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EXISTENCE OF GLOBAL WEAK SOLUTIONS TO THE
COMPRESSIBLE ERICKSEN-LESLIE SYSTEM IN DIMENSION ONE∗

HUAJUN GONG† , TAO HUANG‡ , AND CHANGYOU WANG§

Abstract. We consider the compressible Ericksen-Leslie system of liquid crystal flows in one
dimension. A global weak solution is constructed with initial density ρ0≥0 and ρ0∈Lγ for γ >1.
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1. Introduction
Nematic liquid crystals are composed of rod-like molecules characterized by average

alignment of the long axes of neighboring molecules, which have the simplest structures
among various types of liquid crystals. The dynamic theory of nematic liquid crys-
tals had been first proposed by Ericksen [5] and Leslie [15] in the 1960’s, which is a
macroscopic continuum description of the time evolution of both flow velocity field and
orientation order parameter of rod-like liquid crystals.

In this paper, we will study the compressible Ericksen-Leslie system of liquid crystal
flows (see [1,20] for modeling). Let Ω⊂R3 be a bounded domain with smooth boundary,
and S2 be the unit sphere in R3. The compressible Ericksen-Leslie system is given as
follows 

ρt+∇·(ρu) = 0,

ρu̇+∇P =∇·σ−∇·
(
∂W
∂∇n⊗∇n

)
,

g+ ∂W
∂n −∇·

(
∂W
∂∇n

)
=λn.

(1.1)

Here, ρ(x,t) : Ω×(0,∞)→R is the density, u(x,t) : Ω×(0,∞)→R3 is the fluid velocity
field, n(x,t) : Ω×(0,∞)→S2 is the orientation order parameter of nematic material.
λ is the Lagrangian multiplier of the constraint |n|= 1, ḟ =ft+u ·∇f is the material
derivative of function f , and a⊗b=abT for column vectors a and b in R3.

The macrostructure of the crystals has been determined by the Oseen-Frank energy
density (cf. [9, 21]). One may take the Oseen-Frank energy density in the compressible
case as

2W (ρ,n,∇n) =
2

γ−1
ργ +K1(divn)2 +K2(n ·curln)2 +K3|n×curln|2

+(K2 +K4)[tr(∇n)2−(divn)2], (1.2)

where γ>1, and Kj , j= 1,2,3, are the positive constants representing splay, twist, and
bend effects respectively, with K2≥|K4|, 2K1≥K2 +K4. Then the pressure can be
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given by the Maxwell relation

P (ρ) =ρWρ(ρ,n,∇n)−W (ρ,n,∇n).

For simplicity, we only consider the case K1 =K2 =K3 = 1, K4 = 0 in this paper. The
Oseen-Frank energy in the compressible case becomes

2W (ρ,n,∇n) =
2

γ−1
ργ + |∇n|2.

Therefore

∇·
(
∂W

∂∇n
⊗∇n

)
=∇·(∇n�∇n) ,

∂W

∂n
= 0, ∇·

(
∂W

∂∇n

)
= ∆n, P =ργ− 1

2
|∇n|2.

Let

D=
1

2
(∇u+∇Tu), ω=

1

2
(∇u−∇Tu) =

1

2

(
∂ui

∂xj
− ∂u

j

∂xi

)
, N = ṅ−ωn,

represent the rate of strain tensor, skew-symmetric part of the strain rate, and the rigid
rotation part of direction-changing rate by fluid vorticity, respectively. The kinematic
transport g is given by

g=γ1N+γ2Dn−γ2(nTDn)n (1.3)

which represents the effect of the macroscopic flow field on the microscopic structure.
The material coefficients γ1 and γ2 reflect the molecular shape and the slippery part
between fluid and particles. The first term of g represents the rigid rotation of molecules,
while the second term stands for the stretching of molecules by the flow. The viscous
(Leslie) stress tensor σ has the following form (cf. [1, 16])

σ=α0(nTDn)I+α1(nTDn)n⊗n+α2N⊗n+α3n⊗N
+α4D+α5(Dn)⊗n+α6n⊗(Dn)+α7(trD)I+α8(trD)n⊗n. (1.4)

These coefficients αj (0≤ j≤8), depending on material and temperature, are called
Leslie coefficients. The following relations are often assumed in the literature:

γ1 =α3−α2, γ2 =α6−α5, α2 +α3 =α6−α5. (1.5)

The first two relations are compatibility conditions, while the third relation is called
Parodi’s relation, derived from Onsager reciprocal relations expressing the equality of
certain relations between flows and forces in thermodynamic systems out of equilibrium
(cf. [22]). They also satisfy the following empirical relations (cf. [1, 16])

α4>0, 2α1 +3α4 +2α5 +2α6>0, γ1 =α3−α2>0, (1.6)

2α4 +α5 +α6>0, 4γ1(2α4 +α5 +α6)> (α2 +α3 +γ2)2,

α4 +α7>α1 +
γ2

2

γ1
≥0,

2α4 +α5 +α6−
γ2

2

γ1
>α0 +α1 +α5 +α6 +α8≥0.
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It is easy to see that an example of coefficients α1, ·· · ,α8 satisfying (1.5) and (1.6)
can be taken as follows

α0 =α1 =α5 =α6 =α7 =α8 = 0, α2 =−1, α3 =α4 = 1,

so that

γ1 =α3−α2 = 2>0, γ2 =α6−α5 =α2 +α3 = 0.

A simplified compressible Ericksen-Leslie system has been recently studied. The
idea of simplification was first proposed for the incompressible system by Lin in [17].
In dimension one, the global strong and weak solutions have been constructed in [3]
and [4]. In dimension two, under the assumption that the initial data of n is contained
in S2

+, global weak solutions have been constructed in [12]. In dimension three, the
local existence of strong solutions has been studied by [10] and [11], and when the
initial data of n is contained in S2

+, global weak solutions have been constructed in [18].
The incompressible limit of compressible nematic liquid crystal flows has been studied
by [2].

We also mention a related work [13], in which the Ericksen-Leslie parabolic-
hyperbolic liquid crystal model has been studied. For small initial data, they have
shown the existence of global solutions in dimension three.

1.1. One dimensional model and statement of main results. One of the
main motivations of this paper is to investigate the impact of general Leslie stress tensors
to the solutions of the compressible Ericksen-Leslie system with coefficients satisfying
algebraic conditions (1.5) and (1.6) ensuring the energy dissipation property. Because
of the technical complexity of the Ericksen-Leslie system in higher dimensions, we will
only consider the following simpler case in one dimension, in which the direction field
n is assumed to map into the equator S1,

u=
(
u(x,t), v(x,t),0

)T
, n=

(
cosn(x,t), sinn(x,t),0

)T
for any x∈ [0,1] and t∈ (0,∞). From the derivation given by Section 2 below, the system
(1.1) becomes

ρt+(ρu)x= 0,

(ρu)t+(ρu2)x+
(
ργ
)
x

=J1−nxxnx,
(ρv)t+(ρuv)x=J2,

γ1

(
ṅ− 1

2vx
)
−γ2

(
ux cosnsinn+ 1

2vx(1−2cos2n)
)

=nxx.

(1.7)

Here

J1 =(α0 +α5 +α6 +α8)
(
ux cos2n

)
x

+α1

(
ux cos4n

)
x
−(α2 +α3)

(
ṅcosnsinn

)
x

+(α4 +α7)uxx+α0

(
vx cosnsinn

)
x

+α1

(
vx cos3nsinn

)
x

+
1

2
(α2 +α3 +α5 +α6)

(
vx cosnsinn

)
x
,

and

J2 =α1

(
ux cos3nsinn

)
x

+α2

(
ṅcos2n

)
x
−α3

(
ṅsin2n

)
x

+(α6 +α8)
(
ux cosnsinn

)
x

+α1

(
vx cos2nsin2n

)
x

+
1

2
(−α2 +α5)

(
vx cos2n

)
x

+
1

2
α4vxx

+
1

2
(α3 +α6)

(
vx sin2n

)
x
.
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For this system, we consider the following initial and boundary values

(ρ, ρu, ρv, n)(x,0) = (ρ0,m0, l0, n0)(x), (1.8)

u(0,t) =v(0,t) =u(1,t) =v(1,t) = 0, nx(0,t) =nx(1,t) = 0. (1.9)

The boundary values of n are deduced from the Neumann boundary condition of n.
Denote the energy of the system (1.7) by

E(t) :=
1

2

∫ 1

0

ρ(u2 +v2)+
1

γ−1

∫ 1

0

ργ +
1

2

∫ 1

0

n2
x.

For any smooth solution (ρ,u,v,n), the energy functional satisfies the following energy
inequality, whose proof will be provided in Section 3,

d

dt
E(t) =−D

:=−
∫ 1

0

[
√
γ1ṅ−

1

2

(
γ2√
γ1
ux sin(2n)+

1
√
γ1

(γ1−γ2 cos(2n))vx

)]2

−
∫ 1

0

[
1

4

(
−α1−

γ2
2

γ1

)
u2
x+(α4 +α7)u2

x

]
− 1

4

∫ 1

0

(
2α4 +α5 +α6−

γ2
2

γ1

)
v2
x

− 1

4

(
α1 +

γ2
2

γ1

)∫ 1

0

(ux cos(2n)+vx sin(2n))
2

−(α0 +α1 +α5 +α6 +α8)

∫ 1

0

[(
ux cosn+

1

2
vx sinn

)2− 1

4
v2
x sin2n

]
. (1.10)

By direct computation, the system (1.7) is dissipative when the coefficients satisfy the
assumptions (1.6).

