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ABSTRACT

We harness topological information about a data manifold revealed through neural prototype-
based learning to automate t-SNE parameterization. This information is contained in the CONN
(CONNectivity) similarity of neural prototypes, which grades the strength (weakness) of topological
connectivity at various points within a data manifold. CONN suggests a data-driven specification
of localized versions (varying across the manifold) of t-SNE’s perplexity parameter which, in turn,
defines the high-dimensional similarities P that t-SNE attempts to preserve. We further imbue P
with CONN’s graded similarity to reduce mismatch between the topology of the manifold and
its embedded representation. Experiments show these improvements, collectively called CONNt-
SNE, are capable of producing meaningful and trustworthy low-dimensional embeddings without
the need to heuristically optimize over (i.e., grid search) t-SNE’s perplexity space. Data-driven t-SNE
parameterization improves our confidence that any structure appearing in the embeddings is valid and
not merely an artifact of spurious parameterization.

1. Introduction

As a sub-field of unsupervised machine learning, di-

mensionality reduction seeks to represent points in high-3

dimensional data clouds by points in lower-dimensional
spaces as faithfully as possible. Linear projections from
high-d to low-d, such as Principal Component Analysis, are
commonly used for this task, but cannot faithfully repre-
sent non-linear high-d structures. As such, many nonlinear
dimensionality reduction (NDR) techniques [1] have been
proposed to produce more accurate low-d representations of
complex high-d manifolds. However, like most of machine
learning, poor parameterization can greatly affect the quality
of NDR techniques.

This work presents a data-driven framework we call
CONNt-SNE for automatically parameterizing a widely
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used NDR algorithm known as t-SNE (t-distributed Stochasti¢®

Neighbor Embedding, [2]). The framework is intended for,
and based upon knowledge obtained from, prototype-based
manifold learning. In section 2 we briefly review the t-
SNE algorithm and concepts from prototype-based learning
which form the basis for CONNt-SNE’s methodology, out-
lined in section 3. In section 4 we review existing measures
used to assess the quality of NDR techniques, discuss their
strengths and weaknesses, and contribute an additional mea-
sure of topology preservation known as TNE (Topological
Neighborhood Expansion) to this canon. Section 5 details
the experimental design underpinning the results of section
6, which show CONNt-SNE meets or exceeds the perfor-
mance of regular t-SNE, even when its performance is
optimized of a grid of possible parameter values. We stress

here that such optimization of t-SNE’s parameters is only °
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possible in controlled experimental settings where additional
knowledge of high-d data structure is available (e.g., through
a-priori known cluster structure or manifold structure).
For most use-cases in unsupervised learning such external
information is unavailable, which motivated development of
CONNIt-SNE as a way to provide trustworthy, automated t-
SNE parameterizations.

2. Background

t-SNE [2] has attracted wide attention both within and
outside the machine learning community as a tool for pro-
ducing low-dimensional non-linear embeddings T = {¢, €
Rd'}i , of high-dimensional point clouds X = {x; €
RY}N , where d’ << d, for exploratory (visual) data anal-
ysis. Typically d’ € {2,3}. The appetite for such analysis
across disciplines is strong, but many questions have been
raised about what, exactly, can (should) be inferred from
a t-SNE embedding. t-SNE’s introduction subtly stresses
its distinction as a technique for visualization (vs. feature
engineering), yet its embeddings are often clustered either
informally (via visual assessment) or formally (applying a
clustering algorithm to 7'). Some [3] have noticed relative
deficiencies in t-SNE’s ability to faithfully indicate sepa-
ration in complex manifolds. [4] offers a list of various
misinterpretations that can be made from a t-SNE embed-
ding due to its unfaithful representation of cluster sizes,
shapes, densities, compactness and separability. Most of
these issues arise because t-SNE is designed to preserve
conditional probabilities between points instead of distance,
and we believe they are not severe impediments to successful
cluster discovery from low-d representations. Indeed, over
the last three decades the lattice representations of data
learned by Self-Organizing Maps [5] have produced many
successful clusterings without explicit preservation of, e.g.
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Figure 1: The sensitivity of t-SNE embeddings to their parameterization, taken from [4].

distance, between the high- and low-d spaces. However,
[4] does raise one issue we feel fundamentally impacts the
fidelity of a t-SNE representation: that of selecting its main
perplexity parameter, which we abbreviate px. px indirectly
controls the number of Euclidean neighbor similarities that

t-SNE attempts to preserve, which is an unknown number &5

that varies across, and likely within, datasets. An example
taken from [4] of various t-SNE embeddings which can arise
from different px specifications is given in Figure 1. Here,
the “high-d” data (left-most panel) is very simple — two
dimensional with two well-defined clusters — yet inspection
of the embeddings resulting from some perplexity values
(2, 5, 100) would yield a different conclusion. [2] suggests
that t-SNE is relatively insensitive to px but in practice an
optimal perplexity is obviously data-dependent and should
be data-driven. CONNt-SNE provides a mechanism for such
a scheme, using information freely available from prototype-
based learning, and commonly invoked during prototype-
based clustering.

