
Appears in ISC 2021

FPGA Acceleration of
Number Theoretic Transform

Tian Ye1?, Yang Yang2?, Sanmukh R. Kuppannagari2, Rajgopal Kannan3, and
Viktor K. Prasanna2

1 Department of Computer Science
University of Southern California, Los Angeles, CA 90089

2 Ming Hsieh Department of Electrical and Computer Engineering
University of Southern California, Los Angeles, CA 90089

3 US Army Research Lab, Playa Vista, CA 90094
{tye69227,yyang172,kuppanna,prasanna}@usc.edu,

rajgopal.kannan.civ@mail.mil

Abstract. Fully Homomorphic Encryption (FHE) is a technique that
enables arbitrary computations on encrypted data directly. Number The-
oretic Transform (NTT) is a fundamental component in FHE computa-
tions as it allows faster polynomial multiplication. However, it is com-
putationally intensive and requires acceleration for practical deployment
of FHE. The latency and throughput of existing NTT hardware designs
are limited by the complex data communication pattern between adja-
cent NTT stages and the modular arithmetic operations. In this paper,
we propose a parameterized architecture for NTT on FPGA. The ar-
chitecture can be configured for a given polynomial degree, modulus
and target hardware in order to optimize the latency and/or through-
put. We develop a novel low latency fully pipelined modular arithmetic
logic to implement the NTT core, the key computational unit of NTT.
Streaming permutation network is used to reduce the data communica-
tion complexity between NTT stages. We implement the proposed ar-
chitecture for various polynomial degrees, moduli, and data parallelism
on state-of-the-art FPGAs. Experimental results show that our architec-
ture configured to perform 4096 polynomial degree NTT achieves up to
1.29× and 4.32× improvement in latency and throughput respectively
over state-of-the-art designs on FPGA.

Keywords: Number Theoretic Transform · Parallel Computing · FPGA.

1 Introduction

Fully Homomorphic Encryption (FHE) provides a solution to utilize cloud plat-
forms in a trusted and secure manner by directly performing computations on
encrypted data [17]. Polynomial multiplication is one of the most time-consuming

? Equal contribution.

2 T. Ye, Y. Yang, et al.

operations in FHE applications [28]. Naive implementation of polynomial mul-
tiplication results in O(N2) time complexity, where N is the degree of the poly-
nomial. Number Theoretic Transform (NTT) has been proposed to reduce the
complexity to O(N logN). Profiling results from [28] show that NTT is a primary
bottleneck in FHE based applications such as FHE-Convolutional Neural Net-
works accounting for 55.2% of the execution time. Therefore, high performance
implementation of NTT will have a critical impact of FHE based applications.

FPGAs have gained a lot of traction due to their immense flexibility and
high energy efficiency. They are being widely adopted in cloud platforms where
they are attached to the data center nodes to design highly customized, do-
main specific accelerators [13,27]. The logic density and compute throughput of
state-of-the-art FPGAs have increased dramatically in recent years [18,35]. They
also provide fine-grained memory access to high bandwidth on-chip SRAMs and
external DRAMs. These features make them a logical choice for accelerating
compute intensive applications such as NTT.

However, it is non-trivial to efficiently utilize the abundant FPGA resources
for NTT to achieve low latency and high throughput. First, NTT requires com-
plex data communication between computation stages due to loop-dependent
permutation stride4 in the algorithm [14]. Previous FPGA implementations have
used all-to-all connections to facilitate communications [22, 29, 32]. The routing
complexity increases quadratically with the data processing rate per cycle [31].
The design in [24] fully unrolls all the computation stages and uses fixed-function
switch to reduce complexity. The wiring length as well as the interconnect area
doubles from stage i to stage i + 1. In addition, due to the high polynomial
degree in FHE applications [2], input coefficients often are not available con-
currently. This adds an extra layer of complexity as the communication pat-
tern also changes for different input data beats in the same computation stage.
Second, designing low latency NTT cores to execute the key computation op-
eration of NTT is challenging due to high resource requirements of modular
arithmetic. Arbitrary modular arithmetic requires division operations that are
expensive in FPGAs. Although division avoiding reduction algorithms [6,23] for
arbitrary fixed modulus have been developed, they require additional multipli-
cations, thereby incurring high latency. Lastly, based on the application, we may
seek to minimize the resource consumption, maximize performance, or optimize
some weighted combination of these. Thus, a parameterized design is desirable.

In this paper, we design an FPGA-based fully pipelined high performance
NTT architecture. The architecture is parameterized and can be configured to
support a wide range of polynomial degrees, moduli, and data parallelism. We
use data parallelism, parallel input and output coefficients per cycle, to con-
trol the required I/O bandwidth for a given implementation. These parameters
can be chosen at design time to meet latency and throughput requirements as
well as the device resource constraints. To improve throughput, our design fully
unrolls all the NTT computation stages. We employ streaming permutation net-

4 Given a stride S, a permutation stride is defined as reordering an m-element data
vector such that elements with distance of S are shifted into adjacent locations.

FPGA Acceleration of Number Theoretic Transform 3

work (SPN) to reduce the routing complexity between NTT stages [10]. SPN
reduces routing complexity by trading expensive long wires and switches with
more pipeline stages. It can scale to large data parallelism with lower cost in
terms of wiring and interconnect area compared to other types of interconnect
such as crossbar. To obtain low latency NTT core with modular multiplication,
our design supports any prime modulus q that is produced by choosing posi-
tive integers i and j to satisfy the property 2j ≡ 2i − 1 (mod q) (henceforth
referred to as the modulus property). For such a modulus q, the modulo oper-
ation can be replaced by repeated additions, subtractions and shift operations
(Section 3.3). As a result, an NTT core with low latency and low resource re-
quirements can be realized. Note that the algorithm proposed in [37] is designed
only for q = 214 − 212 + 1. In this work, we generalize the algorithm to support
any q that satisfies the modulus property.

