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EXISTENCE OF GLOBAL WEAK SOLUTIONS TO THE
COMPRESSIBLE ERICKSEN-LESLIE SYSTEM IN DIMENSION ONE*

HUAJUN GONG', TAO HUANG!, AND CHANGYOU WANGS#

Abstract. We consider the compressible Ericksen-Leslie system of liquid crystal flows in one
dimension. A global weak solution is constructed with initial density po >0 and pg € L7 for v > 1.
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1. Introduction

Nematic liquid crystals are composed of rod-like molecules characterized by average
alignment of the long axes of neighboring molecules, which have the simplest structures
among various types of liquid crystals. The dynamic theory of nematic liquid crys-
tals had been first proposed by Ericksen [5] and Leslie [15] in the 1960’s, which is a
macroscopic continuum description of the time evolution of both flow velocity field and
orientation order parameter of rod-like liquid crystals.

In this paper, we will study the compressible Ericksen-Leslie system of liquid crystal
flows (see [1,20] for modeling). Let Q C R? be a bounded domain with smooth boundary,
and S? be the unit sphere in R3. The compressible Ericksen-Leslie system is given as
follows

pt+ V- (pu)=0,
pu+VP=V-0-V-(F-®Vn), (1.1)
g+ 5n — V- (4vs) =n

Here, p(x,t):2x (0,00) =R is the density, u(x,t): € x (0,00) —R? is the fluid velocity
field, n(x,t):Q2x (0,00) =+S? is the orientation order parameter of nematic material.
A is the Lagrangian multiplier of the constraint [n|=1, f=f;+u-Vf is the material
derivative of function f, and a@ b=ab” for column vectors a and b in R3.

The macrostructure of the crystals has been determined by the Oseen-Frank energy
density (cf. [9,21]). One may take the Oseen-Frank energy density in the compressible
case as

2W (p,n,Vn)=

2
1p’Y+K1(diV n)? + Ky(n-curln)? 4+ K3|n x curl n|?

+ (Ko + K,)[tr(Vn)2 — (divn)2], (1.2)

where v>1, and Kj, j=1,2,3, are the positive constants representing splay, twist, and
bend effects respectively, with Ko > |Ky|, 2K; > Ko+ K4. Then the pressure can be
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given by the Maxwell relation
P(p)=pW,(p,n,Vn) =W (p,n,Vn).

For simplicity, we only consider the case K1 =Ko;=K3=1, K;,=0 in this paper. The
Oseen-Frank energy in the compressible case becomes

2
2W(p,n,Vn)= ﬁp"’ +|Vnl|?.

Therefore
ow ow ow 1
. _— = . _— . _— = L 2
\Y (8Vn ®Vn> V-(VnoVn), o 0, V (8Vn) An, P=p 5 [Vnl|=.
Let
1 T 1 ro 1(ou  ou .
D—2(Vu—|—V u), w—2(Vu v u)_2<8xj oz, ) N=n—wn,

represent the rate of strain tensor, skew-symmetric part of the strain rate, and the rigid
rotation part of direction-changing rate by fluid vorticity, respectively. The kinematic
transport g is given by

g=7N+792Dn—v(n” Dn)n (1.3)

which represents the effect of the macroscopic flow field on the microscopic structure.
The material coefficients v; and ~» reflect the molecular shape and the slippery part
between fluid and particles. The first term of g represents the rigid rotation of molecules,
while the second term stands for the stretching of molecules by the flow. The viscous
(Leslie) stress tensor ¢ has the following form (cf. [1,16])

o=ap(m?” Dn)l+a;(n" Dn)n@n+a;N@n+azn@ N
+asD+as5(Dn)@n+agn® (Dn)+ a7 (tr D) I+ ag(trD)n®@n. (1.4)

These coefficients «; (0<j<8), depending on material and temperature, are called
Leslie coefficients. The following relations are often assumed in the literature:

V1I=Q3—Qe, Ye=Qg—Q5, Q2+03=0g—qs. (1.5)

The first two relations are compatibility conditions, while the third relation is called
Parodi’s relation, derived from Onsager reciprocal relations expressing the equality of
certain relations between flows and forces in thermodynamic systems out of equilibrium
(cf. [22]). They also satisfy the following empirical relations (cf. [1,16])

ay >0, 201+3a4+2a5+206>0, 1=a3—ay>0, (16)

204+ o5 +0as>0, 4y1(20u+as+ag) > (a2 +az+72)7,
,.y2
ay+ar>ar+ -2 >0,
Y1
,.}/2
20&4+O&5+O[6772>010+041+Oé5+016+04820.
1
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It is easy to see that an example of coefficients aq,---,ag satisfying (1.5) and (1.6)
can be taken as follows

a=a1=as=ag=ar=ag=0, as=-1, ag=as=1,
so that
N=a3—as=2>0, Yo=ag—as=as+a3=0.

A simplified compressible Ericksen-Leslie system has been recently studied. The
idea of simplification was first proposed for the incompressible system by Lin in [17].
In dimension one, the global strong and weak solutions have been constructed in [3]
and [4]. In dimension two, under the assumption that the initial data of n is contained
in S7, global weak solutions have been constructed in [12]. In dimension three, the
local existence of strong solutions has been studied by [10] and [11], and when the
initial data of n is contained in S%, global weak solutions have been constructed in [18].
The incompressible limit of compressible nematic liquid crystal flows has been studied
by [2].

We also mention a related work [13], in which the Ericksen-Leslie parabolic-
hyperbolic liquid crystal model has been studied. For small initial data, they have
shown the existence of global solutions in dimension three.

1.1. One dimensional model and statement of main results.  One of the
main motivations of this paper is to investigate the impact of general Leslie stress tensors
to the solutions of the compressible Ericksen-Leslie system with coefficients satisfying
algebraic conditions (1.5) and (1.6) ensuring the energy dissipation property. Because
of the technical complexity of the Ericksen-Leslie system in higher dimensions, we will
only consider the following simpler case in one dimension, in which the direction field
n is assumed to map into the equator S',

u=(u(z,t), v(x,t),O)T, n=(cosn(z,t), Sinn(amt),O)T

for any 2 €10,1] and ¢ € (0,00). From the derivation given by Section 2 below, the system
(1.1) becomes

pt+ (pu)z =0,
(pu)e+(pu?)+ (07), = T =Nz,
(pv)e + (puv), = J?, (1.7)

Y1 (hf %vm) — Y2 (uzcosnsinn+ %vx(l 72COSZTL)) =Ngg.
Here
J'=(ag+as +a6+ag)(uxcos2n)w+a1(uxcos4n)m—(ag—l—ag)(hcosnsinn)w

+ (g + a7)uge +ap (vl. cosnsinn)z +aq (’UI cosgnsinn)m
1 5 1
+ 5(042 +a3+as+ag) (v cosnsinn)_,

and
J? = (um Cos3nsinn)$ + (’flCOSz n)x —ag (T'Lsin2 n)x + (g + ag) (Uz cosnsinn)w

2

) 1 1
+aq (vz cos? nsin? n)x + 5(*0&2 +as) (Ux cos? n)w + 504411”

+ %(043 +ag) (vesin®n) .
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For this system, we consider the following initial and boundary values

(p, pu, pv,n)(2,0) = (po, mo, lo, no) (2), (1.8)
u(0,t) =v(0,t) =u(1,t)=v(1,t) =0, n4(0,t)=ny(1,t)=0. (1.9)

The boundary values of n are deduced from the Neumann boundary condition of n.
Denote the energy of the system (1.7) by

E(t):=

1/1 2
p(u”+v +7 7+ /
2Jo ( ) v

For any smooth solution (p,u,v,n), the energy functional satisfies the following energy
inequality, whose proof will be provided in Section 3,

d

D
_ ' o= % ﬁux sin(2n)+ L(% —72c08(2n) ) v, i

1 2 1 2
1 1
—/ { (—al—%)u + (g +ar)u ]—/ <2a4+a5+a6—%)v§
o L4 7 4 Jo 7

_ i (oq + 722) /01 (ug cos(2n) +v,sin(2n))

7

1
1 1
—(ao+a1+a5+a6+a8)/ [(uwcosn—l—2vxsinn)2—4v§sin2n]. (1.10)
0

By direct computation, the system (1.7) is dissipative when the coefficients satisfy the
assumptions (1.6).

