCAs (Fig.
2). As the temperature increases, the twisted fiber in a TCA
will untwist. A fiber actuation model predicts the amount
of untwisting with the temperature as an input. With the
untwisting, a coil kinematic model converts the untwisting to a
linear displacement along the TCA. Since a TCA has a spring-
like helical shape, we need a coil static model to predict a
TCA’s passive deformation under an external load. The coil
kinematic and static model, often coupled, together are called
a coil kinetostatic model.

For the fiber actuation model, there exist extensive works
on modeling the untwisting of monofilament fibers, such as
fishing lines using a single helix model by assuming all the
polymer chains in the fiber behave the same like a single helix
[36]. However, the actuation of multifilament fibers (sewing
threads) is underexplored due to the complicated twisting
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structure inside them. For instance, a conductive sewing thread
(e.g., 235/34 4ply, Shieldex Trading) consists of 4 plies of
individual yarns twisted together in a ‘z’ twist (right-hand
twist), and each yarn is made by twisting many thin fibers
together in ‘s’ twist (left-hand twist).

For the coil kinematic model, there exist three methods. The
first method is based on system-identification [13], [25]-[28].
But instead of measuring how much a TCA contracts after
increasing temperature, the contraction force is usually mea-
sured. The other two methods are physics-based: Castigliano’s
Second Theorem (CST) [24], [29] and Love’s equation [4],
[10], [31], [37]. CST, based on the infinitesimal strain theory,
is usually used to calculate the deformation of a structure under
an external load. By considering the untwisting torque of a
twisted fiber as an external load, CST can relate the untwisting
to a TCA’s linear displacement. Love’s equation is a pure
kinematic relationship that relates the untwisting of a twisted
fiber to a TCA’s pitch angle and thus its displacement. Note
that Knot Theory results in the same kinematic relationship as
Love’s equation as discussed in [10].

For the coil static model, a TCA’s passive deformation
can be determined from its stiffness if we treat the TCA as
a mechanical spring. Researchers have used: 1) a constant
stiffness obtained from experiments [13], [25]-[27], [38]; 2)
a constant stiffness calculated using the classical formula [39]
for a helical spring as in [31]; 3) stiffness that varies with
deformations [24], [29], [32], [35]. Such nonlinear stiffness has
been modeled using CST, but no work uses Love’s equation.

Although various models have been proposed recently, they
are limited in two aspects. First, they are not general enough
for different types of TCAs shown in Fig. 1. In fact, most of
the existing models are only developed for a specific type of
TCAs, and there is no existing model that is verified to be able
to model different types of TCAs. Second, existing models
are not accurate enough due to modeling simplifications. For
example, the CST method is based on the infinitesimal strain
(small deformation) theory, and Love’s method ignores the
shear and extension strain for the twisted fiber, making them
inaccurate when TCAs undergo large deformations.

B. Our Work and Contributions

In this work, we present a general physics-based modeling
approach to model a TCA’s statics and dynamics based on
the Cosserat rod theory. Cosserat rod theory can accurately
model slender rods, including twisted fibers, by considering
four strains (torsion, bending, shear, and extension). As a topic
in solid mechanics [40], [41], it has been recently adapted
to the robotics community to model tendon-driven and fluid-
driven compliant/soft robots [42]-[44].

Our proposed model based on Cosserat rod theory is both
more accurate and more general compared with existing
models. It is more accurate because 1) it is geometrically
exact: no approximation of small deflection is assumed; 2)
it considers all four strains; 3) it can include nonlinearity of
material such as temperature and strain dependency. It is also
more general because it can model different types of TCAs
with different shapes that cannot be modeled using existing

models. In fact, we show that existing models using Love’s
equation and CST are simplified cases of our model. Because
of the better generality and accuracy, we expect our model
can be widely used for the design and optimization of TCA-
actuated devices/systems/robots.

The rest of this paper is organized as follows. In Sec. II,
we present the thermal model and the fiber actuation model.
In Sec. III, we introduce the Cosserat rod model for coil
kinetostatics. In Sec. IV, we show the results using Love’s
equation and CST are special cases of our model based on
the Cosserat rod theory. In Sec. V, the experimental setup and
numerical simulations are introduced. We then compare the
simulation and experimental results. In Sec. VI, we briefly
discuss the modeling approach and point out future directions.
In Sec. VII, we conclude the paper.

II. THERMAL MODEL AND FIBER ACTUATION MODEL

TCAs made of conductive threads are used in this work
since they can be directly actuated using electricity and
respond much faster than TCAs made of fishing lines wrapped
with heating wires. Therefore, our modeling framework starts
with a thermal model to obtain a TCA’s temperature given
input power, and then a fiber actuation model to predict the
amount of fiber untwisting from the temperature increase for
the twisted fiber in a TCA.

A. Thermal Model with a Time-varying Input

For TCAs made of conductive threads, their electrical resis-
tance strongly depends on the loading condition and changes
over the actuation process (~ 20%) [7]. Therefore, we cannot
assume a constant resistance for modeling. In this case, we
directly use the time-varying input power as the real-time input
of the thermal model to achieve a better accuracy.

As shown in Fig. 3(a), the 1D thermal diffusion equation is

mucyT = —hes Ao(T — Too) + Pin (1)

where T" is a TCA’s temperature, the " represents the derivative
with respect to time, m; is the weight of the TCA, ¢, is
the specific heat, T, is the ambient temperature, h is the
natural convection coefficient, and the method to determine h
is described in Appendix B-B. Ay = 271!, is the surface area
of the twisted fiber without considering roughness, with r; and
l; the diameter and length for the twisted fiber, respectively.
cs = 2.5 is used to adjust the surface area due to its roughness
(see Fig. 1). In fact, a twisted thread is made of infinite many
yarns twisted together, each yarn is made of infinite many
thin fibers, and each fiber has a circular cross section. In this
case, the outer surface area is scaled up twice, and the scaling
factor for each scaling is /2, which is the ratio between
half perimeter of a circle to its diameter. We calculate h
from experimental data using the regression method after c; is
determined. P;, is the power input into the TCA that is directly
monitored in a control circuit using a sensor (details in Section
V-D3). With the initial condition as T'(0) = Ty = T, Eq.
(1) can be numerically solved using an ordinary differential
equation (ODE) solver in Matlab (e.g., ode4b).
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Fig. 3: (a) The schematic for the thermal model. (b) The schematic for the fiber actuation model. The green cylinder represents
a twisted fiber. The red helix is a monofiber with a constant length [;. (c) Experimental and fitted results of the unit untwist

of the twisted fiber with respect to temperature.

B. Fiber Actuation Model

After the temperature for a TCA is known, we can solve the
amount of untwisting for the twisted fiber in the TCA due to
thermal expansion. Such untwisting happens since the twisted
fiber expands much more in the radial than the longitudinal
direction. Therefore, given a temperature input, we first find
the radius of the twisted fiber resulted from radial expansion,
and then use the radius to solve the amount of untwisting.

The twisted fiber’s radius ! after heating is an integration of
the coefficient of thermal expansion (CTE) in radial direction
(e

T
r,';:r;f(/ a dl +1) )

To

where r} and 7' are the radius at temperature Ty and 7,
respectively. Denote the ratio between rf and 7} as ['(T) =
iry = fTTO o dT" + 1. Note that «; is not a constant
and strongly depends on the temperature [45]. In the rest
of this paper, we will use a superscript * to represent the
variable in the original reference state (ORS) when no heat
and no load is applied, which are fixed parameters that can
be measured; we use a superscript h to indicate the variables
are corresponding to the heated reference state (HRS) when
the heat is applied but no load is applied. For example, r}
and 7 are the twisted fiber’s diameter at the ORS and HRS,
respectively. The variables without the superscript represent
a general state when a force is applied and/or when the
temperature is increased.