The key contributions of this paper are:

– We design a parameterized NTT architecture on FPGA that can support a
wide-range of polynomial degrees, moduli, and data parallelism. Given the
polynomial degree and the hardware resource constraints, our architecture
can be configured to obtain high throughput and low latency.

– We utilize streaming permutation network to support various data paral-
lelism and to reduce the data communication complexity between NTT
stages. This technique enables our architecture to be fully unrolled and
pipelined for all the NTT stages, which leads to high throughput.

– To obtain low latency, we develop a compact NTT core that can perform
modular arithmetic operations without any multiplication. Our NTT core
design can be used to generate a collection of algorithms for different moduli
as required by the given application.

– We implement our architecture for various polynomial degrees, moduli and
data parallelism on state-of-the-art FPGAs. It can be configured to per-
form 512, 1024, 2048 and 4096 polynomial degree NTT in less than 0.57 µs,
0.76 µs, 1.03 µs and 1.99 µs respectively. By further increasing data paral-
lelism, throughput of 43.0, 20.6, 9.2 and 1.7 million transforms per second is
achieved for 512, 1024, 2048 and 4096 polynomial degree NTT respectively.

– Our design achieves superior throughput while also improving the latency
compared with state-of-the-art designs on the same hardware. We improve
the latency up to 1.29× and the throughput up to 4.32×.

2 Related Work

NTT Acceleration: Recent work [22,29,32] focus on optimizing memory layout
to enable parallel and conflict-free memory access between NTT stages. However,
in these designs require all-to-all connection between NTT cores and intermedi-
ate data memory, which limits the scalability. Throughput is also reduced due to
reusing the same set of NTT cores across all the stages. A systolic array approach
for NTT acceleration is presented in [25]. This architecture fully unrolls all the

4 T. Ye, Y. Yang, et al.

NTT stages. However, data parallelism in NTT is not explored and computation
in each NTT stage is serialized. The NTT hardware proposed in [5,26] is limited
to a specific setting. Nejatollahi et al. use processing-in-memory technology to
accelerate NTT [24]. The design unrolls all the NTT computation stages and
all the input coefficients to improve parallelism, but latency and throughput are
affected by the long computation cycles in Processing In-Memory (PIM) tech-
nology. [3,19,20,30] use CPU or GPU to accelerate NTT, but the optimizations
in these designs cannot be applied due to the differences in the underlying archi-
tecture. The work in [19] executes several NTTs concurrently to exploit massive
GPU parallelism. In such a design, reducing the batch size does not lead to re-
duced latency. Thus, this design is not suitable for our scenario where in addition
to throughput, latency for a single NTT computation needs to be minimized.

Modular Multiplication: This is one of the key operations of NTT and
many works have focused on its efficient implementation. In [21], the modulo
algorithm allows the output to be slightly greater than the modulus q. This op-
timization avoids division operations, but still requires additional large-latency
multiplications. [22] implemented an iterative modulo operation based on Mont-
gomery reduction [23]. This can be resource-consuming as each iteration has a
multiplication. In [29], modular multiplication is based on Barrett reduction [6].
It requires pre-computations depending on the twiddle factors. This consumes
more on-chip storage. Also, their algorithm requires two additional multipli-
cations. [37] designed an architecture for q = 214 − 212 + 1 that avoids any
multiplication in the modular reduction. This results in low latency and reduced
resource requirements. However, many applications of NTT have large coeffi-
cients, and thus need larger q. Therefore, our work extends this design for any
prime q that satisfies 2j ≡ 2i − 1 (mod q) for some positive integers i and j.
Please Sections 3.3 and 4.2 for details.

To the best of our knowledge, existing work on FPGAs does not account
for the performance impact of the interstage data. As a result, the scalability
and achievable performance are limited. In contrast, we use streaming permuta-
tion network to enable a fully unrolled and pipelined architecture with variable
data parallelism. We further develop low latency modular arithmetic unit that
supports arbitrary modulus q satisfying the modulus property.

3 Background

3.1 Fully Homomorphic Encryption (FHE)

Homomorphic encryption is a practical approach for privacy-preserving compu-
tation using lattice-based cryptography [17]. It allows direct computations, in-
cluding addition, scaling and multiplication, on ciphertext without access to the
original data. There are a variety of encryption schemes, e.g., BGV [8], BFV [16]
and CKKS [12]. For all these encryption schemes, both the plaintext and the
ciphertext are high-degree polynomials, typically ranging from 210 to 215 [2].
The security level is quantified by two parameters, the degree of polynomials
and the width of the selected modulus. Both are critical to the performance of

FPGA Acceleration of Number Theoretic Transform 5

homomorphic computations. Typical parameters for different security levels can
be found in [2].

3.2 Number Theoretic Transform (NTT)

Polynomial multiplication is one of the most computationally expensive oper-
ation of homomorphic encrypted computations [28]. The complexity of multi-
plying two polynomials of degree N is O(N2). To reduce the complexity to
O(N logN), number-theoretic transform (NTT) is used [1]. 5 This simplifies the
polynomial multiplication into N coefficient-wise multiplications.

Algorithm 1: Number Theoretic Transform

Input: Coefficients A = (A[0], A[1], ..., A[n− 1]) and twiddle factors in
bit-reversed order φ = (φ[0], φ[1], ..., φ[n− 1])

Output: A← NTT(A) in bit-reversed order
1 for (m← n/2; m ≥ 1; m← m/2) do
2 for (i← 0; i < n

2m
; i← i+ 1) do

3 S ← φ[n
2m

+ i]
4 for (j ← 0; j < m; j ← j + 1) do
5 U ← A[2m · i+ j]
6 V ← S ·A[2m · i+ j +m] mod q
7 A[2m · i+ j]← U + V mod q
8 A[2m · i+ j +m]← U − V mod q

9 end

10 end

11 end

In Algorithm 1, each iteration of the outer loop is called a stage. The algo-
rithm has logN sequential stages as the outer loop in Line 1, and each stage has
N/2 independent instances of Line 5-8 that can be computed in parallel. Each
instance of Line 5-8 takes two coefficients as input, performs modular arithmetic
and updates the two coefficients. Modular arithmetic includes modular multi-
plication, addition and subtraction. Note that the computational pattern of the
NTT algorithm is similar to that of the FFT algorithm. However, NTT performs
modular arithmetic on integer coefficients as opposed to FFT which performs
arithmetic on complex numbers. As performing modular arithmetic is compu-
tationally expensive, existing FFT implementations such as [11, 36] cannot be
trivially extended to accelerate NTT.