2.1. The t-SNE Algorithm
The t-SNE algorithm begins by defining Gaussian simi-
larities between two points in R? as

b = Pji + Py b= exp(—||x; — xj||2/2f7,-2) )
ij 2N ’ Jli Z exp(_| |xk _ x[l |2/2012)
k#i

where p,); is the conditional distribution of all other x; given
x; and, by convention, p;; = 0. Welet P = {p;;} be the N X
N matrix of such (symmetrized) similarities and denote its

i-th row by P.. Each Gaussian bandwidth o, is controlled by *°

the (global) perplexity parameter px, found through iterative
search such that following relationship holds:

o; @ px =210 H(P) == p;log(p;). ()
J

Pointwise similarities g;; in RY" are derived from the pdf of
the Student’s t-distribution with one degree of freedom,

0+ [2; _tj||2)_1
A+t =gl
=y

4dij 3)

where again we let Q = {g;;}. Embedded coordinates #; are
determined through minimization of the Kullback-Leibler

divergence as cost,

C =KL(P||Q) = )’ p;; log <lﬁ>. 4)
ij 4ij
2.2. CONN Similarity
CONNIt-SNE provides a framework for embedding the
prototypes W = {w; € Rd}gl, M << N, of a vector
quantizer (VQ) trained on data X. While the prototypes of
any VQ would be suitable for this purpose we prefer neural
variants such as the SOM and Neural Gas (NG, [6]) as
the iterative stages of competition and cooperation during
training result in better prototype placement in the data cloud
than, e.g., k-means [7]. Previous work [8] utilized t-SNE as
a means to visualize Neural Gas prototypes but, contrary to
this work, did not explore any ways by which t-SNE could
be influenced by the VQ. To achieve the latter we appeal to
the CONN similarity [9] between trained prototypes w; and
w;. CONN;; is calculated from a recall of the entire dataset
as

CONN,; = CADJ;; + CADJ}, 5)
CADJ,; = Y I(BMUI(x,) =i A BMU2(x,) = j),
N
(6)

where BMU (1,2} are the index of the 1% and 2"? Best
Matching Units (prototypes) and I() is the indicator func-
tion. CADJ;; (the Cumulative ADJacency of i and j) reports
the number of data vectors observed in the second-order
Voronoi cell V; ; generated by W in R4, and CONN is its
symmetrized version. CONN is thus a weighted version
of the Masked Delaunay Triangulation [10, 9] whose edge
weights reflect local data densities and connectivities within
the manifold. We note for later discussion that CONN is
typically very sparse.

3. CONNt-SNE

CONNt-SNE methodology comprises two key modi-
fications to t-SNE’s definition of high-d similarity. The
first permits a varying perplexity px; when setting each
conditional distribution p.; (recall from (2) that perplexity
controls the Gaussian bandwidths o; which form the pro-
totype similarities p;;). We now have M different (local)
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perplexities to specify but CONN provides a data-driven way
of determining these parameters as the number of CONN
neighbors of prototype w;, which we denote by v; for the
remainder of this work:

pX; = v; = max (Z I(CONN;; > 0), 2) NG

J

It is possible that some prototype w; has no CONN neigh-
bors (v; = 0), which occurs if a) the receptive field of j is
empty and b) no datum has chosen j as BMU2. To avoid
numerical issues we enforce a lower bound px; > 2 in the
above, but suggest removing such unused prototypes from
W prior to running CONNt-SNE. With px; intelligently
and automatically specified, the same procedure of (2) sets
each local o; (and, consequently, P;). We denote by P, the
matrix of prototype similarities arising from CONN-derived
variable perplexities px;.

The second modification to t-SNE infuses the topologi-
cal adjacency and local density information contained in the
CONN;; values into the high-d similarity definition. This

information can be viewed from two vantage points (scales)ais

A global view (where each CONN;; value is considered
relative to all other CONN,,) grades the topological con-
nectivities of major/coarse structures within the manifold,
as learned by the vector quantizer. This information is most

useful for characterizing regions of higher data density. Weizo

define a globally normalized version of CONN as
CONN;;

(®)
2.1 CONNy

GCONN;; =

125

and note that ), ; GCONN;; = 1. In contrast, a local view
(where each CONN;; is considered relative to all other
CONN;,,, i.e., when the CONN graph is viewed node by
node) elicits finer structure in the manifold, particularly in

areas of low data density. A locally normalized version of

CONN is given by

LCONN* CONN;; ©
v~ ¥, CONN,, :

LCONN;; = (LCONN}; + LCONNY)/(2M), (10}

where the last equation above is merely symmetrizing and
re-normalizing LCONN* to have unity sum.
Ideally, we would like to imbue t-SNE with both (global

& local) topological views offered by CONN, as these have

been shown effective for inferring structure from complex
manifolds such as hyperspectral imagery of Earth [11, 12]
and Mars [13], radioastronomy imagery [14], and functional
MRI images of brains [15]. We achieve this multi-scale
view by defining the following composite similarity to assess

relationships in R: 145

Peoxy = 3(P, + GCONN +LCONN). (1

The averaging of t-SNE’s Gaussian-based similarity with
the global and local views of manifold topology offered

Similarity Description

P, O Standard t-SNE point similarities (in the original
space and embedded space, respectively) from [2].

CONN The CONN similarity [9] expressing manifold con-
nectivity between prototypes.

LCONN, Locally and Globally normalized CONN similari-

GCONN ties, see equations (8) and (10).

P, t-SNE's point similarity using a variable perplexity

for each point, set by CONN. See (7).

Peonn The similarity used for CONNt-SNE, aggregated
from P,, GCONN & LCONN.

