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Abstract

In this paper, we will establish the global existence of a suitable weak solution to
the Erickson—Leslie system modeling hydrodynamics of nematic liquid crystal flows
with kinematic transports for molecules of various shapes in R?, which is smooth away

from a closed set of (parabolic) Hausdorff dimension at most -
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1 Introduction

In this paper, we will study the simplified Ericksen—Leslie system modeling the hydrodynam-
ics of nematic liquid crystals with variable degrees of orientation and kinematic transports
for molecules of various shapes: (u,d, P) : R* x (0,00) — R? x R? x R solves

Jdu+u-Vu+ VP =vAu—\V-(Vd o Vd + 5,[Ad - f(d),d]),
V.ou=0, (1.1)
Od+u-Vd —T,[Vu,d] = y(Ad — £(d)),

where u(z,t) represents the velocity field of the flow, d(x,t) is the macroscopic averaged
orientation field of the nematic liquid crystal modules, and P stands for the pressure function.
Here f(d) = DgF(d) = (|d|* — 1)d is the gradient of Ginzburg-Landau potential function

1
F(d) = Z_l(l — |d|*)?. Furthermore,

So[Ad — f(d),d] :=a(Ad —f(d)) ®d — (1 —a)d ® (Ad — f(d)),
T.[Vu,d] := a(Vu)d — (1 — a)(Vu)’d,
represents the Leslie stress tensor and the kinematic transport term respectively. The pa-
rameter a € [0,1] is the shape parameter of the liquid crystal molecule. In particular,

a =0, > and 1 corresponds to disc-like, spherical and rod-like molecule shape respectively
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(cf. [5,9, 7, 13]). The coefficient v represents the fluid viscosity, A stands for the competition
between kinetic energy and potential energy, and v reflects the molecular relaxation time.

In the 1960’s, Ericksen and Leslie proposed a comprehensive hydrodynamic theory of
nematic liquid crystals (cf. [8, 17]). Since then there has been a great deal of theoretical
and experimental work devoted to the study of nematic liquid crystal flows. The first rig-
orous mathematical study for the simplified Ericksen—Leslie system, that is, (1.1) without
Se, Ts terms, was made by Lin—Liu [19]. Later in [20], they established a partial regularity
for the suitable weak solutions which satisfy the local energy inequality, analogous to the
Navier-Stokes equations by Caffarelli-Kohn—Nirenberg in [3]. Very recently, the same type
of regularity result was obtained for the co-rotational Beris—Edwards (-tensor model by
Du-Hu-Wang [6].

In this paper, we will construct a global-in-time suitable weak solution to (1.1), which
enjoys a partial regularity that is slightly weaker than that of [20]. Besides its own interest,
we believe that this partial regularity may be helpful to investigate the un-corotational Beris—
Edwards system due to a similar structure of nonlinearities. There are two major difficulties
in the analysis of (1.1):

1
e First, as pointed out by [24], when a # — the stretching effect induced by 7,[Vu,d]

leads to the loss of maximum principle for the director field d, which plays an essential
role in [20, 6]. Here, inspired by [10, 18|, we will prove an eg-regularity result by a
blowing-up argument that involves a decay estimate of renormalized L3-norm of both
|Vd| and |u| and the mean oscillation of d in L® as well.

e Second, the presence of stress tensor S,[Ad — f(d), d] brings an extra difficulty on the
decay estimate of renormalized L2-norm of the pressure function P. While in the co-

1
rotational regime, i.e., o« = 5 Ve know that S% is anti-symmetric, which significantly
simplifies the analysis on pressure function (see [6]).
We would like to mention that in a recent preprint [15], G. Koch obtained a partial regularity
theorem for certain weak solutions to the Lin—Liu model that may be weaker than suitable
weak solutions and may not obey the maximum principle, in which a smallness condition is

imposed on normalized L°-norm of |d|.
Before stating our main results, we need to introduce

Some notations.

For u,w € R?, A, B € R*3, we denote

3 3 3
u-w .= Zuiwi, A:B= ZAijBij7 (AW)J = ZAZ_]Wl
i=1 =1

ij=1



and

(U@ w); =ww;, (VdoVd), Z 0,d;.0;dy,,

3
= Z 8juidj, Vu Td Z 8 u]
j=1
Define
H = Closure of {u e C*(R*,R*): V-u=0} in L*(R?),

and
V = Closure of {u € C*(R*,R*): V-u=0} in H'(R?).

For 0 < k <5, P* denotes the k—dimensional Hausdorff measure on R? x R with respect to
the parabolic distance:

6((2,), (3, 5) = max { |z = y|, VT = s}, ¥(2,0),(y,5) € R x R.

We let B,(z) denote the ball in R? with center  and radius r. For z = (z,t) € R® x R,
denote P,(2) := B,(z) x [t — r*,t], and

fz,r: f - !

fdzdt
]P’V‘( | ( ) | Pr (Z)

for any function f on P,(2).
Since the exact values of v, A\, don’t play roles in our analysis, we will assume

v=A=vy=1.

With the following identity
1
V- (VdeVd) =Vd-Ad + V(§|Vd|2), VF(d)=Vd-f(d),

the system (1.1) can also be written as

u+u-Vu+ VP =Au—Vd- (Ad - f(d)) — V- S.[Ad — f(d),d],
V-u=0, (1.2)
8d +u-Vd — T,[Vu,d] = Ad — £(d).

subject to the initial condition
(11, d)|t:Q = (uo, d()) in Rg. (13)

Definition. A pair of functions (u,d) : R* x (0,00) — R* x R? is a weak solution of (1.2)
and (1.3), if (u,d) € (LPLZNL7H ) (R? % (0, 00), R?) x (L HYN L H2)(R? % (0, 00), R?), and



for any ¢ € C5°(R? x [0,00), R?*) and 1 € C5°(R? x [0, 00), R?), with div ¢ = 0 in R® x [0, 00),
it holds that

/ —u- 06+ Vu: Vo—u@u: Vo —(6-vd) - (Ad — £(d))]dedt

R3x(0,00) (14)

+ / Sa[Ad — £(d),d] : Vodzdt = / uo - ¢(x,0)dx,
R3 x (0,00) R3

/ [—d -0 +Vd: VY —u®d: Vy+£(d) - ¢]dzdt
R3x(0,00)

- / To[Vu,d] - dxdt = / do - Y(x,0)dx.
R3x(0,00)

R?)

The global and local energy inequalities for (1.2) play the basic roles: for ¢ > 0,

/RB (%(Iu\2 +|Vd]?) + F(d)) (z, t)dz + /O /R (IVuf? + |Ad — £(d)|?) (z, s)dads

< [ Gl + 1Y) + F(do)) (2)d, (1.6)

[% (lu)? + |Vd]?) + F(d)](x, t)dx + /Ot /]R (IVul? + [Ad + [£(d)[*) ¢(x, s)dads
< [ [ 3P + V4P @0-+ 20) + F(@00] 5

+/t/RS [5 (P +2P) u- Vo + Vd© Vd : e Vo) (x, )drds

+/t/ (Vd © Vd — |Vd[’I5) : V2¢(x, s)dxds

+/t/ S.IAd — £(d), d] : u® Ve(, s)drds

n / t / T.[Vu,d] - (Vo - Vd)(z, s)deds

[ (Vo - Vd) - f(d)dads — 2 t VE(d) : Vdé(z, s)dzds. (1.7)
/1. /L

provided 0 < ¢ € C°(R? x (0, 1)).
It should be noted that the following cancellation

t t
/ / Sa[dy, do] : Vugdads — / / TV, dy] - diédads (1.8)
0 R3 0 R3

plays a critical role in the later analysis.

Definition. A weak solution (u,d,P) € (LXL: N LIH))(R? x (0,00),R?) x (LHE N
LIH*)(R? x (0,00),R?) x L%(R3 x (0,00)) of (1.2) is a suitable weak solution of (1.2),
if in addition, (u,d, P) satisfies the local energy inequalities (1.7).
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The main theorem of this paper concerns both the existence and partial regularity of
suitable weak solutions to the simplified Ericksen—Leslie model.

Theorem 1.1. For any uy € H,dy € H'(R?,R?) such that F(dy) € L*(R?), there exists a
global suitable weak solution (u,d, P) : R®* x R — R® x R® x R of the simplified Ericksen—
Leslie system (1.2) and (1.3) such that

(u,d) € C¥(R* x (0,00) \ ),
where ¥ C R x R, is a closed subset with 73175+”(Z) =0,Vo > 0.
A couple of remarks on the presence and size of the singular set 3 are in orders.

Remark 1.2. Mathematically, it is a very challenging problem to ask if the set of singularity
¥ is empty or not. Physically, the presence of potential singular set 3 for a solution (u,d)
to the hydrodynamic system (1.2) may arise from the 3-D turbulence phenomenons of the
underlying fluids (e.g., vortex points, lines, or filaments) as well as the defects of the liquid
crystal molecular alignment field d induced by the rotating and stretching effects of fluid
velocity field u, see for example Chorin [4]. While Mandelbrot conjectured in [22, 23] that
the self-similar nature of turbulence of the fluid may result in concentration of possible
singularities of u on a set of fractional Hausdorff dimension.

Remark 1.3. The best known result on the set of singularities for the Navier-Stokes equation
was obtained by Caffarelli-Kohn—Nirenberg [3], which asserts that it has zero 1-dimensional
parabolic Hausdorff measure. For the co-rotational Beris—Edward ()-tensor system for lig-
uid crystals, a result similar to [3] was also obtained by [6]. While our estimate on the

dimension, = of the singular set ¥ in Theorem 1.1 may not be optimal, it is a natural
consequence resulting from the blowup analysis (see Lemma 4.1) and the fractional Sobolev

1
space regularity of the director field, i.e. d € WiQ (Qr) (see the section 5 below).
7

This paper is organized as follows. In section 2, we will derive both the global and local
energy inequality for smooth solutions of (1.2) and (1.3). In section 3, we will demonstrate
the construction of suitable weak solution. In Section 4, we will prove the ep-regularity
criteria for the suitable weak solutions. In section 5, we will finish the proof of the Theorem
1.1.