3.3 Modular Reduction

As NTT limits the coefficients to be in a finite ring of integers, modular com-
putations are required in the algorithm. Modular addition and subtraction are
trivial, which require only one more addition or subtraction. In contrast, it is

5 All logs in this paper are to base 2.

6 T. Ye, Y. Yang, et al.

non-trivial to design an efficient modular multiplication, as division and modulo
operations are expensive on FPGAs. Typical modular reduction algorithms, e.g.,
Barrett reduction [6] and Montgomery reduction [23], replace the expensive divi-
sion operation with multiplication operation when the modulus is pre-configured.
A recent work [21] proposes a relaxation that allows the output to be slightly
longer than the modulus, which speeds up the reduction. However, they still
require resource-consuming multiplication operation. Instead, we utilize the de-
sign proposed in [37] that has additions and subtractions only. We generalize it
from q = 12289 to any q that satisfies 2j ≡ 2i − 1 (mod q). Algorithm 2 is an
example of the reduction algorithm for q = 228 − 216 + 1 that avoids additional
multiplications. The algorithm is hardcoded for a specific value of q. We also
provide designs similar to Algorithm 2 for a collection of different q values. One
of them can be selected and embedded into NTT cores at design time.

Algorithm 2: Reduction for q = 228 − 216 + 1

Input: 56-bit integer z[55 : 0]
Output: y = z mod q

1 c← z[55 : 52] + z[51 : 40] + z[39 : 28]
2 d← z[55 : 52] + z[55 : 40] + z[55 : 28]
3 e← c[13 : 12] + c[11 : 0]
4 f ← ((e[12] + e[11 : 0]) << 16)− (e[12] + c[13 : 12])
5 y ← f + z[27 : 0]
6 if y ≥ q then
7 y ← y − q
8 end
9 y ← y − d

10 if y < 0 then
11 y ← y + q
12 end

3.4 Challenges in Accelerating NTT

The two main challenges in NTT are the implementation of the NTT core and
the interstage connection network. The key component of the NTT core is mod-
ular multiplication which is usually resource-consuming and slow, as discussed
in Section 3.3. An efficient design for the NTT core, especially modular multipli-
cation, is necessary to reduce the latency and resource consumption. Our design
of the low-latency NTT core is described in Section 4.2. The interconnection
between the NTT stages is a butterfly network, which has high complexity in
terms of wiring length and area. For a näıve butterfly network, the wiring length
and the interconnect area doubles from stage i to stage i + 1 [33]. This is pro-
hibitively large. Existing works proposed several ways to address the challenge.
The designs proposed in [29] and [22] fold all the NTT stages and reuse the same
set of NTT cores for all the stages. They simplify the interconnection by data
reading and writing in the on-chip memory. However, this method results in low
throughput due to the folding of all the stages. In this paper, we support a fully

FPGA Acceleration of Number Theoretic Transform 7

unrolled and pipelined design. We use a streaming permutation network [10] as
interconnection with a low resource requirement.

4 Accelerator Design

4.1 Design Methodology

Key NTT parameters such as the degree of polynomial and the modulus width
are often chosen by considering not only the level of security, but also the latency,
throughput, and hardware resource constraints. As a result, these parameters can
differ considerably across homomorphic encrypted (HE) applications [3,4,15]. It
is desirable to design the hardware architecture such that it can be configured to
run NTT with different settings easily. In addition, due to the high polynomial
degree in HE-based applications [2], processing all the input coefficients concur-
rently requires high hardware resource and I/O bandwidth. Common loop tiling
technique is often used to fold input coefficients into smaller groups. Each group
is then processed in a streaming manner. This technique reduces I/O bandwidth
and hardware resources, but permuting streaming data is challenging as data
elements need to be moved across both spatial and temporal dimensions. The
design in [25] only processes two coefficients per cycle in each NTT computation.
This greatly simplifies the data permutation but leads to inefficient utilization of
the available bandwidth. Other NTT hardware implementations on FPGA use
carefully designed intermediate data layout in on-chip SRAM to reduce mem-
ory access conflicts [22,29]. Complex routing and arbitration logic are needed to
permute data in each NTT computation stage. As a result, the number of NTT
cores is limited in these designs, which impacts the NTT latency and throughput.

Our NTT hardware architecture is constructed by fully unrolling and pipelin-
ing all the NTT computations stages. NTT input and output are folded and
processed in a streaming fashion to satisfy I/O bandwidth constraint and to
reduce resource consumption. Key NTT algorithmic and architecture settings
are exposed as parameters, allowing hardware re-configuration to support vari-
ous NTT use cases. We define the following parameters that can be specified at
design time to customize our architecture:

– Polynomial Degree (N): Application parameter. It determines the polyno-
mial degree for number theoretic transform. Our architecture supports any
polynomial degree. For HE-based computation, N is typically a power-of-two
number and between 210 to 215 [2, 12].

– Modulus (q): Application parameter. Modulus used in Algorithm 1. We sup-
port prime modulus q that is produced by choosing positive integers i and j
to satisfy the property 2j ≡ 2i− 1 (mod q). i and j determine the bit width
of the modulus and the polynomial coefficients.

– Data Parallelism (p): Architecture parameter. It determines the number
of coefficients being processed per cycle in each NTT computation stage
(2 ≤ p ≤ N). Higher data parallelism improves latency and throughput
but requires more I/O bandwidth and FPGA resources. To reduce design
complexity, p is restricted to be a power-of-two number.