Table 1
An overview of point similarities considered in this work.

by CONN is similar in spirit to the multi-scale similarity
proposed for stochastic neighbor embeddings in [16]. In that
work, an aggregate high-d similarity is averaged from those
resulting from an exponentially increasing set of perplexities
in a range whose lower bound is user-specified and upper
bound is data dependent. In contrast, CONNt-SNE utilizes
an entirely different type of information in its multi-scale
view, combining explicit notions of manifold connectivity
and density, as expressed by CONN. We note that this type
of information is unique to vector quantizers.

The attractive forces among embedded points in t-SNE
are set by P (equation (1)) while the repulsive forces are gov-
erned by QO (equation (3)) [17]. Because CONN (and, con-
sequently, GCONN and LCONN) is typically very sparse,
use of P-ony should cajole embedded points corresponding
to adjacent prototypes closer together in the embedding. On
the other hand, CONN takes a uniformly neutral view of
prototype dis-similarity (meaning that the dis-similarity of
all non-adjacent prototypes i and j are graded the same,
CONN;; = 0).

As CONNt-SNE only modifies the high-dimensional
similarity measure P used in the t-SNE framework it, by
itself, imparts no additional computational effort to embed
learned prototypes of data. However, obtaining these proto-
types does require additional computation whose complexity
obviously varies with the method by which the prototypes
are obtained (e.g., online vs. batch versions of k-means,
SOM, NG, etc.). We suggest that, regardless of the additional
computation required, prototype-based learning is useful
in its own right and is worth the additional time it re-
quires. t-SNE has computational complexity O (N 2) when
embedding N data points [2]; because prototype learning
reduces sample size (often, the number of learned prototypes

M = 0O (\/N )) immediate savings for t-SNE computa-
tional effort are achieved. Additionally, we point out that
hardware implementations of neural prototype learning exist

[18] making the prototype learning step near-instantaneous,
even for large datasets.
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4. Quality Measures

While visual inspection of CONNt-SNE’s embeddings
is important, we have also assessed the quality of each
embedding in two different quantitative categories: topology
preservation, and the preservation of cluster structure as
measured by Cluster Validity Indices. Throughout this work
we indicate whether a larger or smaller value of a measure
is preferred with up 1 and down | arrows, respectively.

4.1. Measuring Topology Preservation

K-ary neighborhood preservation [16], commonly used
to assess the performance of dimensionality reduction tech-
niques, measures the proportion of a high-d k-nearest neigh-
borhood around each w; that is preserved after embed-
ding w; in low-d, averaged over i. As this K-ary measure
([16, equation 15]) yields a performance curve over k €
{1,..., M — 1}, we report the area under such curve (AUC),
normalized by its theoretical maximum (M -2), for compar-
ison across datasets. 190

K-ary neighborhood measures are one example of a
family of topology preservation (TP) measures, but there
are others. Drawing from the literature on Self-Organizing
Maps we have also measured the mismatch between the
topology of the manifold (which we call “input space”)
and its representation in the embedding (which we calkes
“output space”), as reported by the Normalized Differential
Topographic Function (NDTF [19], which is a differential
form of the Topographic Function of [20], normalized to
have unity sum). For a SOM, CONN (as a Topology Repre-
senting Network [21]) represents input space topology whilezeo
the user-specified lattice defines the output space topology.
In this work, CONN persists as a representation of input
space topology, and we prescribe the output space topology
as the Delaunay triangulation [22] of a t-SNE embedding
T c R?, which we denote by DT In what follows we alsceos
denote by AgT and AEONN the geodesic distance between

prototypes i and j as measured on the D’ and CONN graphs,
respectively.

The NDTF (and its relatives) all measure the degree
to which the output space accurately reflects topological
adjacencies in input space (a measure of forward topology
preservation), and vice-versa (a measure of backward topol-
ogy preservation). Specifically, the forward measure,

FNDTE(r) = E [I (Afj?T - r> | ACONN — 1] ,

reports the proportion of prototype adjacencies on CONN
that are of geodesic distance r on DT . Similarly, the back-
ward measure

BNDTE(r) = E [1 (ASONN = r> |AD" = 1]

reports the proportion of prototype adjacencies on D' that
are of geodesic distance r on the CONN graph. In the above,
E denotes the conditional empirical mean over all relevant
adjacencies ij and I(A) is the indicator function of event
A. We note that the Forward and Backward (abbreviated

F/B here) NDTFs both have unity sum over r, and that
NDTF(0) is undefined. Typically, an analyst would view the
trace plot of (F/B)NDTF(r) vs. r to assess the exact location
(geodesic distance r) and severity (the value (F/B)NDTF(r))
of observed topology violations. As r = 1 is not considered
a violation, (F/B)NDTF(1) = 1 conveys perfect topology
preservation while any (F/B)NDTF(r > 1) > 0 indicates
violations. In order to combine both the location and sever-
ity of topology violations into one measure we define the
Forward/Backward Topological Neighborhood Expansion
as:

(F/B)TNE = Z r X (F/B)NDTE(r).

r>0

12)

(F/B)TNE reports the average geodesic radius by which a
topological neighborhood in one space (CONN/DT) must
expand to be represented in another space (DT/CONN). A
perfect embedding by this measure has (F/B)TNE = 1, and
topology violations of increasing severity are reported by
values > 1.

