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Abstract

Accessible chromatin and unmethylated DNA are associated with many genes and cis-regulatory elements. Attempts to understand natural
variation for accessible chromatin regions (ACRs) and unmethylated regions (UMRs) often rely upon alignments to a single reference ge-
nome. This limits the ability to assess regions that are absent in the reference genome assembly and monitor how nearby structural variants
influence variation in chromatin state. In this study, de novo genome assemblies for four maize inbreds (B73, Mo17, Oh43, and W22) are
utilized to assess chromatin accessibility and DNA methylation patterns in a pan-genome context. A more complete set of UMRs and ACRs
can be identified when chromatin data are aligned to the matched genome rather than a single reference genome. While there are UMRs
and ACRs present within genomic regions that are not shared between genotypes, these features are 6- to 12-fold enriched within regions
between genomes. Characterization of UMRs present within shared genomic regions reveals that most UMRs maintain the unmethylated
state in other genotypes with only �5% being polymorphic between genotypes. However, the majority (71%) of UMRs that are shared
between genotypes only exhibit partial overlaps suggesting that the boundaries between methylated and unmethylated DNA are
dynamic. This instability is not solely due to sequence variation as these partially overlapping UMRs are frequently found within genomic
regions that lack sequence variation. The ability to compare chromatin properties among individuals with structural variation enables
pan-epigenome analyses to study the sources of variation for accessible chromatin and unmethylated DNA.
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Introduction
The 2.1 Gb maize B73 genome was first assembled in 2009 and
contains �80% repetitive sequence (Schnable et al. 2009). Unlike
model species such as Arabidopsis thaliana, maize has transpos-
able elements and highly methylated regions that are inter-
spersed with genic regions of the genome (The Arabidopsis
Genome Initiative 2000; Baucom et al. 2009; Springer and Schmitz
2017). One challenge in complex crop genomes such as maize is
the identification of regulatory elements within genomes. There
are opportunities to utilize both chromatin properties such as
DNA methylation or chromatin accessibility to identify func-
tional elements (Crisp et al. 2020).

The maize genome is highly methylated and regions contain-
ing DNA methylation can be sub-classified based on the specific
sequence context of the methylation. High levels of CG and CHG
(H¼A, C, or T) methylation without CHH methylation are often
found over transposable elements and other repetitive regions of
the maize genome, while CG-only methylation is observed fre-
quently within gene bodies (West et al. 2014; Niederhuth et al.
2016; Crisp et al. 2020). CHH methylation, which is largely the

result of RNA-directed DNA methylation (RdDM), is found near
highly expressed genes (Gent et al. 2013; Li et al. 2015a;
Niederhuth et al. 2016). A small proportion of the maize genome
lacks DNA methylation in any sequence context and these unme-
thylated regions (UMRs) likely reflect regions with potential roles
in regulation of gene expression (Oka et al. 2017; Ricci et al. 2019;
Crisp et al. 2020; Hoefsloot and Stam 2020).

Chromatin accessibility is another feature of chromatin that
can be used to identify genomic regions with roles in regulation
of transcription. In maize, �1% of the genome contains accessible
chromatin when profiled with a single tissue type (Rodgers-
Melnick et al. 2016). Profiles of chromatin accessibility combined
with other chromatin modifications have identified potential reg-
ulatory elements in the maize genome (Oka et al. 2017; Ricci et al.
2019). While chromatin accessibility is quite useful for identifying
regulatory elements in a particular tissue, this property is highly
dynamic with changes between tissue types or cells (Ricci et al.
2019; Crisp et al. 2020; Marand et al. 2020). The vast majority of
accessible chromatin occurs in UMRs of the genome. However,
there are additional UMRs that do not exhibit chromatin
accessibility. These likely reflect the fact that the UMRs of the
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genome are quite stable in vegetative tissues while chromatin ac-
cessibility is highly tissue-specific (Schmitz et al. 2013; Kawakatsu
et al. 2016; Crisp et al. 2020; Marand et al. 2020). To date, the analy-
sis of chromatin accessibility in maize has largely focused on the
accessible regions within the B73 genome.

The analysis of chromatin properties within the B73 reference
genome has been useful for functional annotation of the genome.
However, there is also value in assessing natural variation for the
chromatin properties in different inbred lines of maize. While
chromatin accessibility studies have largely focused on B73,
many studies have compared DNA methylation between maize
genotypes (Eichten et al. 2013; Regulski et al. 2013; Li et al. 2015b;
Anderson et al. 2018; Xu et al. 2019, 2020). These studies have
found many examples of DNA methylation variation. Changes in
DNA methylation can occur due to alterations in DNA sequence
such as transposon insertions (Noshay et al. 2019) or can occur in
regions with no genetic changes (Eichten et al. 2011). The ability
to fully compare DNA methylation patterns among genotypes
and to investigate the role of structural variation has been lim-
ited due to reliance upon a single reference genome for compari-
sons.

The genome content varies substantially among maize geno-
types (Fu and Dooner 2002; Springer et al. 2009; Swanson-Wagner
et al. 2010; Anderson et al. 2019; Hufford et al. 2021). The availabil-
ity of multiple de novo assembled reference genomes has enabled
whole-genome comparisons of genome content (Hirsch et al.
2016; Springer et al. 2018; Sun et al. 2018; Haberer et al. 2020;
Hufford et al. 2021). Many of the sequences present in any one in-
bred are not present at collinear regions in other genomes (Fu
and Dooner 2002; Sun et al. 2018; Haberer et al. 2020). This results
in a pan-genome that contains more genes and transposons than
any individual maize inbred (Hirsch et al. 2014; Anderson et al.
2019; Hufford et al. 2021). While there is evidence for genome con-
tent variation among maize inbreds it has been difficult to assess
the chromatin of the pan-genome due to technical difficulties in
connecting the same sequence regions between genotypes.

In this study, we generated DNA methylation and chromatin
accessibility profiles from four maize inbreds that each have de
novo genome assemblies. UMRs and ACRs are identified for each
genotype based on alignment of the chromatin data to the B73v4
genome and the genome from which it was generated.
Chromosomal alignments were used to classify shared and non-
shared sequences between genomes. UMRs and ACRs are sub-
stantially depleted within the nonshared portions of the genome.
Within the shared regions of the genome we assessed the stabil-
ity of UMRs between genotypes. While the majority of UMRs in
these regions have an overlapping UMR in another genotype,
over 50% do not have identical coordinates due to shifts in the
precise boundaries between methylated and unmethylated DNA.
These UMRs with shifted boundaries account for a large portion
of the differentially methylated regions between two genotypes.
The partially overlapping UMRs are not enriched for variable
chromatin accessibility or changes in expression of nearby genes,
suggesting that differences in the specific boundaries between
methylated and unmethylated DNA are tolerated with little func-
tional impact.

Materials andmethods
Reference genomes
Whole-genome assemblies for four maize inbred lines, B73 (Jiao
et al. 2017), W22 (Springer et al. 2018), Mo17 (Sun et al. 2018), and
Oh43 (Hufford et al. 2021) were used for genome-wide analyses.