Definition 1.1. For any time 0<T <∞, a collection of functions (ρ,u,v,n)(x,t) is
a global weak solution to the initial and boundary value problem (1.7)-(1.9) if

(1) ρ≥0, a.e., ρ∈L∞(0,T ;Lγ), ρu2,ρv2∈L∞(0,T ;L1), u,v∈L2(0,T ;H1
0 )

n∈L∞(0,T ;H1)∩L2(0,T ;H2), nt∈L2(0,T ;L2).

(2) The equations of ρ, u, v are satisfied in the weak sense, while the equation of n
is valid a.e.. The initial condition (1.8) is satisfied in the weak sense.

(3) The energy inequality is valid for a.e. t∈ (0,T )

E(t)+

∫ t

0

D≤E0 =
1

2

∫ 1

0

m2
0 + l20
ρ0

+
1

γ−1

∫ 1

0

ργ0 +
1

2

∫ 1

0

(n0)2
x.

The following is the main result in this paper.

Theorem 1.1. Assume that the coefficients of Leslie stress tensor satisfy the algebraic
conditions (1.5) and (1.6). Then, for any 0<T <∞ and any initial data

0≤ρ0∈Lγ ,
m0√
ρ0
,

l0√
ρ0
∈L2, n0∈H1, (1.11)

there is a global weak solution (ρ,u,v,n)(x,t) on (0,1)×(0,T ) to the initial and boundary
value problem (1.7)-(1.9). Furthermore, ρ∈L2γ((0,1)×(0,T )).
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The main ideas of the proof utilize and extend those from [8, 14], and [7] in the
study of the compressible Navier-Stokes equations, where the quantity called effective
viscous flux has played crucial roles in controlling the oscillation of the density func-
tion ρ. However, the general Leslie stress tensors in the compressible Ericksen-Leslie
system (1.7) induce two complicated second-order terms J1 and J2 that prohibit direct
applications of the method of effective viscous flux. In this paper, we observe that with
the algebraic conditions (1.5) and (1.6), the system of u= (u, v)T can still be shown to
be uniformly parabolic (see (5.26) and (5.27) below), i.e. the coefficient matrix of the
second-order terms is uniformly elliptic. Using the inverse of coefficient matrix of the
second-order terms, we can then define a modified form of effective viscous flux as in
Lemma 5.3, which yields the desired estimates that are necessary in the limiting process
of approximated solutions.

The paper is organized as follows. In Section 2, we will sketch a derivation of the
system (1.7). In Section 3, we will derive some a priori estimates for smooth solutions
of (1.7). In Section 4, an approximated system will be introduced, and the existence of
global regular solutions of this approximated system will be proven. In Section 5, we
will prove the existence of global weak solutions through some delicate analysis of the
convergence process.

2. Derivation of the model in one dimension
This section is devoted to the derivation of the system (1.7) in dimension one. If a

solution takes the form

u=
(
u(x,t), v(x,t)

)T
, n=

(
cosn(x,t), sinn(x,t)

)T
, (x,t)∈ (0,1)×(0,T ),

then

∇u=

[
ux 0
vx 0

]
, ∇Tu=

[
ux vx
0 0

]
,

so that

D=

[
ux

1
2vx

1
2vx 0

]
, ω=

[
0 − 1

2vx
1
2vx 0

]
,

trD=ux, N = ṅ−ωn=

(
ṅ− 1

2
vx

)(
−sinn, cosn

)T
.

Direct calculations imply that

Dn=

(
ux cosn+

1

2
vx sinn,

1

2
vx cosn

)T
, nTDn=ux cos2n+vx cosnsinn,

n⊗n=

[
cos2n cosnsinn

cosnsinn sin2n

]
,

(nTDn)n⊗n= (ux cos2n+vx cosnsinn)

[
cos2n cosnsinn

cosnsinn sin2n

]
,

N⊗n=

(
ṅ− 1

2
vx

)[
−cosnsinn −sin2n

cos2n cosnsinn

]
,

n⊗N =

(
ṅ− 1

2
vx

)[
−cosnsinn cos2n
−sin2n cosnsinn

]
,
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(Dn)⊗n=

[
ux cos2n+ 1

2vx cosnsinn ux cosnsinn+ 1
2vx sin2n

1
2vx cos2n 1

2vx cosnsinn

]
,

n⊗(Dn) =

[
ux cos2n+ 1

2vx cosnsinn 1
2vx cos2n

ux cosnsinn+ 1
2vx sin2n 1

2vx cosnsinn

]
.

Hence

∇·σ=
(
J1,J2

)T
where

J1 =(α0 +α5 +α6 +α8)
(
ux cos2n

)
x

+α1

(
ux cos4n

)
x
−(α2 +α3)

(
ṅcosnsinn

)
x

+(α4 +α7)uxx+α0

(
vx cosnsinn

)
x

+α1

(
vx cos3nsinn

)
x

+
1

2
(α2 +α3 +α5 +α6)

(
vx cosnsinn

)
x
,

and

J2 =α1

(
ux cos3nsinn

)
x

+α2

(
ṅcos2n

)
x
−α3

(
ṅsin2n

)
x

+(α6 +α8)
(
ux cosnsinn

)
x

+α1

(
vx cos2nsin2n

)
x

+
1

2
(−α2 +α5)

(
vx cos2n

)
x

+
1

2
α4vxx

+
1

2
(α3 +α6)

(
vx sin2n

)
x
.

The terms related to n can be computed as follows

nt=nt
(
−sinn, cosn

)T
,

nx=nx
(
−sinn, cosn

)T
, |nx|2 = (nx)2,

u ·n=unx=unx
(
−sinn, cosn

)T
,

nxx=nxx
(
−sinn, cosn

)T
+(nx)2

(
−cosn, −sinn

)T
,

∇·(∇n�∇n)− 1

2
∇|∇n|2 = ∆n∇n=

(
nxxnx, 0

)T
.

Therefore, u(x,t) satisfies

ρut+ρuux+
(
ργ
)
x

=J1−nxxnx, (2.1)

and v(x,t) satisfies

ρvt+ρuvx=J2. (2.2)

Now we can calculate the equation of n as follows

g=γ1N+γ2Dn−γ2(nTDn)n

=γ1

(
ṅ− 1

2
vx

)(
−sinn, cosn

)T
+γ2

(
ux cosn+

1

2
vx sinn,

1

2
vx cosn

)T
−γ2

(
ux cos2n+vx cosnsinn

)(
cosn, sinn

)T
=γ1

(
ṅ− 1

2
vx

)(
−sinn, cosn

)T
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+γ2

(
ux cosnsin2n+

1

2
vx sinn(1−2cos2n), −ux cos2nsinn+

1

2
vx cosn(1−2sin2n)

)T
=γ1

(
ṅ− 1

2
vx

)(
−sinn, cosn

)T
−γ2

(
ux cosnsinn+

1

2
vx(1−2cos2n)

)(
−sinn, cosn

)T
,

λn=
(
|∇n|2 +γ1N ·n

)
n= (nx)2

(
cosn, sinn

)T
.

Therefore n(x,t) satisfies

γ1

(
ṅ− 1

2
vx

)
−γ2

(
ux cosnsinn+

1

2
vx(1−2cos2n)

)
=nxx. (2.3)

Thus the system (1.1) reduces to (1.7).

3. A priori estimates
In this section, we will prove several useful a priori estimates for smooth solutions

of system (1.7).

Lemma 3.1. Any smooth solution to the system (1.7) satisfies the following energy
inequality

d

dt
E(t) =−

∫ 1

0

[
√
γ1ṅ−

1

2

(
γ2√
γ1
ux sin(2n)+

1
√
γ1

(γ1−γ2 cos(2n))vx

)]2

−
∫ 1

0

[
1

4

(
−α1−

γ2
2

γ1

)
u2
x+(α4 +α7)u2

x

]
− 1

4

∫ 1

0

(
2α4 +α5 +α6−

γ2
2

γ1

)
v2
x

− 1

4

(
α1 +

γ2
2

γ1

)∫ 1

0

(ux cos(2n)+vx sin(2n))
2

−(α0 +α1 +α5 +α6 +α8)

∫ 1

0

[(
ux cosn+

1

2
vx sinn

)2− 1

4
v2
x sin2n

]
. (3.1)

Proof. Multiplying the second equation by u, the third equation by v and inte-
grating over [0,1], we have

1

2

d

dt

∫ 1

0

ρ(u2 +v2)+
1

γ−1

d

dt

∫ 1

0

ργ =

∫ 1

0

(
J1u+J2v−unxxnx

)
.