To obtain the amount of untwisting from the fiber’s radius
expansion, we use a single helix model [46]. The model
assumes the monofilaments in a twisted fiber form the same
helical shape like one single helix wrapped on a cylinder that
will expand in the radial direction as shown in Fig. 3(b). The
helix satisfies

I =(10)* +1f 3)
where [ is the length of the original fiber before twisting, [; is
the length of the helix (the twisted fiber), 6 is the total twisting
angle: § = 27n; with n; the number of twists inserted into
the twisted fiber.

ly and [; can be assumed to be constant since they remain
almost the same when the fiber’s temperature increases [46].
Therefore, 7'6 will keep constant: 7’0 = r}6*. Denote the
amount of untwisting due to heat as AO", we can obtain
AO" = 0" — 0* = 0*(r} /rh — 1). Further denote the amount
of untwisting per unit length as A9" = A#"/l,, we have

o gy
h

Aéh_ﬁ . 1):Z(ﬁ_1)

“)

From Eq. (4), we can obtain Af" from the radius ratio
I(T), which is challenging to model. Therefore, we use a
second-order polynomial co7?+c;T+cq to approximate I'(T")
and experimentally obtain the coefficients ¢; (i = 0, 1,2) by
directly monitoring the amount of untwisting for a twisted
fiber. Specifically, we first anneal the same twisted fiber for
fabricating TCAs shown in Fig. 1 in a straight shape with
two ends fixed in an oven (more details in Sec. V-A). The
straight twisted fiber is then hanged in an oven, and a 1 g
weight is attached at its end to keep the fiber straight. When
the oven is gradually heated, a camera is used to capture the
fiber’s untwisting through the oven’s transparent window and
a thermal sensor is used to record the temperature. Fig. 3(c)
shows the unit untwist with respect to the temperature and
the approximation using a second-order polynomial with ¢y =
3.5 x 1075, ¢ = —6.7 x 1075, ¢y = 1 that provides enough
accuracy with an MSRE = 4.1 rad/m, which is 2.3 degrees for
a twisted fiber with a length of 1 cm.

With the experimentally obtained I'(T"), we can derive the
amount of untwisting given a temperature for the twisted fiber
using Eq. (4). This amount of untwisting is used as an input
for the coil kinetostatic model in the next section.

III. KINETOSTATIC MODEL USING COSSERAT ROD
THEORY

The Cosserat rod model can be used to formulate a balance
equation between the external wrench (force and moments)
and the internal wrench on the twisted fiber in a TCA. In this
section, we establish the system of equations of the Cosserat
rod model for the kinetostatics of a TCA, derive the moduli
of a twisted fiber as a function of temperature and strain,
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Fig. 4: The schematic for the Cosserat rod model (a) The
loading condition of the TCA. The top end is fixed (fixed
end), and a force F, and a moment M, are applied at the
bottom end. (b) An arbitrary section of rod (the red box in
(a)) from s = s, to s = s, subjects to distributed forces f
and moments I. The internal forces n and moments m are
also shown.

obtain the reference configurations required for numerical
implementations, and establish a simplified dynamics equation
for TCAs.

A. Cosserat Rod Kinetostatic ODEs

The twisted fiber in a TCA can be considered as a slender
rod as shown in Fig. 4(a), and the Cosserat rod model [40]
assumes the rod is composed of infinitely many rigid cross
sections along the rod’s centerline defined as the curve passing
through the centroids of all the cross sections. We use arc
length s € [0,l;] to denote the location of a cross section
along the centerline.

We establish a global (fixed) frame (OXY Z) located at the
center of the TCA’s fixed end. As shown in Fig. 4(b), we
also establish a body frame (ozyz) for a rigid cross section
at s with o located at the centroid, z direction along the rod’s
tangent direction, and x, y aligned with the principal axes
of the cross section. The orientation of the body frame with
respect to the global frame can be represented as a rotational
matrix R(s) €SO(3), whereas the position of o in the global
frame can be represented as p(s) € R3. With R(s) and p(s),
we use a homogeneous transformation matrix g(s) € SF(3)

gls) = {Rff) i (f)] 5)

to represent the orientation and position of a rigid cross section
at s in the global frame.

With the notation in [4}], the kinematics of a TCA as
a Cosserat rod is ¢’ = g€, where ’ is the derivative with

respect to s, and & = [ul,vT]T € RS is the spatial twist

(strain) representing the relative configuration change between
adjacent cross sections along the centerline, with u € R? and
v € R3 the angular and linear strain component, respectively.
The superscript “I” denotes the transpose of a matrix. The
‘hat’ operator ~ is a mapping from R? to 50(3) or R to se(3),
<~ _|u v

e.g., & = 0 0
and linear component to facilitate our numerical simulation
using non-unit quaternion (detailed in Section V-B1)

R = Ru
p' = Rv

. We decompose g’ = gE into the angular

(6)

A complete nomenclature is listed in Appendix A.
The statics equation for an arbitrary cross section of the rod
as in Fig. 4(b) is

We—adiW+W' =0 @)

- = T
where W, = [1T7 fT} is the distributed external wrench

with I, f € R? as the moment, force per unit arclen}gth applied

. u 0]. -
to the centerline in the body frame, adg = 5 al s adjoint

representation of the spatial twist §. W = [mT, nT]T is
the internal wrench in the body frame with m,n € R? as the
internal moment and force in the body frame.

To relate the kinematic equation (6) and statics equation (7),
we can use a constitutive law to relate the internal wrench
W and the change of spatial twist AE = £ — £*, where
& = [uT, v*T]T is the twist in ORS. The change of
strains can be caused by the internal forces and moments.
For instance, the change of torsional strain w, — u}, where
u, is the third element of u, can be caused by the moment
about the z axis of body frame. More generally, we have the
following constitutive law:

W = KAg (3

where

0 K

Ky = diag[EI, EI,GJ] is the diagonal stiffness matrix for
bending and torsion, and K. = diag[GA;, GA;, EA] is the
diagonal stiffness matrix for shear and extension. F and G are
the longitudinal Young’s modulus and shear modulus for the
twisted fiber, respectively. A; is the cross section area of the
twisted fiber, I = I, = I, = ©r{/4 is the second moment
of area, and J = I, + I, is the polar moment of inertia of
the twisted fiber’s cross section about its centroid. A detailed
derivation for Eq. (8) is in Appendix B-A

Egs. (6)-(8) establish the kinetostatics of a TCA together
with boundary conditions (the external wrench, e.g., a weight
hanging at the TCA’s end), creating a boundary value problem
(BVP) that can be numerically solved. The actuation of the
TCA is realized by replacing w* in Eq. (8) with u" that can
be calculated with the increase of the temperature 7' (Sec.
MI-C). Detailed numerical implementations will be presented
in Sec. V-B. An animation of TCA simulation can be found
in our supporting video. The detailed derivation, source code,
and supporting video for this paper are summarized online at
https://jiefengsun.github.io/tca-tro.html

[ 2]
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B. Temperature and Strain Dependent Moduli

The moduli (E and G) of a twisted fiber vary with the
temperature and external loads. If such variations are not
modeled, we cannot simulate a TCA’s response accurately,
especially when external loads are large and the temperature
is high. To model such variations, we first calculate the
moduli at room temperature based on yarn mechanics, and
then incorporate the influence of temperature and load.