8 T. Ye, Y. Yang, et al.

– Pipeline Parallelism: Architecture parameter. It determines the unrolled
NTT computation stages in the NTT hardware. In this paper, we fix this
parameter to logN .

The proposed architecture receives p input coefficients per cycle. After a fixed
delay, it starts to produce p output coefficients per cycle. Our design does not
have restriction on the location of the input and output data. They can be from
external DRAM or other IP blocks inside the FPGA. We utilize direction con-
nection permutation (when permutation stride is less than p) and streaming per-
mutation network (SPN) [10] (when permutation stride is greater than or equal
to p) to facilitate data communication between NTT stages (Section 4.3). Given
parameter N and p, our architecture instantiates logN computation stages, and
each stage contains p/2 NTT cores. Figure 1 and Figure 2 present the top-level
architecture of 16-point NTT with p = 4 and p = 8 respectively. There are 4
NTT computation stages, and 3 permutation networks are needed in the design.

Fig. 1. Top level architecture of 16-point NTT with p = 4.

In contrast to prior work, SPN avoids the complex routing and arbitration
logic between NTT computation stages by trading expensive long wires and
switches with multi-stage parallel routing networks. The highly scalable and
extensible SPN can be configured to realize arbitrary stride permutation between
its input and output. To reduce the modular arithmetic latency, customized
NTT core is developed to replace costly multiplications in modulo operations
with additions, subtractions, and shift operations (Section 4.2). The utilization
of streaming permutation network and low latency NTT core allows us to fully
unroll and pipeline all the NTT computation stages to obtain low latency and
high throughput.

Fig. 2. Top level architecture of 16-point NTT with p = 8.

The parameterized architecture opens up design space trade-offs concern-
ing latency, throughput, I/O bandwidth constraint, resource consumption, and
application requirement. Applications need to consider N and q accordingly in

FPGA Acceleration of Number Theoretic Transform 9

order to achieve certain level of security [2, 12]. For example, with N = 1024, it
is recommended to use 27-bit modulus q in order to achieve 128-bit security [2].
Larger polynomial degree (N) needs more NTT computation stages, thereby in-
creasing the latency. Higher data parallelism (p) can speed up the NTT latency
and throughput, but it has implications on routing resources and I/O band-
width requirements. Given application parameters N and q, the largest data
parallelism (p) can be determined by considering the following constraints:

– I/O Bandwidth: Each input and output coefficient is of size dlog qe bits.
Given available input and output bandwidth BW , p can be chosen such that
2× p× dlog qe× Fmax = BW , where Fmax is the FPGA design frequency
and a factor of 2 is to account for both input and output.

– FPGA Resources: The architecture is implemented under limited LUT, BRAM
and DSP resources. Each NTT core requires LUT and DSP resources. Due
to fully unrolling all the NTT stages, there are p/2 logN NTT cores. SPN
consumes LUT and BRAM resources, there are (logN − log p) stages using
SPN since those stages have permutation stride greater than or equal to p.

Our parameterized architecture provides users with the flexibility to configure
N , p, and q with a variety of options.

4.2 NTT Core

The NTT core is used to perform the inner loop body of the NTT algorithm
that receives two coefficients as inputs and generates two coefficients as outputs.
The key component of the NTT core is the module for modular multiplication.
To perform the modulo q operation efficiently, we use a design similar to the one
proposed in [37]. Moreover, we generalize it by providing designs for a collection
of prime q values. Those q are produced by choosing positive integers i and j
to satisfy the property 2j ≡ 2i − 1 (mod q). To illustrate the algorithm, we use
q = 228 − 216 + 1 as an example. In this example, all coefficients are 28 bits,
and thus the multiplication result is up to 56 bits. Denote the 56-bit number as
z[55 : 0], and it can be reduced in the following way for the first step:

z[55 : 0] = 228 · z[55 : 28] + z[27 : 0]

= (216 − 1) · z[55 : 28] + z[27 : 0]
(1)

Essentially, any occurrence of 228 is replaced by 216 − 1. The reduction can be
repeated until the result is less than 228. The entire algorithm is illustrated in
Algorithm 2. It only includes additions, subtractions and bit-wise operations
without multiplications, so the latency and resource consumption are low.

Although the algorithm is highly dependent on the value of q, different values
of q have similar algorithms. Specifically, the algorithms for other q still have
the same kinds of operations as Algorithm 2, but they have different numbers
of inputs in Line 1-2 and bit widths of the inputs in Line 1-5. For a given q,
by customizing the number of inputs and bit widths, we can obtain low latency

10 T. Ye, Y. Yang, et al.

NTT cores using Algorithm 2. The latency and resource utilization for various
q are evaluated in Section 5.4.

Note that only supporting q values with the modulus property does not
make the NTT design less applicable. From the perspective of polynomial mul-
tiplications, the modulus q only needs to be a prime greater than the maximum
coefficient of the input polynomial. There are many eligible prime q satisfying
the property. For example, it can be verified that there are over 100 such q rang-
ing from 14 bits to 60 bits. Therefore, for any given polynomial, we can easily
choose the smallest q greater than all the coefficients.

4.3 Permutation Network

Parallel input data is required to be permuted before being processed by the
subsequent NTT cores, since each computation stage has a different stride (S).
As described in Algorithm 1, S can be formulated as Si = 2logN−i−1, where i
is the computation stage and satisfies 0 ≤ i < logN . The last stage has stride
equal to 1, so no permutation is needed.

Fig. 3. Permutation network of the 16-point NTT with p = 8. (a) Direct connection
permutation with S = 2. (b) Streaming permutation network.