Multiplying the last equation by ṅ and integrating over [0,1], we obtain

d

dt

1

2

∫ 1

0

(nx)2 +γ1

∫ 1

0

ṅ2 =

∫ 1

0

[
1

2
γ2ux sin(2n)ṅ+

1

2
(γ1−γ2 cos(2n))vxṅ+unxxnx

]
.

Adding these two equations together, we have

1

2

d

dt

∫ 1

0

ρ(u2 +v2)+
1

γ−1

d

dt

∫ 1

0

ργ +
1

2

d

dt

∫ 1

0

(nx)2
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=

∫ 1

0

(
J1u+J2v

)
−γ1

∫ 1

0

ṅ2 +

∫ 1

0

1

2
[γ2ux sin(2n)ṅ+(γ1−γ2 cos(2n))vxṅ]. (3.2)

By integrating by parts, we can estimate the term related to J1,J2 as follows∫ 1

0

J1u

=−
∫ 1

0

[
(α0 +α5 +α6 +α8)u2

x cos2n+α1u
2
x cos4n+(α4 +α7)u2

x

]
−
∫ 1

0

[
α1uxvx cos3nsinn+

(
α0 +

1

2
(α2 +α3 +α5 +α6)

)
uxvx cosnsinn

]
+

∫ 1

0

(α2 +α3)uxṅcosnsinn, (3.3)

∫ 1

0

J2v

=−
∫ 1

0

[
α1v

2
x cos2nsin2n+

1

2
(−α2 +α5)v2

x cos2n+
1

2
(α3 +α6)v2

x sin2n+
1

2
α4v

2
x

]
−
∫ 1

0

[
α1uxvx cos3nsinn+(α6 +α8)uxvx cosnsinn

]
−
∫ 1

0

[
α2vxṅcos2n−α3vxṅsin2n

]
. (3.4)

First notice that all the terms related to α1 in (3.3) and (3.4) can be written as

−α1

∫ 1

0

[
u2
x cos4n+2uxvx cos3nsinn+v2

x cos2nsin2n
]

=−α1

∫ 1

0

[
ux cos2n+vx cosnsinn

]2
. (3.5)

The other term related to uxvx in (3.3) and (3.4) (without terms with α1) can be written
as

−
∫ 1

0

uxvx cosnsinn

[
α0 +

1

2
(α2 +α3 +α5 +α6)+(α6 +α8)

]
=−

∫ 1

0

(α0 +2α6 +α8)uxvx cosnsinn, (3.6)

where we have used α2 +α3 =α6−α5. The terms related to u2
x, v2

x in (3.3) and (3.4)
(without terms with α1) can be written as

−
∫ 1

0

[
(α0 +α5 +α6 +α8)u2

x cos2n+(α4 +α7)u2
x

]
−
∫ 1

0

[
1

4
(2α4−α2 +α5 +α3 +α6)v2

x−
1

2
γ2v

2
x cos(2n)

]
. (3.7)

What is left in (3.2)-(3.4) are all terms related to uxṅ and vxṅ∫ 1

0

[
1

2
γ2ux sin(2n)ṅ+(α2 +α3)uxṅcosnsinn

]
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+

∫ 1

0

[
1

2
(γ1−γ2 cos(2n))vxṅ−α2vxṅcos2n+α3vxṅsin2n

]
=

∫ 1

0

γ2uxṅsin(2n)+

∫ 1

0

(γ1−γ2 cos(2n))vxṅ, (3.8)

where we have used γ1 =α3−α2 and γ2 =α2 +α3 =α6−α5. Therefore, putting (3.5)-
(3.8) into (3.2), we obtain

1

2

d

dt

∫ 1

0

ρ(u2 +v2)+
1

γ−1

d

dt

∫ 1

0

ργ +
d

dt

1

2

∫ 1

0

(nx)2

=−α1

∫ 1

0

[
ux cos2n+vx cosnsinn

]2−∫ 1

0

uxvx cosnsinn(α0 +2α6 +α8)

−
∫ 1

0

[
(α0 +α5 +α6 +α8)u2

x cos2n+(α4 +α7)u2
x

]
−
∫ 1

0

[
1

4
(2α4 +α5 +α6 +γ1)v2

x−
1

2
γ2v

2
x cos(2n)

]
−γ1

∫ 1

0

ṅ2 +

∫ 1

0

γ2uxṅsin(2n)+

∫ 1

0

(γ1−γ2 cos(2n))vxṅ. (3.9)

We first complete the square for all terms with ṅ in (3.5)

γ1

∫ 1

0

ṅ2−
∫ 1

0

γ2uxṅsin(2n)−
∫ 1

0

(γ1−γ2 cos(2n))vxṅ

=γ1

∫ 1

0

ṅ2−2 · 1
2

∫ 1

0

√
γ1ṅ

(
γ2√
γ1
ux sin(2n)+

1
√
γ1

(γ1−γ2 cos(2n))vx

)
=

∫ 1

0

[
√
γ1ṅ−

1

2

(
γ2√
γ1
ux sin(2n)+

1
√
γ1

(γ1−γ2 cos(2n))vx

)]2

− 1

4

∫ 1

0

(
γ2√
γ1
ux sin(2n)+

1
√
γ1

(γ1−γ2 cos(2n))vx

)2

. (3.10)

The last term in (3.10) can also be rewritten as follows(
γ2√
γ1
ux sin(2n)+

1
√
γ1

(γ1−γ2 cos(2n))vx

)2

=
γ2

2

γ1
u2
x sin2(2n)+2

γ2

γ1
uxvx sin(2n)(γ1−γ2 cos(2n))+

1

γ1
(γ1−γ2 cos(2n))2v2

x

=
γ2

2

γ1
u2
x sin2(2n)+2uxvx sin(2n)

(
γ2−

γ2
2

γ1
cos(2n)

)
+

(
γ1−2γ2 cos(2n)+

γ2
2

γ1
cos2(2n)

)
v2
x. (3.11)

To complete the square for the remaining terms, we first investigate the terms containing
uxvx in (3.10) and (3.11):

1

2
α1

∫ 1

0

uxvx sin(2n)(1+cos(2n))+
1

2

∫ 1

0

(α0 +2α6 +α8)uxvx sin(2n)
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− 1

2

∫ 1

0

uxvx sin(2n)

(
γ2−

γ2
2

γ1
cos(2n)

)
=

1

2

∫ 1

0

(α0 +α1 +α5 +α6 +α8)uxvx sin(2n)+
1

2

∫ 1

0

(
α1 +

γ2
2

γ1

)
uxvx sin(2n)cos(2n)

=

∫ 1

0

(α0 +α1 +α5 +α6 +α8)uxvx sinncosn

+
1

2

∫ 1

0

(
α1 +

γ2
2

γ1

)
uxvx sin(2n)cos(2n). (3.12)

Thus we can calculate the terms containing u2
x in (3.10) and (3.11) as follows

1

4

∫ 1

0

[
α1u

2
x(1+cos(2n))2− γ

2
2

γ1
u2
x sin2(2n)

]
+

∫ 1

0

[
(α0 +α5 +α6 +α8)u2

x cos2n+(α4 +α7)u2
x

]
=

1

4

∫ 1

0

[
α1u

2
x(1+2cos(2n)+cos2(2n))− γ

2
2

γ1
u2
x+

γ2
2

γ1
u2
x cos2(2n)

]
+

∫ 1

0

[
(α0 +α5 +α6 +α8)u2

x cos2n+2(α4 +α7)u2
x

]
=

1

4

∫ 1

0

(
α1 +

γ2
2

γ1

)
u2
x cos2(2n)+

∫ 1

0

(α0 +α1 +α5 +α6 +α8)u2
x cos2n

+

∫ 1

0

[
1

4

(
−α1−

γ2
2

γ1

)
u2
x+(α4 +α7)u2

x

]
. (3.13)

Similarly, the terms involving v2
x in (3.10) and (3.11) can be calculated as follows

1

4

∫ 1

0

α1v
2
x sin2(2n)+

∫ 1

0

[
1

4
(2α4 +α5 +α6 +γ1)v2

x−
1

2
γ2v

2
x cos(2n)

]
− 1

4

∫ 1

0

(
γ1−2γ2 cos(2n)+

γ2
2

γ1
cos2(2n)

)
v2
x

=
1

4

∫ 1

0

α1v
2
x sin2(2n)+

1

4

∫ 1

0

(
2α4 +α5 +α6−

γ2
2

γ1
cos2(2n)

)
v2
x

=
1

8

∫ 1

0

(
2α1 +3α4 +2α5 +2α6

)
v2
x sin2(2n)+

1

8

∫ 1

0

α4v
2
x sin2(2n)

+
1

4

∫ 1

0

(
2α4 +α5 +α6−

γ2
2

γ1

)
v2
x cos2(2n). (3.14)

For the terms with coefficient α1 +
γ2
2

γ1
in (3.12) and (3.13), we have

1

4

∫ 1

0

(
α1 +

γ2
2

γ1

)
u2
x cos2(2n)+

1

2

∫ 1

0

(
α1 +

γ2
2

γ1

)
uxvx sin(2n)cos(2n)