Moduli of a twisted fiber depend on three parameters of the
twisted fiber: the pitch angle o, the volume friction Vy, the
yarn’s (monofilament fiber’s) tensile modulus Ey [47]:

3ViE;  (1+cos?ay)

FE = 9
4 1+ cosa; + cos? ay ©)
7(1 — cosay) sin o
G =E;V,
! f/(ﬁ(at/Z —1/4sin(2ay))?
8sin® o (10)

37 (1 — cos o) (cos oy + 1)°
7(4 — 3 cosay — cos® )
(ot /2 — 1/4sin(2a))(cos ay + 1)

Among these three parameters, a; and Vy can be considered
as constants after the annealing process, and they can be
experimentally obtained. For o, we can directly obtain it from
microscopic photos. For V, we obtain it indirectly by using
Eq. (9) with the values of E and E; at room temperature.
at room temperature is measured to be 1.2 GPa by stretching
an annealed twisted fiber. F/; at room temperature is directly
chosen to be Etg = 3.9 GPa, which is the Young’s modulus
of Nylon 6,6. With I/ and Ey at room temperature, we solve
V¢ = 0.35 using Eq. (9).

Ey varies with both external loads and temperature, es-
pecially when the load and temperature are large [32], [48].
In our previous work [29], we have considered how Ey will
vary with temperature alone: E'y decreases by 0.0011 GPa per
Celsius degree. In this work, we also consider the influence
of the external load by using a second order polynomial
(A = po7? + p17 + po). Therefore, we have

E¢ = Eso — 0.0011AT (ot 4 pa 7 + o)

Ml

Y

where AT =T —Tj is the change of temperature, 7 = %} is

the torsional strain caused by an external force F, along the
TCA as shown in Fig. 4(a). Since we don’t know the exact
GG before we calculate 7, we take the value of G at room
temperature Gy = 0.22 GPa to calculate 7 for a specific load.
The coefficients for A, pus = 3.24 % 10’4,/11 = —0.027, and
o = 1, are fitted using the displacement-force relationship at
high temperature and high load condition (see Appendix B-B
for more details).

With Egs. (9)-(11), E and G can be expressed in terms of
the temperature and an external force. G is used as an example
to illustrate how the modulus will change. We consider the
case when we hang a weight at the end of a TCA. We can
plot G with respect to temperature and the weight in Fig. 5. G
will decrease more than 13% when the temperature and weight
both reach a large magnitude. Although we plot G with respect
to weights for more intuitive illustrations, it is more general
for the moduli to depend on the torsional strain (7) than the

external force produced by hanging weights, since even the
same hanging weight at the ends of two TCAs made of the
same twisted fiber will cause different torsional strains on the
twisted fiber if the two TCAs have different outside diameters.
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Fig. 5: The change of the shear modulus G with respect to
the temperature and hanging weight for a free-stroke TCA
fabricated as in Sec. V-A.

C. Reference Strain and Boundary Conditions

To numerically implement the model, we need to obtain
the reference strains and the boundary conditions for the two
ends. Recall that we define two types of reference states: 1)
a TCA’s original reference state (ORS) when no load and no
heat is applied; 2) a heated reference state (HRS) when the
heat is applied but no load is applied. We use a superscript *
and h to represent ORS and HRS, respectively. For instance,
a TCA may initially have an ORS strain £€* when no load and
heat is applied, but when the heat is applied, £* will be shifted
to an HRS strain £h.

Here we use a right-handed TCA as an example to obtain the
references, and the derivation for a conical TCA is discussed
in Appendix B-C. The derivations are also implemented using
Malab Symbolic Toolbox, and the source code can be found at
https://github.com/jiefengsun/TCA-TRO. The TCA is hanged
by fixing its top, and the global frame’s origin O is established
at the top of the TCA as shown in Fig. 4(a). Z direction is
along the axis of the TCA. In the following, we will obtain
the relative position and orientation for a cross section in the
twisted fiber with respect to the global frame (i.e., frame oxyz
with respect to frame OXY Z in Fig. 4(b)).

The position vector p*(s) in ORS can be parameterized
using arc-length as

(12)

where ¢ = 27n = scosa™/r* is the coiling angle, n the
number of coils, r* the radius of the coil, and a* the pitch
angle in ORS.

The rotation matrix R*(s) in ORS can be also parameterized
using s through consecutive frame transformations as shown
in Fig. 6.

p*(s) = [r* cos ¢, r*sin ¢, s sin(a*)} r

R*(s) = R, (13)

NN


https://github.com/jiefengsun/TCA-TRO

IEEE TRANSACTIONS ON ROBOTICS AUGUST 2021

(@) Q)

Fig. 6: Steps to obtain the rotational matrix R*(s). (a) The
top view for the first step rotating around z for ™ — ¢. (b) The
view for the second step looked from the arrow direction in
(a). Rotate around x for —F — «* with respect to the body
frame. Signs of the rotation angles are determined using the

right hand rule.

where R,, R, are respectively basic rotation matrices that
rotate frames about the x, z axis by an angle using the right-
hand rule. The colored item in Eq. (13) is corresponding to the
body frame in the same color after rotation in Fig. 6. Note that
post multiplication is used (rotation with respect to the current
body frame) and the final z orientation of the body frame is
always along the tangent direction of the twisted fiber. A 3D
animation of the body frame moving along a helix is shown
in the supporting video.

With p*(s) and R*(s), we can then obtain the ORS strain
u* and v* from Eq. (6)

U*(S) _ (R*TR*/)V — [O,FL*,T*}T

(14)
v* = R*Tp*/ _ [0,07 1]T

*

where k* = cos?a*/r*, 7F = sina*cosa*/r* are the
geometric curvature and torsion of the helix. Note that v*
does not vary with geometry parameters.

When heated, the twisted fiber untwists, the ORS strain is
shifted to the HRS strain by adding the influence of untwisting
to the geometric torsion

u(s) = [O,KZ*,T*—FAéh]T, oM = v (15)
Note that AG" changes with respect to temperature 7'; there-
fore, u" is a function of 7. In the simulation, u" is iteratively
updated based on 7' to incorporate the thermal actuation.

After solving the reference strains, we can solve the bound-
ary conditions. We first derive the boundary condition for the
fixed end of a TCA, whose centerline is along the global Z
axis. We will then discuss the boundary conditions for the free
end with a external load applied on it.

The boundary condition for the fixed end (s = 0) can be
solved from Egs. (12) and (13)

Py = p*(0) = [r*,0,0]"
-1 0 0
Ry=R"(0)=]0 sin(a*) —cos(a*)
0 —cos(a*) —sin(a*)

(16)

The boundary condition for the free end with an external
wrench WY (superscript ‘g” means it is in the global frame)
at s =1[; is

W (l;) = Ady W (17)
where
R 0
- [ 4

is the adjoint representation for the Lie group element g, Ad;
will transform W to the body frame. When a weight m is
hanged at the TCA’s end, WY = [0,0,0,0,0, —mg,]T with
gr = 9.81 m/s? the gravitational constant.

D. Modeling TCA Dynamics using Cosserat Rod Kinetostatic
Model

TCAs are generally used for actuation (e.g., lifting weights).
In this case, we can simplify its dynamics model by ignoring
the inertial force of a TCA since the hanging weight is usually
over 1000 times heavier than a TCA’s weight. In other words,
we can establish a simplified dynamics model based on the
Cosserat rod kinetostatics. Such a simplification can reduce the
Cosserat rod dynamics, which is a system of partial differential
equations (PDEs) with respect to time and space, to an ODE
with respect only to time:

mx+bt$+frod(x7T(t)) =0 (18)

where x is the displacement of the weight m from the loaded
equilibrium, the " is the derivative with respect to time, b; is the
damping coefficient of the TCA, f.oq(x,T(t)) is the TCA’s
internal force calculated from the Cosserat rod model for a
displacement x and temperature T'(t).

IV. SIMPLIFICATION AND SPECIAL CASES

In this section, we show that existing models (e.g., Love’s
equation and CST) for the kinetostatics of TCAs can be
considered as special cases of the more general Cosserat rod
model.