2 Global and local energy inequalities

In this section, we will derive both the global and local energy equalities for smooth solutions
to (1.2).

Lemma 2.1. Let (u,d) € C®(R? x [0, 00), R* x R?) be a solution to the simplified Ericksen-
Leslie system (1.2). Then it holds that

d

1
— | = (Ju+|Vdf’) + F(d)dz + / IVul|® + |Ad — f(d)[*dx = 0. (2.1)
dt R3 2 R3



Proof. The proof is standard. See for instance [24, 25]. O

Lemma 2.2. Let (u,d, P) € C*®(R® x (0,00), R* x R* x R) be a solution to (1.2). Then for
all 0 < ¢ € C(R? x (0,00)), it holds

d

p (|u]* + |Vd[?) + F(d)] ¢dz +/ (|Vul]® + [Ad]? + |£(d)[?) ¢da
t R3 R3

3
= [ (P +[VaP) @0 + A0) + Fd)dldr

T3

3

+

—r

[% (Ju +2P)u-V¢+Vd o Vd : u® Ve|dr

3

+ [ (VdeVd - |Vd|’;) : VZ¢(z, s)dx

3

+ [ So[Ad —f(d),d] : (u® Vo)(x,s)dx +/ T,[Vu,d] - (V¢ - Vd)(z,s)dx

3 R3

£(d) - (V¢ - Vd)dx — 2 / VE(d) : Vdo(z, s)da. (2.2)

3 R3

Proof. Multiplying the u equation in (1.2) by u¢, integrating over R®, and by integration
by parts we obtain

d
dt

- / L uP@6+ Ag) + L (juP +2P)u - Veld
) 2

]u] ¢da:+/ |Vul?¢dx

- /3(11 .vd) - Adgdz + /3(11 -vd) - £(d)¢dx
+ / Su[Ad — £(d),d] : (u® Ve)dz + / S.[Ad — £(d),d] : Vugdz  (2.3)

By taking derivatives of d equation in (1.2), we have
o,Vd+V(u-Vd) = V(Ad — f(d) + T,[Vu,d]).
Then multiplying this equation by Vde¢, integrating over R*, we get

d 1
— ZIVd|Pod Ad|?dd
L5 '“*/Rg' éda

:/ 1|v01|28,5¢>+/ (u-vd) - (Ad¢ + V¢ - Vd)da
R3 2 R3
—/ Ad-(Vqﬁ-Vd)dx—/ V(£(d)) : Vdeda

R3 R3

- / T,[Vu,d] - (Vo Vd)dz — / 7,[Vu,d] - Adgdz. (2.4)

R3

6



It follows from direct calculations that

1
— Ad - (V¢ -Vd)dx = / §]Vd|2Aq§dx +/ (Vd o Vd — |Vd|*[3) : Vipdr. (2.5)
R3 R3 R3
Moreover, multiplying the d equations by f(d)¢, integrating over R?, we get
4
dt Jgs

+ / TV d] - £(d)pda - / (VE(d) : Vdo + (V¢ - Vd) - £(d))dz.  (2.6)

3

F(d)pdx + / I£(d)|*pdz = / (F(d)d,¢ — (u-Vd) - £(d)¢)dx

R3

Hence, by adding (2.3), (2.4), (2.5) together, and applying (1.8), we get (1.7). O

3 Existence of suitable weak solutions

In this section, we will follow the same scheme in [3, 6] to construct a suitable weak solution
to (1.2).
We introduce the so-called retarded mollifier ¥y for f: R?* x R, — R, with 0 < 8 < 1,

wlflGet) = g5 [ 0 (5.5) Fla vt = rayar

where

fla,t) = { 5““"”” iig

and the mollifying function € C5°(R*) satisfies
n >0 and ndxdt =1,
R4
sptn C {(z,0) : |z]* < t,1 <t <2}.
It is easy to verify that for € (0,1] and 0 < T' < oo that
div ¥y[u] = 0 if divu =0,

sup [ [Wolw]2(w,t)dx < C sup [ |wl(z, ),

0<t<T JR3 0<t<T JR3
/ (VU [wW]|* (2, t)dzdt < C/ |Vw|*(z, t)dwdt.
R3x[0,T] R3x[0,7]

Now with the mollifier Uy[w] € C*(R*), we introduce the approximate system of (1.2):

o’ + Wy[u’] - vul + VP! = Au’ — V,y[d?] - (Ad? — £(d?))
—V - Sa[Ad” — £(d%), ¥[d"]],

V-u’ =0,

0, d? +u” - Vy[d?] — T,[Vu’, ¥,y[d’]] = Ad? — £(d?).

in R* x (0,7) (3.1)
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subject to the initial and boundary condition (1.3).
T
For a fixed large integer N > 1, set 0 = N € (0,1], we want to find (u’,d’, P%)

solving (3.1). This amounts to solving a coupling system of a Stokes-like system for u and
a semi-linear parabolic-like equation for d with smooth coefficients. For m = 0, we have
Ty[u’] = ¥y[d’] = 0, and the system (3.1) reduces to a decoupled system

o’ +vpP? = Au?,

V-u’ =0, o
ath — Ad@ _ f(dg), in R° x [07 0] (32)
(ueado)‘ = (u07d0>

which can be solved easily by the standard theory. Suppose now that the (3.1) has been
solved for some 0 < k < N —1. We are going to solve (3.1) in the time interval [k6, (k+ 1)0]
with an initial data

(u,d) = lim(u’,d’)(-,t) in R, (3.3)

t=k0 i1k

Then one can solve the coupling system (3.1) using the Faedo-Galerkin method. In fact,
for a pair of smooth test functions (¢,1) € V x H*(R? R?), the weak formulation for (3.1)
reads

4 u’ - pdr + / (Tg[u?] - VU?) - pda + vu’ : Voda
R3

dt Jgs RS
= —/ (¢ - VWy[d?]) - (Ad"—f(d"))dm+/ S,[Ad? — £(d%), y[d?)] : Vodz,(3.4)
and
% y vd? : Vidr — /R 3(u9-V\119[d9])-A1/1dx
_ / (A’ — £(d%)) - Az — / TV, Uyld’]] - Adbda (3.5)

We can solve the ODE system (3.4)-(3.5) with test function (¢, ¢) chosen to be the basis of
V x H*(R? R?) up to a short time interval [k6, k0 +T]. Multiplying the u’ equation in (3.1)
by u’, and the d’ equation by —Ad’ + f(d’), integrating over R® and adding two equations
together we obtain

d

1
G [ (P V) 4 P+ [ (V' 480~ H@)P)de =0, (36)
R3 R3

Next we need a uniform bound on (ue, d’, Po) to pass the limit € — 0 to get a suitable weak
solution. First by direct calculations we can show that

/ |Ad? — £(d%)|?dx = / [[AdY)? + |£(d%))* — 2Ad° - £(d%)]dx
= /3(|Ad9|2 + f(d%) 2 +2vd? : VE(d?))dx (3.7)

- / (|AQ?)? + |£(d%) > — 2|vd?|? + 2|vd?2|d’)? + 4|(Vad?)Td?|?)d.
R3
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From (3.6), we can obtain that

T
sup Sup/ (|u9|2+\Vd9\2)dx+/ / (VU 24 |Ad? —£(d%) |*dzdt < C(ug, do). (3.8)
R3 0 R3

0<0<1 0<t<T

Combining (3.7) and (3.8), we get

T T T
/ / |Ad?|)? + |£(d?)|2dzdt < / |Ad? — £(d%)|?dxdt + 2/ (Va?2dadt
0 R3 0 R3 0 R3

T (3.9)
< / |Ad? — £(d?)|*dxdt + 2T sup [ |Vd®[*dx
0 R3

0<t<T JR3

S C(u(b dOa T>7

From (3.8) and (3.9), we have that u’ is uniformly bounded in LZH!(R?® x [0,77]), d? is
uniformly bounded in L?H?(K x [0,T]) for any compact set K C R* and Vd’ is uniformly
bounded in L?H.(R® x [0,T]). Therefore, after passing to a subsequence, there exist u €
LEL2NLIHYR? x [0,T)), d € NpaoLPLi(Br x [0,T)), Vd € LPL2 N LZHL(R® x [0,T))
such that

u’ —u in L°L2 N L7 H, (R® x [0,T7),

d’ —~d in L°HY N LZHZ(R® x [0, 7)), (3.10)

f(d’) — f(d) in L?L2(R3 x [0,T)).

By the Sobolev-interpolation inequality, we have that Vd? € LtmL;%g .d? e LPLY and
T

[ Ivafpa < [ v,

/ 1?20 dt < O/ ]| 139 dt < co.