=
1

4

(
α1 +

γ2
2

γ1

)∫ 1

0

[
(ux cos(2n)+vx sin(2n))

2−v2
x sin2(2n)

]
. (3.15)

The terms with coefficient α0 +α1 +α5 +α6 +α8 in (3.12) and (3.13) can be written as

(α0 +α1 +α5 +α6 +α8)

∫ 1

0

(
u2
x cos2n+uxvx sinncosn

)
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=(α0 +α1 +α5 +α6 +α8)

∫ 1

0

[(
ux cosn+

1

2
vx sinn

)2− 1

4
v2
x sin2n

]
. (3.16)

Collecting all the terms involving v2
x in (3.14)-(3.16), we have

1

8

∫ 1

0

(
2α1 +3α4 +2α5 +2α6

)
v2
x sin2(2n)+

1

8

∫ 1

0

α4v
2
x sin2(2n)

+
1

4

∫ 1

0

(
2α4 +α5 +α6−

γ2
2

γ1

)
v2
x cos2(2n)− 1

4

(
α1 +

γ2
2

γ1

)∫ 1

0

v2
x sin2(2n)

− 1

4
(α0 +α1 +α5 +α6 +α8)

∫ 1

0

v2
x sin2n

=
1

4

∫ 1

0

(
2α4 +α5 +α6−

γ2
2

γ1

)
v2
x−

1

4
(α0 +α1 +α5 +α6 +α8)

∫ 1

0

v2
x sin2n. (3.17)

Therefore, putting the identities (3.10), (3.15)-(3.17) into (3.9) yields

1

2

d

dt

∫ 1

0

ρ(u2 +v2)+
1

γ−1

d

dt

∫ 1

0

ργ +
d

dt

1

2

∫ 1

0

(nx)2

=−
∫ 1

0

[
√
γ1ṅ−

1

2

(
γ2√
γ1
ux sin(2n)+

1
√
γ1

(γ1−γ2 cos(2n))vx

)]2

−
∫ 1

0

[
1

4

(
−α1−

γ2
2

γ1

)
u2
x+(α4 +α7)u2

x

]
− 1

4

∫ 1

0

(
2α4 +α5 +α6−

γ2
2

γ1

)
v2
x

− 1

4

(
α1 +

γ2
2

γ1

)∫ 1

0

(ux cos(2n)+vx sin(2n))
2

−(α0 +α1 +α5 +α6 +α8)

∫ 1

0

[(
ux cosn+

1

2
vx sinn

)2− 1

4
v2
x sin2n

]
,

which completes the proof of lemma.

From the energy inequality above, we can obtain the following estimates for n.

Lemma 3.2. For any smooth solution to the system (1.7), it holds that

‖nxx‖L2(0,T ;L2) +‖nt‖L2(0,T ;L2)≤C(E0,T ). (3.18)

Proof. First notice that the equation of n is

γ1

(
ṅ− 1

2
vx

)
−γ2

(
ux cosnsinn+

1

2
vx(1−2cos2n)

)
=nxx. (3.19)

It is not hard to see that

γ1

(
ṅ− 1

2
vx

)
−γ2

(
ux cosnsinn+

1

2
vx(1−2cos2n)

)
=γ1ṅ−

1

2
γ2ux sin(2n)− 1

2
(γ1−γ2 cos(2n))vx.

By the energy inequality, we obtain the estimates for nxx. Next, by the equation of n
and the energy inequality, we obtain the estimate for nt.

We also need to show the higher integrability of ρ, which is inspired by the argument
in [4].
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Lemma 3.3. For any smooth solution to the system (1.7), it holds that

‖ρ‖L2γ([0,1]×[0,T ];)≤C(E0,T ). (3.20)

Proof. First set

G(x,t) :=

∫ x

0

ργ−x
∫ 1

0

ργ .

It is easy to see that

∂G

∂x
=ργ−

∫ 1

0

ργ , G(0,t) =G(1,t) = 0.

Notice that the equation of u can be written as

(ρu)t+(ρu2)x+
(
ργ
)
x

=J1− 1

2
((nx)2)x

where

J1 =(α0 +α5 +α6 +α8)
(
ux cos2n

)
x

+α1

(
ux cos4n

)
x
−(α2 +α3)

(
ṅcosnsinn

)
x

+(α4 +α7)uxx+α0

(
vx cosnsinn

)
x

+α1

(
vx cos3nsinn

)
x

+
1

2
(α2 +α3 +α5 +α6)

(
vx cosnsinn

)
x
.

Multiplying this equation by G(x,t), integrating over [0,1]×(0,T ), and using integration
by parts, we obtain that∫ T

0

∫ 1

0

ρ2γ =

∫ T

0

(∫ 1

0

ργ
)2

+

∫ T

0

∫ 1

0

(ρu)tG(x,t)−
∫ T

0

∫ 1

0

ρu2 ∂G(x,t)

∂x

−
∫ T

0

∫ 1

0

J1G(x,t)− 1

2

∫ T

0

∫ 1

0

|nx|2
∂G(x,t)

∂x

=

5∑
i=1

Ii. (3.21)

For the first term, it is easy to estimate by energy inequality

I1≤C(E0,T ).

For the second term, we need to use integration by parts with respect to t to obtain

I2 =

∫ 1

0

ρuG(x,T )−
∫ 1

0

ρuG(x,0)−
∫ T

0

∫ 1

0

ρuGt(x,t)

≤C sup
0≤t≤T

(∫ 1

0

ρ|u|
∫ 1

0

ργ
)
−
∫ T

0

∫ 1

0

ρuGt(x,t)

≤C sup
0≤t≤T

(∫ 1

0

ρ|u|2
∫ 1

0

ργ +

∫ 1

0

ρ

∫ 1

0

ργ
)
−
∫ T

0

∫ 1

0

ρuGt(x,t)

≤C(E0,T )−
∫ T

0

∫ 1

0

ρuGt(x,t).
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To estimate the last term here, we multiply the equation of ρ by γργ−1 to get

(ργ)t+(ργu)x+(γ−1)ργux= 0.

Then it holds

−
∫ T

0

∫ 1

0

ρuGt(x,t)

=−
∫ T

0

∫ 1

0

ρu

(∫ x

0

ργt −x
∫ 1

0

ργt

)
=

∫ T

0

∫ 1

0

ρu

∫ x

0

((ργu)x+(γ−1)ργux)−
∫ T

0

∫ 1

0

xρu

∫ 1

0

((ργu)x+(γ−1)ργux)

=

∫ T

0

∫ 1

0

ργ+1u2 +(γ−1)

∫ T

0

∫ 1

0

ρu

(∫ x

0

ργux−x
∫ 1

0

ργux

)
≤
∫ T

0

∫ 1

0

ργ+1u2 +C

∫ T

0

∫ 1

0

ρ|u|
∫ 1

0

ργ |ux|

≤
∫ T

0

∫ 1

0

ργ+1u2 +C

∫ T

0

(∫ 1

0

(ρ+ρ|u|2)

(∫ 1

0

ρ2γ

) 1
2
(∫ 1

0

|ux|2
) 1

2

)

≤
∫ T

0

∫ 1

0

ργ+1u2 +C(E0,T )

∫ T

0

((∫ 1

0

ρ2γ

) 1
2
(∫ 1

0

|ux|2
) 1

2

)

≤
∫ T

0

∫ 1

0

ργ+1u2 +
1

4

∫ T

0

∫ 1

0

ρ2γ +C(E0,T )

∫ T

0

∫ 1

0

|ux|2

≤
∫ T

0

∫ 1

0

ργ+1u2 +
1

4

∫ T

0

∫ 1

0

ρ2γ +C(E0,T ),

where we have used the Cauchy inequality, the Hölder inequality, the Young inequality
and the energy inequality. Hence we obtain

I2≤
∫ T

0

∫ 1

0

ργ+1u2 +
1

4

∫ T

0

∫ 1

0

ρ2γ +C(E0,T ).

For the third term in (3.21), it holds

I3 =−
∫ T

0

∫ 1

0

ρu2

(
ργ−

∫ 1

0

ργ
)

=−
∫ T

0

∫ 1

0

ργ+1u2 +C(E0,T ).

Then

I2 +I3≤
1

4

∫ T

0

∫ 1

0

ρ2γ +C(E0,T ).

For the fourth term in (3.21), by integration by parts it holds

I4≤
∫ T

0

∫ 1

0

(|ux|+ |ṅ|+ |vx|)ργ +

∫ T

0

∫ 1

0

(|ux|+ |nt|+ |vx|)
∫ 1

0

ργ

≤1

4

∫ T

0

∫ 1

0

ρ2γ +C

∫ T

0

∫ 1

0

(
|ux|2 + |ṅ|2 + |vx|2

)
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+C(E0,T )

∫ T

0

∫ 1

0

(
|ux|2 + |nt|2 + |vx|2

)
+C(E0,T )

≤1

4

∫ T

0

∫ 1

0

ρ2γ +C(E0,T ).

For the last term in (3.21), it holds

I5 =−1

2

∫ T

0

∫ 1

0

|nx|2
(
ργ−

∫ 1

0

ργ
)
≤C(E0,T ).