A. TCA Kinetostatic Modeling with Love’s Equation

Love’s equation [37] establishes the kinematic relationship
between a helix’s pitch angle and its precursor fiber’s torsion
change, which has been proposed for modeling TCAs [10],
[31]. But the equation is a special case of Cosserat rod
model in terms of a helix. In fact, a Cosserat rod model
can be reduced to a Kirchhoff rod model by ignoring the
shear and extension strains, and then the Kirchhoff rod model
can be further reduced to Love’s equation. Without shear
and extension, a helical TCA will have constant geometric
curvature and torsion anywhere along the centerline (i.e., u
does not depend on s) if the external force is along the
centerline. Therefore, if we denote the third element of u"(s)
in Eq. (15) as 7", then we have 7" = 7* + A@" for any point
of the helix. This can be rearranged to

sinaMcosaM  sina* cosa*

AGM =1 =

1
rh r* (19)
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which is the same form of Love’s equation as in Ref. [1], [10],
[31].

Previous works only use Love’s equation for the coil kine-
matic model and need to rely on other coil static models (e.g.,
CST or a constant stiffness coefficient) [10], [31] to complete
a TCA model (Table I). Here, we will directly use Love’s
equation to establish the statics model for TCAs.

When an external wrench W in the global frame is applied
to a TCA and the wrench’s axis coincides with the TCA’s axis
as shown in Fig. 4(a), the corresponding internal wrench W
in the body frame will not vary with respect to s due to the
symmetry of the geometry around the axis of WY. Therefore,
W at any s is equal to the value at boundary, which can be
calculated using the boundary condition Eq. (17)

W =W (0) = Ad} W? (20)
where R 0
. 0
Ady, = [ﬁo Ro Ro] 2D

Ry and p, are from Eq. (16), W?¢ = [M, FI17, F, and M,
are respectively the external force and moment vectors, Fp =
[0,0,F.]T, M, = [0,0, M.]T with F, and M, respectively
the force and moment applied at the free end. For a hanging
weight, F, = —mg, and M, = 0. Note that there is no need
to distinguish the boundaries at the two ends, ie., Adg, =
Adg(lt)'

(@) (b)

Fig. 7: (a) The wrench in the body frame (£}, and M, are not
shown since they are zero). (b) The geometric relation of a
helical TCA before and after deformation.

Therefore, W = mT7nT}T with m = [M,, M,, M,|T
and n = [F, F,, F;]" as shown in Fig. 7(a) can be expressed
as:

M, =0

My = Fersina — M, cos o 22)
M, = —F.rcosa — M,sina

F,=0,F,=—-F.cosa, I, = —F,sin«x
After ignoring shear and extension, the constitutive law of
the Cosserat rod Eq. (8) can be reduced as m = Kp;(u— uh),
which can be decomposed to
M M,

Ak = ¥ Ar—
"EED ST G

(23)

where Ak = k — &P

= cos?a/r — cos?al/rh, and AT =

7 — 7" =sinacosa/r — sina cosal /rh
Since a TCA’s unwinding at the end is negligible, the total
coiling angle is a constant (¢ does not change as in Fig. 7(b)):

cosal cos o

7 _ = = 24
l; T rh r* 24
Substituting M, and M, from Eq. (22) into Eq. (23) and
using Eq. (24), we have
GJ cos? o
7,*2

¢  cosa

F.+ (Sina — sin ah)

25
EI tan a cos? a* 25)

2 (cos o — CoS ah) =0

We also have the following relationship for a TCA’s length
as shown in Fig. 7(b)

l=1Isina (26)

Using Egs. (19), (25), (26) and simplifying, we can get the
displacement Al = [* — [ shown in Fig. 7(b) as a function of
external force F. and the unit untwist A" due to heat

1

Al =
Klv

F, — A, AG"

27)

where
1 Zt (’I"h)2

= b o
K1y GJcos?ah + EI tan o <989 —cosa
S1n x—S1n &

Al,u _ ltT'*

cos a*

B. TCA Kinetostatic Modeling with Infinitesimal Strain The-
ory

CST has been widely used to model a TCA’s kinetostatics
[24], [29], [30], [32], but the results from CST can be
considered as a linearized case of the Cosserat rod model by
loosening the geometry exactness using ‘small deformation’
approximation (Infinitesimal strain theory) — assuming the
deformed shape is close to the initial shape.

The actuation is considered as an external force, M, =
AG"GJ applied along z axis; therefore, M, = —F.rcoso —
M,sina + M, in W (Eq. (22)). Inverse the constitutive law
Eq. (8) to get A& = K~'W, which is the strain in the body
frame, and it can be transformed to the global frame due to
the small deformation assumption.

ALY = Ady, A& (28)

The sixth element of A&Y is A&J, which represents the
TCA’s linear strain along the global Z axis. Integrating the
strain over the arc-length results in the TCA'’s linear displace-
ment. Since A¢Y is independent of the arc-length s, we have
a form similar to Eq. (27) but with different coefficients

1 _
Al = [,AE) = ——F, — Ac AG" (29)
Kcst
where
1 r2cos?a  r?sin’a cos?a  sin’a
=1 + +
Ko GJ EI GA, EA,

A.gr = lyrcosa
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Note that based on the small deformation assumption, all the
variables are close to their values of the reference states, for
example, a ~ a* ~ af. Although we don’t distinguish them in
Eq. (29), the results’ accuracy could be improved by iteratively
updating the variables based on the previous step or using an
implicit solver, which can be observed in our supporting code.

Eq. (29) is the same as the results from CST, which is
discussed in Appendix B-C, and it can be used to calculate a
TCA’s deformation when F, and A#" are known. From Egs.
(27) and (29), it is clear that a TCA’s deformation comes from
two sources: the external load F. and unit untwist AG" resulted
from thermal expansion.

C. Dynamics for Love’s and CST Methods

Although Eqgs. (27) and (29) are convenient for calculating
the static deformation, we rearrange them to an equilibrium
of forces to facilitate the extension to dynamics

F.+ K.(Al — AAG") =0 (30)

where K can be K, or K., and A can be A;, or A..:. We
call A the coil kinematic coefficient and K. the coil stiffness
coefficient.

For the most common scenario when a weight is hanged at
the end of a TCA, the dynamics model can be easily extended
from a statics model by including damping force and inertial
force (F. = ma + by + mg,)

mi + by — K, AN =0 (31)

Note that z is the displacement of the weight from the loaded
equilibrium, and we use AIK. = —mg,, when Al is the
displacement from the natural equilibrium (no load) to the
loaded equilibrium.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we experimentally validate our model and
compare its accuracy with existing models under different
loading scenarios for the self-coiled and free-stroke TCAs.
We also demonstrate our model can model conical TCAs.

A. Fabrication of TCAs

We fabricate three types of TCAs: a self-coiled TCA, a free-
stroke TCA, and a conical TCA. In the following, we briefly
describe the fabrication process.

The three types of TCAs have the same twisted fibers. Since
it is made from threads, we will use twisted threads in the
rest of this section. To fabricate the twisted thread, we hang
a weight of 240 g at the end of a sewing thread (Shieldex
Trading, 235/36 dtex 4 ply HC+B) and twist it until reaching
the verge of self-coiling by inserting unit twist 4.71 rad/mm.
A weight heavier than 240 g may easily break the threads,
and a lighter weight will not allow for enough twisting of
the threads. The unit twist in the twisted threads for the three
TCAs are the same, and the parameters of the twisted threads
are listed in Table II.

The self-coiled TCA is fabricated by continuously inserting
twisting to the twisted thread. To make sure the prescribed

Item Unit Value
Inserted torsion for annealing 6* rad/mm 4.71
Twisted fiber radius 7} mm 0.21
Twisted fiber pitch angle oy o 40
Volume Friction 0.35
Specific heat ¢, J/(Kg K) 1267
Density p kg/m? 1300
Convection Coefficient h W/(m? K) | 23
Ambient Temperature T = T °C 25
Longitudinal Young’s modulus E | GPa Eq. 9)
longitudinal shear modulus G GPa Eq. (10)
Thermal actuation rad/mm Eq. 4)

TABLE II: The parameters of the twister fiber for all the TCAs.