1
By the lower semicontinuity and (3.6), we have, for E(u,d) = / E(IUP +|Vd]* + F(d))dz,
R3
that

PR P

HLgHg < 0,

(3.11)

+/0 /R3(|Vu| +|Ad — £(d)|*)dzdt < E(ug, do) (3.12)

holds for a.e. 0 <t <T.
Now we want to estimate the pressure function P?. Taking the divergence of u’ equation
n (3.1) gives

AP = divA(Wy[u’] @ u’) + div (V(T,[d’)) - (A’ — £(d”)))

+ div? [S[Ad? — £(d?), Up[d?]]], in R® (3:13)

For P’ we claim that P? in Lg(]R?’ x [0,7]) and

1P ] oy < ooy ol ey ), 8 € (0,1]



In fact, by Calderon-Zgymund’s LP-theory, we have

1211

L3 (R3x1[0,T7)

< C|||wlu’ Jou| 5 5+ V(T[] - (Ad’ —£@))]| 5,

Lioit

+ 1wl ad’ —£a’) ] g]

<C[ I + V]

L3 L3

" —£(d)]]
LlOL% ||Ad L%L?D

{17 o [[AQ" £ 9>HL3L3]

< C(||u||LchgmL$H;(R3x[0,T]) ) ||d”LgOH;mLng(RSx[o,T]))

< C(llvoll 2 gsy » ldoll 1 sy » T)-
This uniform estimate implies that there exists P € Lg(Rg’ x [0,T7]) such that as 8 — 0,
P’ — Pin Li(R? x [0,7)). (3.14)
Recalling the u’ equation, we get
o’ = —Wyuf] - vu® — VP + Au’ — V(Ty[d?]) - (Ad? — £(d?))
-V Soz[Ad - f(de)a ‘Ije[de]]
€ LI(R® x [0, T]) + Li([0, T), W5(R)) + ) L([0, T, W™ (B),

R>0
and

sup [’

<ol LI ®R3x[0,T))+L3 ([0,7),W 13 (R3))+L2([0,T],W 3 (BR))

< C<R7 T, HuOHLQ(R3) ’ ||d0||H1(R3))'
Similarly, we can show

8,d’ € L5 (R3 + () L*([0,7], L3(Bg)),
R>0

and

0’| 5 < C(R, T, [0l x5, » 1ol 1 gsy)-

L3 (B3 [0,10)+Ngso L2(0,71,L 2 (Br) (B3 x[0,T]) =

Hence by the Sobolev embedding and Aubin—Lions’ compactness Lemma, we can conclude
that as 6 — 0,

(W S u in LP'(R* x [0,T]),1 < p; < %,
vu’ = Vu in L*(R® x [0,7)),
d’ —d in LP2(R® x [0,T]),1 < ps < 10, (3.15)
vd’ - vd  in IP(R3x[0,T]),1 <p; < ?,

| V2d’ = V’d in L*(R® x [0, 7).



Furthermore, (ug, d’, PG) satisfies the local energy inequality. In fact, if we multiply the u’
equation in (3.1) by u’¢, take derivative of the d? equation in (3.1) and multiply by Vd’¢,
multiply the d’ equation in (3.1) by f(d?), and perform calculations similar to the previous
section, we can get

d

dt Jgs

- / J%(\uﬂ? +|Va’P) (0 + Ag) + F(d’) ] d

(5 (0 + [VaP) & F(@)odo + [ (Vo' +[AdF -+ [£(@)P) ods
RS

+

T——a

1
[§|u9]2\119[u9] Vo + P'u’ - Vo + V,[d°] o Vd’ : v’ ® Voldr
3

(3.16)

+ [ (Vvd’ovd® - |Vd’)’L;) : Vieda

3

+

3

So[Ad? — £(d?), Uy[d?]] : (v’ ® Vo)dz + / T, [Vu’, Uy[d’]] - (V¢ - Vd”)dx

R3

— / f(d%) - (Vo - vd?)dr — 2 / vi(d?) : Vd?¢da.

R3
With the convergence (3.14), (3.15), it is easy to check that the limit (u, d) is a weak solution
to (1.2) and (1.3). Taking the limit in (3.16) as # — 0, by the lower semicontinuity we obtain

/RS BHHF +|vdf) + F(d)] ¢(x,t)dx + /Ot /}R‘%(|Vu|2 + |Ad)? + [£(d)|?) pdads

0—0

< lim inf /R [%(|u9|2 +|vd’|?) + F(dg)] o(x,t)dx (3.17)

+/O /RS(|V11‘9|2 + |Ad9|2 + |f(d9)|z)¢dxd8]

While
lim R.H.S. of (3.16)

6—0
- / S +VdP) (06 + A6) + F(d)d,odr
R3

1
—1—/ {5(]u]2+2P)u-V¢+Vd@Vd:u®V¢ dx
R3

+/ (VA © Vd — [Vd[*L3) : VZedz (3.18)
R3
4 / Sa[Ad — f(d),d] : (u® Vo¢)dz
R3
+ / To[Vu,d] - (Vo - Vd)da
R3

- / £(d)- (Vo -Vd)dr —2 [ VE(d) : Vdeda
R3 R3

Putting all those together we show that the local energy inequality (1.7) holds. Therefore
(u,d, P) is a suitable weak solution to (1.2) and (1.3).
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4 e9-Regularity criteria

In this section we will establish the partial regularity for suitable weak solutions (u,d, P)
of (1.2) in R*® x (0,00). The argument is based on a blowing up argument, motivated by
that of Lin [18] on the Navier—Stokes equation. Recently, this type of argument has been
employed by Du-Hu-Wang [6] for the partial regularity in the co-rotational Beris—Edwards
system in dimension three. However, the kinematic transport effects in (1.2) destroy the
maximum principle for d, which is necessary to apply the argument by [18] and [6]. To
overcome this new difficulty, we adapt some ideas from Giaquinta—Giusti [10] to control the
mean oscillation of d in L®. More precisely, we have

1
Lemma 4.1. For any M > 0, there exist eg = eo(M) > 0, 0 < 10(M) < o and Cy =
X

Co(M) > 0, such that if (u,d, P) is a suitable weak solution of (1.2) in R* x (0, 00), which
satisfies, for 2o = (wg,t0) € R® x (r?,00) and r > 0,

|| == | ddzdt| < M, (4.1)
Pr(z0)
and
) 2
D(29,7) : = 7“_2/ (Ju* + |Vd|®) dedt + <r_3/ |P|5d$dt>
P, (z0) . P, (z0) (42)
+ (][ d— dzo,r|6dxdt) Tl
P (z0)
then {
D (29, To1) < 5 max {CID(ZO, ), 007”3}. (4.3)

Remark 4.2. In the absence of maximum principle for the director field d, the L-norm of
the mean oscillation of d plays the role in obtaining the (local) boundedness of (u, Vd) €
LPL2N L7H! in (4.15). By closely examining the proof of Lemma 4.1, the L°-norm can be
relaxed to the LP-norm of the mean oscillation of d as long as p > 5. However, this does not
seem to improve the estimate of the dimension of the singular set ¥ of (u, Vd), since we can

only obtain d € W;ﬁ, which can yield the boundedness of L% -norm of the mean oscillation
7
of d (see (5.4) below).

Proof. We prove it by contradiction. Suppose that the conclusion were false. Then there
1

exists My > 0 such that for any 7 € (0, 5), there exist ; — 0,C; — oo, and r; > 0, and

2 = (x4, ;) € R® x (17, 00) such that

|d., | < Mo, (4.4)

and

O(zp,m;) = €2 (4.5)

()
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but
1
D (z;,715) > 5 max {3, Cird}. (4.6)

Notice that
(T’I"i)_2/ (|u|3 + |Vd|3) dxdt + ((Tri)_Q/
Pfri(zi) P
<7t (TZ»Q/ (Ju]® + |Vd|®) dzdt + (riz/
Pri(zi)

2
|P|%da;dt)

" (Z’L)

|P|%dxdt)2),

]P)Ti (Zl)
1 1
( ][ d—d. .., 6dxdt> ' < (25\dzm —d,, |5 +2° ][ d—d.,,. Gda:dt) ’
Prr, (27) T7(2;)
6 3
_ (25‘ ][ (d - dzi,”)da:dt‘ P ][ d—d.,,, 6dxdt>
T, (Zz) TT; (Zz)
1 . 1
< 26][ |d - dz¢,n‘|6dxdt> i < 237’_5 (][ |d - dzi,m 6) :
PTTZ' (zl) Pri(zi)
From (4.6), we see that
Cir? < 20(2;,7r;) < 2max {7'74, 237"%} D (2, 1)
= 2max {7'_4, 237'_3} e}
so that
el 3
< : —)’ >0 (4.7)
2C; max {774, 23772}

Define the blowing-up sequence

(w;,d;, ) = (riu,d,rizP) (z; + iz, t; +1r2t), Vo € R® ¢ > —1,

and

(U, dy, P)(2) := <1 di—di 5) (2),Vz(z,t) € Py(0),

where

13



Then (u;, ai, ﬁz) satisfies

][ aid$dt =0, |di= |dZi7Ti
P1(0)

2
/ (|ﬁi|3 + |v8,-|3) ddt + (/ |E|3dxdt>
Pl(o) L IF’I(O)
~ 2
+ (][ |di|6d£(}dt> =1, (4.8)
P1(0) ,
72/ (\ﬁi\3+|Vai,3> dxdt + (72/ |]3i\3dmdt>
7(0) P (0)
1
2

N

It follows from (4.4), (4.5) that

< MOv

[SIE

——

d; — (ai)O,T\dedt)
P~ (0)

' ][ |d;|Sdadt < C(][ |d; — d;[%dzdt + |d;|°) < C(ef + M),
P1(0) P1(0)
][ F(d;)2dzdt < C]Z ||dy|* = 1P dzdt < C(e) + Mg + 1),
PP1(0) P1(0) (4.9)
f f(d;)|?dzdt < C (7[ |d;|Sdadt + 1) < C(e8 4+ ME+1),
P1(0) P (0)

][ |0af (d;)|*dadt < C (][ \d;|%dzdt + 1) < Clef + Mg +1).
\ JP1(0) P1(0)

~

Furthermore, (u;,d;, 13@) is a suitable weak solution of the blowing-up version of (1.2):

2 2

R € € 4.1
div u; = 0, ( 0)
2
atdi + &;ﬁi . de — Ta [Vﬁl, dz] = Adl — Tif(dz)
\ €
From (4.8), we assume that there exists
(W, d, P) € L3(P;(0)) x LIW3(P1(0)) x L2 (P;(0)) (4.11)

such that, after passing to a subsequence,
(@, d;, B) = (@,d, P) in L*(Py(0)) x LW *(Py(0)) x L (Py(0)).

It follows from (4.8) and the lower semicontinuity that

~ ~ 2 ~ 2
/ ([a]® + |vVd|®)dzdt + (/ |P|3dxdt) + (][ |d|6dg;dt> <1. (4.12)
P1(0) P1(0) P1(0)

14



We claim that

o) +Hd H < C < oo (4.13)
L HINLHZ (P (0))

||ﬁz‘||L;>°LgmL§H1( .
2

%
We choose a cut-off function ¢ € C5°(P1(0)) such that
0<¢<1,¢=1onPi(0), and |9¢] + |Vg| + V¢ < C.