DEFINITION 1.1.  For any time 0<T < oo, a collection of functions (p,u,v,n)(x,t) is
a global weak solution to the initial and boundary value problem (1.7)-(1.9) if
(1) p>0, a.e., peL>(0,T;L7), pu? pv?>€L>®(0,T;L'), wu,veL?0,T;HE)
n€L>®(0,T;H')NL*(0,T;H?), n,L*0,T;L?).
(2) The equations of p, u, v are satisfied in the weak sense, while the equation of n

is valid a.e.. The initial condition (1.8) is satisfied in the weak sense.

(8) The energy inequality is valid for a.e. t€(0,T)

m, +12 1
/D<50— / 40 Po /no

The following is the main result in this paper.

THEOREM 1.1.  Assume that the coefficients of Leslie stress tensor satisfy the algebraic
conditions (1.5) and (1.6). Then, for any 0<T <oo and any initial data

l
0<poel?, — 0 cl? nyeH', (1.11)

N

there is a global weak solution (p,u,v,n)(z,t) on

(0,1) x (0,T) to the initial and boundary
value problem (1.7)-(1.9). Furthermore, p€ L?7((0,1) x (

1) x(0,T)).
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The main ideas of the proof utilize and extend those from [8,14], and [7] in the
study of the compressible Navier-Stokes equations, where the quantity called effective
viscous fluz has played crucial roles in controlling the oscillation of the density func-
tion p. However, the general Leslie stress tensors in the compressible Ericksen-Leslie
system (1.7) induce two complicated second-order terms J* and J? that prohibit direct
applications of the method of effective viscous flux. In this paper, we observe that with
the algebraic conditions (1.5) and (1.6), the system of u= (u,v)T can still be shown to
be uniformly parabolic (see (5.26) and (5.27) below), i.e. the coefficient matrix of the
second-order terms is uniformly elliptic. Using the inverse of coefficient matrix of the
second-order terms, we can then define a modified form of effective viscous flux as in
Lemma 5.3, which yields the desired estimates that are necessary in the limiting process
of approximated solutions.

The paper is organized as follows. In Section 2, we will sketch a derivation of the
system (1.7). In Section 3, we will derive some a priori estimates for smooth solutions
of (1.7). In Section 4, an approximated system will be introduced, and the existence of
global regular solutions of this approximated system will be proven. In Section 5, we
will prove the existence of global weak solutions through some delicate analysis of the
convergence process.

2. Derivation of the model in one dimension
This section is devoted to the derivation of the system (1.7) in dimension one. If a
solution takes the form

u=(u(z,t), U(J;,t))T, n=(cosn(z,t), sinn(x,t))T, (z,t) €(0,1) x (0,T),

then

so that

trD=u,, N=n—wn= (n — vz) (—sinn7 cosn)T
Direct calculations imply that

T
1 . 1 T 9 .
Dn= | ugcosn+ v, sinn, —v,cosn n° Dn=uwu,cos”n-+wv,cosnsinn
2 b 2 b) )
cos’n cosnsinn }

b

cosmsinn  sin’n

n®n:{

cos’n cosmsinn
cosmsinn  sin’n ’

1 . . a2
N®n: (’I’L—’Um> |: COST;SIHTL sm-n :| 7

(nT Dn)n®n = (u, cos*n+wv, cosnsinn) {

2 cos“n  cosnsinn

1 eOST 2
n®N:<h—vx>[ cosnsinn  cos*n }7

2 —sin?n  cosmsinn
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(Dn)®n— uxcoszn—ﬁ—%vmcosnsinn umcosnsinn+%vmsin2n
%vz cos?n %vz cosnsinn ’
2 1 : 1 2
n®(Dn)= Uy COS“M + 5V, COSNSINN. 5V, COS*N
uzcosnsinn+%vzsin2n %vzcosnsinn'
Hence
T
Veo=(J'J?
where

J'=(ap+as+ag+ag) (uqc cos? n)m +aq (u, cos4n)w —(az+as) (ﬁcosnsinn)w

3

+ (s +a7)tas + o (ve cosnsinn) 4o (v, cos’nsinn)

1 y
+ 5(042 + a3 +as+ag) (v cosnsinn)_,

and
J? = (ur COSBHSinn)w + (T'Lcos2 n)x —as3 (hsin2 n)x + (g + ag) (uz cosnsinn)w

2

1 1
+aq (vz cos? nsin? n)x +-(—a2tas) (vm cos? n)w + 5 4Vsz

2

+ %(043 +ag) (vesin®n) .

The terms related to n can be computed as follows
. T
nt:nt(—smn, cosn) ,
. T
n, =n,(—sinn, cosn) , |ng|>=(n,)?,
. T
u-n=un, =un,(—sinn, cosn) ,
Npy =Nyy ( —sinn, cosn)T + (ngﬁ)2 ( —cosn, —sinn)T7

1
V- (Voo Vn)— 2 V|Vnl* = AnVn = (neen., 0)".

Therefore, u(z,t) satisfies

put +puuz+(Pv)x:J1—nmnz» (21)

and v(x,t) satisfies

pUs + puvy = J?. (2.2)

Now we can calculate the equation of n as follows

g=71N+72Dn—~(n” Dn)n
! . T 11 r
=71 n—ivx (—smn, cosn) + 72 ulcosn—kivwsmn, ivzcosn

— 72 (ug cos® n+ v, cosnsinn) (cosn, sinn)T
T

(.1 .
=n | =g (—sinn, cosn)
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1 1 T
+v2 (u,; cosnsin?n+ Ve sinn(1—2cos?n), —u,cos’nsinn + Ve cosn(1 —2sin? n))

_ 1 . T
=n (=50 (—sinn, cosn)

1
— 9 <uxcosnsinn+ 2vz(1—20052n)) (—sinn, cosn)T7

n=(|Vn[*+yN-n)n=(n,)*(cosn, sinn)T

Therefore n(x,t) satisfies

o1 . 1 5
(= Gve | = umcosnsmn—l—ivw(l—Qcos n) | =Ngq. (2.3)

Thus the system (1.1) reduces to (1.7).

3. A priori estimates

In this section, we will prove several useful a priori estimates for smooth solutions
of system (1.7).
LEMMA 3.1.  Any smooth solution to the system (1.7) satisfies the following energy
inequality

1 2

2 : )
= n——=| —ugsin(2n)+ — —Y2c08(2n)) v,
o= [ [V (Fzussintan + = acos(en)
1 1
[4( )u +(a4+a7)u}

0

1/t 2

7/ (2a4+a5+a6—72)v320

4 Y1

i( 1+;) /0 1(uwcos(2n)—|—vz$in(2n))2

1
1 1
—(a0+a1—|—a5+a6+a8)/ {(uwcosn—l—vasinn)Q—4vzsin2n . (3.1)
0

Proof.  Multiplying the second equation by u, the third equation by v and inte-
grating over [0,1], we have

1d [t , 1 d (! !
-4 —— | = (Jru+Jv—unmn,).
2t ), p(u? +v?)+ 1dt /0 (J'u+ JPv—unggny)

Multiplying the last equation by n and integrating over [0,1], we obtain

d1

1 1 1
1 1
—f/ (nx)2+fy1/ 7'12:/ —Yaugsin(2n)n+ = (y1 —y2co8(2n))vyn+ ung,ng | -
a2 ), ) . 12 2