All analyses were performed on assemblies of chromosomes 1–10
while all unplaced scaffolds were disregarded due to the inability
to compare these regions across genotypes. Filtered gene and
structural TE annotations (Stitzer et al.; Anderson et al. 2019) were
used.

Sample collection
Maize B73, W22, Mo17, and Oh43 plants were grown under
16 hours/8 hours 30�C/20�C day/night for 13 days in the growth
chamber of the University of Minnesota. DNA was extracted from
leaves of 2-week old V2 plants using the DNeasy Plant Mini kit
(Qiagen). Four or five biological replicates consisting of a pool of
tissue from 4 plants were collected for each genotype. Two of
these biological replicates were sampled for profiling of DNA
methylation and chromatin accessibility while all biological repli-
cates were used for RNAseq.

WGBS protocol
Two biological replicates of each genotype (B73, Mo17, W22, and
Oh43) were generated. 1ug of DNA in 50ug of water was sheared
using an Ultrasonicator to approximately 200–350 bp fragments.
Twenty microliter of sheared DNA was then bisulfite converted
using the EX DNA Methylation-Lightning Kit (Zymo Research) as
per the manufacturer’s instructions and eluted in a final volume
of 15 ml. Then 7.5 ml of the fragmented bisulfite-converted sample
was used as input for library preparation using the ACCEL-NGS
Methyl-Seq DNA Library Kit (SWIFT Biosciences). Library prepara-
tion was performed as per the manufacturer’s instructions. The
indexing PCR was performed for 5 cycles. Libraries were then
pooled and sequenced on a NovaSeq 6000 in high output mode
125 bp paired end reads over a single lane at the University of
Minnesota Genomics Center. WGBS data generated in this study
are deposited at NCBI SRA and available under accession.

Trim_galore (Martin 2011) was used to trim adapter sequences
and read quality was assessed with the default parameters in
paired-end read mode plus a hard clip of 20 bp on each read due
to SWIFT protocol specifications. Reads that passed quality con-
trol were aligned to their corresponding genome assemblies.
Alignments were conducted using BSMAP-2.90 (Xi and Li 2009),
allowing only unique hits with up to 5 mismatches and a quality
threshold of 20 (-v 5 -q 20). Duplicate reads were detected and re-
moved using picard-tools-1.102 (“Picard”) and SAMtools (Li et al.
2009). Conversion rate was determined using the reads mapped
to the unmethylated chloroplast genome. The resulting align-
ment file, merged for all samples with the same tissue and geno-
type, was then used to determine methylation level for each
cytosine using BSMAP tools.

Methylation data summary
Methylation levels were summarized using the bsmap methra-
tio.py script to group by context (CG, CHG, and CHH). The num-
ber of cytosines in every 100 bp bin of the genome was
determined and the proportion of cytosines defined as methyl-
ated was calculated. Coverage was calculated as CT/# of sites for
each context. Methylation domain was classified for each 100 bp
bin based on the protocol described in Crisp et al. (2020).

Briefly, each 100 bp bin of the genome was classified into one
of six methylation domains (“missing data,” “RdDM,”
“heterochromatin,” “CG-only,” “unmethylated,” or
“intermediate,”). Tiles were classified in a hierarchical order first
by defining any tiles with less than two cytosines or less than 5x
coverage as missing data. Remaining tiles were defined by the
level of methylation; RdDM if CHH methylation was greater than
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15%; heterochromatin if CG and CHG methylation was 40% or
greater; CG-only if CG methylation was greater than 40%; unme-
thylated if CG, CHG, and CHH were less than 10%; and intermedi-
ate if methylation was 10% or greater but less than 40%. UMRs
were defined by grouping adjacent unmethylated bins or missing
data (as long as the resulting UMR contained <33% missing data)
and all UMRs less than 300 bp were removed.

UMRs were classified relative to annotated genes as described
in Ricci et al. (2019). All UMRs that overlap a gene were first de-
fined as genic. Nongenic UMRs were further classified as gene-
proximal if they were within 2000 bp. All remaining UMRs that do
not overlap any sequence within 2000 bp of the annotated gene
are classified as intergenic.

ATAC-seq protocol and ACR classification
ATAC-seq libraries were generated as described in Lu et al. (2017).
Two biological replicates of each genotype (B73, Mo17, W22, and
Oh43) were generated from the same samples as those used for
WGBS data generation. Raw reads per sample were preprocessed
with Trim_galore. Trimmed reads were aligned to the Zea mays
B73v4 genome and the genome assembly specific to each sample
using Bowtie v1.2.3 with the following parameters: “bowtie -X
1000 -m 1 -v 2 –best –strata.” Aligned reads were converted to
bam files and sorted using SAMtools v1.9. Clonal duplicates were
removed using Picard MarkDuplicates v2.23.3 (http://broadinsti
tute.github.io/picard/). Input data of maize B73 was retrieved
from a previous publication and processed to obtain bam files
with clonal duplicates removed. MACS2 was employed to call ini-
tial ACRs with Input data as control (-c) and sample data as treat-
ment (-t) using the following parameter “-g 2.1e9 –keep-dup all –
nomodel –extsize 147.” The post-processing followed the same
procedure as a prior publication (Ricci et al. 2019) to produce
high-confidence ACRs. Specifically, (1) Initial ACRs were split into
50 bp windows with 25 bp steps; (2) the Tn5 integration frequency
in each window was calculated and normalized to the average
frequency in the total genome; (3) windows with the normalized
frequency greater than 25 were merged together allowing 150 bp
gaps; (4) only merged regions greater than 50 bp were retained; (5)
the mitochondrial or chloroplast genome from NCBI Organelle
Genome Resources were removed using blast against sequences
within merged ACR regions. The sites within ACRs that had the
highest Tn5 integration frequency were defined as summits.

RNA-seq protocol
RNA-seq data were generated in 150 bp paired-end mode using
NovaSeq 6000. B73, W22, and Mo17 reads were retrieved from the
NCBI SRA accession PRJNA657262 (Liang et al. 2021) and Oh43
reads were deposited into NCBI SRA accession PRJNA692023. All
of the raw reads were preprocessed using Trim_galore and
aligned against the B73 AGPv4 reference genome using HISAT2
v2.1.0 (Kim et al. 2015). Gene annotations and disjoined TE anno-
tations were used as described above. Gene exon regions were
subtracted from TE regions and then appended to the original TE
annotation to remove ambiguous mapping between genes and
TEs. Reads per gene or TE was determined using HTSeq-count
v0.11.2 (Anders et al. 2015) and raw count data was input into
DESeq2 (Love et al. 2014) to identify differentially expressed genes
or TE elements.

The mean value for each feature (gene or TE) was calculated
from 4 or 5 replicates. Any feature with a mean value greater
than 1 was considered “expressed.” UMRs were associated with
genes and TEs based on location relative to the feature. B73
UMRs which overlapped the annotated sequence coordinates

within the genome being assessed were classified as “genic” or
“TE.” Those not overlapping a gene but within 2 kb of the gene
start or end were classified as “proximal.”