4.2. Measuring Structural Preservation with
Cluster Validity Indices

Faithful topology representation is desirable when in-
ferring (cluster) structure of a high-d manifold from its
embedding. While sufficient, exact TP may not be necessary
for structural identification; indeed, according to the TPMs
discussed above, the rigid 2-d SOM lattice cannot faithfully
represent manifold topologies with more than a few (8 for
rectangular lattices, 6 for hexagonal) neighbors, but this fact
has not hindered its success as a tool for cluster discovery. To
account for this we have measured the structural preservation
of our experimental embeddings, as reported by a variety of
internal and external Cluster Validity Indices (CVIs). As t-
SNE is most commonly used to identify such structure (or
lack thereof), we believe these measures better reflect the
quality of an embedding for most uses of t-SNE in practice.

4.2.1. Internal Cluster Validity Indices

Internal CVIs (CVIIs) measure the relationship between
compactness and separation of clusters defined by a given
partitioning of the data. While there are many such measures
[23], in this work we focus on three of the more common:
the (average) Silhouette Index 1 (SIL, [24]), Generalized
Dunn Index 1 (GDI, with set distance 5 and set diameter
3, as defined in [25]), and Davies-Bouldin Index | (DBI,
[26]). As our goal is to show how well cluster structure is
preserved when embedding high-d prototypes W C R? as
T c R?, we report CVIIs measured on the latter relative
to those measured on the former, using the true partitioning
of each dataset £*. For example, the relative Silhouette of
an embedding, rSILg/ = [SIL(T) — SIL(W)]/|SIL(W)|,
measures the change in the Silhouette score of the true
partitioning after embedding W by T, relative to its value
in W. rGDI and rDBI are computed similarly. As there is no
universally best CVII in all cases, we average the individual
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relative CVIIs into an aggregate score:

1 1CVII}, = %(rSILTH", +1GDI};, —DBI},),  (13)
245
where the subtraction above arises because a lower value of
DBI is preferred. Whereas the K-ary score reports preser-
vation of Euclidean distances and the (F/B)TNE scores
report preservation of topological distances, rCVII signals
preservation of set cohesion and distance, where the sets ares°
the clusters of the true data partitioning. Thus, rCVII should
give some indication of how the embedding (mis)represents
cluster structure which, in turn, hints at its impact on 2-d
cluster inference.

4.2.2. External Cluster Validity Indices

Both to assess whether rCVII is performing as designed,
and to simulate how actual clusterings are affected by the
process of embedding, we also cluster W < R? and
T c R?, resulting in partitionings #% and #7, respectively.
The quality of each partitioning is assessed, relative to the
truth £*, by several External CVIs (CVIEs): the Adjusted
Rand Index 1 (ARI, [27]), Jaccard Index 1 (JAC, [28]), and
Normalized Mutual Information 1 (NMI, [29]). Again, we
are more interested in comparing the quality of #7 relative
to £, rather than the absolute value of either, which we ac-
complish via the relative measure rARIE, = [ARI(ZT, %) -
ARI(ZW , ¢%)]/|ARI(£W , £*)| (and similarly for JAC and
NMI). An aggregate measure of relative external cluster
validity is defined as

1 ICVIE], = %(rARITW +1JAC], +INMI]).  (14)

Computing rCVIE obviously requires a clustering, which we
obtain via Spectral Clustering with random walk normal-
ization of the graph Laplacian [30], as there is a purported
connection between certain parameterizations of t-SNE and
spectral clustering [31]. The true number of data clusters (C
from Table 3) parameterize the k-means step of the spectral
clustering procedure.

5. Experiment Design

5.1. Datasets 255
To demonstrate the effectiveness of CONNt-SNE we
compare its two-dimensional embeddings to those of t-SNE
for the six real datasets (indexed by 6) whose characteristics
are given in Table 3. These include Standard COIL20 [32]
(labeled as in Figure 2) and MNIST [33] along with two of,,,
MNIST’s more challenging drop-in replacements: Fashion
MNIST (FMNIST, [34]), containing images of 10 differ-
ent articles of clothing, and Kazushiji MNIST (KMNIST,
[35]), containing images of 10 different Japanese Hiragana
characters. Both MNIST replacements have 28 X 28 pixel,,
images. The Flow18 dataset contains flow cytometry mea-
surements of 946,915 human peripheral blood mononuclear
cells labeled by 12 different phenotypes, subsampled as in
[36] (we have ignored the “Dead cells” class in this analysis).

Ocean City (OC) is a 512x512 pixel, 8-band spectral image
of Ocean City, Maryland, with 1.5 m/pixel resolution. Data
collection, pre-processing and mean signatures of verified
land-cover classes are given in [11]. We consider the 29
clusters interactively identified in [9] as truth clusters. These
clusters comprise three larger material groupings — vegeta-
tion, water, man-made materials — each broken down into
a number of unique clusters with widely varying statistical
properties (see representative statistics in [37]).

Figure 2: COIL20 image database with integer encoded labels.

5.2. Experiment Descriptions

The various t-SNE methods and their nomenclature uti-
lized in this work are presented in Table 4. To alleviate
notation we will use a method’s name (e.g., t-SNE(10))
and its similarity (e.g., P;o) interchangeably, as the similar-
ity uniquely defines the method. Thus we have 7 methods
h € {P19, P20, P30, P49, Pso, Pms> Pconn }» Where Pyqis the
multi-scale method of [16].