Adding these two equations together, we have

1d [t , 1 d (! 1d [*
- - - v 2
2 dt Op(u +o%)+ y—1dt p+2dt/0(n””>
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1 1 1
1
:/ (Jlu—l—J?v)—yl/ h2+/ §[fyzuzsin(2n)h+(71—Wgcos(2n))vwh]. (3.2)

0 0 0

By integrating by parts, we can estimate the term related to J*,J? as follows
1
/ J'u
0
1
:7/ [(co+ a5 + g+ as)u2 cos® n+agul cos® n+ (au + oy )u? ]
0

! 1
—/ {aluxvx cos®nsinn+ (ao +—(astaz+tas —|—a6)> Uy Vg cosnsinn]
0

2

1
+/ (a2 +az)uzncosnsinn, (3.3)
0

1
/ J?v
1 1 1
/ 102 cos® nsin n—|—2( g+ a5 )v2 cos?n+ i(ag—i—a@-)vgstn—i— 5@41}3

[alumvm cos®nsinn+ (g +ag)uz v, Cosnsmn]

/ QU N Cos? N — angnstn] (3.4)

First notice that all the terms related to «; in (3.3) and (3.4) can be written as

1
—o / [ui cos*n+ 2U Uy cos®nsinn+ vg cos?nsin? n]
0

1
:—al/ [uxc082n+vxcosnsinn]2. (3.5)
0

The other term related to u,v, in (3.3) and (3.4) (without terms with ;) can be written
as

1
1
_/ Uz Vg COSTLSINT [ao—F2(a2+a3+a5+a6)+(ag+ag)
0

1
:—/ (o + 206 + ag) Uz v, cosnsinn, (3.6)
0

where we have used ag+a3=ag—as. The terms related to u2, v2 in (3.3) and (3.4)

(without terms with «4) can be written as ‘
1
—/ [(ozo + a5+ g+ ag)u? cos®n+ (o + aﬂuﬂ
! 1
/ [ 2a4—a2+a5+a3+a6)v —5721) cos(2n)} (3.7)
0
What is left in (3.2)-(3.4) are all terms related to u,n and v,n

)-
1 1

{jmumsm 2n)n+ (asg +a3)uzncosnsmn}
0
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1
1
—|—/ 5(71—72005(271))1}17'1—agvthOSQn—i—anghsinzn
0
1 1
:/ 'yguwhsin(Zn)—i—/ (71 —7y2c08(2n))v.n, (3.8)
0 0

where we have used 71 = a3 — a2 and 9 =as+ a3 =ag— as. Therefore, putting (3.5)-
(3.8) into (3.2), we obtain

1d [t , 1 d ! di (!
et -z Y= 2
2 dt Op(“ +0%)+ y—1dt p+dt2/o(n“”)
1 1
:7041/ [uzcos2n+vzcosnsinn}2f/ Uz U, cosnsinn (g + 2a6 + ag)
0 0
1
—/ [(ao—i—as+a6—I—ag)uicosQn—i—(oq—l—cw)ui]
0
M 1
_/ — (204 + a5 + g +71 )02 2~ 5720 2 cos(2n)

—’71/ n +/ Yau,nsin(2n) + /( —"2¢08(2n))vgn. (3.9)

We first complete the square for all terms with n in (3.5)

1 1 1
fyl/ 7'127/ ’)/Q’LLIT'Y,SiH(27l)*/ (71 —y2cos(2n))vn

_71/ n2—2- 7/ \ﬁn(fquIH(Qn)+1(71 ’72005(271))?11)

\/’W
_/01 {\/ﬂn % (\;%u:csin@n) + \%(vl — 9 COS(2TL))'U3:>:| 2
-1/ 1 (J%uxsm@n) +o=ln= cos<2n>>vx)2. (3.10)

The last term in (3.10) can also be rewritten as follows

(Wux sin(2n) + L(% —2 COS(Qn))Ux> 2

v VN
2
1

ﬁu sin?(2n) 122 2 05 Sin(20) (71 — Y2 c08(2n)) + — (Y1 — 72 cos(2n))%v?
71 a1 T
_ % 7

2 u2 sin’(2n) + 2u, v, sin(2n) (’yg —_ cos(2n))
! !
+ (’yl —2v5cos(2n) + gl cos (2n)> V2. (3.11)

!

To complete the square for the remaining terms, we first investigate the terms containing
Uy, in (3.10) and (3.11):

I e
5041/ u$v$sin(2n)(1+cos(2n))+§/ (o420 + ag) Uz v, 8in(2n)
0 0
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e : 20
— = | uzvgsin(2n) | v — = cos(2n)
2 0 Y1
2

1 [t 1 [t
:5/ (ag+ o +a5+a6+ag)uwvwsin(2n)+§/ (aﬁ_%
0 0

) Uy VU SIn(2n) cos(2n)
ga!

1
:/ (o4 a1 + a5 + ag + ag) ugvysinncosn
0

e g .
+§ a1+ == | ugv,sin(2n) cos(2n). (3.12)
0

2!

Thus we can calculate the terms containing u2 in (3.10) and (3.11) as follows

1t 3 0
- aru?(14-cos(2n))? — 2u?sin®(2n)
4 Jo "

+
ﬁ

(o + a5 + o + ag)u cos*n+ (g + ag)ul |

1 1
:7/ [alui(l +2cos(2n) +cos?(2n)) — 3 2?4 ’y—2u2 cos?(2n)
4 ga! "

+
c\’_‘

(a0 + a5 + g +ag)u cos®n+2(au + ar)ul

1 1 2 1
:1/ al—i—%)u coS (2n)+/ (g + 1 + a5 4 +ag)u? cos® n
0 0

7

/01 [i (‘al—f> U§+(a4+a7)u§]. (3.13)

Similarly, the terms involving v2 in (3.10) and (3.11) can be calculated as follows

1 "1 1
7/ a1v2sin’(2n) + / — (204 + a5 + g + 71 )v2 — =202 cos(2n)

1 /1 2
—f/ (71—272cos(2n) 22 cos (2n)>
4 Jo gi!
1 1 1 1 2
:7/ a1v2sin’(2n) + / (2044—1—0[5—1-046_7(:05 (2n)> v2
4 0 4 0 ’Yl

e e
:g/ (2a1 +3a4+2a5+2a6)vgsin2(2n)+g/ ayv2sin?(2n)
0 0

+

e 3
+ f/ (2044 +as+ag— 72) vZcos?(2n). (3.14)
4 Jo !

2
For the terms with coefficient oy + 1% in (3.12) and (3.13), we have

e % e % :
- a1+ -2 ) utcos?(2n) + = a1+ == | uzv,sin(2n) cos(2n)
4 Jo g4t 2Jo M

_le< 14_1?)/0 [(uwcos(2n)+vxsin(2n)) —v2sin®(2n)]. (3.15)

The terms with coefficient ag+aq + a5+ ag+ag in (3.12) and (3.13) can be written as

1
(ot a1 +as+ag +a8)/ (ui cosgn—i-uwvwsinncosn)
0
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1
1 1
=(ag+a +a5+a6+a8)/ (uzcosn—i— 2v$sinn)2—4visin2n] . (3.16)
0

Collecting all the terms involving v2 in (3.14)-(3.16), we have

1! 1t
= / (201 + 30 + 205 + 206 ) v2 sin® (2n) + 3 / agv2sin?(2n)
0 0

8
1/t 2 1 2\ !
+f/ (2a4+a5+a6—%) vicos2(2n)—(a1+%)/ v?sin?(2n)
4 Jo g8 4 7/ Jo

1 I
—i(ao+a1+a5+a6+a8) Vg ST
0

1 1 2 1 1
:7/ (2a4+a5—|—0¢6—72) vg—f(a0+a1+a5+a6+a8)/ vZsin®n. (3.17)
4 0 Y1 4 0

Therefore, putting the identities (3.10), (3.15)-(3.17) into (3.9) yields

1d/1 ) 1 d/1 d1 [t
50 [ plum v )+ ——— p7+—f/ Nz
sat ), ) y—1dt ﬁ20(>

/{f”—(\;ﬁuzsm@n)ﬁ-\;ﬁ(% ’YzCos(2n))%>r

1 1 2
1 1
—/ { < al—%>ui+(a4+a7)ui] —f/ <2a4+a5+a6—%>vg
o L4 " 4 Jo "

111( 1+72>_/Ol(uzcos(Qn)+vzsin(2n))2

g1
' Loowooy2 Lo o
- 0 T oYz -
(o + a1 +as+ag +a8)/ (uzcosn+ 5 sinn) 4vmsm n
0
which completes the proof of lemma. 0

From the energy inequality above, we can obtain the following estimates for n.