Cross-genotype mapping
Genome sequence from Mo17, W22, and Oh43 was first aligned to
the B73 reference (Jiao et al. 2017) using minimap2 (Li 2018). The
resulting alignments were merged and cleaned (removing over-
lapping alignment blocks and alignment blocks containing as-
sembly gaps) using in-house perl scripts. BLAT Chain/Net tools
were then used to create a single coverage best alignment net be-
tween the query genome (one of Mo17, W22, and Oh43) and the
target genome (B73). Finally, a genome-wide synteny chain file
was built for each genotype (against B73), enabling downstream
analyses such as variant detection and 100-bp tile liftover.
Alignment pipeline and scripts are available on Github (https://
github.com/baudisgroup/segment-liftover). The sequence was
extracted for all 100 bp bins in the B73 genome and aligned to
Mo17, W22, and Oh43. Each bin was determined to be unmappa-
ble or mappable. Mappable bins were assigned coordinates in the
nonB73 genome. The number of single nucleotide polymor-
phisms and insertion/deletions for each bin was calculated.
Across all genotypes, only 4% of bins were found to have �1 in-
sertion/deletion and 13% contained �1 single nucleotide poly-
morphism. Bins with no more than 4 insertion/deletions of 20 bp
in size were kept for analyses of shared space. Each 100 bp bin in
B73 was designated as unmapped or provided matching sequence
coordinates in each of the 3 other genotypes (Mo17, W22, and
Oh43).

Characterization of IBS regions
Identical by sequence regions were characterized as in Anderson
et al. (2019). Briefly, SNPs between B73 and the other three
genomes were identified by first aligning these genomes using
minimap2 (Li 2018). BLAT (Kent 2002) chain/net tools were then
used to process alignment results and build synteny chains and
nets. Final SNP and InDel calling was done using Bcftools (Li
2011). SNP density for each 1 Mb bin was determined by dividing
the total number of SNPs in the window by the number of base
pairs in syntenic alignments in the window. Regions with SNP
density lower than 0.0005 over at least a 5 Mb window were de-
fined as IBS regions. For each comparison between B73 and a con-
trasting genome (W22, Mo17, or PH207), the inferred coordinates
for the outermost shared site-defined B73 TEs completely within
each IBS block were used to mark the boundary of the IBS region
in the contrasting genome.

Differentially methylated tiles
WGBS data aligned to the respective genome and summarized in
the B73-based 100 bp coordinate system was used. Tiles were
subset to those with sequence mappability and coverage in both
genotypes for each pairwise comparison. Differentially methyl-
ated tiles (DMTs) were defined by a difference of 40% with at least
one genotype having <10% and >40% methylation for CG and
CHG contexts. CHH DMTs were defined by one genotype with
<5% and >25% methylation in the 100 bp tile. DMTs in each con-
text were determined for Mo17, W22, and Oh43 compared to B73.

Classification of UMR variability
B73 UMRs that were mappable to sequence in another genotype
were further defined by methylation state in the corresponding
genome. All 100 bp bins within a defined UMR were assessed for
the matching sequence coordinates in Mo17, W22, and Oh43. For
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each UMR, the proportion of bins classified as methylated (in-
cluding CG, CG/CHG, and CHH methylation domains) was calcu-
lated. UMRs with >50% of the bins being methylated were
defined as “polymorphic UMRs” for the difference in methylation
state from unmethylated in B73 to methylated in the nonB73 ge-
notype. All other UMRs, showing an unmethylated state in both
B73 and the nonB73 genotype assessed, were defined as
“overlapping UMRs.”

B73 UMRs that are methylated in another genotype (polymor-
phic UMRs) were further classified by the type of methylation ob-
served in the nonB73 genotype. The polymorphic UMRs were
summarized by domain. The proportion of 100 bp bins with a
methylated domain, within the defined B73 UMR, for each meth-
ylation context was determined. Any UMR that had >50% of its
methylated bins classified as a specific methylation context was
declared to be variable in that context. Classification was deter-
mined first by CHH methylation, followed by CG/CHG methyla-
tion and lastly CG only methylation. Variable methylation type
was defined individually for each genome based on the sequence
coordinates of the B73 UMR.

B73 UMRs that are unmethylated in another genotype (over-
lapping UMRs) were further classified by the coordinates of the
defined UMR between B73 and the nonB73 genotype. The UMRs,
defined by alignment of WGBS data to the B73 reference genome,
were determined and their coordinates were assessed. Pairwise
comparisons were done between B73 and nonB73 genotypes. B73
UMRs that had identical 100 bp bin boundaries for the defined
UMR were classified as identical UMRs. B73 UMRs that had vari-
able boundaries were classified as partial UMRs (the coordinates
of the smaller UMR were maintained within the larger UMR coor-
dinates or the coordinates are shifted and have uniquely defined
unmethylated bins in each genotype).

Classification of ACR variability
Every B73 UMR was classified based on the accessibility of that
shared sequence region within B73, Mo17, W22, and Oh43. All
UMRs in B73 were defined as accessible (aUMR) or inaccessible
(iUMR) based on its overlap with an accessible chromatin region
(ACR) in the B73 sample. For B73 aUMRs, the presence of an ac-
cessible region in the nonB73 genotypes was determined. The
B73-based coordinates of the UMR in the corresponding genome
were used to identify overlap with the ACRs defined in that ge-
nome. UMRs that overlap both an ACR in B73 and nonB73 ge-
nome were defined as stable ACRs. If the aUMR in B73 lacked
accessibility in the nonB73 genome it was defined as B73-only
ACR. Alternatively, if a UMR was inaccessible in B73 it could
never be found accessible or show accessibility in the other geno-
type. If the iUMR lacked accessibility in the nonB73 genome, it
was determined to have no ACR. If the sequence of the iUMR
overlapped a defined ACR in the other genome, it was defined as
a nonB73 ACR such that it was inaccessible in the B73 UMR but
accessible in the shared sequence of Mo17, W22, or Oh43. The
ACRs which were defined as either B73-only or nonB73-only were
verified by assessing the 100 bp cpm values within that region
across the two genotypes.

Data availability
Accessible chromatin data (ATAC-seq) generated for this study is
available at NCBI short read archive (SRA) under accession num-
ber PRJNA709664. In this study, we also utilize previously pub-
lished RNA-seq datasets that are available under accession
numbers PRJNA657262 and PRJNA692023 and whole-genome bi-
sulfite datasets that are available under accession number

PRJNA657677. Supplementary Material is available at figshare:
https://doi.org/10.25387/g3.14637411.

Results
Characterization of unmethylated DNA and
accessible chromatin in four maize genomes
DNA methylation (profiled using whole-genome bisulfite se-
quencing—WGBS, Cokus et al. 2008; Lister and Ecker 2009), chro-
matin accessibility (profiled using Assay for Transposase
Accessible Chromatin-sequencing—ATAC-seq, Buenrostro et al.
2013), and gene expression (RNA-seq) data were generated for the
same tissue sample from seedling leaf of four maize inbreds (B73,
Mo17, W22, and Oh43) (Supplementary Tables S1 and S2). For all
genotypes the resulting datasets were aligned to their own ge-
nome assembly and nonB73 genotypes were additionally aligned
to the B73v4 reference genome assembly.