Therefore, by adding all the estimates together in (3.21) we obtain∫ T

0

∫ 1

0

ρ2γ≤ 1

2

∫ T

0

∫ 1

0

ρ2γ +C(E0,T ),

which implies the estimate (3.20).

4. Approximated solutions
In this section, we first consider the case that the initial values are smooth enough,

i.e. ρ0∈C1, u0,v0,n0∈C2, and 0<c−1
0 ≤ρ0≤ c0 and u0 = m0

ρ0
, v0 = l0

ρ0
, and then con-

struct the Galerkin approximation of ρ, u, v and n.

Step 1. Recall that

φj(x) = sin(jπx) , j= 1,2,...

is an orthogonal base of L2(0,1). For any positive integer k, set

Xk = span{φ1, φ2, ·· ·φk}.

and

uk0 =

k∑
j=0

c̄kjφj(x), vk0 =

k∑
j=0

d̄kjφj(x),

for some constants

c̄kj =

∫ 1

0

u0φj , d̄kj =

∫ 1

0

v0φj .

Then (uk0 , v
k
0 )→ (u0, v0) in C2 as k→∞. Let

uk =

k∑
j=0

ckj (t)φj(x), vk =

k∑
j=0

dkj (t)φj(x)

be the finite-dimensional approximation of u, and v, and we want to solve the approxi-
mation system:

(ρk)t+(ρkuk)x= 0,

ρk(uk)t+ρkuk(uk)x+
(
ργk
)
x

=J1
k−(nk)xx(nk)x,

ρk(vk)t+ρkuk(vk)x=J2
k ,

γ1

(
ṅk− 1

2 (vk)x
)
−γ2

(
(uk)x cosnk sinnk+ 1

2 (vk)x(1−2cos2nk)
)

= (nk)xx.

(4.1)
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Here J1
k , J2

k have the same form as J1, J2, but with u,v replaced by uk, vk. For this
system, we consider the following initial and boundary values

(ρk, uk, vk, nk)(x,0) = (ρ0, u
k
0 , v

k
0 , n0)(x), (4.2)

uk(0,t) =vk(0,t) =uk(1,t) =vk(1,t) = 0, (nk)x(0,t) = (nk)x(1,t) = 0. (4.3)

Step 2. The first step is to solve ρk and nk by assuming uk,vk ∈C0(0,T ;C2) for a
fixed k. To this end, we rewrite the equations of ρk and nk in the Lagrange coordinate
system.

Without loss of generality, in this section, we assume that∫ 1

0

ρ0(x)dx= 1. (4.4)

For any T >0, we introduce the Lagrangian coordinate (X,τ)∈ (0,1)× [0,T ) by

X(x,t) =

∫ x

0

ρk(y,t)dy, τ(x,t) = t.

If ρk(x,t)∈C1((0,1)× [0,T )) is positive and
∫ 1

0
ρk(x,t)dx= 1 for all t∈ [0,T ), then the

map (x,t)→ (X,τ) : (0,1)×(0,T )→ (0,1)×(0,T ) is a C1-bijection such that X(0,t) =
0, X(1,t) = 1. By the chain rule, we have

∂

∂t
=−ρkuk

∂

∂X
+
∂

∂τ
,

∂

∂x
=ρk

∂

∂X
.

The equation of ρk can be rewritten as

(ρk)τ +ρ2
k(uk)X = 0, (4.5)

along with the initial condition

ρk(X,0) =ρ0. (4.6)

Suppose uk ∈C0(0,T ;C2) with ‖uk‖C0(0,T ;C2)≤M0. Then ρk can be solved explic-
itly by

ρk(X,τ) =
ρ0(X)

1+ρ0(X)
∫ τ

0
(uk)X(X,s)ds

. (4.7)

Hence, for any T ≤ 1
2c0M0

, we have

ρk(X,τ)≤ ρ0(X)

1−
∣∣ρ0(X)

∫ τ
0

(uk)X(X,s)ds
∣∣ ≤ c0

1−c0M0T
≤2c0, (4.8)

ρk(X,τ)≥ ρ0(X)

1+
∣∣ρ0(X)

∫ τ
0

(uk)X(X,s)ds
∣∣ ≥ c−1

0

1+c0M0T
≥ c
−1
0

2
. (4.9)

Similarly, since ρ0∈C1, uk ∈C0(0,T ;C2), we conclude that for sufficiently small
T (c0,M0)>0,

‖ρk‖C0(0,T ;C1) +‖(ρk)t‖C0((0,1)×(0,T ))≤M1, (4.10)

for some positive constant M1.
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Furthermore, suppose that ρ1
k,ρ

2
k are solutions of Equation (4.5) corresponding to

u1
k,u

2
k ∈C0(0,T ;C2), with the same initial condition, we can conclude from (4.5) that(

1

ρ1
k

− 1

ρ2
k

)
τ

=
(
u1
k−u2

k

)
X
.

Integrating with respect to τ , we obtain

ρ1
k−ρ2

k =ρ1
kρ

2
k

∫ τ

0

(
u1
k−u2

k

)
X

which, combined with (4.10), implies that

‖ρ1
k−ρ2

k‖C0(0,T ;C1)≤C(M1,T )T‖u1
k−u2

k‖C0(0,T ;C2). (4.11)

Step 3. Similarly, we can rewrite the equation of n in the Lagrange coordinate as

γ1

(
(nk)τ −

1

2
ρk(vk)X

)
−ρk

(
ρk(nk)X

)
X

=
γ2

2
(ρk(uk)X sin(2nk)+ρk(vk)X cos(2nk)). (4.12)

For this system, we consider the following initial and boundary values

nk(X,0) =n0(X), (4.13)

(nk)X(0,τ) =(nk)X(1,τ) = 0. (4.14)

By the standard Schauder theory of parabolic equations (cf. [6]), we conclude that

‖nk‖C1(0,T ;C2)

≤C‖n0‖C2 +C‖ρk(vk)X‖C0((0,1)×(0,T )) +C‖ρk(uk)X‖C0((0,1)×(0,T ))≤M2, (4.15)

for some positive constant M2.
Furthermore, suppose that n1

k,n
2
k are solutions of Equation (4.12) corresponding to

ρ1
k,ρ

2
k ∈C1((0,1)×(0,T )) and u1

k,u
2
k ∈C0(0,T ;C2), subject to the same initial condition.

Denote

n̄k =n1
k−n2

k, ρ̄k =ρ1
k−ρ2

k, ūk =u1
k−u2

k.

Then from (4.12) we have that

γ1(n̄k)τ −(ρ1
k)2(n̄k)XX

=ρ̄k(ρ1
k+ρ2

k)(n2
k)XX + ρ̄k(ρ1

k)X(n1
k)X +ρ2

k(ρ̄k)X(n1
k)X +ρ2

k(ρ2
k)X(n̄k)X

+
γ1

2

(
ρ̄k(v1

k)X +ρ2
k(v̄1

k)X
)

− γ2

2

(
ρ̄k(v1

k)X cos(2n1
k)+ρ2

k(v̄k)X cos(2n1
k)−2ρ2

k(v2
k)X sin(n̄k)sin(n1

k+n2
k)
)

+
γ2

2

(
ρ̄k(u1

k)X sin(2n1
k)+ρ2

k(ūk)X sin(2n1
k)+2ρ2

k(u2
k)X sin(n̄k)cos(n1

k+n2
k)
)
.

By the standard W 2,1
2 -estimate of parabolic equations (cf. [6]), we conclude that

‖n̄k‖W 2,1
2 ([0,1]×(0,T ))

≤C‖ρ̄k‖L2(0,T ;H1) +C‖n̄k‖L2(0,T ;L2) +C‖v̄k‖L2(0,T ;H1) +C‖ūk‖L2(0,T ;H1)

≤CT 1
2 ‖ρ̄k‖C0(0,T ;C1) +C‖n̄k‖L2(0,T ;L2) +CT

1
2 ‖v̄k‖C0(0,T ;C1) +CT

1
2 ‖ūk‖C0(0,T ;C1)

≤CT 1
2 ‖ūk‖C0(0,T ;C2) +CT

1
2 ‖v̄k‖C0(0,T ;C1) +C‖n̄k‖L2(0,T ;L2).
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Since n̄k(τ,0) = 0, we obtain that

‖n̄k‖L2(0,T ;L2)≤CT‖n̄k‖W 2,1
2 ([0,1]×(0,T )).