LEMMA 3.2.  For any smooth solution to the system (1.7), it holds that
||nm ||L2(O,T;L2) + ||nt||L2(O,T;L2) < C(&),T) (318)

Proof. First notice that the equation of n is
o1 . 1 5
(=50 ) =7 U, cosnsinm + 5%(1—2005 n) | =Ngq. (3.19)
It is not hard to see that
.1 . 1 9
1 n*g% —72 | ugcosnsinn+ 51&(172(3013 n)

1
—(71 —72c0s(2n))v,

1
=11 — ifyzum sin(2n) — 5

By the energy inequality, we obtain the estimates for n,,. Next, by the equation of n
and the energy inequality, we obtain the estimate for n;. 0

We also need to show the higher integrability of p, which is inspired by the argument
in [4].
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LEMMA 3.3.  For any smooth solution to the system (1.7), it holds that

ol 22 (0,17 % j0,77;) < C(E0,T). (3.20)

T 1
G(ac,t)::/ p”—x/ pY.
0 0

Proof. First set

It is easy to see that

oG !
’Yﬁ ’Y —_ =
el /0 P, G(0,t)=G(1,t)=0.

Notice that the equation of w can be written as

1

(pu)i+(pu?)e+(p7), = ' = 5((n2)")a

where

J'=(ag+ a5 +ag+ag) (uz cos? n)m +aq (uz cos4n)w —(ag+as) (T'LCOSTlSiIl’n)w

+ (g + a7)uge +ap (vm cosnsinn)m +aq (vm cosSnsinn)w

1 .
+ 5(042 +as+as+ag) (vx cosnsmn)x.

Multiplying this equation by G(z,t), integrating over [0,1] x (0,7"), and using integration
by parts, we obtain that

[ o= (L)« [oncen- [ [mGe
—/OT/OlJla(x,t)_;/oT/olmzaGa(;r;,t)
:ih' (3.21)

For the first term, it is easy to estimate by energy inequality
L <C(&,T).

For the second term, we need to use integration by parts with respect to ¢t to obtain

1 1 T 1
12:/ puG(x,T)—/ puG(x,O)—/ / puGy(x,t)
0 0 0o Jo
1 1 T el
<C sup (/ pIUI/ p”)—/ /puGt(ﬂs,t)
0<t<T \Jo 0 o Jo
1 1 1,1 T 1
<C sup (/ ol [+ [0 ] m)—/ | ot
0<t<T \Jo 0 o Jo o Jo

<C(E,T) —/OT/OlpuGt(x,t).
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To estimate the last term here, we multiply the equation of p by vp7~! to get

P+ (p )z +(y—1)p u, =0.

Then it holds

—/OT/OlpuGt(x,t)

e

//pu/ P+ (v—1)p"uy) //xpu/ (p"u)z+ (v —1)p us)
:/0/0 L2 4 (= 1/ /pu(/puw—l‘/opum>

s/OT/O 1 2+c//p|u\/ o]

S/()T/Olp”“uHC/O </O (p+plul®) (/01,02”); (/Olluxl2>;>

A Lomaenf (L) (o)
[l fronenf [

[ [oast [ e,

where we have used the Cauchy inequality, the Holder inequality, the Young inequality
and the energy inequality. Hence we obtain

T
IQS// T2 4 2 // P74+ C(&,T).
o Jo

For the third term in (3.21), it holds

T 1
N —
o Jo
L T
Iz-i-fsﬁf/ /P27+C(507T)~
4Jo Jo

For the fourth term in (3.21), by integration by parts it holds

T 1 T 1 1
ug/ /<|uz|+|n|+|vz|>/ﬂ+/ / <\um|+|nt|+|vz|>/ o
0 0 0 0 0
1 T 1 ) T 1 ) 1 )
<= P71 +C (e ® + 71 + vz )
4 0 0 0 0

Then
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T 1
+C(€0,T)/ / (g |2 + e + 0 [?) + (&0, T)
0 0

<i| [ rce.
0 0

For the last term in (3.21), it holds

1 (T 1 1
152—*/ / I, |? <p”’—/ p”) <C(&,T).
2Jo Jo 0

Therefore, by adding all the estimates together in (3.21) we obtain

T r1 1 T p1
/ / p27§7/ / p27+c(507T)7
0 0 2 0 0

which implies the estimate (3.20). |

4. Approximated solutions

In this section, we first consider the case that the initial values are smooth enough,
ie. poeCl, ug,vg,mo€C?, and 0< 061 <po<cy and ug= %7 Vo= f}—‘;, and then con-
struct the Galerkin approximation of p, u, v and n.

Step 1. Recall that
6;(z) =sin(jrz), j=12,..
is an orthogonal base of L?(0,1). For any positive integer k, set

Xy, =span{p1, p2, - Pi }-

and

for some constants

Then (uf,vE) — (ug,vo) in C2 as k— oco. Let

k k
up=>» ci(t)p;i(z), vp=>) di(t)¢;(x)
=0 =0

be the finite-dimensional approximation of u, and v, and we want to solve the approxi-
mation system:

(pr)e+ (prug)z =0,

pr(ur)e + prug (). + (PZ)uL = Jli — (k) (k) 2

P (V)¢ +pkuk(vk)x:J,37

" (nk — %(vk)x) — Y9 ((uk)wcosnk sinny, + %(vk)x(l —2cos? nk)) = (nk)zz-

(4.1)
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Here J}, J? have the same form as J', J?, but with u,v replaced by uy, vj. For this
system, we consider the following initial and boundary values

(pk,ukkavnk)(‘xﬂo):(vaugavgﬂnO)(x)v (4'2)
ug(0,8) =vg(0,8) =ug(1,8) =vg(1,) =0, (ng)(0,t) = (ng).(1,¢)=0. (4.3)

Step 2. The first step is to solve pp and n; by assuming ug,vy € C°(0,7;C?) for a
fixed k. To this end, we rewrite the equations of p; and ny in the Lagrange coordinate
system.

Without loss of generality, in this section, we assume that

/0 po(z)dx=1. (4.4)

For any T >0, we introduce the Lagrangian coordinate (X, 7)€ (0,1) x [0,T) by
X(x,t) :/ pr(y,t)dy,  7(x,t)=t.
0

If pi.(z,t) € C((0,1) x [0,T)) is positive and fol pr(x,t)de=1 for all £€[0,T), then the
map (x,t) = (X,7):(0,1) x (0,T) —(0,1) x (0,T) is a Cl-bijection such that X (0,t)=
0, X(1,t)=1. By the chain rule, we have

0 o 0 0 0

o~ Paxtar ar Prax

The equation of pp can be rewritten as
(pr) + pic(ur) x =0, (4.5)
along with the initial condition
pr(X,0) = po. (4.6)

Suppose u € C°(0,7;C?) with lurllco(o,r;c2) < Mo. Then py can be solved explic-
itly by

po(X)

X,7)= = . 4.7
o) = a0 [T () x (X,) d 7
Hence, for any T'< 5= M , we have
po(X) co
X, 7)< < 2¢o, 48
pe(X,7) < TTo(x fo (an)x (X.5) ds\_ —eodoT S 20 (4.8)
X -1 —1
pi(X,7) > Po(X) ‘5% (4.9)