To make our conclusions more robust, for each dataset
and method we have produced 200 different embeddings
resulting from initializations 1 € {PCA, 1,...,199}, where
PCA denotes a 2-d principal components initialization, and
integers 1-199 represent a randomly seeded initial state.
Thus, there are 200 embeddings for dataset 6 using method
h, and T}, should be viewed as a function T},(8, 1). 6 datasets
X 7 methods x 200 initial states yields 8,400 embeddings
from which we draw conclusions.

We assess these 8,400 embeddings with the five quality
measures 4 € {FTNE, BTNE, K-ary AUC, rCVIIL, rCVIE}
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Topology Preserving Measures

The K-ary neighborhood preservation score, conveying the proportion of k-nearest neighbors that are preserved

The Forward/Backward Normalized Differential Topographic Function [19], measuring the proportion of
topologically adjacent neighbors in one space (e.g., high-d) that are of geodesic distance r in another space
(e-g., low-d embedding), according to its topology. FNDTF(r = 1) = 1 indicates the topology of high-d space
is perfectly represented by the topology of the embedded space, while BNDTF(r = 1) = 1 indicates the
opposite. Any (F/B)NDTF(r > 2) > 0 indicates topological mismatch (folding) between the two spaces under

K-ary 1

in the high- and low-dimensional spaces [16]
(F/B)NDTF(r)

consideration.
(F/B)TNE |

The Forward/Backward Topological Neighborhood Expansion, indicating the average neighborhood size
(geodesic radius) in one space that is required to represent the immediate topological neighbors of another
space. Newly presented in this work, TNE aggregates the NDTF over all possible geodesic distances r,
combining the severity and location of topological violations into one measure.

Cluster Validity Indices

Relative Internal Cluster Validity Indices (13), combining the quality of a clustering as reported by three
widely used internal measures: the Silhouette Index [24], the Generalized Dunn Index [25], and the Davies-
Bouldin Index [26]. Here, “relative” indicates that the CVlls values computed in the low-d embedding are
reported relative to their measure in high-d space. This relative measure overcomes difficulties when comparing

Relative External Cluster Validity Indices (14), combining the agreement of a clustering to a true (known)
partitioning as reported by the Adjusted Rand Index [27], the Jaccard Index [28], and Normalized Mutual
Information [29]. Here, “relative” indicates that the reported values are measures of CVIEs resulting from a
clustering of the low-d embedding, reported relative to those obtained from a clustering in high-d space. The
clusterings in each space were obtained by Spectral Clustering [30], as [31] suggets there is a connection

rCVII t

assessments of cluster quality based on distances in two different spaces.
rCVIE 1t

between it and t-SNE.
Table 2

An overview of various measures used to assess the quality of t-SNE embeddings in this work. Up (down) arrows indicate a larger
(smaller) value of the measure is preferred.

Data ‘ N d C ‘ M v Method ‘ Perplexity Similarity Embedding

MNIST 70,000 784 10 | 2000 45,1925  tSNE(10) 10 P T

FMNIST 70000 784 10| 2000 1481  tSNE(20) 20 P T

KMNIST | 70,000 784 10 | 2,000 ,,17.3'"7  t-SNE(30) 30 Pa Ty

COIL20 1,440 16,384 20 492 ,,2.3% t-SNE(40) 40 P. Tu

Flow18 946,015 11 12 | 1,457 ,,,30.8"4  t-SNE(50) 50 P, Ty

oC 251,046 8 29 | 1,464 1168  MS t-SNE var Pus Tos
CONNt-SNE var+ P T

Table 3 CONN CONN

Characteristics of the six datasets used in experiments: sample Table 4

size (N) and dimension (d), the number of sample classes (C),
the number of prototypes which learned the data (M), and
a 95% confidence interval for the average number of CONN
neighbors (V). Points from the “Dead cells” class of Flowl18
were removed prior to our analysis, along with unlabeled pixels
in the Ocean City image. M reported in this table excludes any
unused prototypes.

described in section 4. However, each 4 measures different
characteristics of our embeddings and, consequently, pos-
sesses a wide range of scales; this complicates comparison

amongst the p, and across different datasets. To facilitate”

such meta-analysis we will report instead a standard score
Z,(T) using u(Ts) as a baseline, as px = 30 is a widely
used default in popular t-SNE implementations. Thus, for
each measure u of each embedding of each dataset, T,(3, 1),

275

Nomenclature for the methods under comparison. var+ in-
dicates CONNt-SNE utilizing the topological information in
CONN, in addition to a variable perplexity.

we report

(T8, 1) — u(T30(8.,1))
& |[u(Ty(5,) — u(T3(8,))]

where 6 is the empirical standard deviation of the mea-
sure differences, computed over the 200 different initializa-
tions 1. Additionally, for consistency, we report — Zprng and
—ZpTNE- a8 lower values of these measures indicate better
topology preservation. This makes all Z-scores comparable.

Not only is Z”(h, 6,1) unitless, its mean is: 1) the effect
size of method A relative to P;y(also known as Cohen’s d
[38]), and 2) proportional to the test statistic of a paired

Z,(h,8,1) =

J.Taylor & E.Merényi: Preprint submitted to Elsevier
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Student’s t-test of the above. Thus, differences in summarysso
statistics of Z u (h, 6,1) immediately reveal statistical signifi-
cances of the effect sizes of each method. Since P5 is used
as a basis for standardization, its Z-scores are all = 0, and
will be excluded from visualization of results.