If we choose T >0 small enough, we obtain

‖n̄k‖W 2,1
2 ([0,1]×(0,T ))≤C(M1,M2,T )T

1
2

(
‖ūk‖C0(0,T ;C2) +‖v̄k‖C0(0,T ;C1)

)
. (4.16)

Step 4. To obtain the estimates for uk and vk, first notice that the equation of uk and
vk can be understood in the weak sense, i.e., for any φ(x)∈Xk and t∈ [0,T ], it holds∫ 1

0

ρkukφ−
∫
ρ0u

k
0φ

=

∫ t

0

∫ 1

0

P1(ρk,uk,vk,nk)φ+(α2 +α3)

∫ t

0

∫ 1

0

ṅcosnsinnφx, (4.17)

∫ 1

0

ρkvkφ−
∫
ρ0v

k
0φ

=

∫ t

0

∫ 1

0

P2(ρk,uk,vk,nk)φ−
∫ t

0

∫ 1

0

(
α2ṅk cos2nk−α3ṅk sin2nk

)
φx, (4.18)

where

P1(ρk,uk,vk,nk)

=(α0 +α5 +α6 +α8)
(
(uk)x cos2nk

)
x

+α1

(
(uk)x cos4nk

)
x

+(α4 +α7)(uk)xx

+α0

(
(vk)x cosnk sinnk

)
x

+α1

(
(vk)x cos3nk sinnk

)
x

+
1

2
(α2 +α3 +α5 +α6)

(
(vk)x cosnk sinnk

)
x
−(ρkukuk)x−

(
ργk
)
x
−(nk)xx(nk)x,

and

P2(ρk,uk,vk,nk)

=α1

(
(vk)x cos2nk sin2nk

)
x

+
1

2
(−α2 +α5)

(
(vk)x cos2nk

)
x

+
1

2
(α3 +α6)

(
(vk)x sin2nk

)
x

+
1

2
α4(vk)xx

+α1

(
(uk)x cos3nk sinnk

)
x

+(α6 +α8)
(
(uk)x cosnk sinnk

)
x
−(ρkvkvk)x.

Similarly to the energy inequality (1.10), we can obtain the same form of energy esti-
mates for the system (4.1) so that

‖uk‖C0(0,T ;C2) +‖vk‖C0(0,T ;C2)≤C‖uk‖C0(0,T ;L2) +C‖vk‖C0(0,T ;L2)≤M3, (4.19)

provided inf
(x,t)

ρk(x,t)>0. Here we have used the fact that the dimension of Xk is finite.

To apply the contraction map theorem, we define the linear operator N [ρk] : Xk→
X ∗k by

〈N [ρk]ψ, φ〉=
∫ 1

0

ρkψφ, ψ,φ∈Xk.
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It is easy to see that

‖N [ρk]‖L(Xk,X∗k )≤C(k)‖ρk‖L1 .

If inf
x
ρk>0, the operator N [ρk] is invertible and

‖N−1[ρk]‖L(X∗k ,Xk)≤
(

inf
x
ρk

)−1

.

Furthermore, for any ρik ∈L1 and inf
x
ρik>0, i= 1,2, it is easy to see that

N−1[ρ1
k]−N−1[ρ2

k] =N−1[ρ2
k]
(
N [ρ2

k]−N [ρ1
k]
)
N−1[ρ1

k],

which implies that∥∥N−1[ρ1
k]−N−1[ρ2

k]
∥∥
L(X∗k ,Xk)

≤C
∥∥N [ρ1

k]−N [ρ2
k]
∥∥
L(Xk,X∗k )

≤C‖ρ1
k−ρ2

k‖L1 . (4.20)

Hence by the estimates (4.11), (4.16) and (4.20), we can apply the standard contrac-
tion map theorem to obtain the local existence of a unique solution uk,vk ∈C(0,Tk;Xk)
to (4.17) and (4.18) for some Tk>0. Then by the Equations (4.5) and (4.12), we can
solve for ρk,nk, which provides a unique local solution to the approximated system (4.1)
for any fixed k.

Step 5. In this step, we will establish a uniform estimate of the local solution until Tk
in order to extend the solution beyond Tk to any time T >0, which implies the existence
of unique global solution of the system (4.1) for any fixed k. We first show the following
uniform estimate for ρk

Claim: For any x∈ [0,1] and t∈ [0,Tk], it holds

1

c1et
≤ρk(x,t)≤ c1et (4.21)

for some constant c1>0.

Indeed, similar to the energy inequality (1.10), we can obtain the same form of
energy estimate for system (4.1) so that

‖(uk)x‖L2(0,Tk;H2) +‖(vk)x‖L2(0,Tk;H2)

≤C‖(uk)x‖L2((0,1)×(0,Tk))+C‖(vk)x‖L2((0,1)×(0,Tk))≤M4. (4.22)

By the first equation of (4.1), we can find x0(t)∈ (0,1) such that

ρk(x0(t),t) =

∫ 1

0

ρk =

∫ 1

0

ρ0 = 1.

Then

1

ρk(x,t)
=

1

ρk(x0(t),t)
+

∫ x

x0(t)

(
1

ρk

)
y

≤1+
1

2

∥∥∥∥ 1

ρk(x,t)

∥∥∥∥
L∞

+
1

2

∫ 1

0

ρk

∣∣∣∣( 1

ρk

)
x

∣∣∣∣2
which implies ∥∥∥∥ 1

ρk(x,t)

∥∥∥∥
L∞
≤2+

∫ 1

0

ρk

∣∣∣∣( 1

ρk

)
x

∣∣∣∣2 . (4.23)
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By the first equation of (4.1), we have

d

dt

∫ 1

0

ρk

∣∣∣∣( 1

ρk

)
x

∣∣∣∣2
=

∫ 1

0

(ρk)t

∣∣∣∣( 1

ρk

)
x

∣∣∣∣2 +2

∫ 1

0

ρk

(
1

ρk

)
x

(
1

ρk

)
xt

=−
∫ 1

0

(ρkuk)x

∣∣∣∣( 1

ρk

)
x

∣∣∣∣2 +2

∫ 1

0

ρk

(
1

ρk

)
x

(
(ρkuk)x
ρ2
k

)
x

. (4.24)

The last term on the right-hand side can be computed by

2

∫ 1

0

ρk

(
1

ρk

)
x

(
(ρkuk)x
ρ2
k

)
x

=2

∫ 1

0

ρk

(
1

ρk

)
x

[((
− 1

ρk

)
x

uk

)
x

+

(
(uk)x
ρk

)
x

]
=−

∫ 1

0

ρkuk
∂

∂x

∣∣∣∣( 1

ρk

)
x

∣∣∣∣2 +2

∫ 1

0

(
1

ρk

)
x

(uk)xx. (4.25)

Combining (4.25) with (4.24), we conclude that

d

dt

∫ 1

0

ρk

∣∣∣∣( 1

ρk

)
x

∣∣∣∣2 = 2

∫ 1

0

(
1

ρk

)
x

(uk)xx. (4.26)

The right-hand side can be estimated as follows∣∣∣∣∫ 1

0

(
1

ρk

)
x

(uk)xx

∣∣∣∣≤∫ 1

0

ρ
1
2

k

∣∣∣∣( 1

ρk

)
x

∣∣∣∣ρ− 1
2

k |(uk)xx|

≤1

2

∫ 1

0

ρk

∣∣∣∣( 1

ρk

)
x

∣∣∣∣2 +
1

2

∥∥∥∥ 1

ρk(x,t)

∥∥∥∥
L∞

∫ 1

0

|(uk)xx|2

≤1

2

(
1+

∫ 1

0

|(uk)xx|2
)∫ 1

0

ρk

∣∣∣∣( 1

ρk

)
x

∣∣∣∣2 +

∫ 1

0

|(uk)xx|2.

where we have used (4.23) in last inequality. Denote

Q(ρk) =

∫ 1

0

ρk

∣∣∣∣( 1

ρk

)
x

∣∣∣∣2 , a(t) = 1+

∫ 1

0

|(uk)xx|2.

Then by (4.25), we have

d

dt
Q(ρk)≤a(t)Q(ρk)+

∫ 1

0

|(uk)xx|2

which is equivalent to

Q(ρk)−Q(ρ0)≤2

∫ t

0

∫ 1

0

|(uk)xx|2 +

∫ t

0

a(t)Q(ρk)≤2M4 +

∫ t

0

a(t)Q(ρk),

where we have used (4.22) in last step. By the Gronwall inequality, we obtain

Q(ρk)≤
(
Q(ρ0)+2M4

)
exp

(∫ t

0

a(s)

)
≤
(
Q(ρ0)+2M4

)
exp(t+M4)≤Cet. (4.27)
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Combining (4.23) and (4.27) together, we can prove the left-hand side of (4.21).
Denote γ= 1+2δ for some δ>0. Then it holds

‖ρδk‖L∞ ≤
∫ 1

0

ρδk+δ

∫ 1

0

ρδ−1
k (ρk)x≤

(∫ 1

0

ργk

) δ
γ

+C

(∫ 1

0

ργk

) 1
2

(Q(ρk))
1
2 ≤Cet,

which completes the proof of the Claim.

By using the uniform estimate (4.21) for ρk and the energy inequality, we can show

‖uk‖C0(0,Tk;Xk) +‖vk‖C0(0,Tk;Xk)≤C‖uk‖C0(0,Tk;L2) +C‖vk‖C0(0,Tk;L2)≤M5.

Therefore, we can extend the solution beyond Tk to any time T >0, which implies the
existence of a unique smooth solution of the system (4.1) for any fixed k.

5. Existence of global weak solutions.
Step 1. Taking k→∞ in the approximated system (4.1), we may obtain the existence
of a global weak solution with a smooth initial and boundary value and ρ0>δ>0. Since
the limit process of this step is similar to the next step when δ→0, we omit the details
of this step.