The alignment rates for the WGBS datasets were substantially
higher when mapped to their respective genome assembly
(�60%) compared to nonB73 samples mapped to the B73 refer-
ence genome assembly (�43%) (Supplementary Table S1). The re-
duced mapping rate when aligning data from nonB73 genotypes
to the B73 genome assembly is likely due to polymorphisms and
structural variants present between inbreds. We focused on
analysis of methylation classifications based on merged repli-
cates, since the data from the two biological replicates was highly
correlated and the UMRs identified within individual samples
were frequently (>97%) found in the merged sample
(Supplementary Table S3). The WGBS data was used to classify
the methylation state for each 100 bp bin based on context-spe-
cific DNA methylation (Supplementary Figure S1A) as described
previously (Crisp et al. 2020). Bins were classified as CHH
(CHH> 15%), CG/CHG (>40% both CG and CHG), CG only (>40%
CG), unmethylated (<15% CHH and <20% CG and CHG), missing
data, missing sites or intermediate methylation (Supplementary
Figure S1A). The majority (71–74%) of the maize genome is classi-
fied as methylated with most of this exhibiting CG/CHG methyla-
tion and in rare cases CHH methylation (Supplementary Figure
S1A). A much smaller proportion (6–7%) of the genome is classi-
fied as unmethylated (Supplementary Figure S1A). In each ge-
nome, roughly 15% of the bins are classified as missing data,
likely due to an inability to align WGBS reads uniquely to repeti-
tive regions. However, the proportion of bins with missing data
was substantially larger when nonB73 WGBS data were aligned
to the B73 genome (Supplementary Figure S1B).

The unmethylated 100 bp bins were merged and filtered (Crisp
et al. 2020) to identify UMRs (Table 1). UMRs were defined for each
inbred based on alignment to their respective genome assembly
and alignment to B73 (Figure 1A). The total number of UMRs was
similar across all four genotypes, although a greater number of
UMRs were defined when mapping WGBS reads to the cognate
genome assembly (Figure 1A). UMRs were classified as genic,
proximal (<2kb from nearest gene) and intergenic (>2kb from the
nearest gene) in all four genotypes based on alignment of sam-
ples to their cognate reference genome assembly. The distribu-
tion of UMRs and ACRs relative to gene annotations is fairly
consistent across genotypes with >80% of UMRs being observed
in genic or gene proximal regions and <20% in intergenic regions
(Figure 1B).

Prior studies have found that unmethylated portions of the
maize genome often contain cis-regulatory regions (Oka et al.
2017; Ricci et al. 2019; Crisp et al. 2020). To determine the concor-
dance between UMRs and ACRs, we implemented ATAC-seq in
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Table 1 UMR and ACR summary statistics

Sample genotype Reference genotype No of bins defined
as missing data

No of bins defined
as Methylateda

No of bins defined
as Unmethylated

No of UMRs No of ACRs

B73 B73v4 3,511,785 (16.7%) 15,064,391
(71.5%)

1,325,187 (6.3%) 107,178 24,304

Mo17 Mo17 3,649,729 (16.6%) 15,566,698
(70.6%)

1,385,916 (6.3%) 113,838 24,309

Oh43 Oh43 3,096,596(14.6%) 15,719,767
(74.3%)

1,445,686 (6.8%) 111,261 22,774

W22 W22 3,322,802 (15.6%) 15,315,985
(71.8%)

1,369,207 (6.4%) 112,253 21,232

a Methylated is the combined value of bins defined as CG only, CG/CHG, and CHH. Percentage is shown in ().

Figure 1 Identification of UMRs and ACRs in maize genotypes. (A) The number of UMRs defined based on samples aligned to B73v4 (green) and their own
genome assembly (orange). (B) The location of UMRs and ACRs in the genome based on gene annotations was classified as overlapping genes (green),
within 2 kb of a gene (orange) and >2 kb from a gene (purple). (C) The number of ACRs defined based on the merged replicates for each genotype aligned
to their respective genome assemblies. (D) Overlap between the B73 UMRs and ACRs defined based on alignments to the B73v4 genome. The number in
parentheses indicates ACRs that are defined as methylated as opposed to missing data. (E–H) Accessibility is often present only for a portion of the UMR.
Several B73 UMRs are shown along with ATAC-seq data. IGV (Robinson et al. 2011) snapshots of the B73 genome showing ACRs within UMR space.
Tracks include B73 gene and TE annotations, B73 methylation per cytosine in all contexts (CG: blue, CHG: red, CHH: yellow), B73 UMRs (black), B73 ACRs
(blue), and B73 ATAC-seq coverage (grey).
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the same four genotypes. ACRs were identified in each individual
sample as well as from merged biological replicates
(Supplementary Table S2). We focused on analysis of the ACRs
identified from the merged replicates, since the data from the
two biological replicates was highly correlated (R2> 0.95 for all
genotypes—Supplementary Table S3) and the ACRs identified
within individual samples were frequently found in the merged
sample (Supplementary Table S3 and Figure S2). There are
21,232–24,309 ACRs present in each of the four genotypes (Table
1 and Figure 1C). Similar to the UMRs, ACRs are frequently found
in genic or gene proximal regions, but 14–18%% of the ACRs are
found in intergenic regions >2kb from the nearest gene (Figure
1B). The vast majority of ACRs are found within UMRs in each of
the four genotypes (Figure 1D and Supplementary Figure S3).
While the vast majority of ACRs occur within UMRs, there are
many UMRs without accessible chromatin (Figure 1D). This
allows the classification of UMRs as accessible UMRs (aUMRs) or
inaccessible UMRs (iUMRs) based on whether they overlap an
ACR. The presence of an aUMR, which includes the presence of
an ACR, is much more common within or near genes that are
highly expressed, but is quite rare for lowly expressed genes
(Supplementary Figure S3D). In contrast, iUMRs are present near
genes with low and high expression levels, but are depleted near
silent genes (Supplementary Figure S3E). While the aUMRs repre-
sent an overlap between an UMRs and chromatin accessibility,
the boundaries of these regions are often not the same. The ma-
jority (97.3%) of cases represent a larger UMRs in which the ACR
only covers a portion of the UMR and the ACR is often found in
the center of the UMR (examples in Figure 1, E–H). This suggests
that the transition from accessible to inaccessible chromatin and
from unmethylated DNA to methylated DNA does not occur at
the same region.

Classification of shared and nonshared genomic
regions
Previous studies have assessed natural variation in DNA methyl-
ation based on alignment to a single reference genome (Regulski
et al. 2013; Li et al. 2015b). However, when WGBS data from
nonB73 genotypes are aligned to the B73 genome, the proportion
of regions with missing data increases substantially
(Supplementary Figure S1B), and the methylation levels for geno-
mic regions missing in B73 are not assessed. The availability of
multiple reference genomes provides the opportunity to assess
DNA methylation levels in the pan-genome that includes both
shared (syntenic) regions of the genome with or without allelic
variation, as well as nonshared regions that are present in one
line and missing in another. The alignment of WGBS or ATAC-
seq data to their respective genome provides the advantage of
more complete characterization of DNA methylation and/or
chromatin accessibility, but introduces complications for the di-
rect comparison of specific regions among genomes.