All results that follow were produced by minimizingss
t-SNE’s cost function (4) with Delta-Bar-Delta gradient
descent (as in [2]) for a maximum of 2,000 iterations, mon-
itored every 50 iterations. Early stopping was permitted if
the cost function decreased by < 0.1% for 3 consecutive
monitoring steps (150 learning steps). The learning rate fosao
gradient descent was set = 200, with momentum increased
from 0.5 to 0.8, in line with [2]. Although the use of
exaggeration (inflating the high-d similarities P by some
constant «) is widely thought to improve the minimization of
(4) and avoid crowding in the embedded space, no consensussas
on how much exaggeration to use, or how long to enforce
it, seems to exist. Various contradictory work recommends
both early and late scheduling of high and low values of « [2,
36, 39, 31, 40], while a preprint suggests use of exaggeration
may fundamentally alter the nature of t-SNE altogether [17].
As aresult, we have taken the conservative recommendatiornsse
of [17] and linearly annealed a from 4 to 2 over the 2,000
prescribed learning steps to effect mild versions of both early
and late exaggeration schemes. Batch neural gas learning [7]
generated the prototypes used in this work for all datasets
except Ocean City, where the previously scrutinized SOMpgss
prototypes from [9] were used for comparative consistency.

6. Results

6.1. Meta-Analysis I: Overall Aggregated Results 3
Figure 3 reports standardized effects Z,(T') for each
method, showing overall aggregated effect sizes (top panel,
[a]) and those aggregated by dataset (middle panel, [b]) and
measure (bottom panel, [c]). The Z , scores for individual
measures were combined in panels [a] and [b], since they aree®
now comparable. Violin plots show the distribution of effect
sizes by method, with black error bars displaying the esti-
mated mean (with 95% confidence interval) of each. Purple
points report the scores of the PCA-initialized embedding
separately, as informative (non-random) initializations are37®
recommended in [41]. The green lines at Z = 0 represent
the P case serving as baseline, and green numbers report
the proportion of experiments for each particular method
which induce a positive effect (i.e., the estimated probability
Pr[Z > 0]). Detailed statistics by each measure and dataset
are in Figure 6). .
Pconn induces the largest positive average effect (0.78,
annotated in black numbers for clarity) over all experiments,
as reported in Figure 3[a]. Although it is hard to detect from
the confidence intervals shown at this scale, the overall effect
of Ponn 18 statistically larger (at significance level @ =*°
0.05) than both P}, and P,,, which jointly performed second-
best (their performance is statistically indistinguishable, a =
0.05). Aggregate performance of regular t-SNE degrades

385

monotonically as px increases, although this may be an over-
generalization (addressed below). The mean performance
trends are also supported by non-parametric statistical argu-
ments, where the proportion Pr[Z > 0] is estimated at 0.53,
0.51, and 0.54 for Pconns Pig and Py, respectively. Bino-
mial tests (¢ = 0.05) of these proportions reveal Pcgny and
P, result in measurable improvements to P;;, embeddings
more than half the time (a similar test for P, produced a p-
value = 0.09). Pconn’s Z-distribution exhibits pronounced
positive bimodality and skew, while both mode location and
skew appear negatively correlated with perplexity in regular
t-SNE. Overall from Figure 3[a] we conclude that, for these
experimental data, Pconn, Pg and P,g all produce reliable
improvements to the P baseline, with Poqny’s mean effect
size (0.78) more than twice as large as P1y/P,, (0.37). For
completeness we note that all three information streams
comprising Pcony (P, GCONN, and LCONN (11)) induced
positive effects, but their combination is best.

6.2. Meta-Analysis II: Results by Dataset

Figure 3[b] reveals most, but not all, datasets obey the
generalization that performance of regular t-SNE deterio-
rates monotonically with perplexity, which is not surprising
given the large variation in sample size (here, number of pro-
totypes), structural complexity, and inherent dimensionality
of the data considered in this work. For example, COIL20
exhibits a statistically significant effect size improvement
from P, to Psy, and t-SNE for Ocean City has largest
average effect at P,,. Interestingly, OC is also the only
dataset for which CONNt-SNE’s mean effect size is neither
best, nor statistically positive (although its PCA initialized
case is still superior to its counterparts). This is likely due
to the level of noise in Ocean City’s spectra, as well as the
spectral similarity of its 29 known clusters (which are sub-
clusters of three large material tranches: vegetation, water,
and man-made materials). Because of this, [9, section 4B]
removes ~ 20% of Ocean City’s CONN edges, according to a
thresholding scheme defined therein, to facilitate clustering.
We believe some degree of CONN edge removal would
also benefit CONNt-SNE, but have left this for future work.
Despite this, section 6.4 discusses the visual improvement
of Pconn’s OC embedding, compared to Py.