Due to the fully unrolled design, each stage has a fixed permutation pattern
and does not require dynamic re-configuration. Our architecture employs two
types of permutation modules, as shown in Figure 3. With S < p, later stages
of the NTT computation, only spatial permutation is needed — shuffling data
within the p inputs in the same cycle. We use a direct connection permutation
with fixed wiring for these stages. This type of permutation module achieves low
latency but cannot permute data in the time dimension across different input
beats. For earlier stages, with S ≥ p, streaming permutation network in [10] is
used to re-arrange input data from different cycles in a streaming fashion. As
shown in Figure 3(b), the datapath consists of two p-to-p spatial permutation
networks and one temporal permutation network. Spatial permutation, reorder-
ing within the p data inputs in the same cycle, is realized using the classic Benes
network [7]. In the middle, temporal permutation uses on-chip SRAM to re-
arrange data across different cycles. The control logic, which includes routing

FPGA Acceleration of Number Theoretic Transform 11

information and memory read/write addresses, are generated statically at IP
core configuration time.

Fig. 4. Microarchitecture of the spatial and temporal permutation sub-network in
streaming permutation network. (a) Spatial permutation. (b) Temporal permutation.

Figure 4 shows the microarchitecture of the spatial and temporal sub-networks.
As shown in Figure 4(a), spatial permutation network is implemented using
Benes network [7]. A Benes network is a multi-stage routing network, with
the first and last stage each has p/2 2×2 switches. In the middle, there are
two p/2 × p/2 sub-networks, and each can be decomposed into the three-stage
Benes network recursively. Compared to a naive crossbar interconnect, which re-
quires O(p2) connections, each spatial permutation network has (p/2) · log p 2×2
switches. Thus, streaming permutation network in our design asymptotically has
lower complexity. Moreover, wiring length in the network does not change with
permutation stride [9]. Each 2×2 switch has one control bit to route inputs to
the upper or lower sub-networks respectively.

Figure 4(b) illustrates the design of temporal permutation network. It has p
dual-port memory blocks and p address generation units (AGU). AGU produces
the control signals and addresses to the memory block it connects to. Each
AGU issues memory read and write addresses independently, thereby achieving
temporal permutation across data received in different cycles.

As N data points stream through the interconnect with p per cycle, they
are first permuted spatially by the first spatial permutation network, then the
data are written into the p memory blocks. Finally, p data points with stride Si

are read out per cycle and permuted again by the second spatial permutation
network. Since the architecture parameters – N and p – are fixed at run-time, the
configurations for all the 2×2 switches and the AGUs can be determined offline
and remain valid as long as N and p don’t change. We store this information
in FPGA’s on-chip memory. More details about the routing algorithm can be
found in [10].

12 T. Ye, Y. Yang, et al.

5 Experiments and Results

5.1 Experimental Setup

In this section, we present a detailed evaluation of the proposed NTT architec-
ture. All the designs are implemented using SystemVerilog on Virtex-7 XC7VX690
and XC7VX980 FPGA. The XC7VX690 device has 433,200 LUTs, 866,400 Flip-
Flops and 1,470 BRAMs; the XC7VX980 device has 612,000 LUTs, 1,224,000
Flip-Flops and 1,500 BRAMs. Both devices have 3,600 DSPs. We use Xilinx
Vivado 2020 to perform synthesis, place and route.

Our flexible and scalable architecture gives users a wide range of design
options based on the application requirement and resource availability. We eval-
uated the performance and resource utilization of our designs by varying the
polynomial degree (N) and data parallelism (p). We use 〈x, y〉 to denote a de-
sign with N = x and p = y. Based on the widely used NTT parameters [2,3], we
conducted experiments with NTT polynomial degree N = 512, 1024, 2048. We
conducted a sweep over a range of available bandwidth to our designs by choos-
ing p from 32 to 128. The metrics for performance analysis are NTT latency in µs
and throughput in polynomials transformed per second. The performance met-
rics were measured by running post place and route simulations. The resource
utilization is reported in terms of usage of LUTs, Flip-flops, BRAMs, and DSPs.

5.2 Performance Evaluation

Table 1 shows the measured NTT performance for various polynomial degrees
(N) and data parallelism (p) on XC7VX980 FPGA. In this set of experiments, we
fixed the modulus and the polynomial coefficients to 28 bits, which is commonly
used by prior work [3,22]. Note that our architecture can easily support modulus
with different bit width as described in Section 4.2. End-to-end latency from
receiving the first input data to producing the last output coefficient is in the
range of 0.57 µs to 1.29 µs. Higher polynomial degree incurs higher latency
due to the additional NTT computation stages and also due to increased I/O
time for a given p. Our architecture can achieve a high operating frequency
between 210 MHz and 220 MHz for p = 32 and p = 64 designs. For a given N ,
p = 128 design consumes the least number of clock cycles. Due to the increased
parallelism in each stage, majority of the NTT stages in p = 128 design uses
fixed direct connection instead of streaming permutation network (Section 4.3),
which reduces the latency in terms of clock cycles. However, p = 128 has many
more NTT cores than p = 32 and p = 64 designs. It increases the resource
consumption significantly and poses challenge during the place and route phase.
As a result, we observe that the frequency drops to 150 MHz - 170 MHz, and
the overall latency for p = 128 is higher than p = 64 for the same value of N .

Sustained throughput in terms of polynomials transformed per second is also
shown in Table 1. Different from the latency results, p = 128 designs perform
the best from throughput perspective. Although frequency of the designs with
p = 128 drops almost 25% compared with the other designs, p = 128 has 2×
and 4× the processing rate compared to p = 64 and p = 32 respectively. The

FPGA Acceleration of Number Theoretic Transform 13
Table 1. Measured performance and resource utilization of complete NTT designs on
XC7VX980 FPGA

Design Latency Throughput LUT FF BRAM DSP

〈512, 32〉 0.66 13,750,000 82,498 89,688 64 576

〈512, 64〉 0.57 26,625,000 161,703 171,472 96 1,152

〈512, 128〉 0.60 43,000,000 303,040 316,920 156 2,304

〈1024, 32〉 0.91 6,781,250 94,394 104,846 80 640

〈1024, 64〉 0.76 13,125,000 187,283 204,162 128 1,280

〈1024, 128〉 0.82 20,625,000 360,765 391,945 234 2,560

〈2048, 32〉 1.29 3,390,625 107,293 120,718 96 704

〈2048, 64〉 1.03 6,468,750 212,835 237,719 160 1408

〈2048, 128〉 1.18 9,250,000 418,214 468,230 312 2,816

processing rate increase helps offset the frequency drop in this case. In the best-
case scenario (N = 512), our architecture can transform more than 40 million
polynomials per second in a streaming fashion.