Define
—a t—t
di(z, 1) 1= ¢ (x TAx —2) V(z,t) € R® x (0, 00).
Replacing ¢ by ¢? in (1.7), by Young’s inequality we can show
sup / (|u]*+ |VdA]® + F(d)) ¢idx
- <<t

+ / (IVul® + |Ad? + |£(d)]?) ¢} dxdt
Pr; (2:)

<C

[ QP+ 1P+ 236 + Fla@) o
Prl(zi) (414)
T / (lal? + VAP + | P))Jul|Vé?|dadt

Pr; (2i)

[ APV ¢ PPV s
Py (Zz)
[ VARV + Ve + \8df(d>HVd\2<b?d:cdt] .
P, (2
By rescaling and using the estimates (4.7), (4.8), and (4.9), we can show that

sup / (\ﬁﬁ - |V8i|2> dx + / (yVﬁi\Z + |V281-\2) dxdt
B%(O) Py 0)

1
—1<t<0

< 0/ {(|ﬁi|2+ yvaiﬁ) + F(d )} ddt
P1(0)

2

[ Ul (7 (P 15)

+C (i 2102 + |ds || Vs [?) dadt
P1(0)
+ 0/ IVd;|? + r2|Vd; |?|0af (d;)|dudt
P1(0)
< C.
This yields (4.13). Hence we may assume that

(@, d;) — (§,d) in L7 H}(P1(0) x L HZ(P1(0)). (4.16)
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From i — 0 and ‘ ][ didxdt‘ < M,, we have
P1(0)

g;
| ][ ddzdt| < | (d; — ][ d;)dzdt| + | ][ d;dxdt|
IP’% (0) IP’% (0) P (0) P1(0)

PPy (0)

Thus by the same interpolation as in (3.11), we have

||dz‘||L10(IP%(0)) <C,

][ I£(d,)|# dedt < C,
Py (0)
2

][ d; ® £(d;)|2dadt < C
Py (0)

1
2

][ F(d,)3dzdt < C,
P4 (0)

1
2

and there exists a constant d € R?, with |d| < M,, such that, after passing to subsequence,
di — d, o
d; — d in L5(P1(0)),

1
2

and
r; 10
—f(d;) = 0in L (P.(0)),
E; 2
7”-2 5
f; (4.17)
i .5
r? . s
Hence (U, d, P) : P1(0) — R? x R? x R solves the linear system:

8+ VP — Al = -V - S,[Ad, d],
divi =0, (4.18)
0d — Ad = T, [V, d].

),Pe L=~ [i 0],C=(B

By Lemma 4.3 and (4.12), we have that (4,d) € C>(P e (0)))

1 1
1 1
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satisfies
7—2/ (|ﬁ|3+|v&|3) ddt + (7—2/ P dadt)’
P, (0) - (0)

< CT?’[/ ([af + |vd|?)dedt + (/ |P|2dwdt)’] (4.19)
IP7%(0) P1(0)

1
SOT?), VT € (O,g)
and Jap € (0, 1) such that

(][ d — o, [Sdrdr)* < C’(][ APdrdt) 7o < P, Vre (0,9). (420)
P~(0) P1(0)

We now claim that

(U;, Vd;) — (4, Vd) in L3(Ps(0)),

3
d—d in L8(P3 (0)). (4.21)
In fact, from the equation for u; and d; in (4.10) we can conclude that
HatﬁiHLszlJrLtngJrLthz1’%(111’%(0)) <,
and R
0|, 3 #3) <C. (4.22)
Thus (%.21) follows from Aubin-Lions’ compactness Lemma. This implies that for any
T € (0, é)’

7—2/ (18 + [Va[*) dedt = 7—2/ (8 + [VaP)dadt + 20(1)
P-(0) +(0)

IN

Cr* +7720(1),
CT%% + o(1), (4.23)

IN

(][ d; — (dy)o.|0dadt)®
P, (0)

where lim o(1) = 0.
1— 00

Now we need to estimate the pressure ﬁz By taking divergence of the u; equation in
(4.18) we see that

~ ~ ~ ~ 2
) i

+div? S, [Ad; — %f(di),di] in B. (4.24)
We claim that
2 / Bl dedt < O + C72(2 + o(1), (4.25)
+(0)
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Since Sa[Aai, d;] does not necessarily have a small L*-norm in P1 (0), to achieve (4.25) we

will show the following strong convergence in L?*:
(Vi Ady) — (VE, Ad) in L*(Ps(0)). (4.26)

In order to prove (4.26), first observe that by subtracting the equation (4.10) from the
equations (4.18), we see that
—7)

m

(W, ds, B) = (al 4,d; —d,
solves the following system of equations in P (0):

2

Ot — AT; + VD = —e,Gi; - Vii; — &,Vd; - Ad; + %Vdi £(dy)
~ 2 ~ '

~V - S.[Ad; — %f(di), d;] + V- S.[Ad,d],

diviy; = 0, Z

IS 2 _
9d; — Ad; = —&,4; - Vd; — %f(di) + To [V, di] — Tu[Va, d).

(4.27)

\

Since (u;, d;, ﬁ) is a suitable weak solution of (4.10) and Lemma 4.2 guarantees the smooth-
ness of (u, d, P P), it is not hard to see that (4.27) also enjoys a local energy inequality which
leads to (4.26). In fact, multiplying the u; equation by u;¢, and Vd equation by degb
integrating the resulting equation over R® x [0, 7], and applying the integration by parts, we
obtain that

t
/ [0 |*p(z, t)dw + 2/ IV, |*pdrds
R3 0 JR3
t
< [ [ @+ soydsds
0 Jr3
¢
0 Jr3

—|—2/ / (—&:Vd; - Ad; - (uz—u)¢+ Vd -f(d;) - w;¢)dxds
0 Jrs

2t
i / Salf d;| : (Vw90 +1; ® Vo)dzds
0 JRr3
+2/ / (Sa Ad;, d;] Sa[Aa,_D (VU9 — Vg + 1, ® Vo) deds,  (4.28)
0 Jm3
and
t ~
/ IVd,|*¢(x, t)dx + 2/ |Ad,|?pdads
R3 0 JRr3
t ~ ~ o~ ~ ~
< / / (V286 + A¢) + 22,0, - Vd, - (Adid — Ado + Vo - Vd,))dads
0 Jr3

18



27’

f(d,) - (Adip + V¢ - Vd,)dads
0

R3
—2 / / [T,[V;,d;] — T,[Va,d]] - (Adi¢ — Ado + Ve - Vd,)dads. (4.29)
R3
Recall that
/ / Su[Ad;, di - Viededt = / / L[V, dy] - Adgedadt, (4.30)
0 JR3 R3
t
/ / S.[Ad, d] : Vigdadt = / / T.[Vu,d] : Adedadt. (4.31)
0 JR3 0 JR3
Therefore we can add (4.28) and (4.29) to obtain that
~ t ~
/ (]ﬁi|2+\Vdi|2)¢(x,t)dx+2/ / (IVaf* + |Ad, ) odrds
R3 0 JR3

t ~
< [ [ 1GwP+ vdp@o+ 20
0 R3
+ (|00 + 2P,;) - Vo + 2¢,(4; - V) - Ugldads

t ~
R3

vd; - £(d;) - @ + £(di) - (A&i¢+v¢-v&i) drds

R3

27’
/ g Sal d;] : (Va9 +u; ® Vo)drds (4.32)

+2// Adz,d c(W; ® Vo — Vug)deds
0o Jrs

s S~
%\

T, [V, d] - (Vo - Vd; — Adg)dzds

[\D

/ / Sl Ad d] : (V¢ +0; ® Vo)dads

=)
=

/ T.[Va,d] - (Ad;¢ + Vo - Vd,)dads

3

=

+
[\
ooC\

Bl
I
L
;;'

From the convergence (4.16), we know that

—0,
L?’(P%(O))

lim H(ﬁi, vd,)

1— 00

P, = 0 in L3(P3(0)),
(Vi;, V2d;) — (0,0) in L*(Ps(0)).
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4

This, together with (4.17), implies that as i — oo, Z I, — 0 and
k=1

t
Iy — —2 / S,[Ad,d] : Vigdrds
0 R3

t
Iy — 2/ / T.[V,d] - Adédzds
0 JR (4.33)

t
I; — —2/ / S.[Ad,d] : Vigdrds
0 JR3
t
Is — 2 / / T.[V,d] : Adpdrds,
0 R3

Therefore

8 t
PRAGEY! / / T,[Vi,d] : Ad¢ — S,[Ad, d] : Vigdzds = 0,
0 JR3

k=1
and (4.26) holds.
Let n € CSO(B%(O)) be such that n = 1 in B%(O), 0 <n < 1. For any —(%)2 <t <0,
define ]32-(1)(-,15) :R* = R by

~ SR ~ ~ 1.~ 2
R3 i
2
rs ~ ~
- j[sa[f(di)7 d;]] + [Sa[Ad;, d;] — Sa[Ad, d]] }(y,t)dy; (4.34)

~

and E(Q)(~,t) = (P, — f’i(l))(-,t). Then
— AP® = div* S,[Ad,d] in B (0). (4.35)
For f’i(l), by the Calderon-Zgymund theory we have that

_ . ~ r;
1B 5 sy < C[@(Huz‘\\isw%(e» + ||VdiHiS(B%(o>) + 2P 35, )

oolw

(0)) + HSa[Adi, d;] - Sa[Ad’a]HL%(BB(O)J

3
8 8

.
)t gHF(di)

ri
+ el

3 B3 (0)
8 8

ool

r2 L
+ 5_2,H|f(dz‘)||di|||,;%(3%(o)) + HdiHLﬁ(B%(O))”Adi o Ad“L?(B%(O))

+ Hdi_aHLG( ))HAHHB(

B%(O B (0))}
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Hence we have

Hﬁz‘(l)HL%(P o) < Clei+o(1)). (4.37)

From the standard theory on linear elliptic equations, P ) e C>*(B 16( )) satisfies that for

any0<7'<3—2,

~ ~ ~ 3
7—2/ PP s dzdt < CT[/ PP dedt + | V4|7 e, |
P, (0) Py (0) 35(0)

., s 3 4.38
SCT[/ (PJE+ 1P ydadt + VA, )] )
P g (0) ”

< C1(1+¢ +0(1)).