Item Unit | Self-coiled | Free-stroke | Conical
Precursor fiber length mm | 218 218 181
Twisted fiber length [; | mm 175 175 145
TCA made length mm | 56 66.75 57
TCA natural length [* | mm | 56 45 55
Number of coils n 120 63 53
Coil radius r* mm 0.227 0.408 NC
Pitch angle o* ° 18.66 22.42 NC

NC: Non-constant

TABLE III: The parameters of the self-coiled, free-stroke, and
conical TCA.

amount of twist is inserted in the twisted thread, we manually
trigger the self-coiling process by reducing the hanging weight
from 240 g to 210 g and manually disturbing the thread. After
the first coil is triggered, we continuously insert twisting to the
thread to finish the coiling process.

The free-stroke TCA is fabricated by coiling the twisted
thread in the groove of a helical mandrel. The helical mandrel
is fabricated by wrapping a thin copper wire on a mandrel core
(thick copper wire) in a helical shape with a pitch angle of
22.42° as shown in Fig. 8(a). A customized machine is used,
and the detailed fabrication process of free-stroke TCAs can
be found in [9].

The conical TCA is fabricated by coiling the twisted thread

Groove

Grove wire Mandrel core Twisted fiber

Twisted fiber

Conical Mandrel
Groove

(b)

Fig. 8: (a) The helical mandrel with the coiled free-stroke
TCA. (b) The conical mandrel with the conical TCA.
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on a conical spiral mandrel (Fig. 8(b)) made of heat-resistant
material (EpoxAcast 670 HT, Smooth-On, Inc.). The conical
mandrel is a copy of our 3D printed conical mandrel (Objet30,
Stratasys Ltd.), because the 3D printed part is not heat
resistant. The copying procedure is: 1) fabricate a mold using
the 3D printed part and silicone rubber (Mold Max 29NV,
Smooth-On, Inc.); 2) cast the EpoxAcast 670 HT to the mold;
3) demold the mandrel and perform a heat treatment before
use. The conical spiral groove in the conical mandrel has a
constant pitch p. = 10.6 mm and a cone angle 12° that results
in a = 2m/p, and b = tan(127/360) for the conical spiral’s
curve equation Eq. (36) in the Appendix.

The three types of TCAs’ ends are constrained and annealed
in an oven (10GCE, Quincy Lab, accuracy 0.5°C) for 2.5 hours
at a temperature of 185°C, which will stabilize the shapes.
Finally, the free-stroke TCA and conical TCA are removed
from the mandrels. The parameters of the three TCAs are listed
in Table III.

B. Numerical Implementations for the Cosserat Rod Model

1) Quaternions as Rotation: Spatial derivative of rotations
(R') is integrated using non-unit quaternions to avoid trunca-
tion error and ensure R € SO(3) [49]. This method allows
any high-order integration scheme or general purpose ODE
solver to efficiently integrate rotations over long spatial range
while eliminating singularities and maintaining the structure
of SO(3). The basic idea is to represent R using a quaternion
h, and represent R’ using h’ and u, then the integration of
R’ can be performed by integrating h’.

A quaternion h = hg + h1i + hoj + hsk, where ¢, j, and k
are called quaternionic units. h can be written in a vector form
in R*: h = [hg, h1, ha, h3]T. Then we can have the derivative
of h with respect to s as [49]

0 —uz —uy —u.| [ho
1w 0 U —u hi
’r_ - x z Y
h = Uy —uy O Uy ho (32)
Uy Uy Uy 0 hs

where u,,u, and u, are elements of u. We can also calculate
rotational matrix R using h

R(h) = I+

—h3 = B3 hihs—hsho hihs+haho] (3
—— |hiha+hgho  —h3—h3  hahg — hiho
h™h \hihg — hoho  hohs +hihg  —h2 — h2

It is also useful to calculate h from a rotational matrix R to
obtain the initial condition. A robust numerical scheme [50]
quat2rotm in Matlab is used to find ho = quat2rotm(Ry).

2) Finite Difference Solver: Eqgs. (6)-(8) together with
boundary conditions Egs. (16) and (17) represent a boundary
value problem (BVP) that can be solved by two typical
methods: shooting methods or finite difference methods. A
shooting method iteratively guesses the unknown boundary
values for the fixed end (initial boundary) and evaluates the
boundary values at the other end after numerical integration,
which is fast for certain problems [44]. However, we found that
the shooting method couldn’t provide good initial guesses for

a complicated shape such as TCAs with many coils. Therefore,
we use a finite difference solver in Matlab bup5c [51].

3) Simulation Process of TCA Statics: For a simple case
where a weight is hanged at the end of a TCA and then lifted
up, the simulation process is shown in Algorithm 1.

Algorithm 1: TCA statics with a hanging weight.

Input: Weight m and maximum temperature 7,4,
Initialize geometric parameters and loading;

Setup boundary conditions Rg, po, W (l;);

Solve rod ODE:s for loaded equilibrium before heating;
for T =Ty — T),0. do

Obtain unit untwists AG" (Eq. (4));

Update the HRS strain £h (Eq. (15));

Update moduli £ and G (Egs. (9)-(11));

Solve rod BVP for the actuation;

Extract the displacement x;

Visualization;

end

The program has two inputs: the maximum temperature and
the weight. It begins with declarations of the various physical
parameters. Then, it solves the static equilibrium of the TCA
with weight at the end before increasing temperature. In the
main loop, each step, it updates the corresponding unit untwist
A6 (Eq. (4)), the HRS strain (Eq. (15)), and material modulus
(Egs. (9) - (11)) according to the temperature increase. After
that, it solves the BVP (Eqgs. (6) - (8), (16) and (17) ) with
visualization of results.

4) Simulation Process of TCA Dynamics: We solve Eq. (18)
using the finite difference method combined with the shooting
method. The shooting method first guesses and then solves the
internal force of the rod f,,q ; for time step ¢, that minimize the
residual res; = | froa,i — m&; — b;|, using central difference
schemes [52]

P 2z + 151 5 Tidl — Tio
’ At? T 20t
where At is the time step size, ¢ € {1,..., N} is index of

the time step, and N; is the total number of time steps. The
displacement z; is solved as an intermediate variable.

C. Numerical Schemes for Love’s and CST Methods

The numerical scheme for the two methods is the same.
A general statics simulation scheme is boxed in the green
area in Fig. 9. First, a temperature 7' is input into the fiber
actuation model to obtain the unit untwisting A@" of the
twisted fiber, and then A" is input into the coil kinematic
model to obtain the displacement and pitch angle due to
actuation. Given an external force F¢, the final displacement
Al can be calculated from the coil static model by solving
the equilibrium equation with the nonlinear moduli (£ and
G) influenced by the temperature.

A general dynamics simulation scheme is shown in Fig. 9
as boxed by black dashed lines. The model takes time-varying
electric power Py, (t) as the input to solve the temperature T
using the thermal model. Then 7' is input into the static model.
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Fig. 9: The schematic of the TCA’s dynamics model. The green
shaded area is a schematic of the static model with 7" and F,
as the input, and Al as output.

In addition to a static external force F,, time-varying load such
as inertial force (ma) and damping force (b;2) are implicitly
calculated using the same method as the rod dynamics.

D. Kinetostatics and Dynamics of Self-coiled and Free-stroke
TCAs

To compare the accuracy of various methods, three cases of
simulations and experiments are conducted for the self-coiled
TCA and the free-stroke TCA.