The results on latency and throughput verify the scalability and flexibility of
our architecture. Since our architecture is fully pipelined and can process p inputs
per cycle, different data parallelism (p) requires different bandwidth to stream
the input and the output coefficients. Table 2 shows the required I/O bandwidth
in order to fully utilize the hardware pipeline when performing N = 1024 NTT
on VX980 FPGA. p is the primary factor that influences the required bandwidth.
Since p also means the design generates p output coefficients per cycle, the same
amount of input bandwidth is needed on the output side. For p = 128, our
design requires a sustained total bandwidth of 170 GB/s. This bandwidth can
be made available if the polynomials are stored in on-chip SRAM (i.e., produced
by other IP cores within the FPGA) or in high bandwidth external memory such
as DDR4 or HBM. When adopting our architecture for different applications, p
is an important parameter for bandwidth allocation.

Table 2. I/O bandwidth required to fully utilize the proposed NTT accelerator with
N = 1024, 28-bit input and output coefficients

Device
Data Parallelism

(p)
Input Bandwidth

[GB/s]
Output Bandwidth

[GB/s]

VX980 32 27.8 27.8

VX980 64 53.8 53.8

VX980 128 84.5 84.5

5.3 Resource Utilization

The resource utilization of our implementations is reported in Table 1. Since
each stage requires p/2 NTT cores, and there are logN stages in total, higher
data parallelism (p) demands more hardware resources. On the other hand, with
more parallel inputs per cycle, fewer stages need streaming permutation network
(Section 4.3), which helps reduce the resource consumption. We observe that
the reduction in streaming permutation network is less than the increase in the
resource demand with more NTT cores.

14 T. Ye, Y. Yang, et al.

Overall, Table 1 shows that optimizing different metrics can lead to different
design configurations. Given a polynomial degree N , one may choose to use
p = 64 as the latency optimized design, p = 128 as the throughput optimized
design, and p = 32 as the design that requires the least hardware resources
(Section 5.2). An optimal design should be obtained by having a holistic view on
the system requirements in terms of latency, throughput, resource availability
and application requirements.

5.4 Evaluation of NTT Core and Streaming Permutation Network

NTT Core: As the modulus q affects the modulo algorithm in the NTT cores,
we evaluate how the resource utilization and achieved frequency for NTT cores
vary for various q. We performed experiments on a standalone NTT core for
dlog qe = 16, 27, 28 and 32. The results are shown in Table 3.

Note that this experiment is performed on a single NTT core instead of the
entire architecture, so the frequency shown in Table 3 are higher than the ones in
the integrated experiments. Except for the 27-bit case, smaller q values consume
less resources in terms of LUTs and FFs and achieve higher frequency. Note that
q = 227−221 + 1 utilizes more resources than q = 228−216 + 1; this is because it
needs to sum up 5 inputs for the first two steps, in contrast to the 3 inputs for
the 28-bit case as shown in Line 1-2 of Algorithm 2. Due to the same reason, the
27-bit case has a lower frequency. However, the variance of the frequency for all
the cases is not significant. Also, all of them have the same latency of 5 cycles,
so the impact of q on the overall performance is minimal.

Table 3. FPGA resource utilization on VX690 for NTT core with various moduli

Modulus q LUT FF DSP Latency Frequency

16 bits (216 − 212 + 1) 246 206 1 5 cycles 281 MHz

27 bits (227 − 221 + 1) 485 424 4 5 cycles 262 MHz

28 bits (228 − 216 + 1) 458 376 4 5 cycles 274 MHz

32 bits (232 − 220 + 1) 534 479 4 5 cycles 270 MHz

Streaming Permutation Network: We evaluate the latency and resource
consumption of the streaming permutation network by synthesis, place and route
each streaming permutation network in 〈1024, 32〉, 〈1024, 64〉, and 〈1024, 128〉 de-
signs as a standalone module on VX980 FPGA. Input and output coefficients
are 28-bit wide. Each streaming permutation network has two spatial permuta-
tion sub-networks, which has log p stages, and one temporal permutation sub-
network. Figure 5 shows the resource utilization of streaming permutation net-
work for p = 32, 64, 128 with permutation stride S = 512. For a given p, the
resource consumption is very similar for different S, therefore we omit the de-
tails for other strides in the interest of space. We observe close to linear increase
in resource consumption with the increase in data parallelism. The majority of
BRAM resources consumed by the streaming permutation network is due to
the temporal permutation network. It requires p independent memory blocks,
each of which is mapped to 1 BRAM18 resource configured as simple dual-port

FPGA Acceleration of Number Theoretic Transform 15

mode. Each BRAM18 memory stores at most 1024/p data inputs. The BRAM
resource reported in the Figure 5 is based on BRAM36 resource, each BRAM36
contains 2 BRAM18 blocks. As p increases to 128, BRAMs are also used to store
the configuration tables in the spatial permutation sub-networks. As a result, it
requires 14 extra BRAMs. LUTs are mainly used by configuration tables and
the AGUs.

Fig. 5. Resource utilization for streaming permutation network S = 512 in 〈1024, 32〉,
〈1024, 64〉, and 〈1024, 128〉 designs. 28-bit per input and output coefficients are used.