6.3. Meta-Analysis III: Results by Measure

From Figure 3[c], Pcony 1s the only method with a sta-
tistically positive mean effect size by all measures, excluding
the K-ary score. We expect it to achieve higher BTNE and
FTNE measures, as the GCONN and LCONN components
increase the similarity p;; of topological neighbors i and
J in Peonn. This influence appears to help CONNt-SNE
preserve cluster structure better, resulting in higher rCVII
scores, which are positively correlated to rCVIE scores
(0.49+0.02 overall, at 95% confidence). Positive rCVIE
effects show that, when properly parameterized, t-SNE can
be an effective tool for feature engineering. Recall that
rCVIE reports relative change in external CVI measures
of a partitioning obtained via spectral clustering of the
embedded points, versus one obtained by clustering the
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Figure 3: Performance of each method, according to the standardized score of each measure. Panel [a] reports an overall
aggregation by method whereas [b] and [c] aggregate performance by dataset and measure, respectively. Error bars convey means
and 95% confidence intervals over 1,400 total experiments (200 different initializations x 6 datasets) with each method, while
the gray shaded violin plots show the entire distribution of values underpinning these error bars. Separate purple points represent
the measure of the PCA-initialized embedding. Green lines at Z = 0 represent the performance of its baseline P, (see section 4),
and green numbers report the estimated probabilities Pr[Z > 0], which convey the proportion of time each method has positive

effect.
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Relationships Between Topology & Clustering Measures
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Figure 4: Relationships of Cluster Validity Indices to different Topology Preservation Measures for the 8,400 embeddings studied
in this work (gray points). Pink banded trendlines in each panel report 95% predictive intervals of a spline regression, fit via a
Generalized Additive Model [42] which selects the level of model smoothing automatically.

prototypes in R?. We have employed spectral clustering (as

a widely accepted and trusted clustering method) in this
work and acknowledge that other clustering regimes may
impart different effects. However, this analysis does supportzo
further exploration of t-SNE as a pre-processing step in
larger machine learning pipelines, particularly where linear
pre-processing (e.g., PCA) are inappropriate.

Our discussion of results up to this point has ignored
the performance of the multi-scale similarity Py;g, whiches
is lowest in overall aggregate. An explanation for these low
scores is found in Figure 3[c], which shows Pyq fails to pro-
duce either mean or median positive effects according to the
(F/B)TNE and CVI measures. Py, does, however, achieve
significantly higher K-ary scores than all other methods. This:o
agrees with the conclusions presented in [16], where MS
similarities were shown to increase K-ary scores for a vari-
ety of dimension reduction algorithms, including Stochastic
Neighbor Embedding. The Pyg similarity is obtained by
averaging P, over exponentially increasing px bound by ass
range intended to be large enough to enforce global ordering,
and small enough to avoid uniformity of its values. In this
work we set the lower bound = 10 (the same used for the px
grid); the upper bound is data-dependent (set as in [16, sec-
tion 3.1]) but is generally much higher than our px grid upper
bound of 50 (e.g., for MNIST with 2000 prototypes, Pyg40
is influenced by px € {10, 20,40, 80, 160, 320, 640, 1280}),
which directly correlates with its ability to preserve Eu-
clidean neighborhood ordering across a large range of neigh-
borhood sizes.

But is this a desirable characteristic of an embedding iness
practice? That is, which neighborhoods should be preserved

to most faithfully represent cluster structure in an embed-
ding? As structure identification motivates most uses of t-
SNE we have explored this question a bit further. Figure 4
displays scatterplots of the Z-scores (gray points) of each
CVI vs. each topology preservation measure considered in
this work. A non-linear spline regression with corresponding
95% predictive interval is shown as a pink banded trend
line. Here, the regression was fit via a Generalized Additive
Model [42] which automatically (jointly) optimizes the level
of smoothing. The CVI vs. (F/B)TNE trends are statistically
significant (p-value = 0) and positive (i.e., better topological
neighborhood preservation is associated with better cluster-
ing results). CVI vs. K-ary trends are also significant (p-
value = 0) but generally negative overall. Thus, a high K-ary
score appears inversely (or, at least not positively) related
to t-SNE’s preservation of (cluster) structure. Stated another
way, demanding full Euclidean neighborhood preservation
from an embedding algorithm may be intuitively desirable,
but appears an overly conservative constraint. This is in line
with the literature on CONN-based clustering [12, 37] which
concludes that topological characterizations of locality are
more beneficial than their Euclidean analogs for extracting
structure from data.

6.4. Visual Inspections

In closing, we discuss some qualitative aspects of the em-
beddings visible in Figure 5. For each dataset, CONNt-SNE
embeddings are shown vertically atop the best performing
case (according to Figure 3[b]) of regular t-SNE, which is
Py for all except Ocean City (P,,). PCA initialized results
are shown, as these outperformed most randomly initialized
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Figure 5: Embeddings of the prototypes of our experimental datasets. t-SNE(*) means P, in all cases except Ocean City where
P,y is shown. Prototype colors represent their learned truth labels. Annotations are split across the pair for space considerations.
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embeddings according to Figure 3. Point colors represent the
prototype’s true class label (decided via plurality vote of itsos
receptive field), and point sizes represent the (relative) size
of the prototype’s receptive field. The annotations in each
panel describe the true class labels (represented by different
colors) for each dataset: for MNIST these are handwritten
digits 1-10; for FMNIST they are articles of clothing; fosio
KMNIST the Hiragana characters are shown; the mapping
for COIL20’s integer encodings is shown in Figure 2; for
Flow18 the cell types from [36] are annotated; the differ-
ent material types in the Ocean City spectral image (e.g.,
concrete, waters, vegetation) are encoded by the same lettersis
A,B,etc. as described in [9].