Step 2. We first approximate the general initial and boundary data in Theorem
1.1 by smooth functions. We may extend n to ñ0∈H1(R) such that n0 = ñ0 on (0,1),
and obtain the smooth approximation of initial data by the standard mollification as
follows

ρδ0 =ηδ ∗ ρ̂0 +δ, uδ0 =
1√
ρδ0
ηδ ∗

(
m̂0√
ρ0

)
, vδ0 =

1√
ρδ0
ηδ ∗

(
l̂0√
ρ0

)
, nδ0 =

ηδ ∗ ñ0∣∣ηδ ∗ ñ0

∣∣
where, for small δ>0, ηδ = 1

δ η
( ·
δ

)
is the standard mollifier, f̂ is the zero extension of f

from (0,1) to R. Therefore ρδ0,u
δ
0,v

δ
0,n

δ
0∈C2+α([0,1]) for 0<α<1, and it holds

ρδ0≥ δ>0, ρδ0→ρ0 in Lγ , nδ0→n0 in H1, (5.1)√
ρδ0u

δ
0→

m0√
ρ0

in L2,
√
ρδ0v

δ
0→

l0√
ρ0

in L2, (5.2)

ρδ0u
δ
0→m0 in L

2γ
γ+1 , ρδ0v

δ
0→ l0 in L

2γ
γ+1 , (5.3)

as δ→0.
Let (ρδ,uδ,vδ,nδ) be a sequence of global weak solutions to

(ρδ)t+(ρδuδ)x= 0, ρδ>0,

(ρδuδ)t+(ρδu
2
δ)x+

(
ργδ
)
x

=J1
δ −(nδ)xx(nδ)x,

(ρδvδ)t+(ρδuδvδ)x=J2
δ ,

γ1

(
ṅδ− 1

2 (vδ)x
)
−γ2

(
(uδ)x cosnδ sinnδ+ 1

2 (vδ)x(1−2cos2nδ)
)

= (nδ)xx,

(5.4)

with the initial and boundary values

(ρδ, uδ, vδ, nδ)(x,0) =(ρδ0, u
δ
0, v

δ
0, n

δ
0)(x), (5.5)

uδ(0,t) =vδ(0,t) =uδ(1,t) =vδ(1,t) = 0, (nδ)x(0,t) = (nδ)x(1,t) = 0. (5.6)
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Here J1
δ and J2

δ have the same forms as J1 and J2, but with (u,v,n) replaced by
(uδ,vδ,nδ).

By Lemma 3.1–Lemma 3.3, we can find a subsequence (ρδ,uδ,vδ,nδ), still denoted
as (ρδ,uδ,vδ,nδ), such that for any T >0, as δ→0,

ρδ
∗
⇀ρ, in L∞(0,T ;Lγ), ρδ⇀ρ, in L2γ([0,1]× [0,T ]), (5.7)

ργδ⇀ργ , in L2([0,1]× [0,T ]), (5.8)

uδ⇀u, in L2(0,T ;H1
0 ), vδ⇀v, in L2(0,T ;H1

0 ), (5.9)

nδ
∗
⇀n, in L∞([0,1]× [0,T ]), (nδ)x

∗
⇀nx, in L∞(0,T ;L2), (5.10)

(nδ)t⇀nt, in L2([0,1]× [0,T ]), (nδ)xx⇀nxx, in L2([0,1]× [0,T ]). (5.11)

Since ρδ>0, for any nonnegative function f ∈C∞0 ((0,1)×(0,T )) it holds that∫ T

0

∫ 1

0

ρf = lim
δ→0

∫ T

0

∫ 1

0

ρδf ≥0.

Since f is arbitrary, we conclude that ρ≥0 a.e. in (0,1)×(0,T ).
We need to show the limit (ρ,u,v,n) is a solution to the system (4.1). We first state

several compactness results that will be used in our proof.

Lemma 5.1 ( [23]). Assume X⊂E⊂Y are Banach spaces and X ↪→↪→E is compact.
Then the following embeddings are compact{

f : f ∈Lq(0,T ;X),
∂f

∂t
∈L1(0,T ;Y )

}
↪→↪→Lq(0,T ;E), for any 1≤ q≤∞,{

f : f ∈L∞(0,T ;X),
∂f

∂t
∈Lr(0,T ;Y )

}
↪→↪→C([0,T ];E), for any 1<r<∞.

Lemma 5.2 ( [7]). Let Ō⊂Rn be compact and X be a separable Banach space. Assume
that fδ : Ō→X∗ is a sequence of measurable functions such that for any k

esssup
Ō

‖fδ‖X∗ ≤N <∞.

Moreover, the family of functions 〈fδ,Φ〉 is equi-continuous for any Φ belonging to a
dense subset of X. Then fδ ∈C(Ō;X−w) for any k, i.e., for any g∈X∗, 〈fδ, g〉∈C(Ō).
Furthermore, there exists f ∈C(Ō;X−w) such that (after taking possible subsequences)

fδ→f, in C(Ō;X−w)

as δ→0.

First observe that ρδ ∈L2γ([0,1]× [0,T ]) and uδ ∈L2(0,T ;H1
0 )⊂L2(0,T ;L∞) imply

ρδuδ ∈L
2γ
γ+1 (0,T ;L2γ), (ρδ)t=−(ρδuδ)x∈L

2γ
γ+1 (0,T ;H−1).

By Lemma 5.1 and Lemma 5.2, and 2γ
γ+1 >1, ρδ ∈L∞(0,T ;Lγ), Lγ ↪→↪→H−1, we con-

clude

ρδ→ρ, in C(0,T ;Lγ−ω), ρδ→ρ, in C(0,T ;H−1), (5.12)



1290 EXISTENCE OF GLOBAL WEAK SOLUTIONS TO ERICKSEN-LESLIE SYSTEM

where f ∈C(0,T ;X−ω) if for any g∈X∗, 〈f(t), g〉∈C([0,T ]). Hence

ρδuδ→ρu, in D′((0,1)×(0,T )), ρδvδ→ρv, in D′((0,1)×(0,T )), (5.13)

and furthermore

ρt+(ρu)x= 0, in D′((0,1)×(0,T )). (5.14)

By (5.12), it also holds that

ρ(x,0) =ρ0(x), weakly in Lγ([0,1]). (5.15)

By the fact (nδ)t∈L2(0,T ;L2), (5.10) and (5.11), we can apply Lemma 5.1 to obtain

nδ→n, in C([0,1]× [0,T ]), nδ→n, in L2(0,T ;C1), (5.16)

Combining with (5.9)-(5.11), we can show the limit n satisfies the following equation:

γ1

(
ṅ− 1

2
vx

)
−γ2

(
ux cosnsinn+

1

2
vx(1−2cos2n)

)
=nxx. (5.17)

By (5.16), it also holds that

n(x,0) =n0(x), in [0,1]. (5.18)

By the fact
√
ρδ ∈L2γ([0,1]× [0,T ]) and

√
ρδuδ ∈L∞(0,T ;L2), it holds

ρδuδ ∈L∞(0,T ;L
2γ
γ+1 ).

Combining with (5.9), we have

ρδu
2
δ⇀ρu2, in L2(0,T ;L

2γ
γ+1 ). (5.19)

By the second equation of system (5.4), we have

(ρδuδ)t=−(ρδu
2
δ)x−

(
ργδ
)
x

+J1
δ −(nδ)xx(nδ)x∈L2(0,T ;W−1, 2γ

γ+1 ),

where J1
δ has the same form as J1, but with (u,v,n) replaced by (uδ,vδ,nδ). By using

Lemma 5.1 and Lemma 5.2, we conclude

ρδuδ→ρu, in C(0,T ;L
2γ
γ+1 −ω), ρδuδ→ρu, in C(0,T ;H−1). (5.20)

Combining with (5.9), we conclude that

ρδu
2
δ→ρu2, in D′((0,1)×(0,T )). (5.21)

Therefore

(ρu)t+(ρu2)x+
(
ργ
)
x

=J1−nxxnx, in D′((0,1)×(0,T )). (5.22)

By (5.20), it holds that

ρu(x,0) =m0(x), weakly in L
2γ
γ+1 ([0,1]). (5.23)
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Similarly, we can also prove that

(ρv)t+(ρuv)x=J2, in D′((0,1)×(0,T )), (5.24)

ρv(x,0) =n0(x), weakly in L
2γ
γ+1 ([0,1]). (5.25)

By (5.21), for some t∈ (0,T ) and small ε>0, it holds

1

ε

∫ t+ε

t

∫ 1

0

ρu2 =
1

ε

∫ t+ε

t

lim
δ→0

∫ 1

0

ρδu
2
δ≤

1

ε

∫ t+ε

t

lim
δ→0

∫ 1

0

ρδu
2
δ .

Sending ε→0+ and using the Lebesgue Differentiation Theorem, we obtain∫ 1

0

ρu2≤ lim
δ→0

∫ 1

0

ρδu
2
δ ,

for a.e. t∈ (0,T ). Combining this limit with the lower semicontinuity, we can prove that
the energy inequality is valid.