Figure 6 shows the latency in cycles and frequency in MHz for each stream-
ing permutation network, measured from the time the first input is received to
the time the first output is produced. Latency is between 15 cycles to 30 cy-
cles, depending on the values of p and S. The latency of spatial permutation
subnetwork only grows logarithmically, as there are log p stages in each spatial
permutation sub-network. For a given p, as S varies, the spatial permutation la-
tency does not change. Temporal permutation latency increases with S because
the hardware needs to wait for more data inputs before it can generate the first
output. But temporal permutation resource consumption does not change much
with different S. Good scalability is also observed with regard to frequency, we
observe 340 MHz for p = 32, 64 designs and 315 MHz for p = 128.

5.5 Comparison with Prior Work

We compare our design with existing implementations on FPGA [22, 25, 29]
in terms of the consumed resources, latency and throughput. Recall that the
latency is the duration between receiving of the first input at an input port and
generating of the last output at an output port. The throughput is the number
of transformed polynomials per second. We use our performance results obtained
on XC7VX690 FPGA, which is the same device used in [22]. Table 4 shows the
comparison.

16 T. Ye, Y. Yang, et al.

Fig. 6. Latency of streaming permutation network in 〈1024, 32〉 design. 28-bit per input
and output coefficients are used.

Both designs in [22] and [29] fold all the stages and reuse the same set of
processing elements for all the stages. Without unrolling all the stages, this leads
to much lower throughput than ours. Complex routing and arbitration logic is
needed between NTT cores and intermediate data buffer. For modulo arithmetic,
their designs offer more flexibility than ours by supporting all moduli with a
general modular multiplication design. However, this design choice requires more
DSPs per NTT core and has higher latency.

In [29], the authors only reported resources and performance for N = 4096
and dlog qe = 52 with at most 32 NTT cores on Intel FPGAs. For a fair com-
parison, we compute the utilization of Xilinx DSPs for their NTT core for
dlog qe = 28. According to Algorithm 1 in [29], their NTT core includes three
30×30 partial multiplications, two of which only output lower 30 bits and one of
which outputs higher 30 bits. The former can be implemented by three 15 × 15
multiplications and the latter needs four 15×15 multiplications. Thus, the entire
NTT core includes ten 15 × 15 multiplications, which needs 10 DSPs according
to [34]. We also verified this by actually implementing their NTT core on Xilinx
VX690. We choose the largest design with 32 NTT cores from [29]. We assume
that their design can still achieve 300 MHz frequency as they reported, which is
an optimistic upper bound. The estimated latency, throughput and throughput
per DSP are shown in the last two columns of Table 4. Our design for N = 4096
with p = 32 achieves 4.32× improvement in throughput, 1.80× improvement
in throughput per DSP and 1.29× improvement in latency compared with the
design in [29].

The design in [22] has the same N and dlog qe as our sample design, and they
also use VX690 FPGA as the target platform. Even though our architecture fully
unrolls all the NTT stages, our design with p = 32 still has similar hardware cost
compared with theirs. This is mainly due to the resource-efficient NTT cores in
our architecture. We can achieve superior performance due to increased FPGA
frequency and fully pipelined design. Our design with p = 32 achieves 2.17×
improvement in latency and 9.41× in throughput per DSP compared with the
design in [22].

FPGA Acceleration of Number Theoretic Transform 17

Table 4. Comparison with prior work

Design [22] [25]
This paper
p = 32

This paper
p = 64

[29]a
This paper
p = 32

Platform VX690
Zynq Ul-
traScale+

VX690 VX690 VX690 VX690

N 1024 1024 1024 1024 4096 4096

dlog qe 28 16 28 28 28 28

LUT 132K 3K 94.4K 187.2K - 117.3K

FF 59K 3K 104.5K 205.5K - 135.2K

BRAM 96 29 80 128 - 189

DSP 448 58 640 1280 320 768

Freq. [MHz] 125 183 215 212 300 224

Energy [µJ] - 12.52 9.4 14 - 22.9

Latency [µs] 2 101.84 0.92 0.75 2.56 1.99

Throughput 500,000 98,193 6,718,750 13,250,000 390,625 1,687,500

Throughput
per DSP

1,116 1,693 10,498 10,352 1,220 2,197

Throughput
per LUT

3.78 32.7 71.17 70.77 - 14.38

a The performance and resource utilization of [29] are extrapolated.

The design in [25] fully unrolls and pipelines all the logN stages. We calculate
their throughput assuming their systolic array is fully pipelined. Note that this
gives an upper bound on their throughput. Different from our approach, data
communication complexity is greatly simplified in their design as each systolic
processing element only processes two coefficients per cycle in each NTT stage.
This can also lead to under-utilization of I/O bandwidth. Their design can be
mapped to our architecture by setting p = 2. The performance of their design is
reduced significantly as the amount of parallelism is small. However, their design
consumes very small amount of resources, which is beneficial for devices with
limited resources or power constraints.

In addition to the prior work shown in Table 4, a ReRAM-based ASIC archi-
tecture is proposed in [24] to accelerate NTT. It performs fine-grained computa-
tions using the PIM technology. The architecture consumes very low energy [24].
The simulated design runs at 910 MHz. This requires a sustained I/O bandwidth
of 2.3 GB/s for N = 1024. However, the arithmetic operation in each stage re-
quires O(log2 q) cycles. In the VLSI model [33], the time complexity (latency) is
O(logN log2 q) and the area is O(N logN log q + N2). The second term of the
area is for the interconnection between stages. For N = 1024 and dlog qe = 16,
the design simulation in [24] shows latency of 83.12 µs and throughput of 553
thousand transforms per second. Note that for N = 1024 and dlog qe = 28,
our design with p = 32 has latency of 0.92 µs and throughput of 6.7 million
transforms per second.

6 Conclusion

In this paper, we designed an FPGA architecture for NTT with configurable
parameters including polynomial degree, modulus and data parallelism. We uti-

18 T. Ye, Y. Yang, et al.

lized streaming permutation network as interconnection between each stage to
reduce complexity. We also developed a low-latency design for modulo opera-
tions. The experiments for polynomials of degree 4096 showed that our design
achieves 4.32× throughput compared with the state-of-the-art design on FPGA
while also improving the latency by 1.29×. Thus, our design can be used to im-
plement both high throughput NTT intensive workloads as well as low latency
NTT inference workloads such as privacy preserving ML inference.