1) Considerations on the Experiments and Simulation: Due
to the viscoelastic effect of the nylon 6,6 material, a TCA will
gradually elongate to another length corresponding to the load
applied to it after a certain time or through a few heating
cycles known as creep [53], [54]. ‘Lonely stroke’ is used to
describe the phenomenon that a TCA’s displacement will be
influenced by its time history of loading [55].

While the equilibrium length at a certain time cannot be
predicted without considering viscoelasticity, most applica-
tions of TCAs only consider the actuation displacement of the
TCAs starting from an equilibrium length, which can be easily
measured in applications, especially when closed-loop control
is required. In this work, we conduct experiments starting at
such an equilibrium state as if the TCA has already crept
to the length corresponding to the weight. We also use the
reference state corresponding to the length as the reference
for simulation.

A helical TCA will stop contraction when neighboring coils
contact each other. Therefore, its stroke is mainly limited by
coil contact, especially when the load is small. For some
applications, prediction of contact is preferred. As a general
modeling framework, we consider the coil contact by using a
Sigmoid (Logistic) function to reduce A", once o < Qlpmins
let AG" = AG" +20e°0(@min =) where qmin is calculated by
measuring the minimum length of a TCA.

We study three most common application scenarios for heli-
cal TCAs: 1) kinetostatics with a hanging-weight, 2) explicitly
known varying load, and 3) dynamics with a hanging-weight.
Each type of experiment is repeated three times and the mean
value and standard deviation are respectively plotted as a solid
line and the corresponding shaded area.

2) Case 1: Kinetostatics with a Hanging Weight: We first
evaluate the kinetostatics when we hang a weight at the end of
a TCA by gradually increasing the TCA’s temperature. Such
an experiment is a common case for TCAs. In fact, most of
references in Table I use this case to verify their models.
Our experimental setup is shown in Fig. 10(a). The TCA’s
top is fixed to the inner roof of an oven, and its bottom is
connected to a carbon fiber rod, whose top end comes out
from the vent hole of the oven. We place a marker at the top
of the carbon fiber rod and use a laser displacement sensor
(OPT2006, Wenglor sensoric GmbH) to measure the TCA’s
contraction. The weight of the carbon fiber rod with the marker
is negligible (0.2 g). In an experiment, a weight is hanged at
the bottom of a TCA: 2 g, 30 g, and 60 g for the free-stroke
TCA; 50 g, 100 g, and 200 g for the self-coiled TCA.

In the experiment, the temperature inside the oven slowly in-
creases to 160°C from the room temperature (25°C) in around
14 mins, and the temperature is recorded with a thermistor
(EPCOS Inc., B57540G0503F000). Due to the comparable
sizes of the TCA and the thermistor and the slow increasing
rate of the temperature, the TCA’s temperature is approxi-
mately the temperature measured by the thermistor. Before an
experiment, we place the corresponding weight and conduct a
heating cycle (heat up and cool down) using electricity, and
wait 3 mins to start an experiment. This process will allow
the TCA to quickly creep to a length close to the equilibrium
length corresponding to the weight. Comparing with heating
a TCA with electricity and measuring the TCA’s temperature,
conducting experiments in an oven achieves better accuracy by
eliminating environmental influence. The slow heating process
also provides enough time for the thermistor to respond, and it
also eliminates possible dynamic effects (inertial and damping)
for the statics.

Figure 10(b) and (c) shows the comparison between exper-
imental and simulation results using the rod model for the
self-coiled TCA and the free-stroke TCA, respectively. The
shaded area and the solid line are respectively the mean value
and the standard deviation of three repeated measurements.
The maximum standard deviation of all the static experiments
for the two TCAs is 1.24 mm.

To quantify the accuracy of the three methods, the nor-
malized displacement error (the difference between simula-
tion and experimental results normalized by the maximum
displacement of three experiments) for the three methods are
calculated and plotted in Fig. 10(d), (e), and (f) for the self-
coiled TCA with 50 g, 100 g, and 200 g, and in Fig. 10(g),
(h), and (i) for the free-stroke TCA with 2 g, 30 g, and 60
g. The results indicate that in terms of accuracy: rod model
> CST method > Love’s method. For all three methods, the
errors grow with the increase of the temperature and weight.
But the maximum error of the Cosserat rod model is less than
10%, whereas the maximum error for Love’s equation can
be around 40%. The potential reasons for the better accuracy
of CST method than Love’s method are 1) the CST method
considers all the same four strains (torsion, bending, shear, and
extension) as considered in the Cosserat rod model, but Love’s
methods only consider two strains (torsion and bending). 2) the
numerical simulation of the CST method iteratively updates its
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Fig. 10: Case 1: kinetostatics with a hanging weight. (a) Experimental setup. (b) The comparison between simulation results
using the rod model and experimental results for the self-coiled TCA. (c) The comparison between simulation results using the
rod model and experimental results for free-stroke TCA. (d), (e), and (f): The normalized displacement error of the simulations
for the self-coiled TCA using the Cosserat rod model, Love’s method and CST method respectively for 50 g, 100 g, and 200 g.
(g), (h), and (i): The normalized displacement error of the simulations for the free-stroke TCA using the Cosserat rod model,
Love’s method and CST method respectively for 2 g, 30 g, and 60 g.
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Fig. 11: Case 2: varying load. (a) Experimental setup. (b) The measured force and calculated temperature using the thermal
model. (c) The comparison of the experimental results and the simulation results using the three methods.
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Fig. 12: Case 3: Dynamics with a hanging weight. (a) The experimental results for the four cases. (b)-(e) The experimental
and the simulation results for 5V 30g, 5V 50g, 6V 30g, and 6V 50g cases. The shaded area of the green curve represents the
standard deviation of three repeated experiments. (f) The maximum displacement error of the four cases for the three methods.

parameters such as r and «. Even though the CST method is
based on the infinitesimal strain theory, the numerical iteration
improves its accuracy.

3) Case 2: Varying Load: After verifying the accuracy
of the kinetostatics modeling, we connect a TCA with a
mechanical spring to simulate a varying load when the TCA
contracts. The varying load from the spring only depends
on the displacement, not on time factors such as velocity or
acceleration of the contraction (i.e., no dynamic effects). This
case has many applications in TCA-driven robots. A typical
case is a soft manipulator driven by embedded TCAs: the force
on the TCA increases as the TCA contracts to bend the soft
manipulator [56].

As shown in Fig. 11(a), one end of the spring is fixed, and its
other end is attached to the TCA. The other end of the TCA is
connected to a force gauge (M5-12, Mark-10 Inc.) to measure
the real-time force during the experiments. To keep the TCA
taut, a 0.05 N pretension is applied. The laser displacement
sensor is used to record the TCA’s displacement by measuring
the displacement of a marker placed at the connection point
between the TCA and the spring. The TCA is actuated using
5 V voltage, and its power is recorded using a high-side
current/voltage sensor (INA 219, Adafruit), which is not a
constant due to the change of the TCA’s resistance during
the actuation. In this experiment, only the free-stroke TCA
is used since it can provide a large stroke without significant
pretension. The recorded force and the calculated temperature
using the thermal model are plotted in Fig. 11(b). Using the
calculated temperature and the measured force, we solve the

TCA’s displacement using the three models. The comparison
between the simulation and experimental results are shown in
Fig. 11(c). Each experiment is repeated three times, and the
green shaded area represents the standard deviation (maximum
std = 1.58 mm). From the comparisons, the Cosserat rod model
is still the most accurate modeling method.