To address this complication in comparing regions across
genomes, chromosomal alignments were performed between the
B73 genome and the other reference genomes to identify the
shared and nonshared genomic segments between any two geno-
types (see Methods) (Figure 2A). The approach that was imple-
mented employed relatively stringent criteria for identification of
shared regions. The regions classified as nonshared include both
structural variants and highly polymorphic regions as well as
highly repetitive regions that could not be uniquely mapped.
Approximately 55% of the nonB73 genome sequences could be
classified as syntenic and mappable relative to B73, with the
remaining 45% not aligning to the B73 genome due to

nonsyntenic sequence or unmappable regions (Figure 2B). As a
quality control measure, we assessed the proportion of space
classified as shared or nonshared within identity-by-state (IBS)
regions between genomes. The majority (94%) of IBS regions are
classified as shared between any two genomes (Supplementary
Table S4) and the regions that are not classified as shared within
IBS regions are highly enriched for repetitive sequences.

Our analysis of DNA methylation or chromatin accessibility is
often focused on 100 bp bins. To directly compare the same coor-
dinate space between genomes, we identified the 100 bp bins
from the B73 genome that were shared across genotypes (Figure
2A and Supplementary Figure S4). In the comparisons of B73 to
the other three genomes, we find 41–48% of the B73 bins are non-
shared, 37–42% of bins have an exact match in shared regions,
12–14% mapped with �1 SNP, and an additional 4% mapped with
�1 small (<20bp) indel between the two genotypes. Across all
comparisons, there are over 800,000 100 bp bins that are shared
in all four genotypes (Figure 2C). There are �500,000 bins that are
found only in B73 and another �800,000 that are present in B73
and only one or two of the other two genotypes (Figure 2C). The
regions that are shared between genotypes have fewer bins with
missing data such that only 6.7% of the bins shared in all three
genotypes lack DNA methylation data compared to 28.4% of the
bins that are only present in B73. This likely reflects the fact that
much of the nonshared sequence between genomes is highly re-
petitive and recalcitrant to unique mapping. The identification of
these shared bins allowed us to calculate the methylation levels
or ATAC-seq read depth for the specific coordinates in a second
genome that correspond to the B73 bins to allow direct compari-
sons of chromatin properties between genomes using epigenomic
data aligned to its own reference genome.

UMRs and ACRs are depleted in nonshared
portions of the genome
We initially focused on the chromatin properties of the non-
shared portions of the genome to assess the frequency of UMRs
or ACRs within the dispensable portion of the genome compared
to the shared portions. While over 10% of the shared genomic
regions are annotated as genic less than 4.8% of the nonshared
regions are annotated as genic reflecting a depletion of genes and
enrichment of intergenic and TE sequence. The analysis of the
bronze1 (bz1) locus on chromosome 9 illustrates these trends of
shared space in genic regions and large nonshared blocks be-
tween genes, as previously described (Fu and Dooner 2002; Wang
and Dooner 2006) (Figure 3A). In the bz1 region, very few UMRs or
ACRs are found within the nonshared regions (Figure 3A). We
proceeded to perform a genome-wide assessment of the propor-
tion of UMRs within shared and nonshared regions of the ge-
nome. While UMRs account for 6% of the entire B73 genome, only
�2% of the nonshared genomic regions are classified as UMRs
compared to �12% of the shared genomic regions, representing a
sixfold enrichment of UMRs in shared genomic regions (Figure
3B). A similar analysis of the genome-wide distribution of ACRs
reveals that accessible chromatin is 12-fold enriched within ge-
nomic regions that are shared among all four genotypes relative
to nonshared regions (Figure 3B). ACRs account for 1.2% of the
shared genomic space but only 0.1% of the nonshared genomic
regions (Figure 3B). Both ACRs and UMRs are frequently found
near genes and the nonshared genomic regions are relatively
gene-poor. However, this depletion of genes is not the only expla-
nation for the paucity of ACRs and UMRs in the nonshared geno-
mic regions. Over 80% of the genes in the shared space contain a
UMR, while only 17% of the genes located in nonshared regions
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contain UMRs. Prior studies have found that nonshared genes are
less likely to be expressed (Hirsch et al. 2016; Sun et al. 2018;
Anderson et al. 2019; Haberer et al. 2020) and the depletion of
UMRs within or near these genes further suggests that many of
these features that are annotated as “genes” lack the chromatin

properties (UMRs and ACRs) that are often associated with ex-
pression. These analyses suggest that pan-genome assessment of
UMRs and ACRs will provide a more complete identification of
UMRs/ACRs but that there are a limited number of novel UMRs
or ACRs in nonshared space in maize. The subsequent analysis

Figure 2 Defining shared and nonshared regions between genome assemblies. (A) Schematic representation of B73-based 100 bp bins defined as shared
or nonshared in Mo17 and W22 (gray shaded regions) based on chromosomal alignments. The 100 bp bins in W22 or Mo17 could be defined by 100 bp
increments within that genome sequence or based on coordinate matches to the B73 genome and these are shown as the W22 (blue) or Mo17 (purple)
coordinate bins or the B73-based coordinates (grey). The black hash or the light to dark color change indicates the 100 bp bin boundaries. (B) The
proportion of the B73 genome that is defined as shared or nonshared with Mo17, W22, and Oh43 based on chromosome-level sequence alignments. (C)
The number of B73 100 bp bins that are unique to B73 (0 shared genotypes), shared with one other genotype assessed (1), shared with two other
genotypes assessed (2) or shared across all 4 genotypes including B73, Mo17, Oh43, and W22 (3). Genotype labels correspond to the genotypes which
share 100 bp bins with B73.

Figure 3 Presence of ACRs and UMRs within shared and nonshared genomic regions. (A) An IGV (Robinson et al. 2011) representation of a 49 kb segment
on chromosome 9 (upper panel) of the B73 genome assembly. Tracks show B73 methylation levels in all contexts (CG-blue, CHG-red, and CHH-yellow),
B73 UMRs and ACRs, Mo17 shared sequence (green), W22 shared sequence (blue), Oh43 shared sequence (purple), and B73 gene and TE annotations
(grey). The lower panel shows a closer view of a 10 kb region of the bz1 locus to see the detail. (B) The B73 genome was compared to Mo17, Oh43, or W22
to define regions that are shared or nonshared in each contrast. The proportion of the shared or nonshared space that is classified as UMR or ACR was
determined for each of the pairwise contrasts.
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will focus on the UMRs and ACRs that are present within shared
regions of any two maize genomes.