T 1+]po(X fO (up)x (X, s) ds\ 1+cOM0T 2

Similarly, since pg€Ct, uy € C%(0,T;C?%), we conclude that for sufficiently small
T(Co,M())>O,

lloxllcoo,r:cty + 1 (px)ellco 0,1 x (0,1)) < M1, (4.10)

for some positive constant Mj.
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Furthermore, suppose that pj},p? are solutions of Equation (4.5) corresponding to
up,ui € C°(0,T;C?), with the same initial condition, we can conclude from (4.5) that

Pk Pi

Integrating with respect to 7, we obtain
-
12 1.2 1,2
Pk~ Pk ZPkPk/O (Uk _U'k>X

which, combined with (4.10), implies that

1o = Prllcoo.r:0n) < C(My, T)T |lug, —u || oo, 7:02)- (4.11)
Step 3. Similarly, we can rewrite the equation of n in the Lagrange coordinate as
1
1 ()7 = 5 on(vk)x ) —pr (pr(ni)x)
= () x sin(2ni) + pr (ve) x cos(2n)). (4.12)
For this system, we consider the following initial and boundary values
(nk) x(0,7)=(ng)x (1,7) =0. (4.14)

By the standard Schauder theory of parabolic equations (cf. [6]), we conclude that
mllcr om0
<ClInollc2 +Cllpr(v) x lco0,1) % 0,1)) + Cllpk(ur) x llco(0,1)x 0,7)) < M2, (4.15)

for some positive constant M.

Furthermore, suppose that n},,n? are solutions of Equation (4.12) corresponding to
Py, i € CH((0,1) x (0,T)) and uj,uz € C°(0,T;C?), subject to the same initial condition.
Denote

Ak =Nk —Nj,  Pk=Ph— P, U =Ug —Uj.
Then from (4.12) we have that

Y1 (1) — (p1)? (i) x x

=0k (pk +07) (n3) x x + Pk (p1) x () x + p% (i) x (n1) x + i (p%) x (k) x

Yo _
+ (Pr(vi)x +PF (B4)x)
— 2 (r(vh) x cos(2n}) + pi (B1) x cos(2n}) — 203 (o) x sin (7 sin(n} +nf)
+2 (Pr(uy,) x sin(2ny) + pj (@) x sin(2n) +2p3 (uh) x sin(fg) cos(nj, +nj)) .

2
By the standard W, -estimate of parabolic equations (cf. [6]), we conclude that
72 w21 0,17 0,7
<ClprllL20,m;m1) +Cllnkl 20,1522y + Cllokl L2 0,750y + Clltk || L2 0,7: 1)
1 _ L F
<CT>|prllcoo,ricn) + ClinkllL20,r:02) + CT |[vkl coo,ri0t) + CT 2 ||tk co 0,501y

1, _ 1, _ _
<COT2 g cogo,r;02) + CT 2 ||U || coo,m501) + CllRkl L2(0,7;12)-
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Since 7i;(7,0) =0, we obtain that
17kl L20,7:22) S CT |7k llyy2.1 (0,11 % 0,1))

If we choose T' >0 small enough, we obtain

_ 1 _ _
17l w22 10,13 (0,7y) SC (M, Mo, )T % ([l | coqo.ric2) + Wkl coomiery) - (4.16)

Step 4. To obtain the estimates for ug and vy, first notice that the equation of u; and
v, can be understood in the weak sense, i.e., for any ¢(z) € X, and t€[0,T], it holds

/Olpkuk¢—/pou’5¢

t 1 t 1
~ [ [ Poruwomotiartan [ [ icosnsinng, (1)
o Jo 0 JO

/ PrUKD — /Povo
t 1
:/ / P2(pk‘7ukavk7nk)¢_/ / (OézﬁkCOS2’rLk—Olgflzksinzﬂk)(bx, (418)
0 JO 0 JO

where
P (ks ke, Uk, k)
:(ao+a5+a6+ag)((uk)mcos2nk) + a1 ((uk)q cos nk) + (g +ar) (up) ze
+ o ((vr)wcosngsinnyg) _+on ((0k)x cosgnkblnnk)
1 .
+ §(a2 + a3 +as+ag) (vr)zcosngsinng)  — (prurur)z — (07) , — (k) wa (Mk) 2,
and
P2 (ks Uk U, k)

—as+as) ((Uk)zCOS2 nk)x

(
al( 2 COS nksmznk) —}—5(
1

_ 1
5 (03 +ae) ((vk)zsin®ng)  + 504 (0K )z

+ay ((uk)m cos® ny, Sinnk)z + (g + ag) ((uk)z cosny Sinnk)m — (PrVKVE) -

+ =

Similarly to the energy inequality (1.10), we can obtain the same form of energy esti-
mates for the system (4.1) so that

|urllcoo,r;02) + vkl coo,r;c2) < Clluk|lcoo,r;2) +Cllvrllcoo,rin2) < Mz,  (4.19)

provided (inf) pr(x,t) >0. Here we have used the fact that the dimension of X} is finite.
x,t

To apply the contraction map theorem, we define the linear operator N{pg]: Xp —
X by

1
Npwl, 6) = /O PR, 1,6 € K.
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It is easy to see that

IN okl 2,27y < CE)lprll -

If inf p, > 0, the operator N|[pg] is invertible and

-1
IV ol 0 < (infr)

Furthermore, for any p}; € L' and infp?C >0,i=1,2, it is easy to see that
T

N7 oR =N o] =N o] (Vo] =N pi] ) N okl
which implies that
HN_l[pllc] _N_l[p%mg(x;,xk) < CH./\/‘[p}C] _N[pimg(xk,x;) < CHP% _piHLL (4~20)

Hence by the estimates (4.11), (4.16) and (4.20), we can apply the standard contrac-
tion map theorem to obtain the local existence of a unique solution ug,vg € C(0,Tk; Xk)
to (4.17) and (4.18) for some T} >0. Then by the Equations (4.5) and (4.12), we can
solve for py,nk, which provides a unique local solution to the approximated system (4.1)
for any fixed k.

Step 5. In this step, we will establish a uniform estimate of the local solution until T}
in order to extend the solution beyond T} to any time 7" > 0, which implies the existence
of unique global solution of the system (4.1) for any fixed k. We first show the following
uniform estimate for pg

Claim: For any x€10,1] and ¢t €[0,T}], it holds

1
E<p,€(gc ) <cret (4.21)

for some constant c¢; > 0.

Indeed, similar to the energy inequality (1.10), we can obtain the same form of
energy estimate for system (4.1) so that

| (ur)all 220,75 m2) + | (Vi) | L2 0,73 122)

<Cll(ur)zllz2((0,1)% (0,13) )+C||(Uk)90||L2((0,1)><(0,Tk))§M4' (4.22)
By the first equation of (4.1), we can find z((¢) € (0,1) such that
/Pk—/ po=1.
0
Then
st [ () bl )
= — ) Sltg|——0s 5 el =
pe(z,t)  pr(@o(t),t)  Jaoy \Pr/, 2|l pu(z,0) || e 2o Pk /) &

which implies

1 2

7pk(a:,t) (4.23)

1
§2+/ Pk
oo 0

().
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By the first equation of (4.1), we have
d [! 1) |?
it 1),
1 2 1
1 1 1
Ll (2). )
0 Pk ) & 0 Pk /) z \Pk/ 4t
1 2 1
1 1 Uk )z
:—/ (Pruk)z () +2/ Pk () <(pkgk)> : (4.24)
0 Pk ) 4 0 Pk / Pk z

The last term on the right-hand side can be computed by
1 1
1 z 1 1 z
0 Pk / & Pk z 0 Pk /) Pk /) . Pk )
1 2 1
0 ( 1 > 1
=— | pru — +2/ <> Uk)pe- (425
;g A T2 ) e (429)

Combining (4.25) with (4.24), we conclude that

L)L @)

The right-hand side can be estimated as follows
1 1) 1 1 1
- Uk )z S/ p2 ()
/0 (pk 93( ) 0 K Pk T
1/1 (1) 1\ 1 /1|< Jeo
Pk BN Uk )zx
2 2 Pk( )l e

( > / | Uk ’I"E‘
where we have used (4.23) in last inequality. Denote

Q(px) = /lpk (plk) ; a<t>1+/01|<uk>m|2.