Combining (4.37) with (4.38) yields (4.25). It follows from (4.23) and (4.25) that there exist

1
sufficiently small 75 € (0, Z) and sufficiently large g, depending on 7, such that for any
1 > 19, it holds that

Njw

TOQ/P 0(]ﬁi]3+\vai|3)da:dt + (702/P |P|2 dwdt)

T0 ( ) 0 (0)

+ (][ |d; — (dy)ry 0|0dadt)
Pry (0)

(NI

1
< =
4

This contradicts (4.8). The proof of Lemma 4.1 is completed. O

Now we will establish the smoothness of the limit equation (4.18) in the following lemma.

Lemma 4.3. Assume that (ﬁ,a) € (LL: N LfH;)(IP%(O)) x (LPHy N L;H?) (Py) and

. H !
Pe L%(IP’%(O)) is a weak solution of the linear system (4.18), then (u,d) € C’OO(IP’%(O)), and
the following estimate

72/ (\u|3+yvc1\3+ypy%) drdt < CT?’/ (\u\3+de\3+1py%) dedt  (4.39)
P, (0) P1(0)

holds for any T € (0, %)

Proof. The smoothness of the limit equation (4.18) doesn’t follow from the standard theory
of linear equations, since the source term of U equations involve terms depending on the third
order derivatives of d. It is based on higher order energy methods, for which the cancellation
property, as in the derivation of local energy inequality for suitable weak solution to (1.2),
plays a critical role. This strategy has been adapted by Huang—Lin—Wang in[11, Lemma 3.2]
for the full Ericksen—Leslie system in 2D. However, it is more delicate here due to the low
temporal integrability of pressure. To address this issue, we split the pressure into two parts
PW and P® where P solves the Poisson equation involving Ad which belongs to L2, and

21



16(2), while is only L3 in time, is harmonic in space. In fact, if we take the divergence of the
equation (4.18);, then we have P satisfies the following Poisson equation:

— AP = div’ S,[Ad, d] in P,. (4.40)

Now let ¢ € CSO(B%(O)) be a cut-off function of B%(O), ie, ( =1 on B%(O), 0<(¢< 1L
Define ﬁ(l)(-,t) ' R® - R,

~

PUGw.0)i= [ V26— )¢S, (A 3.y,

and PP (- 1) := (P — PW)(-,t). For P, by Calderon-Zygmund’s singular integral estimate
we have

~ ~ 1
P(l)-t‘ <CHAd-t ——<t<o.
[P00] gy < O 2000y o gt
Hence we can integrate the inequality above in time to get
/ POPdzdt < ¢ [ |Ad[dwdt. (4.41)
Py Py
2 2
For 16(2), it is easy to see that R
—AP® =0 in Bs. (4.42)

By the standard regularity theory of harmonic function we have

/ VPP |2dadt < C / |P® |2 dxdt
Pi P§

16 8
3
2

gc/ (|P|2 + |PY|2)dzdt
Py

s (4.43)
< 0/ |P|3dxdt+o/ PO 2dadt + C
]P’% ]P%
< C/ |13|3d:cdt+0/ IAdPdzdt + C,  1=1,2.
P P

1 1
2 2

Taking of the linear equation (4.18) yields

0
8.’171'
Oy, + VP, — A, = —V - S,[Ad, dl,,,

V-, =0, (4.44)

8d,, — Ad,, = T,[V,d],,.

K3

For any n € Cg°(Bs ), Multiplying the equation (4.44); by 1,,n* and the v&mi equation

5
16
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from (4.44)3 by Vamﬂf and integrating the resulting equations over B 5, We obtain!

d

L\ vaRede + 2 / V2P
i /.

5 Bs
16 16

=2 [ (P VO7) - Vi, @ V) (4.45)
B

5
16

+2 [Su]Ad, d],, : Uy, @ V(1?) + Sa[Ad, dl,, : Vii,,n?dz.

7
B

(83

I

(=2

d

— IV2d|*p%dx + 2/ |AVd|*p’d
it /.,

5 Bs
16 16

=2 / V,Vd,, : Vd,, ® V,(n?)dz (4.46)
B 5

P / To [V, dly, - V;d,, YV, (77) + Ta[ VA, dla, - A, 12de.
B s

16

Once again, we have the cancellation

K3

/ Su[Ad, dly, : Vi, — TV, d, -
B

16

= / [Sa|Ad,,, d] : Vi, n° — Ta[Vi,,, d] - Ady,n?]dz = 0.
B

Now we add (4.45) and (4.46) together to get

4
dt /.

16

(|va|2 + |v28|2> da + / <|v2ﬁ|2 + |Ava|2> de

B s
16

9 / P.fi,, - V(n)da
B

;‘m

B

5
16

2 [ (Sul0d @) B © V) - T[T, ) VAV ()ds
Bs

=L+ L+ 1.

1Strictly speaking, we need to take finite quotient D{L of (4.18) (j =1,2,3) and then sending h — 0.
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We have the following estimates:

<2 [ (P V) + PUG, V) de] 42| [ G (POVOP)da
B5 B5
1 . . .
< — \VAPn?de +C | (|VU*n* + |VU*|Vn|?)dz + C | PO 2dy
32 B s Bl sptn

|

6

+C/ ([aP + |[VP?|2 4 |V?*P@)|3)da.
sptn

1
|| < —/ (\VQ |2+|AVd| 2dx+C'/
16 /5, B

16

1 R ~
|I5| < 16/ (\Wﬁy? + \AVd\ n’dr + C/ \vqu + |v2dy2> |Vn|?da.
B s

Tg 1

(IVaP +|v2d[) [vnfde,

5\

Putting these estimates into (4.47), we obtain

d R ~ N ~
o | (vaP+ |V2d|2)n2d:v+/ <|V2u|2 + |V3d|2> n°dx
s O (4.48)
<C [ (VAP + V3P + [POP + 8P + VP2 + [V2PP|2)de
sptn
. : S 9
By Fubini’s theorem, there exists t, € _(E) ,—(3—2) such that
/ (|Vﬁ|2 + |v2a|2) 0 (t,)dx < 100/ (IVa)? + | V2d|?)n’dadt.
B Py
Integrating (4.48) for t € [t., 0] yields that
sup / (VA + [V2d)n?(t)do +/ / (V28 + [VPd[*)n?dadt
—(%)2<t<0 Bs —(35)2<t<0J B3
16
= 0/ / (VP + [V2dP + [POP + @ + [VP|2 + |V2PP|2)dwdt
L Jspty
(4.49)

+C/ (IVa)? + |V2d[?*)nPdadt
s
< 0/ (IVa)? + |[V2d|? + [6f + | P|2)dzdt + C.
Py

2
1
For the pressure P, taking divergence of the equation (4.18); yields that for any —1 <t<O0,
— AP, = div’ So[Ad, d],, in Bss. (4.50)
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We have

VP2 dadt < c/ (|SalAd, d],, |2 + | P|?)dzdt < 0/ (|Vd| + | P|?)dxdt
]Pg PQ
32 32

% (4.51)

Py
4

< 0/ |V3a|2da:dt+6’/ |P|2dadt + C.
Pg IPQ

Now let 1 be a cut-off function of Bg%, ie,n=11in Bg. Then, by combining (4.49) and
(4.51), we obtain

sup [ (VGP 4 (VAP + [ (VRGP VAP 4 (VP dode
—(3)2<t<07/ By P,
! (4.52)
=~ ~ < ~ 3
< C/ ([G + |Va|]? + |V2d[? + | P|? )dzdt + C.
Py
It turns out that we can extend the energy method above to arbitary order. Here we sketch

the proof. For nonnegative multiple indices 3,y and ¢ such that v = 4 ¢ and 4 is of order
1, |3| = k, then (V*4, v'd, V7 P) satisfies

8,(VP0) + V(VPP) — A(VPG) = —V - S,[A(VFd), d],
div(VPd) = 0, (4.53)
8,(V'd) — A(V'd) = T,[V(V'd),d].

By differentiating (P, P®) (k — 1) times we can estimate

(VPO 2dadt < C / IVF A2 dadt, (4.54)

Pl I[:Dl
2 2

and

/ VPO dedt < C | |V 'Pl2dadt+C | |V*'d|Pdadt+C, 1=k k+1. (4.55)
Py By Py

Multiplying (4.53); by (V71)n? and (4.53)3 by (V”&)nQ and integrating the resulting equa-
tions over B 1 and by the same calculation and cancellation, we obtain

d

E (|Vk |2+|V'€+1d| ) 2dx—|—/ (|Vk+1ﬁ|2+|vk+2a|2)n2da:

Bg
16

V’“ﬁ]2+|vk+la\2+|vk‘1P(l\ +’vk lA’3+‘VkP ‘2 _|_|vk:+lp ’%)d

\

j
16

/ (VG + [VEP + [V + [V P2 dadt + C.

2

(4.56)
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For P, since

— A(V?P) = div* 5,[A(V"1),d] in B, (4.57)

we have

Pg

R = ~ (4.58)
< 0/ |VEP2d | dodt + 0/ \VF 1P| 2 dzdt + C.
P P

2 R
32 32

/ IVFP|2dudt < C/ |V’“+Qa|3dmdt+0/ IVF1P |2 dadt
P P9
32

1
4

By choosing suitable ¢, as above, we can integrate (4.56) in ¢ to get

sup /
—(35)2<t<07/ B

< C/ (IVFG? + [V + |VE)? + (VR P2 )dadt + C.
P

1
2

(IVFG + V1) dz + / (IV*14)? + |VF+2d)?) dadt
9 P9
32 32

(4.59)

Thus, we get

sup / (‘Vkﬁ‘2+yvk+la’2)dx_'_/ (’vk+1ﬁ|2+‘vk+2a|2+’Vkﬁ’g)dxdt
—(1)2<t<0/ By P,
! (4.60)
~ ~ -~ ~ 3
S C/ (|Vk_1u|3 + |vku|2 + |Vk+1d|2 + |vk_1P|2)dl’dt—|— C.
Py
2

From Sobolev’s interpolation inequality, we have

RPN _1~116 RPN ~
/P (VP dedt < C||VF 1uHL§oL§(P )+(J/P (V4 + |VF)?)dodt.