Comparisons of UMRs and ACRs in the shared
space of maize genomes
We proceeded to focus on the UMRs and ACRs that are present
within shared regions between maize genomes. The analyses
were primarily focused on UMRs as these encompass the vast
majority of ACRs (Figure 1D) and we could monitor stability for
the UMRs with an ACR (aUMRs) compared to the UMRs without
an ACR (iUMRs). The B73 UMRs were compared to each of the
other genomes and classified based on whether they are present
in shared/nonshared regions and then whether the region has
DNA methylation data available for both genotypes. For the
�90% of B73 UMRs that have defined methylation states and are
present in a shared region, we could classify whether there is an
overlapping UMR in the other genotype or whether the UMR is
polymorphic such that it is classified as methylated in the other
genotype (Figure 4A). Most UMRs that are present in shared space
overlap a UMR in the other genotype while a small set (5.9%) are

polymorphic (Figure 4A). The overlapping UMRs can be classified
as identical if the boundaries of the UMR are the same in both
genotypes (example in Figure 4B). Alternatively, an overlapping
UMR could represent a partial overlap such that one genotype
has a larger region than the other or both edges are shifted
(examples in Figure 4B). The UMRs with partial overlap account
for the majority (71.3%) of the overlapping UMRs between two
genotypes (Figure 4A). We also assessed the stability of UMR clas-
sifications between the two biological replicates of B73 data
(Supplementary Figure S4). For the regions that have data in both
replicates, we found very few (0.04%) polymorphic UMRs and
only 0.6% of the UMRs had partial overlap between the replicates
(Supplementary Figure S4).

B73 UMRs can be subdivided into aUMRs (n¼ 16,627) and
iUMRs (n¼ 91,607) based on the presence, or absence, of an ACR
within the UMR. We compared the distribution of classifications
for the aUMRs and iUMRs for the presence of identical, partially
overlapping, or polymorphic UMRs in the other genotypes (Figure
4C). The B73 aUMRs have fewer examples of polymorphic UMRs
as well as fewer examples within nonshared genomic regions.

Figure 4 Stability of UMRs in shared sequence. (A) A flowchart on how B73 UMRs are classified is shown. The numbers in parenthesis indicate the
average number of regions classified in that group based on comparisons to the other genotypes. The proportion of B73 UMRs that are shared or
nonshared (purple) based on sequence with the respective genome assembly. Shared regions are further classified as B73-only (green) for UMRs that
lack data in the other genotype, identical (yellow) for UMRs that maintain an unmethylated state in the same region, partially overlapping (pink) for
UMRs that maintain an unmethylated state but have different UMR boundaries across genotypes or polymorphic (blue) for UMRs that change to a
methylated state in the other genome. The colors in A are identical to those in C. (B) A genome browser view of the several regions in the B73 genome to
illustrate examples of identical, partially overlapping and polymorphic UMRs. A track of DNA methylation in all contexts (CG-blue, CHG-red, CHH-
yellow) is shown for B73 and Mo17 (both aligned to B73v4) with UMRs defined below in black (B73) and blue (Mo17). B73 UMRs are defined as identical
(yellow), partial overlap (pink), or polymorphic (blue). (C) The proportion of B73 UMRs that are classified in each group defined in A are shown for both
aUMRs and iUMRs based on comparison to each of the other three genotypes. (D) The proportion of B73 aUMRs or iUMRs that are classified as ACR only
(not unmethylated) in the other genotype (purple), aUMR in the other genotype (blue), iUMR in the other genotype (yellow), or methylated and
inaccessible in the other genotype (burgundy) are shown for comparisons to each of the other genotypes
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However, this is largely due to a higher proportion of overlapping
UMRs that are partially overlapping rather than more examples
of identical UMRs (Figure 4C). These analyses suggest that while
any two genomes often have UMRs in similar regions the exact
coordinates of the UMRs are often distinct.

The B73 aUMRs and iUMRs were also assessed for the potential
changes to either methylation or accessibility between genotypes
(Figure 4D). The majority (�71.2%) of the B73 aUMRs were main-
tained as aUMRs in the other genotypes. However, there are also a
subset of the B73 aUMRs that lose either the unmethylated state
(�14.8%) or chromatin accessibility (�11.1%) in the other genotype.
The remaining 2.9% are not classified as either ACR or UMR for the
same region in the other genome. The B73 iUMRs often (�73.7%)
are unmethylated and inaccessible in the other genotypes (Figure
4D). There are also many (�24.5%) examples of B73 iUMRs that are
methylated in the other genotype. The proportion of shifts from
unmethylated to methylated states are much higher for the iUMRs
than the aUMRs. Very few (�1.6%) of the B73 iUMRs exhibit acces-
sibility in the other genotypes (Figure 4D).

Unique properties of regions with methylation
changes in various methylation contexts
While the polymorphic B73 UMRs that are methylated in another
genotype only account for a small set of all UMRs (5.3%) these
may represent important functional differences between geno-
types. The polymorphic UMRs can be subdivided based on the
prominent class of methylation in the other genotype (Figures 4A
and 5A). Each of these classes of methylation changes likely re-
flect distinct mechanisms and chromatin types. The types of
methylation observed in these regions do not reflect the genome-
wide proportions of methylation types (Supplementary Figure
S1). The proportions that are classified as CG only (�50%) or CHH
(5–7%) are higher than observed genome wide (10 and 0.5–1% re-
spectively) (Supplementary Figures S1 and S5B). The remaining
�40% of the polymorphic UMRs exhibit CG/CHG methylation in
the genotype that has methylation (Figure 5B).

The presence or absence of ACRs in both genotypes was
assessed for the polymorphic UMRs relative to overlapping UMRs
(Figure 5C). While both identical UMRs and partially overlapping
UMRs show virtually identical proportions with shared ACRs or
polymorphic ACRs, the polymorphic UMRs have very few stable
ACRs (Figure 5C). This is expected as there are very few examples
of accessible regions within methylated DNA. The proportion of
the polymorphic UMRs that are classified as having an ACR only
in B73 but not the methylated genotype is quite variable.
Polymorphic UMRs with CHH methylation in the other genotype
are more likely to have an ACR in B73 than polymorphic UMRs
with CG only methylation in the other genotype (Figure 5C). This
could reflect the fact that CHH methylation is often found in
regions immediately upstream or downstream of genes in the
maize genome (Gent et al. 2013; Li et al. 2015a) and that these
regions often have ACRs. In contrast, the CG-only methylation of-
ten occurs within gene bodies, where ACRs are less common
than at the edges of genes or promoter regions.

We proceeded to assess variable gene expression of genes near
overlapping or polymorphic UMRs using RNA-seq data from the
same tissue used to monitor accessibility and DNA methylation.
Genes with an overlapping or polymorphic UMR within 200 bp
(upstream or downstream) of the transcription start site (TSS)
were identified and classified as being differentially expressed
(DE), expressed in both genotypes but not DE, or silent (FPKM < 1
in both genotypes). The sets of genes that have identical or par-
tially overlapping UMRs near the TSS exhibit nearly identical

proportions of genes in these categories suggesting little func-
tional difference between identical and partially overlapping
UMRs (Figure 5D). Polymorphic UMRs that gain CG-only methyla-
tion in the other genotype have fewer examples (�12%) of genes
with higher expression in B73 compared to identical or partially
overlapping UMRs (25–32%). More of these polymorphic UMRs
with CG-only methylation exhibit expression in both genotypes
(56–60%) compared to the UMRs with identical overlap (43–48%).
The percent of genes that are more highly expressed in B73
(which is unmethylated) than in the other genotype (which has
methylation) is higher for genes with gains of CG/CHG (44–52%)
or CHH (37–42%) methylation compared to the genes with identi-
cal UMRs (25–29%) suggesting that a subset of these methylation
gains may be associated with reduced expression. While the pres-
ence of polymorphic CHH or CG/CHG methylation near the TSS
has an enrichment for genes that are more highly expressed in
the unmethylated genotype there are still 42–57% of these genes
that have an equivalent expression in the two genotypes or
higher expression in the genotype with higher methylation. This
suggests that the gain of CG/CHG methylation or CHH methyla-
tion in regions surrounding the TSS can be associated with al-
tered expression in some cases, but that other genes can tolerate
variable methylation without a significant change in expression.