Then by (4.25), we have
d 1
G2 <a®Q(e)+ [ ()l
0

1
Py |(uk) e

2

which is equivalent to

Q(px) — Qlpo) <2 / / (ol + / alt)Q(pr) < 2Mi + / a(t)Q(pr).

where we have used (4.22) in last step. By the Gronwall inequality, we obtain

Qpr) < (Q(po) +2My) exp (/0 0(5)> <(Q(po) +2Mu)exp(t+My) <Ce'.  (4.27)
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Combining (4.23) and (4.27) together, we can prove the left-hand side of (4.21).
Denote v=1426 for some § >0. Then it holds

1 1 1 2 1 3
ol < [ s pil<pk>z<( / pz) +C( / pz) Qo))

which completes the proof of the Claim.

N|=

<Ceél,

By using the uniform estimate (4.21) for py and the energy inequality, we can show

lullcoo,1:200) T 1vrllco o, 1sx0) < Cllukllcoo, 12y + Cllvkllcogo,m;2) < Ms.

Therefore, we can extend the solution beyond T} to any time 7' >0, which implies the
existence of a unique smooth solution of the system (4.1) for any fixed k.

5. Existence of global weak solutions.
Step 1. Taking k — oo in the approximated system (4.1), we may obtain the existence
of a global weak solution with a smooth initial and boundary value and pg >4 > 0. Since
the limit process of this step is similar to the next step when 6 — 0, we omit the details
of this step.

Step 2. We first approximate the general initial and boundary data in Theorem
1.1 by smooth functions. We may extend n to fig € H*(R) such that ng="g on (0,1),
and obtain the smooth approximation of initial data by the standard mollification as
follows

1 ™o 1 To 7
) ~ ) 0 5 0 5 s 0
Po="s* po+9, uo=n5*(>7 vo=—"F=N*|—= |, nop= -

Vb Vo Vo Vo |75 % 7o

where, for small § >0, ns= %n (3) is the standard mollifier, f is the zero extension of f
from (0,1) to R. Therefore pd,ud,v3,nd € C?T([0,1]) for 0< a <1, and it holds

p5>6>0, pd—poin LY, ni—ngin H, (5.1)
5.6 mo . 2 5.8 lo . 2
PoUG — in L*, 1/pdvg— —— in L=, 5.2
00 \/% 0“0 \/% ( )

5,68 . 21 55 . 2y

poug —mo in L+, pvg —lp in L3+1, (5.3)

as 6 —0.
Let (ps,us,vs,n5) be a sequence of global weak solutions to

(ps)e+ (psus)a=0, ps>0,
(psud)+ (psu3)z+ (p3) , = J5 — (15) 22 (105) )

(5.4)
(psvs)t+ (psusvs)e = J3,
o] (h(; — %(vg)z) — 9 ((u(;)mcosngsinng + %(v(;)m(l — 2(:052715)) =(N5)wxs
with the initial and boundary values
(pg,m,v(;,ng)(m,O) z(pg,ug,vg,ng)(x), (5'5)
us(0,t) =v5(0,t) =us(1,t) =vs(1,t) =0, (n5)2(0,t)=(ns)(1,t)=0.
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Here J} and JZ have the same forms as J' and J2, but with (u,v,n) replaced by
(U(;,U5,TL§).

By Lemma 3.1-Lemma 3.3, we can find a subsequence (ps,us,vs,ns), still denoted
as (ps,us,vs,ng), such that for any 7'>0, as 6 —0,

ps—p, in L=(0,T;LY),  ps—p, in L*7([0,1] x [0,T7]), (5.7)
pg —p7, in L*([0,1] x [0,77), (5.8)
us —u, in L*(0,T;H}), ws—w, in L*(0,T;H}), (5.9)
ns—mn, in L°([0,1] x [0,T]), (ns)e —ng, in L°°(0,T;L?), (5.10)
(ng)e —mny, in L2([0,1] x [0,T]), (1§)zx — Naz, in L*([0,1] x[0,T7]). (5.11)

Since ps >0, for any nonnegative function f € C§°((0,1) x (0,7")) it holds that

T 1 T 1
| [or=tm [ [ sz0
o Jo 6=0Jo Jo

Since f is arbitrary, we conclude that p>0 a.e. in (0,1) x (0,7).
We need to show the limit (p,u,v,n) is a solution to the system (4.1). We first state
several compactness results that will be used in our proof.

LEMMA 5.1 ( [23]). Assume X CECY are Banach spaces and X << E is compact.
Then the following embeddings are compact

{f: feL40,T;X), % eLl(O,T;Y)}<—>;>Lq(O,T;E), for any 1 <qg< oo,
{f: feL>0,T;X), ZJ;ELT(O,T;Y)}<—><—>C([O7T];E), for any 1 <r <oo.

LEMMA 5.2 ([7]). Let O CR" be compact and X be a separable Banach space. Assume
that fs:0 — X* is a sequence of measurable functions such that for any k

esssup|| fs]| x~ <N < oo.
@)

Moreover, the family of functions (fs5,®) is equi-continuous for any ® belonging to a
dense subset of X. Then fs € C(O; X —w) for any k, i.e., for any g€ Xx, (fs,g) € C(O).
Furthermore, there exists f € C(O; X —w) such that (after taking possible subsequences)

fs—f, inCO;X —w)

as 6 —0.
First observe that ps € L?7([0,1] x [0,T]) and us € L?(0,T;Hg) C L?(0,T; L*°) imply

psts € L7371 (0,T;L*7), (p(s)t:—(pm)weL%m,T;H-l).

By Lemma 5.1 and Lemma 5.2, and =5 >1, ps € L*(0,T;L7), L7 << H~!, we con-
clude

ps—p, in C(0,T;L7 —w), ps—p, in C(0,T;HY), (5.12)
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where feC(0,T;X —w) if for any g€ X*, (f(¢),g) € C([0,T]). Hence
psus — pu, in D'((0,1) x (0,T)), psvs— pv, in D’'((0,1) x (0,T)), (5.13)
and furthermore
pi+ (pu), =0, in D’'((0,1) x (0,7)). (5.14)
By (5.12), it also holds that
p(z,0) = po(x), weakly in L7([0,1]). (5.15)

By the fact (ns); € L2(0,T;L?), (5.10) and (5.11), we can apply Lemma 5.1 to obtain

ns—n, in C([0,1] x[0,T]), ns—n, in L*(0,T;C"), (5.16)
Combining with (5.9)-(5.11), we can show the limit n satisfies the following equation:
.1 . 1 9
Y1 <n 2vm> — 9 (umcosnsanr 51};,;(172(:05 n)) = Ngg- (5.17)
By (5.16), it also holds that
n(x,0)=ng(x), in [0,1]. (5.18)
By the fact /p5 € L*([0,1] x [0,T]) and \/psus € L>(0,T;L?), it holds
Psus € LW(O,T;L%).
Combining with (5.9), we have
psu2 — pu?, in L*(0,T;L7%T). (5.19)
By the second equation of system (5.4), we have
(psus)e=—(psul)e — (p), + & = (15)aw(ns)s € L2(0,T; W 1757,

where J} has the same form as J!, but with (u,v,n) replaced by (us,vs,ns). By using
Lemma 5.1 and Lemma 5.2, we conclude

Pty — pu, in C(O,T;L% —w), psus— pu, in C(0,T;HY). (5.20)
Combining with (5.9), we conclude that
psui — pu?, in D'((0,1) x (0,T)). (5.21)
Therefore
(o) + (pu)a + (77), = I —ngama, in D((0,1) x (0.T)). (5.22)

By (5.20), it holds that

pu(z,0) =mg(z), weakly in L%([OJ]). (5.23)
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Similarly, we can also prove that
(pv)i + (puv), = J?, in D'((0,1) x (0,T)), (5.24)
pv(x,0) =ng(x), weakly in L%([O,l]). (5.25)
By (5.21), for some ¢ € (0,7) and small e >0, it holds

1 t+e 1 1 t+e 1 1 t+e 1

2 : 2 T 2
- pu” = — lim | psus <— lim [ psus.
€Jt 0 € J¢ 5—0 0 € J¢ d—0 0

Sending € — 07 and using the Lebesgue Differentiation Theorem, we obtain

1 1
0 §—0 /o

for a.e. t€(0,7T"). Combining this limit with the lower semicontinuity, we can prove that
the energy inequality is valid.