In the future, we will make our design more flexible by allowing reconfigura-
tion of polynomials with variable degrees and moduli at runtime. Also, we will
develop a design space exploration tool for trade-off analysis on performance,
resource consumption and application requirements.

Acknowledgement

This work has been sponsored by the U.S. National Science Foundation under
grant numbers OAC-1911229 and CNS-2009057. Equipment grant by Xilinx is
greatly appreciated.

References

1. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms. 1974
2. Albrecht, M., Chase, M., Chen, H., et al: Homomorphic encryption security stan-

dard. Tech. rep. (2018)
3. Alkim, E., Barreto, P.S.L.M., Bindel, N., Kramer, J., Longa, P., Ricardini, J.E.:

The lattice-based digital signature scheme qTESLA. In: ACNS 2020
4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange:

A new hope. In: USENIX SEC (2016)
5. Banerjee, U., Ukyab, T.S., Chandrakasan, A.P.: Sapphire: A configurable crypto-

processor for post-quantum lattice-based protocols. TCHES (2019)
6. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption

algorithm on a standard digital signal processor. In: CRYPTO ’86 (1987)
7. Beneš, V.E.: Optimal rearrangeable multistage connecting networks. The Bell Sys-

tem Technical Journal 43(4), 1641–1656 (1964)
8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-

cryption without bootstrapping. ITCS 2012
9. Chen, R., Park, N., Prasanna, V.K.: High throughput energy efficient parallel FFT

architecture on FPGAs. HPEC 2013
10. Chen, R., Prasanna, V.K.: Automatic generation of high throughput energy effi-

cient streaming architectures for arbitrary fixed permutations. FPL 2015
11. Chen, R., Le, H., Prasanna, V.K.: Energy efficient parameterized fft architecture.

In: 2013 23rd International Conference on Field programmable Logic and Appli-
cations. pp. 1–7. IEEE (2013)

12. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approx-
imate homomorphic encryption. Selected Areas in Cryptography – SAC 2018

13. Chiou, D.: The Microsoft Catapult project. In: IISWC (2017)
14. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex

Fourier series. Mathematics of Computation 19, 297–301 (1965)

FPGA Acceleration of Number Theoretic Transform 19

15. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
CryptoNets: Applying neural networks to encrypted data with high throughput
and accuracy. Tech. Rep. MSR-TR-2016-3 (February 2016)

16. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012)

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. STOC 2009
18. Intel: Stratix 10 MX FPGAs. https://www.intel.com/content/www/us/en/

products/programmable/sip/stratix-10-mx.html
19. Kim, S., Jung, W., Park, J., Ahn, J.: Accelerating number theoretic transforma-

tions for bootstrappable homomorphic encryption on gpus. In: 2020 IEEE Inter-
national Symposium on Workload Characterization (IISWC). pp. 264–275. IEEE
Computer Society, Los Alamitos, CA, USA (oct 2020)

20. Lee, W.K., Akleylek, S., Yap, W.S., Goi, B.M.: Accelerating number theoretic
transform in GPU platform for qTESLA scheme. ISPEC 2019

21. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Cryptology and Network Security (2016)

22. Mert, A.C., Karabulut, E., Öztürk, E., Savaş, E., Becchi, M., Aysu, A.: A flexible
and scalable NTT hardware: Applications from homomorphically encrypted deep
learning to post-quantum cryptography. In: DATE 2020

23. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44, 519–521 (1985)

24. Nejatollahi, H., Gupta, S., Imani, M., Rosing, T.S., Cammarota, R., Dutt, N.:
CryptoPIM: In-memory acceleration for lattice-based cryptographic hardware. In:
DAC 2020

25. Nejatollahi, H., Shahhosseini, S., Cammarota, R., Dutt, N.: Exploring energy effi-
cient quantum-resistant signal processing using array processors. In: ICASSP 2020

26. Nguyen, D.T., Dang, V.B., Gaj, K.: A high-level synthesis approach to the soft-
ware/hardware codesign of NTT-based post-quantum cryptography algorithms. In:
ICFPT 2019

27. Putnam, A., Caulfield, A.M., et al: A reconfigurable fabric for accelerating large-
scale datacenter services. In: ISCA 2014

28. Reagen, B., Choi, W., Ko, Y., Lee, V., Wei, G.Y., Lee, H.H.S., Brooks, D.: Cheetah:
Optimizing and accelerating homomorphic encryption for private inference (2020)

29. Riazi, M.S., Laine, K., Pelton, B., Dai, W.: HEAX: An architecture for computing
on encrypted data. In: ASPLOS 2020

30. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography (2018), report 2018/039

31. Serpanos, D.N., Wolf, T.: Architecture of network systems (2011)
32. Sinha Roy, S., Turan, F., Jarvinen, K., Vercauteren, F., Verbauwhede, I.: Fpga-

based high-performance parallel architecture for homomorphic computing on en-
crypted data. In: HPCA 2019

33. Ullma, J.D.: Computational Aspects of VLSI (1984)
34. Xilinx: 7 Series FPGAs Data Sheet: Overview. https://www.xilinx.com/

support/documentation/data_sheets/ds180_7Series_Overview.pdf
35. Xilinx: Xilinx UltraScale+ HBM FPGAs. https://www.xilinx.com/products/

silicon-devices/fpga/virtex-ultrascale-plus-hbm.html
36. Yu, C.L., Kim, J.S., Deng, L., Kestur, S., Narayanan, V., Chakrabarti, C.: Fpga

architecture for 2d discrete fourier transform based on 2d decomposition for large-
sized data. Journal of Signal Processing Systems 64(1), 109–122 (2011)

37. Zhang, N., Yang, B., Chen, C., Yin, S., Wei, S., Liu, L.: Highly efficient architecture
of NewHope-NIST on FPGA using low-complexity NTT/INTT. TCHES (2020)