4) Case 3: Dynamics with a hanging weight: Our final
experiment for helical TCAs is to evaluate the accuracy of
dynamics. In the experiments, a weight (30 g or 50 g) is
hanged at the end of the free-stroke TCA (60 g is not used to
prevent the TCA from breaking). A constant voltage (5 V or
6 V) is applied to the TCA. The power and displacement of
the TCA are respectively measured as in previous experiments.
Each experiment is repeated three times, and the results are
shown in Fig. 12 (a). The maximum standard deviation for the
four types of experiments is 0.84 mm. The comparison of the
experimental and simulation results using the three methods
for different combinations of weight and voltages are shown in
Fig. 12 (b), (c), (d), and (e). With the rod model, the maximum
displacement error normalized by the maximum displacement
is less than 12% as shown in Fig. 12(f), which shows that the
Cosserat rod method provide better accuracy compared with
the other two methods.

E. Non-uniform Geometry Case: Kinetostatics of a Conical
TCA

In this section, we demonstrate the capability of the Cosserat
rod model to simulate TCAs of non-uniform geometry (conical
TCAs). Conical TCAs can generate dual-side displacement
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Fig. 13: The experimental and simulation results for the conical TCA. (a) Optical pictures of the conical TCA when heated in
an oven compared with simulation results, showing the progression of actuation during heating. The free end is marked with
a red circle and the fixed end is marked with a blue triangle. (b) The experimental and simulation results of the conical TCA’s

end point’s vertical position with respect to temperature.

and thus provide stroke over 100%. To make sure the coils
can pass each other, the transverse gaps between coils are
intentionally designed to be large and thus the load-bearing
capability of the conical TCA is small. In our experiment,
no load is applied to the end of the conical TCA during the
experiments.

The conical TCA is fixed on a vertical carbon fiber rod
placed in the oven with a transparent door, and a camera
records the actuation of the conical TCA during the heating
process. In our simulation, the fixed end is marked with a
blue triangle and the free end is marked with a red circle.
Figure 13(a) shows the optical pictures of the conical TCA and
the corresponding simulated shapes for different temperatures
(also see our supporting video). The comparison suggests the
simulation can well capture the shape of the TCA. The minor
error could be caused by the heated air flowing in the oven.
The results seem surprising — the bigger coils pass the small
coils and it does not exist a moment when all coils coincide
on a plane (like a flat spiral). But it is reasonable since larger
coils have a larger coil kinematic coefficient A and thus can
generate more displacement if no load is applied.

The displacement of the TCA’s free endpoint is ex-
tracted from the recorded video using Tracker software
(https://physlets.org/tracker). Similarly, the temperature is
recorded using the thermal sensor used for the helical TCA
experiments. Figure 13(b) shows the comparison of the simu-
lated and experimental vertical position of the TCA’s free end
with respect to temperature. The maximum standard deviation
for the three repeated experiments is 8.9 mm.

VI. DISCUSSIONS

Our proposed model based on the Cosserat rod theory is
a general and flexible framework. For generality, besides the
three type of TCAs discussed in this paper, the Cosserat rod
model can be leveraged to model more complicated TCAs
(e.g., TCA of ellipse-helical or logarithmic spiral shapes) as

long as we can parametrize them along the twisted fiber.
The framework can also be extended to model TCA-inspired
artificial muscles (e.g., cavatapi [2] and dual-stroke artificial
muscles [3] after the untwisting with respect to stimuli is
obtained. Similarly, the framework can also be generalized to
model stimuli-responsive materials (e.g., shape memory alloy
coils) by incorporating memorized shapes and moduli change
with respect to the stimuli. For flexibility, this work contains
some ‘complicated’ parts, but the Cosserat rod model can work
without considering them for potentially fast computations at
the expense of worse accuracy. For example, we considered
the dependence of the moduli on temperature and strain, but
we can use a constant &/ and G for the simulation. Note that
the main contribution of this work is the general modeling
framework for various types of TCAs made from the same
twisted fiber. But if a different material or different parameters
are used to fabricate the TCA, the properties for the twisted
fiber need to be measured to obtain accurate results.
Although Cosserat rod model can provide better accuracy,
especially with heavy load and high temperature (Fig. 10), the
simplified methods (e.g., CST) on average can be computed
10 times faster. For example, the dynamics case using the
rod model takes an average of 24 s for a simulation of 1
s while the other methods take around 2 s (all with a step
size of 0.05 s running on an Intel Xeon E3-1245 CPU at
3.4GHz). In this case, the simplified models should be used
when a TCA is subject to a small payload and low temperature.
More generally, based on the discussion in section IV, one
can customize a simplified model by choosing A and K. from
either the Love’s method or the CST method, or even choose to
obtain A and K through measurement. In the future, however,
the computation speed of using Cosserat rod method can be
significantly improved by using a discrete elastic rod method
[571, [58], implementation in C++, and parallel computing.
Besides the three loading cases, a TCA could subject
to more complicated loading cases when used to actuate
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robots [56]. Our general framework for modeling TCAs can
be leveraged for modeling these TCA-driven robots since it
allows us to predict the output force and displacement that
drive the robot to work. Such a general model even open
the possibilities to model the performance of robots driven by
TCAs of various shapes, for example robotic morphing skins
driven by conical TCAs [22], which is impossible with other
TCA modeling methods.

Finally, this paper focuses on modeling the exact mechanics
of a TCA’s actuation process without considering the releas-
ing process (i.e., when the temperature decreases). But the
releasing can be modeled using the same mechanics model
with different temperature profiles as verified by other works
[13], [32]. In other words, a TCA’s displacement is roughly
the same for a specific temperature no matter it is in a
releasing or actuation stage. And a TCA’s temperature in the
releasing stage can be predicted by the same thermal model
(Eq. (1)) by setting P;,, = 0. For a highly dynamic and cyclic
situation, hysteresis and friction effect should be considered
for control purposes [59], [60]. In our work, ‘lonely stroke’
[55] is accounted for by starting the simulation from a crept
state, and dynamic hysteresis is described using a damping
term that provided a modest approximation for its dynamic
behavior. These considerations pave the way for advanced
modeling of the nonlinear effects.

VII. CONCLUSIONS

We have presented a general physics-based modeling frame-
work for various types of TCAs using the Cosserat rod model.
Compared with existing works, the model was able to not
only provide more accurate results but also simulate TCAs
with non-uniform geometries. We also showed that existing
Love’s and CST methods are two special simplified cases of
a Cosserat rod model. This model paved the way to better
understand the mechanics of TCAs as well as design TCAs to
actuate a variety of robots/systems/devices. Our future work
could attempt to improve model accuracy by incorporating
additional effects, such as the creeping of the TCA and stress
relaxation. Future work will also apply the model for TCA-
driven robots, which involves interaction with the environment
such as friction and contact forces.

APPENDIX A
NOMENCLATURE

APPENDIX B
DETAILED DERIVATION
A. Constitutive Law of a General Twisted Yarn

Based on the existing yarn mechanics theory, the twisted
fiber is a transversely isotropic material, and its general stress-
strain relationships is [47]

1 —vTT VLT
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Unit Definition

Twisted fiber radius

Length of the twisted fiber

A twisted fiber’s bias angle

Twisted fiber’s longitudinal Young’s modulus
Twisted fiber’s longitudinal shear modulus
radius of a TCA

Number of twists in the twisted fiber

Number of the TCA’s coils

rad Winding angle of the TCA ¢ = 27n

m Length of the TCA

rad The coil pitch angle of the TCA

External moment vector applied applied at the
boundary

External force vector applied at the boundary
Coil kinematic coefficient

Coil Stiffness coefficient

m Arc length of a twisted fiber

sec Time

m Position vector in the global frame

Rotational matrix of material cross section
Quaternion for the material cross section

1/m Angular strain in the body frame
Linear strain in the body frame
Spatial twist £ = [u? oT]"
frame

Internal moment in the body frame
Internal contact force in the body frame
T T]T

Symbol

o rad
E Pa
G Pa
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Ro ~o
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in the body