The only thing left is to show p¥=p?. To this end, we denote
A(n)=(4ij(n))2x2
where the elements of A;; are given as follows
A11(n)=(ap+ a5+ as+as) cos’n+ aq cos*n+ (s +ar),

1 .
Aq2(n) =agcosnsinn + a;q cos nsmn—l—2(a2 +ag + a5+ ag) cosnsinn,

(n)=
Ag1(n) =aq cos® nsinn + (o + ag) cosnsinn,
(n)=

1 1 1
Aga(n) =y cos®nsin n—|—2( a2+a5)0082n+§(a3+a6)sin2n+§a4.

By the relations (1.6), direct computations imply that there exist two positive constants
A\, A < oo such that for any y € R?

Aly? <yTA(n)y <Aly|* (5.26)
In fact
y  A(n)y
=Au1(n)yi + (Arz(n) + Az (7)) y1y2 + A2z (n)y3
=[(ao+as+as+as) cos?n+aq cosn+ (ay +az)] Y3

3

+ [(ao + ag +ag) cosnsinn + 2a; cos® nsinn + 5(042 +asz+as +a6)cosnsinn] Y192

1 1
—(az+ag)sin®n+ 5044]3/%

1
+ [a1 cos®nsin®n+ 5(—042 +as)cos®n+ 5

2
i (}yl sin(2n)+ \/17 (71 —72 COS(QTL))?J2)

+1 (—m 72)yl +(oz4+oz7)yf+1 <2a4+a5 +ag — 73) y%
4 ¥ 4 o

1 2
1 (a1 + 32) (y1cos(2n) +y2sin(2n))?
1

1 . 2 1 2 .. 92
+(ap+ a1 +as+ag+as) (ylcosn+§ygsmn) —gasinin .
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Therefore

T 1 ’Y% 2 o 1 ’Y% 2
y Ay >~ —a1— = )yi +(ca+ar)yi + = | 204 +as+as— = |3
4 71 4 Y1

1

(oo + 1 4 a5+ g + ag )y sin n.

If we take

1 2 2
)\:min{(a4—|—a7)— Z <C¥1—|—Z/2> R (20444-0[54-0(6— Z/z) —(Oéo—FOll +Oé5—|-a6—|-0és)},
1 1
then by the relation (1.6), we know that A >0 and we have shown the estimate (5.26).

By the definition of A(n), we see that the matrix-valued function A(-)eC>. By
the estimate (5.26), the inverse matrix function A~! exists and

d 1\ 414 -1
%(A (n))=A %(A(n))A :

The equations for u= (u,v)” can be written as
pu; + pun, + P, = (A(n)uy)  +(Bi(n)), — Ba(n) (5.27)
where
P=(p7,0)",

Bi(n)= ((Oéz + ag)ncosnsinn, asncos?n — asnsin? n)T,
T
Bg(n):(nmnx,()) .

Similarly, we can rewrite the equations for us = (us,vs)7, Ps=(p7,0)” in the similar
form

ps(as)e + psus(s)e + (Ps)e = (A(ns) (us)) 4 (B1(ns)) s — Ba(ns). (5.28)
Denote
H=u,— A (n)P, Hs=(us), —A " (ns)Ps.
We have the following lemma.
LEMMA 5.3. As §—0, it holds

psHs — pH, in D'((0,1) % (0,T)). (5.29)

Proof. The main difficulty of the proof arises from pu¢ L?. To overcome it, we
need to mollify the density p by (p), =1, * p, where 1, = %a (;) is the standard mollifier,

f is the zero extension of f from (0,1) to R. By Lemma 3.3 in [7], the zero-extension of
p still satisfies the same equation

(P)e+(pi), =0, in D'(Rx(0,T)). (5.30)

Denote 77 = ({(p)o@)s — ((pit)s)e. By Lemma 2.3 in [19], we know that 77 € L5771 (R x
(0,T), and as 0 =0

77 =0, in L*(Rx(0,T)). (5.31)
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Taking the standard mollifier as the test function, we obtain
(Do)t +({(p)o)e =77, inD'(Rx(0,T)). (5.32)
Similarly, it also holds for the approximate solutions
({Ps)o )t + ((po)atis)e =75, in D'(Rx(0,T)), (5.33)

where 7§ has the same form as 77, but with p,u replaced by ps,us. We also know that,
for any 6 >0, 7§ GL%(RX (0,T), and as 0 =0

7§ =0, in L*(Rx(0,T)). (5.34)

Multiplying the Equation (5.28) by goqﬁA_l(ng)me(pAg)g from left for any pe
C§°(0,T) and ¢ € C5°(0,1), and integrating by parts, we obtain

/ ' / ' Haia)e
T 1 x T 1 T

=/ /@’W&A_l(né)ué/ <ﬁ5>o+/ /<P¢,05A_1(715)u5 (/0 <ﬁ5)a)t
/ /<P¢P5 '(ns)), 115/ (P5) o / /<P¢P5U5A (nS)uzﬁ/x<P6>
//Wbﬂé Ps)ous A (ns u5+/ /<p¢p5u5 (ns)), 6/x<ﬁ5>
//<P¢A () B20) [ {93} //WA (n5)Ba0s) [ (9s)e
—/0 /O<P¢'7'l5/0 <ﬁ5>a—/0 /O<P¢A71(ﬂ5)(A(n5))xH5/O (Ds)o-

The Equation (5.33) implies

Using this fact, we have

/OT/0190¢H5<ﬁ5>a
T 1 x T 1 x
=/ /@’¢P§A_l(n5)u5/ <ﬁ5>o+/ /<P¢05A_1(n5)u5/ 75
/ /@Cbpa '(ns)) 115/ Ps)o / /W)P&u(sz‘l (ns)ua/yC(Ps)
/ /Wbpaua (ns)), ua/m@é)
/ /<P¢A (n5)(Bi1(ns)) /0 0s)o / /<P¢A (ns BQ(”J)/< 5o
—/0 /O<P¢/7'l5/0 <ﬁ5>o—/0 /O<P¢A_1(n5)(14(n5))z7'15/0 (P6)o-
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By the Lebesgue Dominated Convergence theorem and (5.34), we may take the limit
o —0 and get

/T/1<P¢Hépa
/ / @' ops A" (ns) u<s/ P5+/ / wpps (A~ (ns)),u /:ps

/ / od psus A (ns ué/ pa+/ / popsus (A n&))zué/oxpa
[ [eoart oo [ [ [ eoa”mmatns) o,
—/T/1<P¢’H6/IP(S—/T/1<P¢A1(”6)(14(”5))557'[6/:06- (5.35)

By the definition of By(ns) and integration by parts, we obtain

/ _/ peA (ns) BQ(”J)/ Ps
25/0 /0 @¢’A_1(n5)(I(na)x|2,0)T/Omp5
+;/OT/0190¢(A1(”5))x(|(n5)m|2,0)T/01p5

w5 | [ eorsam ma) (m)f.0) " (5.36)

By the definition of Bj(ns), we obtain

//W?A (ns)(B1(ns)), / Ps
/ /Wﬁ '(ns)Bi(ns) /pa—/ /qub L(ns) Bl(ntg)/ompg.