1
2

1 1
2 2

Substituting this inequality in (4.60) and by suitable adjusting of the radius, we can show
that

sup / (|Vkﬁ|2+|vk+1a|2)dx+/ (IVFHG[ 4 |[VF2d)? + |VF P2 )dadt
BlX{t}
1

—($)2<t<0 P,

1 (4.61)
gC(W&v&H

Pl ).
L;’OL%ﬂLfH%(P%)’” L?(P%)

With (4.61), we can apply the regularity for both the linear Stokes equations and the linear
heat equation (c.f. [16, 21]) to conclude that (u,d) € C*(P1). Furthermore, applying

the elliptic estimate for the pressure equation (4.40), we see that Pe (P %). Therefore
(W, d,P) € C’OO(]P’%) and the estimate (4.39) holds. The proof is completed. O

The oscillation Lemma admits the following iterations.
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Lemma 4.4. Let (u,d,P), M,eq(M), 70(M), Co(M
exist ro = ro(M),e1 = e1(M) > 0 such that for 0 <r <1, if
M

|| < — D (29,7

then for any k =1,2,..., we have
|d

Dz, 7'0

k1‘<M
)<€17

Z()’T'

1
(I)(ZQ,TO r) < = 5 maX{CD 20,7'0

), z0 be as in Lemma 4.1.

T)? CO(T(/;C_

Then there

(4.62)

)3}

Proof. We prove it by an induction on k. By translational invariance we may assume that

2o = 0, and we abbreviate d, to be dg, for simplicity.

For k = 1, the conclusion follows from Lemma 4.1, if we choose £; such that ¢; < &.
Suppose the conclusion is true for all £ < kg, kg > 1, we show it remains true for k = kg + 1.

By the inductive hypothesis

‘dT(I)c—lr‘ < M,
(0,757 1r) < &3,
1
(0, T(’f’f’) < 5 max {CD(O, Té“’l'r), CO(T(?’

for all £ < kq. Thus,

1
(0, 78r) < §max{¢) 0, 787 1r), Co( _17“)3}
1
< §max{ max {®(0, 75 ?r), Co(7,
007“3

DY _k
<o <27 max {®(0,r), 1_ 275,}

< 27F max {5‘;’, COTO } VE < k.

1-—
Then

dkl

1
17’)3} < 5 max {ei’, C’O(T(]f

17‘)3}

"7} Colet

h

M 1
3 z f a—d, )’
2 Pk(o) 0

ko
<5+ e}
k=1
M ko i 007”3 1
< 5 +;2 s (k 1)max{€1, (1_—20765)3}

27



M 1 C() 7”8
2

1
< + 1max{€1,(1_27_3)3}.
0

1—2753
If we choose sufficiently small ro = ro(M), 1 = e1,(M), we see
’diO’I“| S M,
0
(0, 700r) < &3 < el
It follows directly from Lemma 4.1 with r replaced by 7'57” that

1
(0, 70 r) < 5 max {CID(O,T(I)“T), C’O(Tgr)g’} }

This completes the proof. n

The local boundedness of the solutions can be obtained by utilizing the Riesz potential
estimates between Morrey spaces as in the following lemma.

Lemma 4.5. For any M > 0, there exists €5 > 0, depending on M, such that if (u,d, P) is a
suitable weak solution of (1.2) in R® x (0, 00), which satisfies, for zo = (x,to) € R* x (12, 00)

, and ®(z, 1) < &5, (4.63)

then for any 1 <p < oo, (u,Vd) € LP(P(2)), d € CQGP%(ZO)) and

|d| < M in ]P)%o (Zo), [d}ce(p%)(z())) < C(e, M)(El + To). (464)
108, V) e ey < C o M) +70), (4.65)
1

where €1 1s the constant in Lemma 4.4.
Proof. Let 23 = min{ (21), 2% &, (M)}. F P
roof. Let 52—m1n{(z), oe1(M)}. For any z € 0 (20),
|dz,%| < ‘dz,%o - dzo,To‘ + |dz077’0|

M
Sf |d_dzo,7‘0|+_§€2+
Prg (2) 4
Meanwhile,

(][ d — d, o [Pdzdt)?
Pro (2) ’

N

< (25][IP . |d — ds, | *dadt + 2°|do py — d, 0 |°)
o (%

< (2107[ |d — d., ., |°dzdt + 2° ][ |d — dzo,r0|6dxdt)%
]P’TO(Z()) P

(2

11

<22 (][ ’d - dzo,r0|6dxdt)%a
[P’TO(Z())
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Hence we get that
P(z, %) < 2%@(20,7“0) 2% 3 5 < el

Then we deduce from Lemma 4.4 that for any £ =1,2,...,

r 1
@(2,755) < Emax{i)(z Tg 1 0) CO( )3}

By Lebesgue’s differentiation theorem, we have |d| < M a.e. in Pro (20). Furthermore, we
have

(4.66)

7'0197’0

T) < 27" max {(I)(z

(b(z, 7"0) C()T’O }

2 1-27O

In2 1
e (0
0.3),

Therefore for 6y = it holds for any 0 < s < E and z € Pro (2 (20),

3| In 7o
D(z,5) < C(rd + 51)(r0)39°. (4.67)

By the Campanato theory, d € CH(IP’%O(ZO)) and (4.65) holds. Now for ¢ € Cg°(Pro)(20),
from (2.3), (2.4) we can derive the following local energy inequality:

5 (o +1VaPyoCe.0de+ [ [ (9uP -+ adP)ote, sdeds

IN

// 5 ([ul” +Vd[*)(@0¢ + Ag)(w, s)dwds

[=(Ju]? +2P)u- Vo +Vd 6 Vd : u® V|(z, s)deds

+
N | —

3
3

~+

%\%\a%\%\

(Vd © Vd — |Vd[*L;) : V?¢(z, s)dxds (4.68)

[Sa[Ad,d] :u® Vo +T,[Vu,d] - (V¢ - VA)|(z, s)dxds

3

+

+
S S — S

V- S,lf(d),d] - ué(z, s)drds

+ (u-Vd) - f(d)p(z, s)dzds — /Ot g Vi(d) : Vdo(z, s)dxds.

T

Let ¢ € C5°(Py,(2)) be a cut-off function of P,(z). Replacing ¢ by ¢* in (4.68), we can show

that for 0 < s < %,

8_1/ (IVul? + |Ad[?)dzdt

Ps(z)

gC[(23)3/ (]u]2+\Vd]2)dwdt+(25)2/ ([u* + |VdP + | P|})dedt]  (4.69)
P?s PZS(Z)

< O(rg +€39) (;0)200.
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Now we are ready to perform the Riesz potential estimate. For any open set U C
R3 x R, 1 < p < 00, define the Morrey space MP*(U) by

MPA(U) = {feLbc,( VU Wy = sup / ()|f|f’dxdt<oo}.

zeU,r>0

It follows from (4.67) and (4.69) that there exists o € (0, 1) such that
(u,Vd) € M3 (Pry (29)), P € M2 (Pry (20)), (Vu, V2d) € M>42(Pro ().
Write d equation in (1.2) as
9d — Ad = —u - Vd + T, [Vu,d] — f(d) € M2 (Pry (2)). (4.70)

Let n € C°(R*) be such that 0 < < 1, 7 = 1 in ]P)TO( 20), |0m| + |V?n| < Ord. Set
(d_dzo,7>' Then

SIS

Ow —Aw =F, F:=n*(0d —~Ad) + 0 — A’)(d —d,, ) —2Vn?- Vd.  (4.71)

We can check that F' € M 230~ (R*) and satisfies

||F|| < C(ro +e1). (4.72)

3(1—0) (Ra)

Let I' denote the heat kernel in R?. Then
VI (2, 1) < Co~*((=,1),(0,0)),V(x,t) # (0,0),

where (-, -) denotes the parabolic distance on R*. By the Duhamel formula, we have that

w(z,1)] < / /Rs|vr<x—y,t—s>||F<y,s>\dydssczl<|F|><x,t>, (4.73)

where 73 is the parabolic Riesz potential of order 5 on R*, 0 < 8 < 5, defined by

Ts(g)(x,t) = /R = (|(gx(79£)87)(|y7 S))dyds,‘v’g e L*(RY).

—a)
Applying the Riesz potential estimates [12], we conclude that Vw € MR 3(—a) (R*) and

1991, st a0 S CIF ysats-ary < Cra20). (4.74)

1_
Since lim u

L~ ~ =00, We conclude that for any 1 < p < oo, Vw € LP(P,,(20)) and
ats — 2z

HVWHLP ) = C(p)(ro + &1).

O

2
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Since d — w solves

8t(d - W) - A(d — W) =01in PTTO(ZO)’
it follows from the theory of heat equations that V(d —w) € L*(Pwu (z)). Therefore for
any 1 <p <oo,d € LP(Pu(z), and

HVd”Lp(pTO (20)) < C(p)(ro+e1).
4

We now proceed with the estimation of u. Let v : R? x (0,00) — R? solve the Stokes
equation:

(

1
Ov —Av+ VP =—div[!(u®@u+Vd e Vd — §]Vd|213)]
+div[A(F(d) - F(d),, )]s}
— div{n?(Sa[Ad — £(d), d] + Sa[f(d),d],, )}, (4.75)
V.-v=0,
v(-,0) = 0.