Partially overlapping UMRs contribute
substantially to differentially methylated regions
The analysis of natural variation for DNA methylation is often
focused on identification of differentially methylated regions
(DMRs) between genotypes. In this study, we elected to focus on
the conservation/variation of UMRs as these regions have evi-
dence for functional relevance in crop genomes. However, the ob-
servation that many of these regions only have partial overlap
suggests that many DMRs might be the result of a shift in the
boundary between methylated and unmethylated DNA rather
than a complete regional gain/loss of methylation (Figure 6A).
The 100 bp bins were used to identify DMRs between the geno-
types. There are 116,000–158,000 100 bp bins that are classified as
differentially methylated with hypomethylation in B73 relative to
the other genotype. We assessed how many of these DMRs are
due to completely polymorphic UMRs compared to partial UMRs
with different boundaries between methylated and unmethy-
lated DNA (Figure 6B). The polymorphic UMRs account for 2.5–
3.3% of all differentially methylated bins depending on which
genotypes are being compared. A larger proportion (51.5–53.5%)
of the differentially methylated bins are due to partially overlap-
ping UMRs. The remaining differentially methylated bins occur in
regions too small to be classified as UMRs (UMRs <300bp) or rep-
resent single bin differences in larger UMRs. This analysis sug-
gests that many of the DMRs are due to shifting boundaries
between methylated and unmethylated DNA rather than a com-
plete gain or loss of methylation in a region. It is noteworthy that
within a genotype we find very few examples of shifting bound-
aries between biological replicates (Supplementary Figure S4).

These observations suggest that the specific boundary between
methylated and unmethylated DNA can be variable between geno-
types. This could be due to sequence changes at or near the edges
of these regions or could arise due to stochastic variation with no
sequence change. To address this question we assessed the pro-
portion of identical or partially overlapping UMRs within large
(>1Mb) blocks of sequence that is IBS. In total there was 112.7 Mb
of IBS sequence blocks that could be assessed and these are large
blocks of sequence that are essentially devoid of SNPs or structural
variants. While 5.3% of all UMRs are classified as polymorphic we
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find only 2.8% of UMRs that are classified as polymorphic in these

regions suggesting that fully polymorphic UMRs are depleted (1.9-

fold) in the absence of sequence variation (Figure 6C). The IBS

regions have a higher proportion of UMRs with identical bound-

aries in the two genotypes. However, there are still a large number

of UMRs with shifted boundaries (49.5%) suggesting that the

boundaries between methylated and unmethylated DNA can shift

even without nearby sequence variation.

Discussion
Zea mays, unlike many other model organisms, has a large genome

containing 80% repetitive sequence and high levels of DNA methyl-

ation interspersed with functional genic and regulatory regions

(Schnable et al. 2009; Jiao et al. 2017). Examination of genome struc-

ture across inbred lines have identified extensive polymorphism in

both genic and repeat regions of the maize genome (Chia et al.

2012; Hirsch et al. 2014; Springer et al. 2016; Darracq et al. 2018;

Anderson et al. 2019; Hufford et al. 2021). Prior analyses of natural

variation of chromatin in maize have been based on epigenome

profiling data aligned to a single reference genome (Li et al. 2015b;

Xu et al. 2020). While a single reference genome provides insight

into variation in conserved genomic regions, it does not contain

the full set of sequences present in the lines being compared,

resulting in biases in the ability to compare chromatin properties.

The availability of multiple de novo genome assemblies allows for a

more complete discovery of regions with specific chromatin

properties, such as UMRs or ACRs. In this study, we profiled ge-

nome-wide DNA methylation, based on alignments of data to the

corresponding genome assembly, to identify the �6% of each ge-

nome that exhibits an unmethylated state and the �1% that is ac-

cessible chromatin. A pan-genomic analysis of UMRs and ACRs

reveals the frequency of these features within both shared and

nonshared genomic regions. Within the shared sequence regions it

is possible to assess the stability of the unmethylated and accessi-

ble chromatin portions of the genome.

Pan-genome analyses reveal enrichment of
unmethylated regions within shared sequence
In a comparison of any two genomes, the sequence unique to

each genome is primarily composed of highly repetitive sequen-

ces with extensive DNA methylation and is found to be depleted

Figure 5 Characteristics of polymorphic UMRs. All B73 UMRs classified as polymorphic (shown in Figure 4A) were assessed based on the type of
methylation present in the methylated genotype. The classification is based on which type of methylation state is most common among the 100 bp bins
of the UMR. (A) A genome browser view of a region on chromosome 5 of the B73 genome. A track of B73 methylation in all contexts (CG-blue, CHG-red,
CHH-yellow) is shown with UMRs defined below in black. Regions with shared sequence with W22 are shown in red and the W22 methylation track
(aligned to the B73v4 assembly) with corresponding UMR classification as overlapping (purple) or polymorphic (red). Three separate snapshots are
shown with the type of methylation found in W22 for the variable UMR noted below (CG only, CG/CHG, or CHH). (B) The percent of all B73 UMRs
classified as polymorphic that change to CG only (light blue), CG/CHG (dark blue), or CHH (green) methylation in the other genotype was calculated. (C)
UMRs were defined as containing an ACR in both genotypes (Stable ACR: blue), in one genotype (B73 only ACR: green, NonB73 ACR: orange), or lacking
an ACR in both genotypes (No ACR: red). The proportion of each category of B73 UMR (overlapping and polymorphic) that is defined by ACR presence or
absence is shown for each genotype. (D) The proportion of UMRs that are found within 200 bp of an annotated gene TSS that are defined as differentially
expressed (DE), expressed in both genotypes or not expressed is shown for each genotype. Genes were classified as differentially expressed (log2 fold
change > 2 and P-value < 0.05) with the higher expression level observed in B73 (green) or the nonB73 genotype (orange) or as nondifferentially
expressed (FPKM > 1, pink) or not expressed (silent: purple).
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for genes (Chia et al. 2012; Hirsch et al. 2016; Springer et al. 2016;
Darracq et al. 2018; Anderson et al. 2019; Hufford et al. 2021). The

proportion of the nonshared genome that is classified as UMR or

ACR is 6–12 fold lower than the proportion of the shared genome
classified as UMR or ACR. This reduction in UMRs and ACRs is

not simply due to the reduced gene content in nonshared space.