It is not hard to see that there is a vector function F(ns) (smooth in ngs) such that

Ail(n(s)Bl (715) :.Ft(N6) +u6]:1(n5)

//<P¢A (ns)(B1(ns)) /pa
//90¢f ns/ﬂa—/ /90¢U5f na/opa
//WZS '(ns) Bl(na)/o Ps- (5.37)

To estimate the second term on right side of (5.35), we use p¢n as the test function for
the first equation of (5.4) to obtain

/ /90¢p5 ns )t / /<P¢P5n5—/ /@péua (n50)x

Then
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Similarly, it holds

/oT/olw‘bp”t/OT/OISO'W”/OT/OIWU(W)I

Taking the difference, and using (5.7), (5.13) and (5.16), we have
ps(ns)e— png, in D'((0,1) x (0,7)). (5.38)

Furthermore, since

xr 8 xT
[Tmer=orwn. Z([Co)=-puser (o1L%)
0 ot \ Jo

we obtain by Lemma 5.1 and (5.7)

/Omp5—>/(;mp, in C([0,1] x[0,T]), as d—0. (5.39)

Now, we are ready to take limit in (5.35). Letting 6 — 0 in (5.35) (5.36) and (5.37),
and using the facts (5.39), (5.38), (5.7)-(5.9), (5.13), (5.16) and (5.21), we obtain

tim | ) / poHsns
=/0T401sal'qpr-l(n)u/;pt/oT/OTlsocfzp(A*(n))tu/pr z

[ [ edparioa [ o [ [ eopu(aim),u [ o
+§T§1¢¢Al : // § [ eonm </0>/zp

/ /W’H/ / /WA (), H/O . (5.40)

We may go through the same arguments for p and u, and show that right side of

(5.40) is exactly
T 1
| [ eomn
o Jo

which completes the proof of the lemma. 0
We also need the following result.

LEMMA 5.4 ([7]). Let O CR" be a measurable set and fi € L*(O;RY) for k€ Z, such
that

fr—f, in L'(O;RM).

Let ®:RYN — (—00,00] be a lower semi-continuous convex function such that ®(fy)€
LY(O) for any k and

(I)(fk)éw7 in Ll(O)'
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Then
d(f)<@(f), ae. in O.

Moreover, if ® is strictly convez on an open convex set U CRYN and

o(f)

O(f), ae.in O,

then

fe—=f, for ae ye{ycO|f(y)eU}.
The proof of Theorem 1.1 will be completed by the following lemma.

LEMMA 5.5. As § =0, it holds

T 1 T 41
lim/ / p(;log(pg):/ / plogp. (5.41)
6=0Jo Jo o Jo

Proof. By Proposition 4.2 in [8], if p€ L?((0,1) x (0,7)), ue L?(0,T;H}) solves
the equation
put(pu)e =0, in D'((0,1) % (0,T))
then

(b(p)e+ (blp)u)e + (V' (p)p—b(p))us =0, in D'((0,1) x (0,T)) (5.42)

for any b€ C1(R) such that &' (z) =0 for all large enough x € R. '
For any positive integers j, K, we may take a family of functions b}, € C*(R) with

1 1
4 x—&-‘)log(x—i—_), if0<z<K,
bie () = 7 / 1
K+1+,)log(K+1+.>, ifr>K+1.
i J

Since pe L>®(0,T; L"), we have p<oo a.e. in (0,1) x (0,T). This implies that b} (p) —
(p—l—%)log(p—i— %) a.e. in (0,1) x (0,T) as K — co. Hence, by using the Lebesgue Domi-
nated Convergence theorem, we conclude

(e ), (oo oo

in D'((0,1) x (0,7)).

It is easy to see that (er%) log (p+%) € L2((0,1) x (0,T)) since pe L*/((0,1) x
(0,T7)). By Lemma 3.3 in [7], the zero-extension of p outside (0,1) satisfies the same
equation. By the mollification, the integration by parts and the limiting process, we
may take the test function to be the constant 1 so that

[ Lo o el )L o
+;/()T/Oluxlog <p+;). (5.43)
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Similar estimates are valid for approximated solutions ps, us. More precisely, we
have

(pslog(ps)), + (pslog(ps)us), +ps(us). =0, (5.44)

in D'((0,1) x (0,T)), and

/ Ap‘s 1o ”_/ polog (ph) - /Pélog(pa)(T) (5.45)

Since ps € L>=(0,T; L"), we have
p°log (p‘s) € L>(0,T;L7)
for 1 <4 <~. By the Equation (5.44), we obtain
(ps1o (ps)), € L7¥7 (0.T5W 751,
By Lemma 5.2, we conclude as § —0
p’log (p°) — plog(p), in C([0,T];L7 —w).

This implies

1

1
tim [ %108 (%) ()= | loxa)(7), (5.46)

Since the function zlog(x) is convex for any x>0, Lemma 5.4 implies that
plog(p) <plog(p), a.e. in (0,1)x (0,7). (5.47)

Subtracting (5.43) by (5.45) and sending 6 — 0, we have

1 1 1 1
/ plog(p)(T)—/ <p+.>log (p+‘) (T)
0 0 J
1 1 1
= / polog (po) — / (po+ )10g <p0+ )
0
T 1
—|—/ / plu) —hm/ / ps(Us)x —f/ / umlog<p+ ) (5.48)
0 0 6—0
The first two terms of right-hand side can be estimated as follows
T 1 T 1
[ =t ] st
T 1 T 1 T 1
/ / p(u —hm/ / pg?{%—lim/ / At (n(;)p}'*'1
0 0 §—0 0
T 1
[ oo ] for-m] [
0 0 6—0
e 1 +1
Al (n)p7—1 Pl
[ it [ [ it
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—pg/T/d@hfmw— O
:%i_r%/ /AH ppT — ”“), (5.49)

where we have used Lemma 5.3 in the second equality, and (5.16), v>1, and (3.20)
in the last step. Here H! is the first element of #, and Aj;'(:) is the (1,1) element
of inverse matrix A~!(-). By the estimate (5.26) and the property of 2 x 2 matrices,
AT () >0,

Since p,ps >0, it is not hard to verify that

7+1

(p—=p5)"" =(p—ps)"(p—ps) <(p" —p3) (P—ps)-

Thus

T 1
ym/‘/zqﬂm@—WWH
—0
-
%%//Au o) (o= ps)
=1li Al
51—13%/0 /O i (
T 1 i1
=1 —po7 v+1_ Yo — oY —
glg(l)/o /OAH (p pp +§1g5/ /A pps—pyp+pp7)
T 1
=1li Al o7 ). .
51_1)1(1)/0 /0 1 ( ( —pPp ) (5.50)

Substituting (5.50) into (5.49), we have

T 1 T 1
| [ etwn=tim [ [ pstus). <o
o Jo 6=0Jo Jo

Combing this inequality with (5.48), we conclude that

1fpbgu»av—l£1(n+;)bg(p+;)<T>
fovin [ (o) o)

Sending j — 0o, we obtain that

Y+1

1
P’ —pYps—pip+pit )

[ 7o)~ [ plosto) (1) <o.
0 0

This and (5.47) imply that plog(p) =plog(p), combined with (5.46), implies (5.41).
Combining Lemma 5.5 with Lemma 5.4, and using the strict convexity of plogp for
p >0, we know that

ps—p, ae. in (0,1)x(0,T).
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It follows from the Egorov theorem that for any ¢> 0, there is I, C (0,1) x (0,T") such
that |((0,1) x (0,7")) \ Ie| <€ and

sup |ps(z,t) —p(z,t)[—0.
(z,t)el.

Since ps is uniformly bounded in L?7, we can estimate

T r1
1
o< s lostet) =111 % O1) VLl s el
0 0 x,t)el,

—0, as d—0.

This implies that p¥=p" in (0,1) x (0,7"). This completes the proof of Lemma 5.5. 0O
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