\

By using the Oseen kernel, an estimate of v can be given by
\v(z,t)| < CT(|X|)(,1),V(x,t) € R® x (0, 00), (4.76)
where

X=plu®u+ (VdeoVvd - %|Vd|2]3) — (F(d) = F(d).,m )15
+5a[Ad — £(d), d] + Su[f(d), d]., = ].

As above, we can check that X € M23(1-) (R*) and

HX“ ) SC’(T0+€1).

M3:30-0) (Ra

309 3(1—a) (4
Hence we conclude that v € M 1-2a> (R%), and

HVHM3(17¢1) <C HXHM%*?’“*"‘)(IM) < C(?”o + 51). (477)

T—2a ’3(1*a)(R4) -

As a T =, ———— — 00, we conclude that for any 1 < p < oo, v € LP(P%()(Z())). Since
d(u—v)—A(u—-v)+ VP =0,divu—v)=0in Py,
we have that u — v € L®(Pw (z)). Therefore for any 1 <p < oo, u € L?(Pmu (%)) and

||u||Lp(Pm(zo)) < C(p)(?”o + 81).
4
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For the rest of this section, we will establish the higher order regularity of (1.2). Again we
prove it via a high order energy method which has been employed by Huang-Lin-Wang [11]
for general Ericksen—Leslie systems in dimension two, and Du-Hu-Wang [6] for co-rotational
Beris—Edwards model in dimension three.

Lemma 4.6. Under the same assumption as Lemma 4.5, we have that for any k > 0,
(VFu, VM) € (LPL2N LiH,) (P, w1y (20)) and the following estimates hold
TS

sup (|VFul* + |V**d?)dx

—(k+1) 2 B, _ )
tof(iH2 2 m) <t<tg " 142 (k+1>m( )

+/ (19" af? + [V52d]? + [P|?) dudt (4.78)
Pia=(ery) (20)

S C(k?, T0>51.

In particular, (4,d) is smooth in Pro (20).

4
Proof. For simplicity, assume zg = (0,0) and rq = 2. (4.78) can be proved by an induction
on k. It is clear that when k = 0, (4.78) follows directly from the local energy inequality
(4.68). Here we indicate to how to proof (4.78) for k > 1. Suppose that (4.78) holds for
k <1—1, we want to show that (4.78) also holds for £ = [. From the induction hypothesis,
we have that for 0 < k <[ —1,

sup / (|VFu? + |V*d|?)dx
NS (w.79)
- / (yvk“uy + [VF2d? + |V’“Py%> drdt < C(1)e;.

P

142~ (k+1)

Hence by the Sobolev embedding we have

/ (V¥ 4 V[P )dedt < C(D)e, (4.80)
P

1421

and for 0 < k <[ — 2, by the Sobolev-interpolation inequality as in (3.11) we have

/ (|VFu)'® 4 V¥ |0 dadt < C(1)e;. (4.81)
P

12— (k+1)

Also, for 1 < j <[ —1, we have

0
/ [(Vu, vj“d)“;(B dt

,(1+2—j)2 1+2—j)

0
, 1 (|2 , a2 (4.82)
< [ N, T D

< (T, v a)|

2

L LE(Py oy

2
L2HL(P

(Vi v )| < C(l)e

142-3)
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By Lemma 4.5 we also have that any i € N" and 1 < p < oo,
HdHLOO(PQ) < M; [d] [‘Ddf(d)]cg(ﬂj&) < C(Z7 M)€0,

Cé
(4.83)
H(u7 Vd>HL1’(P2) S C( ) 1
Notice that V™! P satisfies
CAVELP = div? [v’ 1<u ou+vdovd - —|Vd|213
(4.84)

][ d)Ty) + Su[Ad — £(d), d] +][ Sulf(). ).

IP’Q IEI32

Now let C € Cg°(B149-1) be a cut-off function of By y-@+1) 3-a+1), and P(l)(-,t) ' R? — R,
—(1+27)?<t<o,

POz t):= [ V2
R3

(P(d)]s — ][ F(d)Iy) + S,[Ad — £(d), d] +][

PQ ]P2

Gla—y)()[ueut vdo vd - %|Vd|2]3
(4.85)
Salt(d). d]| (y)dy.

and PP (. t) := (P — PW)(-,t). For PY we have that

1
VPO () = / V2G(x — y) V! [n (u ®u+VdoVvd—;|VdPl;
R

— (F(d)I5 — ]][P F(d)I3) + S.[Ad — f(d),d] +][

P2

Salf(d).d)))] (v)dy.

By Calderon-Zygmund’s singular integral estimate, with bounds (4.79)-(4.83) we can show
that

/ (VI PW 2dzdt < C(1)e, (4.86)
P

142!

We see that P® satisfies
— AP® = 0in By g-ar1)45-a41)- (4.87)

Then we derive from the regularity of harmonic function that for 1 < 5 < 21,

J

IVIPO|2dzdt < C / V1 P@|2 dzdt

P1+2—(l+1)+4—(l+1)

< 0/ |vl—1p|3dxdt+c/ 1P|z dadt
Py ot Py ot

S C(l)c‘fl

142~ (+1) 4 5—(+1)

Now take [—th order spatial derivative of the equation (1.2);, we have?

%(Vu) + V'V - (u®@u) + VIVP — V'Au

l 1 (4.88)
= V'V |Vd o Vd - [Vd|l; — F(d)Is + Sa[Ad — £(d).d] | .

ZStrictly speaking, we need to take finite difference quotient D V'™ of (1.2); and then sending h — 0.
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Let n € C5°(By4o-1). Multiplying (4.88) by V'un? and integrating over B,, we obtain®
4
dt
= / Viu®u): VVup? + Vi(u®u) : Viu® V(?)]de

Ba

1
§|Vlu|2n2dx + / |Vt han?de
By

Bo

+ VlP-vlu-V(nQ)dx—/ VvV : Viu® V(n?)dz
By By (4.89)

1
- / V! [Vd ®Vd — §\de2 — F(d)I5 — S,[f(d),d]| : V(V'un?)dz
Bg
+ [ V'S,]Ad,d] : (VV'un? + Viu® V(?))dx
Bg
= ]1+Ig+[3+]4+[5.

Now we have the following estimate:

-1
1S [ (Va4 3 [Pl | (9 a9l T
Bs e
1
< — ]Vl+1u\2772dx +C lul?|V'u|*n*dx
32 By
+C/ Z|V]u| 4 ]u|2n2dm+(]/ Via|?dz,
Bs j=1 sptn
12| S /B [V POVl V| + V'V (7)) + [u] |V (V' POV ) de
2
1
< — ’vl+1u‘2n2dx_'_c/ (|V171P(1)’2_'_‘Vlu’2)d$
32 Ba sptn

+0/ (luf® + |P?)|2)dz
sptn

FEIBS

1
|V a|n| V|| Vlde < — |vl+1u|2n2dx + (J/ |Viu|?da,
B 32 sptn

-1

n< [ (\V”ldHle+Z\Vj“d|lv”1‘jdl+|VlF(d)|+|Vl(Sa[f(d),d])\>
Bs =1

x (V™ ulp® + [Vl [V (n?) ) de

1
_32

-1
yvl+1u|2n2dx+c (]Vl“d\ VAPy? + ) VAP IV d Py da

7=1

e / (V' E( )27 + |V'Sa[f(), d)]*r2)de + C / Vlulde.
Ba sptn

3Strictly speaking, we need to multiply the equation by D} V'~ un?

34



For Iy, set AL := S,[V'Ad,d], and B!, := V'S,[Ad, d] — A’ then we have

I; = / (AL - VVay? + B VViu?® + AL Viue V(n?) + B - Viu® V(?)]dx
Bo
=: I51 + Isy + Is3 + I54.

Then we get

1
|I5o| < E/ |Vl+1u|2n2dx+(]/ (Vd |V Py de
B>

-1
C/ Zlvj+1d‘2|vl+lfjd‘2772dx,
By j—

1
|Is5] < — |Vl+2d|2n2dx+(]/ (Vi |?da,

32 spt

-1

\Vd]Q\Vl+1d|2772dx+/ Z\Vj+ld\2lvl+l_jd|2n2dx.

B 54

|54 5/ [Viu|*dz +
sptn

Bo
Now we take (I + 1)-th order spartial derivative of the equation (1.2)3, we have
0,(VV'd) + VV'(u-Vd) — VV'T,[Vu,d] = AVV'd — VV'f(d). (4.90)

Multiplying (4.90) by VV'dn? and integrating over By, we obtain®

d [ 1

% §‘Vl+1d’2772d3§'+ |VZ+2d|2772d1'
B2 Bs

= / Viu-vd)- V. (VVidn?)dr
b2 (4.91)

— / VT, [Vu,d] - AV!dn? + V'T,[Vu,d] - (V(n?) - VV!d)]dx
B2

- / VV(d) : VVidnide =: K, + Ky + K.
B2

Then we have the following estimates:

-1
K| < / [[Vd[|[Via| + [ul| V] + [Vl [VHd(] (V2] + [V V) dee
By =1

|vl+2d|2n2dx+0/ \Vd|? |V n?de + C | |u?|VTd)?n?de

B>

1
< —
- 32

+C Z |V7u?| VI nkde 4+ C (V| %dz,

Bo j=1 sptn

4Strictly speaking, we need to multiply the equation by D;LVldn2.
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| K| < IV d|*nde + (VI () [*n?da.
B2 BQ

For K, we set C!. =: T,[VV'u,d], D!, := V'T,[Vu,d] — C’, then we have

Ky = _/ [Cé . Avldn2 + Dix . AVldn2 + Ciy . (V(n2) . vvld) + Dix . (V(n2) ) Vvld)]dai
Bs
=: Ko + Koy + Koz + Kyy.