Most (80%) of genes in the shared space are associated with a
UMR, while only 17% of genes in nonshared space have a UMR.

This is not unexpected as prior studies of presence-absence vari-

ation (PAV) genes have found that most of these genes that vary
between genotypes are not expressed even when they are present

(Swanson-Wagner et al. 2010). A recent analysis of 26 maize

genomes that used a slightly different approach to classify unme-
thylated and CG-only regions reported similar findings (Hufford

et al. 2021). More UMRs are identified by aligning chromatin data

to the proper genome but the proportion of UMRs or ACRs in this
nonshared space is much lower than in the shared regions. These

analyses suggest that pan-genomic analyses can identify novel

UMRs or ACRs but that these are relatively rare in the sequences
that exhibit large scale structural variation. However, it is worth

noting that the UMRs or ACRs that are present near the genes in
the nonshared space can be an effective tool for identifying genes

with potential expression (Sartor et al. 2019; Crisp et al. 2020).

Given that many of the genes within these regions are likely
pseudogenes generated by transposition of genes or gene

fragments that can be difficult to annotate just based on se-

quence, the use of chromatin data can help to identify genes with

potential function in these regions.

Characterization of relative dynamics of
accessibility and methylation
We were interested in studying the relative dynamics of both

DNA methylation and chromatin accessibility among genotypes.

Prior studies have found that the majority of accessible regions

have little or no methylation (Ricci et al. 2019) but that there are

also many UMRs that lack accessibility (Crisp et al. 2020). The

analysis of UMRs that are present within shared sequence

regions can be used to understand how often there is variation in

only accessibility as opposed to coordinate changes in both DNA

methylation and accessibility. The accessible UMRS (aUMRs)

tend to be relatively stable in other genotypes with both accessi-

bility and lack of DNA methylation for an overlapping region in

other haplotypes. This is consistent with the concept that these

regions may be important for proper regulation of gene expres-

sion and therefore changes in these chromatin properties could

be associated with functional differences. The inaccessible UMRs

(iUMRs) were often inaccessible and unmethylated in both geno-

types but there were a large number of these that exhibit poly-

morphic DNA methylation status such that they exhibit high

levels of DNA methylation in the other genotypes. Only a small

Figure 6 Many DMTs are due to partially overlapping UMRs. (A) IGV (Robinson et al., 2011) view of DMTs. Tracks show B73 gene and TE annotations, B73
and Mo17 single cytosine methylation in all contexts (CG: blue, CHG: red, CHH: yellow), B73 UMRs and classification relative to Mo17 (identical: blue,
partial: green, polymorphic: red), and DMTs defined by a low level of B73 CG methylation and high level of Mo17 CG methylation. (B) The proportion of
B73 DMTs that are associated with partially overlapping UMRs (green) or polymorphic UMRs (orange) is shown. (C) The proportion of B73 UMRs,
genome-wide (control) or in IBS regions, that are shared or nonshared (purple) based on sequence with the respective genome assembly. Shared regions
are further classified as missing data (orange) for UMRs that lack data in the other genome, identical (blue) for UMRs that maintain an unmethylated
state in the same region, partially overlapping (green) for UMRs that maintain an unmethylated state but have different UMR boundaries across
genotypes or polymorphic (red) for UMRs that change to a methylated state in the other genome.
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proportion of these UMRs exhibit a consistently unmethylated
state in both genotypes with accessible chromatin in only one of
the two genotypes. These likely include some examples of false
negatives due to relatively stringent criteria for calling an ACR. In
these cases, an ACR may be present in both genotypes but only
identified as significant for one genotype. However, these cases of
variable chromatin accessibility also include examples with clear
support for chromatin accessibility in one genotype but no evi-
dence for chromatin accessibility in the other genotype. These
are interesting as they potentially reflect differences in transcrip-
tion factor occupancy for regions that are stably unmethylated in
both genotypes. It is possible that these may reflect differences in
tissue-specific expression patterns of some maize genes. In leaf
tissue, there may be differential chromatin accessibility, but it is
possible that the genotype without chromatin accessibility in leaf
tissue still becomes accessible in some other tissue that exhibits
expression. Alternatively, minor sequence changes at transcrip-
tion factor binding sites may result in loss of chromatin accessi-
bility even though the region is unmethylated in both genotypes.

Stability and instability of UMRs between
genotypes
A subset of the shared sequence UMRs do not maintain their
unmethylated state across genotypes and instead have high lev-
els of methylation in at least one of the other three genotypes.
The presence of methylation variation in the shared sequence
regions allowed for characterization of attributes associated with
chromatin state instability. Prior studies have suggested that
structural variants, especially transposable element polymor-
phisms, can be associated with changes in DNA methylation for
nearby sequences (Eichten et al. 2012; Schmitz et al. 2013). When
analyzing DNA methylation based on a single reference genome
it can be difficult to incorporate information about structural var-
iants and to map reads near the junctions of these variants.
Using alignments to each reference genome and then comparing
coordinates of syntenic 100 bp tiles allowed us to monitor
changes in DNA methylation between genotypes, even in regions
near structural variants. The polymorphic UMRs that represent a
full shift of an UMR in one genotype to methylation in the other
genotype are depleted in regions devoid of structural variants.
Within large blocks of IBS 2.8% of the UMRs are polymorphic. In
contrast, over 5.3% of all UMRs are classified as polymorphic.
This indicates that changes in methylation state can occur in the
absence of nearby structural variants but that the rate is sub-
stantially higher in regions with sequence variation.

In this study, we focused on the conservation and variation for
UMRs or ACRs between genotypes. These are relatively large (at
least 300 bp based on the criteria used for discovery) regions that
lack DNA methylation. We focused on these regions due to prior
evidence for functional enrichment of these regions (Oka et al.
2017; Ricci et al. 2019). We note that most of the UMRs in one ge-
notype have an overlapping UMR in another genotype. This sug-
gested stability of these chromatin patterns among genotypes.
However, closer inspection revealed that the majority of these
overlapping UMRs have different boundaries in the two geno-
types. These include examples in which one UMR is entirely
within the other as well as examples that have partial overhangs
in both genotypes. The partially overlapping UMRs seem to have
very similar genomic distributions and overlap with ACRs or al-
tered gene expression in similar proportion to those for identical
conserved UMRs. This suggests that these shifts in the boundary
between methylated and unmethylated DNA do not have func-
tional impact in most cases. This may suggest that the presence

of a UMR is more defined by sequences in the middle of the UMRs
rather than particular sequences at the edges that define the ex-
tent of methylation.

The observation of many partially overlapping UMRs sug-
gested that these shifts in the boundary between methylated and
unmethylated DNA could account for many examples of differ-
ential methylation between genotypes. Conceptually, it is tempt-
ing to think that most differentially methylated regions result
from a local gain or loss of a patch of DNA methylation. However,
our analyses suggest that many of the differentially methylated
100 bp tiles actually arise due to changes in the boundaries be-
tween UMRs in different genotypes. Further studies will be neces-
sary to determine if these differences in methylation boundaries
represent a continuum such that each genotype has a slightly dif-
ferent boundary or if there are preferred epi-haplotypes.
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