Overall, CONNt-SNE embeddings are very similar to
those induced by the best performing regular t-SNE (P;,/P,)
which supports the main assertion of this work: CONNt-
SNE’s data-driven modifications to t-SNE’s similarity causeszo
no degradation to the quality of embeddings; in some cases
they result in visual improvement. In what follows we point
out a few details in the embeddings of each dataset for further
discussion.

MNIST (panel 5a) shows cohesion of the digit clus-
ters, with the easily distinguishable digits (0, 1, 2, 6) well
separated; both Poony and Py have delineated the com-szs
ponents of the 4-7-9 and 3-5-8 digit super clusters, which
are typically harder to embed. Fashion MNIST (panel 5b) is
a bit more challenging. Both Pqyy and Pj have isolated
the trouser and bag clusters well, along with a footwear
super cluster which shows sensible internal arrangement. Irsso
contrast, the super cluster containing Pullovers, Shirts and
Coats is very mixed. Py has better separated the T-shirt
cluster at the expense of also splitting the Dresses. Pconn
and Py, have both responded to the high intra-class variation
in KMNIST (panel 5c) by creating several subgroupings ofss
each class, which is more organized in some cases (e.g., the
purple subclusters are at least near each other) than others
(e.g, the pink and brown subclusters are not geographically
close). KMNIST may not be separable in 2-d, as others
have also reported poor results from a variety of dimensiorsso
reduction techniques [43]. Pcony has produced a visually
superior COIL20 embedding (panel 5d), retaining better
separation, and more of the known ring-like structure, of
COIL20’s classes than Py. Likewise, Pcqny has maintained
the integrity of the dark green CD8+ T cell cluster in Flow1&a1s
(panel 5e), but overall both Poony and P have produced
embeddings visually superior to those previously published
[36, Fig. 1(b)].

From panel 5f we see that both Pogny and Py, em-
bed the subclusters of the larger material classes — watersso
vegetation, man-made materials — together. There is also
meaningful organization within these superclusters. For ex-
ample, the vegetation group has been ordered (when viewing
the “tail” of the embeddings from bottom to top) by bright
green (cluster L), pea green (O), then orange (N). Thesess
represent healthy green vegetation, yellow lawns, and dry
grasses, respectively. The gray and salmon colored clusters
(S and T') represent, respectively, bare soil and boat docks

(dry woody material possibly mixed with concrete). Thus,
it is sensible that .S and T form a “bridge” between the
vegetation and man-made material super clusters; further,
there is more organizational meaning to the fact that the S/T
bridge terminates at vegetation cluster N than, say, cluster L
(the wood comprising the docks is more similar to bare soil
and dry grass than to green vegetation, evident from the vis-
ible near-infrared spectral signatures of the classes shown in
[9, 11]). However, Poony elucidates a few interesting struc-
tural components of the Ocean City spectra that P, misses.
Of note, Poony fully separates cluster P/Q (brown) which
represents muddy marshy land with spectrally similar (but
still distinct) vegetation to the dry grass in orange cluster N.
Similarly, Pcony is more sensitive to the distinction among
various man-made materials (e.g. clusters X/c) which Py,
fails to fully distinguish. The cluster distinctions expressed
by Pconn’s OC embedding better agree with clusters found
earlier [9, 11].

7. Conclusions and Future Directions

We have presented CONNt-SNE as a data-driven alter-
native to cumbersome and tedious exhaustive grid searches
for optimal t-SNE perplexity. CONNt-SNE relies upon, and
benefits from, prototype representations of data, which 1) in-
crease the speed and feasibility of embedding large datasets
with t-SNE (recall, M << N) and 2) offer unique views of
data topology in the form of the CONN graph.

As a weighted version of the Masked Delaunay Trian-
gulation [21], CONN [9] reports topological connectedness
and separation across a manifold; we incorporate this in-
formation into automated specification of variable t-SNE
perplexities for each prototype. We further sensitize t-SNE’s
high-d similarity to the strength of manifold connectivities,
as reported by CONN’s edge weights viewed at various
resolutions (global, local). Both modifications are crucial
to CONNt-SNE’s performance which, as shown by exper-
iments, meets or exceeds the best offered by regular t-SNE
with grid-optimized perplexity.

We have also explored the relationship between K-ary
neighborhood preservation, which is a popular quality mea-
sure of dimension reduction techniques, and the preservation
of known high-d cluster structure in low-d embeddings. Ex-
periments show high K-ary neighborhood scores do not nec-
essarily translate to embeddings of highest fidelity to such
structure. Manifold topology matters, both when assessing
the quality of an embedding and when inferring structure
from it. CONNt-SNE’s data-driven ability to recognize and
respond to structural subtleties in real data facilitates more
confident and meaningful inference from its embeddings.

As CONNt-SNE is new we have many ideas for fur-
ther work, including: extensions of its framework to other
dimensionality reduction techniques, permitting embedding
of out-of-sample data points through clever use of the VQ
mapping, and sensitization of t-SNE’s repulsive forces (Q)
to learned manifold dis-connectedness, possibly by consid-
ering geodesic distances along the CONN graph.
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Figure 6: The performance measures considered in this work (summarized in Table 2) for each experimental dataset (summarized
in Table 3). These measures underpin the aggregate performances depicted in Figure 3, and are shown here for completeness.
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