Now we estimate

-1
1 ) )
|Koo| < — ]Vl+2d|2772da: +C |Vd]2|Vlu]2772d:U + C/ E |V]u]2|Vl+1_]d\2772dx,
32 By B2 B2 =1

1
| Kas| < @/ [V upde + C Vi de,
B2 sptn

-1
| Ko 5/ |Vl+1d|2d:p+/ |Vd|2|vlu|2n2da;+/ > VP vy da.
sptn Bo B

2 j=1
Combine all estimate above, and with the cancellation I5; = K5, we arrive at

d
d_ (\Vlu]2+\vl+1d|2) 772d$+/ (‘Vl+1u’2—|—‘vl+2d’2) 772dl’
t BQ BQ

-1

< 0/ (V' ul? + 3 [Viuf (V' dul?)de + c/ (V'af + [V P)de
B j=1 sptn

3
2

+C/ (IVha]? + [V + |V POP 4 [uf + | PP))2)de
sptn

-1
+C ]32(|vc1|2|vl+1c1\2n2 + ) VAP VT APy ) de (4.92)

J=1

+C / (IV'F(d)|** + |V'Su[E(d), d]*n* + |V () [*n?)da
Bs
-1
+C [ (IVAPVPy? + VP + ) VPV d Py da
B2 j=1
-1
+C [ Y VP VT d Py da.

By
By Sobolev-interpolation inequality, we have
[uf?|V'al*n*de
By
< HvlunHLG(Bg) HvlunHLQ(BQ) HuHiG(Sptn)
<C Hv(vlun)”L?(BQ) HvlunHm(Bz) HuHiG(Sptn)
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1
< |vl+1u|27]2d$+0/

N 32 Bo sptn

V'u2dz + C s / ViuPrde,
2

|u\2|Vl+1d|2n2d:v

Bo
1
< 32 VT2 d 2 da + C’/ |V d|*de + C ||u||i6(spm)/ |V d P n2da,
B sptn By
(VA Viu|*n?dx
Ba
1
< 3 (Vi un?de + C/ \Viul2dz + C HVdHiG(Sptn)/ |Via|*n*de,
Bo sptn B

/ |Vd|2|vl+1d|2n2dx
B>

1
< — | |V™2dPnids + C IV Pde + C |V o) / |V d|*n?dx.
B>

o 32 B sptn
For lower order terms, we have that for 1 < j <[ —1,
I=1, 12177 1112,.2 -1 2 j
IV P Ve < ||V unHLG(BQ) IN&

2
H
L3 I)t Ui
BQ (S )

<C HV(VlilLIﬁ)HiQ(Bﬂ iju}liﬁ(sptn)
<Ol [ IV
+C v : IN&

2
uHL3(sptn) ’
/ |Vl+1d|2n2d:v

B>

2 .
+ O V' 970

I}
u L3(sptn

VR < OV,

sptn)
-1 i+1 9122 i+1 1|2 102
N IV ||V AP de < ||V dHL?,(Sptn) /B |Viuln

+ofv 97+

2
u||L3(sptn

VPV dPptde < C | V)7,

sptn) ’
/ ‘Vl+1d|2n2dx
Bs

+C HvldHi3(sptn) Hv]Jrl

spt
By ptn)

dHiﬁ(sptn) ’

and for 1 < 5,k <1 — 2 that

|Viu*|VFd|*n?ds < © |Viu|*dx + C (VA d | d.

B sptn sptn
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Since |d| < M in Py, by the calculus inequality for H* (c.f. [14, Appendix]), we have for
4<t<0,

IV'E@)],

Hvlsa[f(d>7d]||[l2(sptn)

|V (d)

(sptm) 5 ||VldHL2
5 ||VZdHL2(sptn)’
S [vrid .

(sptn)’

HL2 (sptn) (sptm)

Put all these estimates together, we arrive at

d

E (|Vlll|2—|— |Vl+1d|2) 772dl'—|—/ (|Vl+lu|2+ |Vl+2d|2) T]de

B>
-2

< c/ V"2 + [V + [T + S (97 + [Vi+d] Y do)
sptn j=1
+C/ (Juf + V' PO2 4 | PO2)d (4.93)
sptn :
-1

+ C(‘ vl 1 ||L3(sptn + Hvl HL3(sptr] + Zl ( ijuHi?’(sptn) + ||vj+1dHi3(sptn) ))
p=
+ O (1100, Yy + Z (V0. 9D sy [ (9P + V1P
By

Now let n € C5°(B)9-a+145-a+1) be a cut-off function of By y-u+1)119-a+1. We can apply
the Gronwall’s inequality to (4.93), together with (4.79)-(4.83) to get

sup (IVha|* + |V!*d|?)dx
7(1+2*(l+1)+107(l+1))2§t§0 By L p=(+1) 110-(+1)
4.94
+ / (V1 ul? + |V2d ) dadt (4.54)
P o=+ f10-C+1)
S O(l)€1
Recall that V'P satisfies
1
_AVIP = div? [vl (u ®u+Vdo Vd - [Vd[ls
(4.95)
—(F(d)I; _][ F(A)T;) + S,[Ad — £(d),d] + | S,[f(d).d])].
Po P2
Then by the Calderén-Zygmund theory and (4.79)-(4.83), (4.94) we can show
/ IV'P|2dadt < C(1)e,. (4.96)
L))
This yields that the conclusion holds for £ = [. Thus the proof is complete. O

38



5 Partial regularity

As a consequence of Lemma 4.6, we get the following regularity criteria for (1.2):

Corollary 5.1. For a suitable weak solution (u,d, P) to (1.2), if z € R® x (0,00) satisfies

sup |d,,| < oo,

0<r<d 5.1
liminf ®(z,r) = 0, (5.1)

r—0+
Then there ezists 61 > 0 such that (u,d) € C*™(Ps, (2)).
The following Lemma is well-known, see [10].

Lemma 5.2. Let d be a function in L°(R® x (0,00)), and let z = (x,t) € R* x (0, 00) such
that
][ |d —d.,|°dzdt < Cr° (5.2)
Pr(z)

for some & > 0 and some C' depending on d and z. Then lin% d., exists, and is finite.
r—

Next we will control the oscillation of d. For 0 < T' < 0o, denote Q7 = R?x (0, T). Recall
1
the fractional parabolic Sobolev space V[/p1 2(Qr), 1 < p < oo, contains all f’s satisfying

1028y = W om0, < 0

o= [ wsvae [ [ 600~ 6 )

From the global energy estimate (1.6) and the Sobolev embedding theorem, we have

\»—t

where

1115,

l\)\»—l

10 10
(w,Vd) € (LFLI N LPH, N LP LS )(Qr), d € L L (Qr). (5.3)

It follows that .
dd = Ad — f(d) — u-Vd + T,[Vu,d] € L3(Qr).

1
From the fractional Galiardo-Nirenberg inequality [1, 2], we get d € W;Q (Qr), and
7

[C1 < Clldll o) 10, VA 5, +C AN 0 <00,

1 ~ 20
2(Qr) L7 Wo' T (Qr)

\,‘w =

Then the parabolic Sobolev-Poincaré inequality yields

( ][ d — d., [Pdudt)
P (2)

20 g 20 . d(z,s) —d(x, 52)|2 20
< c[r : vd|? + 7 2N s dsed] .
r(2) r(z) Jt—r2 Jt—r2 |81 — 52‘1+ 7
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5-2 20
where p = T— = —~ > 6. Hence by Holder inequality we have that

5-%2 3

(][ d — d,,, Pdzdt)® < (][ d— d.,| P dedt)®

P(2)

d 7

§C[r2705/ Vd|? + 7 5/ / / d(w,s1) <x1f2)‘ dsldsgd:c} .
P, (z) r( r2 Jt—r2 |81 —82|1+7

Proof of Theorem 1.1. Define

(5.4)

r—0

Y= {Z € R? x (0,00) : liminf ®(z,7) > &5 or hmlnf |d...| = oo} :
r—0

It follows from Corollary 5.1 that ¥ is closed and (u,d) € C®(R? x (0,00) \ ¥). From (5.4)
and Lemma 5.2, we know that ¥ C N,+0S,, where S, is defined by

S, = {z €Qr: hmmf[ 2/ (\u\l?o + |Vd]%)d1’dt+ (r 2/ " \P\gda:dt)2} > 0, or
P.(z

—d
lim infr_%_”( |Vd| 7 dedt + d(z, 1) (x152)| dsldSQda:) > O}.
r—0 Py (2) () Jt—r2 Jt—r2 ‘81 — s ‘1+ 7

2

For the last integral, we have that

20

|d(z,s1) — d(x,s9)|7

‘51 . 52‘1+$

f(z,s1,8) = € L'(R? x (0,7) x (0,7)).

Let 0 be the metric on R® x R x R:
0(61,&) = mELX{|3171 — 29|, V|t — ta], V|51 — 32\} , V& = (i, b, 8) e RPX R xR

A standard covering argument implies that

PE () € B 0.1) < 0.1 stimpntr 50 [ e o) <o
r(x) Js—r2 Jt—r2

r—0-+

where P* denotes the k-dimensional Hausdorff measure on R? x R, x R, with respect to
the metric 6.

Since the map T'(z,t) = (z,t,t) : R* x R — R* x R x R is an isometric embedding of
(R x R, 0) into (R® x R x R, 4), we have that

prte <{($ t) € Qr: hmmfr E / / f(&)d¢ > O})
prto (T [{ z,t) € Qr : hmlnfr L / / f(e d§>0}})
r(x) Jt—r2 Jt—r2

(x,t,t) € Qr x (0,7T) : liminfr_7_"/ / / f(¢ }) (55)
r—0+ B, ( t—r2 Jt—r2

(,s,t) € Qr x (0,T) : liminfr_lf_”/ / / f(&)dé > 0})
r—0+ B, (z) Js t—r2
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Again, by a simple covering argument we can show

P ({2 eQr: 7”175"/ vd|¥ dudt > 0}) =0, (5.6)
Pr(z)
and
7>%<{z €Qr: nmr—i/ (lu|® +|Vd|3 )dadt + (r—i/ 1P3)? > 0}) 0. (5.7)
r0 Py (2) P, ()

It follows from (5.5), (5.6) and (5.7) that P717(S,) = 0 so that P7(Z) = 0,Vo > 0. [
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