Internal wrench W,; = [m in the
body frame

Distributed force in the body frame

Distributed moment in the body frame
Distributed external Wrench applied to the cen-
terline in the body frame W, = [l_T f_T

n

N/m
N-m/m

e T33 moegsovawXnd

)

The change of the variable with respect to the
state defined by the superscripts
Ok Variables corresponding to the original reference
state
()" Variables corresponding to the heated reference
state
) Derivative with respect to s, % )
) Derivative with respect to time, 372
) Derivative with respect to time, %
-y Mapping from R3 to s0(3) or R% to se(3), e.g.
N ~ 0 — Uy Uy
e-[p tla-]e o -

— Uy Uy 0
Inverse of = or (-)~

TABLE IV: Nomenclature

where the subscripts T and L respectively represent the trans-
verse direction (x or y) and longitudinal direction (z). €’s
and +’s are normal and shear stress, and o¢’s and 7’s are
normal and shear strains in mechanics convention. FE;, (Er)
is the longitudinal (transverse) modulus governing uniaxial
loading in the z (transverse) direction , vrr (vrr, vrr) 1S
the associated Poisson’s ratio governing induced transverse
(longitudinal, remaining orthogonal transverse) strains. Grr,
(Gr) is the longitudinal (transverse) shear modulus governing
shear in the longitudinal direction (transverse plane).

The twisted fiber’s mechanical properties depend on its
filament direction oy as shown in Fig. 14(a). The Cosserat rod
model assumes a rigid cross-section; therefore, €., €, and v,y
do not exist, and the constitutive relation for the transversely
isotropic rod reduces to:

0, =Fe,, T.p = Gza, Ty = G"Yzy (35)
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Fig. 14: (a) The microscopic photo of a twisted fiber. (b) Cross
section of the twisted fiber taken at the x —y plane of the body
frame. Strain quantities on this face of a small volume element
at point pg are shown.

where for simplicity, we use £ = FEp is the longitudinal
Young’s modulus, and G = Gy, is the longitudinal shear
modulus. The strains can be related to the independent vari-
ables v and w: [V.z,7Vsy,€:]7 = Av — pg X Au where

pc = [r,y,0]T is the position of the element within the
cross section as shown in Fig. 14(b), Av = v — v* and
Au = uw — u*, and the values with *, v* and u*, are

respectively the values of v and w in the ORS. Manipulating
these equations, we can establish a relationship between A&
and W which simplifies to Eq. (8).

B. Identify h in Eq. (1) and X\ in Eq. (11)

To identify h in Eq. (1), we first conduct a statics experiment
to infer the actual 7' — ¢t (temperature-time) relationship of
a dynamics experiment, and then use the 7" — t relationship
to identify h. For the statics experiment, We slowly heat up
a free-stroke TCA with a 60 g at the end in an oven while
measuring the 7T'—x (temperature — displacement) relationship.
The 60 g (the maximum weight used in our manuscript) will
prevent the coils from early contact. After that, we can conduct
the dynamics experiment to obtain the x — ¢ relationship of a
TCA by applying a constant voltage (5 V). Using the T" — x
and x — t relationships, we can infer the temperature of the
dynamic experiment to obtain the 7" — t relationship using
linear interpolation.

With the 7' — t relationship, we can perform a linear
regression to obtain h. Specifically, we formulated an op-
timization problem: find h that minimizes the root mean
square error between the experimental and simulation results
RMSE(h) = \/Eyzl(Tezp,i - Tszm’l(h))/n

A = po7t? 4+ puyT + po in Eq. (11) determines how the
strain moduli will change due to large external load under
high temperature. The coefficients pg, 1, 1o are solved using
three pair of values [71, A1], [72, A2l, [73, A3], corresponding
to three different external loads (0 g, 30 g, and 60 g) applied
to the TCA, which are identified through an experiment using
a free stroke TCA. We choose 30 g and 60 g because 60 g is
the largest load for the TCA in this work and 30 g is the half
of the maximum load, over which the moduli changes become
significant based on our observations. Since the moduli only

drop significantly when the temperature and load are high,
we measure the displacement of the TCA at the highest
temperature (160°C). When there is no load, we have [71,
A1]1=[0, 1], which means the change of F; in Eq. (11) is
only from the increase of the temperature. When there is a 30
g load, we can obtain Ay = 1 by assuming that there is no
moduli change from no load to 30 g. Based on the linear strain
deformation theory, 73 — 7o = 7o — 71, therefore, o = 73/2.

When there is a 60 g load, we solve the corresponding
[m3, A3] as follows. We first calculate the shear modulus
corresponding to 60 g using a linear relationship Ggyp =
(72 cos az) /(AxJ)AFe, where Az is the displacement of
the TCA when a weight is increased from 30 g to 60 g, and a3
is the pitch angel for the situation with 30 g. A3 = 5.68 can be
reversely calculated using Eq. (10) and Eq. (11) with known
Ggo. To obtain the torsional strain 73, we first calculate the
pitch angle ago using the displacement, and then the torsion
strain change with respect to the situation of 30 g can be
calculated using 73 — 75 = (sin 20 — sin 230 )/2r &~ 85.5
(similar to Eq. (19)). Therefore, [73, A3] = [171, 5.68] and
[T2, A2] = [85.5,1]. We can find the coefficients ug, p1, and
Lo by fitting the three points.

C. The Reference Twist and Boundary Condition for Conical
TCAs

We fabricate the conical TCA in conical Archimedes’s spiral
shape

p*(z) = [bzcos(az), bzsin(az), z}T (36)

where z is the vertical height, b is radial scaling factor, and a
is angular scaling factor.

To establish initial and boundary condition for the rod
model, the rod geometry needs to be parameterized using arc
length s that can be easily derived by integrating the derivative
of the position vector with respect to z

* dp* 1
s(z) :/0 |d—pz\dz: iz\/1+b2(1+a222)

37
+ b sinh™* (

abz
2ab Vv1+ 22 >

To use the Cosserat rod model, the curve needs to be
parameterized using s. However, z in Eq. (37) cannot be
analytically solved and there is no explicit form to express
p in terms of s as done for a helix in Eq. (12).

To solve this problem, we discrete the spiral into [N seg-
ments and numerically find z; for a specific s; (i € [1, N]) by
solving s(z;) = s; using Eq.(37) by a root searching method
(fzero() in Matlab). At the end of i*" segment, the curvature
and the torsion of the spiral can be found by

abz\/4 + a222 + b?(2 + a?b?)?
(11 52(1 + a222))372)
* (6 + a?22)
T (z) = 4+ a?z2 + b2(2 4 a?22)?

K*(z) =

(38)

(39)

The global frame’s Z direction along the centerline of the
helical spiral; the body frame’s z direction is along tangent
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direction of the curve and the cross section is in the z-y plane.
The heated reference strain can be obtained as

0
uh(z) = K(zi) |, 0" =0v"=10,0,1]" (40
T(2)* + Af"
The initial orientation and position for s; = 0 are
Py = 10,0,0]", Ry = R.(7 +0.1) (41)

The boundary condition for the free end is W (l;) =
[0,0,0,0,0,0]” since no load is applied.

D. Kinetostatic Modeling using CST

In our previous work [29], CST is directly used to model a
TCA, but here we present a more concise derivation. The actu-
ation is considered as an external force, M, = AG"GT applied
along z axis, which means M, = —F,r cosa— M, sin a+ M,
in W. The complementary strain energy will be equal to the
strain energy under the small deformation assumption, leading
to [61]

by
U* :/ (WTK='W)ds
0
42
cae e or2 e
- /0 567 T 261 T 2G4, T3EA
where U™ is the complimentary strain energy. Notice that six
deformation terms are reduced to four terms since M, = 0

and F, = 0. Since M, is not considered, we can obtain Eq.
(29) after we apply CST: % =10"—1

|ds
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