The only thing left is to show ργ =ργ . To this end, we denote

A(n) = (Aij(n))2×2

where the elements of Aij are given as follows

A11(n) = (α0 +α5 +α6 +α8)cos2n+α1 cos4n+(α4 +α7),

A12(n) =α0 cosnsinn+α1 cos3nsinn+
1

2
(α2 +α3 +α5 +α6)cosnsinn,

A21(n) =α1 cos3nsinn+(α6 +α8)cosnsinn,

A22(n) =α1 cos2nsin2n+
1

2
(−α2 +α5)cos2n+

1

2
(α3 +α6)sin2n+

1

2
α4.

By the relations (1.6), direct computations imply that there exist two positive constants
λ,Λ<∞ such that for any y∈R2

λ|y|2≤yTA(n)y≤Λ|y|2. (5.26)

In fact

yTA(n)y

=A11(n)y2
1 +(A12(n)+A21(n))y1y2 +A22(n)y2

2

=
[
(α0 +α5 +α6 +α8)cos2n+α1 cos4n+(α4 +α7)

]
y2

1

+
[
(α0 +α6 +α8)cosnsinn+2α1 cos3nsinn+

1

2
(α2 +α3 +α5 +α6)cosnsinn

]
y1y2

+
[
α1 cos2nsin2n+

1

2
(−α2 +α5)cos2n+

1

2
(α3 +α6)sin2n+

1

2
α4

]
y2

2

=
1

4

(
γ2√
γ1
y1 sin(2n)+

1
√
γ1

(γ1−γ2 cos(2n))y2

)2

+
1

4

(
−α1−

γ2
2

γ1

)
y2

1 +(α4 +α7)y2
1 +

1

4

(
2α4 +α5 +α6−

γ2
2

γ1

)
y2

2

1

4

(
α1 +

γ2
2

γ1

)
(y1 cos(2n)+y2 sin(2n))

2

+(α0 +α1 +α5 +α6 +α8)

[(
y1 cosn+

1

2
y2 sinn

)2− 1

4
y2

2 sin2n

]
.
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Therefore

yTA(n)y≥1

4

(
−α1−

γ2
2

γ1

)
y2

1 +(α4 +α7)y2
1 +

1

4

(
2α4 +α5 +α6−

γ2
2

γ1

)
y2

2

− 1

4
(α0 +α1 +α5 +α6 +α8)y2

2 sin2n.

If we take

λ= min

{
(α4 +α7)− 1

4

(
α1 +

γ2
2

γ1

)
,

(
2α4 +α5 +α6−

γ2
2

γ1

)
−(α0 +α1 +α5 +α6 +α8)

}
,

then by the relation (1.6), we know that λ>0 and we have shown the estimate (5.26).
By the definition of A(n), we see that the matrix-valued function A(·)∈C∞. By

the estimate (5.26), the inverse matrix function A−1 exists and

d

dn

(
A−1(n)

)
=A−1 d

dn

(
A(n)

)
A−1.

The equations for u= (u, v)T can be written as

ρut+ρuux+Px=
(
A(n)ux

)
x

+(B1(n))x−B2(n) (5.27)

where

P= (ργ , 0)T ,

B1(n) =
(
(α2 +α3)ṅcosnsinn, α2ṅcos2n−α3ṅsin2n

)T
,

B2(n) =
(
nxxnx, 0

)T
.

Similarly, we can rewrite the equations for uδ = (uδ, vδ)
T , Pδ = (ργδ , 0)T in the similar

form

ρδ(uδ)t+ρδuδ(uδ)x+(Pδ)x=
(
A(nδ)(uδ)x

)
x

+(B1(nδ))x−B2(nδ). (5.28)

Denote

H=ux−A−1(n)P, Hδ = (uδ)x−A−1(nδ)Pδ.

We have the following lemma.

Lemma 5.3. As δ→0, it holds

ρδHδ→ρH, in D′((0,1)×(0,T )). (5.29)

Proof. The main difficulty of the proof arises from ρu 6∈L2. To overcome it, we
need to mollify the density ρ by 〈ρ̂〉σ =ησ ∗ ρ̂, where ησ = 1

σσ
( ·
σ

)
is the standard mollifier,

f̂ is the zero extension of f from (0,1) to R. By Lemma 3.3 in [7], the zero-extension of
ρ̂ still satisfies the same equation

(ρ̂)t+(ρ̂û)x= 0, in D′(R×(0,T )). (5.30)

Denote τσ = (〈ρ̂〉σû)x−〈(ρ̂û)x〉σ. By Lemma 2.3 in [19], we know that τσ ∈L
2γ
γ+1 (R×

(0,T ), and as σ→0

τσ→0, in L1(R×(0,T )). (5.31)
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Taking the standard mollifier as the test function, we obtain

(〈ρ̂〉σ)t+(〈ρ̂〉σû)x= τσ, in D′(R×(0,T )). (5.32)

Similarly, it also holds for the approximate solutions

(〈ρ̂δ〉σ)t+(〈ρ̂δ〉σûδ)x= τσδ , in D′(R×(0,T )), (5.33)

where τσδ has the same form as τσ, but with ρ,u replaced by ρδ,uδ. We also know that,

for any δ>0, τσδ ∈L
2γ
γ+1 (R×(0,T ), and as σ→0

τσδ →0, in L1(R×(0,T )). (5.34)

Multiplying the Equation (5.28) by ϕφA−1(nδ)
∫ x

0
〈ρ̂δ〉σ from left for any ϕ∈

C∞0 (0,T ) and φ∈C∞0 (0,1), and integrating by parts, we obtain∫ T

0

∫ 1

0

ϕφHδ〈ρ̂δ〉σ

=

∫ T

0

∫ 1

0

ϕ′φρδA
−1(nδ)uδ

∫ x

0

〈ρ̂δ〉σ+

∫ T

0

∫ 1

0

ϕφρδA
−1(nδ)uδ

(∫ x

0

〈ρ̂δ〉σ
)
t

+

∫ T

0

∫ 1

0

ϕφρδ
(
A−1(nδ)

)
t
uδ

∫ x

0

〈ρ̂δ〉σ+

∫ T

0

∫ 1

0

ϕφ′ρδuδA
−1(nδ)uδ

∫ x

0

〈ρ̂δ〉σ

+

∫ T

0

∫ 1

0

ϕφρδ〈ρ̂δ〉σuδA−1(nδ)uδ+

∫ T

0

∫ 1

0

ϕφρδuδ
(
A−1(nδ)

)
x
uδ

∫ x

0

〈ρ̂δ〉σ

+

∫ T

0

∫ 1

0

ϕφA−1(nδ)(B1(nδ))x

∫ x

0

〈ρ̂δ〉σ−
∫ T

0

∫ 1

0

ϕφA−1(nδ)B2(nδ)

∫ x

0

〈ρ̂δ〉σ

−
∫ T

0

∫ 1

0

ϕφ′Hδ
∫ x

0

〈ρ̂δ〉σ−
∫ T

0

∫ 1

0

ϕφA−1(nδ)
(
A(nδ)

)
x
Hδ
∫ x

0

〈ρ̂δ〉σ.

The Equation (5.33) implies

∂

∂t

(∫ x

0

〈ρ̂δ〉σ
)

=−〈ρ̂δ〉σûδ+τσδ .

Using this fact, we have∫ T

0

∫ 1

0

ϕφHδ〈ρ̂δ〉σ

=

∫ T

0

∫ 1

0

ϕ′φρδA
−1(nδ)uδ

∫ x

0

〈ρ̂δ〉σ+

∫ T

0

∫ 1

0

ϕφρδA
−1(nδ)uδ

∫ x

0

τσδ

+

∫ T

0

∫ 1

0

ϕφρδ
(
A−1(nδ)

)
t
uδ

∫ x

0

〈ρ̂δ〉σ+

∫ T

0

∫ 1

0

ϕφ′ρδuδA
−1(nδ)uδ

∫ x

0

〈ρ̂δ〉σ

+

∫ T

0

∫ 1

0

ϕφρδuδ
(
A−1(nδ)

)
x
uδ

∫ x

0

〈ρ̂δ〉σ

+

∫ T

0

∫ 1

0

ϕφA−1(nδ)(B1(nδ))x

∫ x

0

〈ρ̂δ〉σ−
∫ T

0

∫ 1

0

ϕφA−1(nδ)B2(nδ)

∫ x

0

〈ρ̂δ〉σ

−
∫ T

0

∫ 1

0

ϕφ′Hδ
∫ x

0

〈ρ̂δ〉σ−
∫ T

0

∫ 1

0

ϕφA−1(nδ)
(
A(nδ)

)
x
Hδ
∫ x

0

〈ρ̂δ〉σ.
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By the Lebesgue Dominated Convergence theorem and (5.34), we may take the limit
σ→0 and get∫ T

0

∫ 1

0

ϕφHδρδ

=

∫ T

0

∫ 1

0

ϕ′φρδA
−1(nδ)uδ

∫ x

0

ρδ+

∫ T

0

∫ 1

0

ϕφρδ
(
A−1(nδ)

)
t
uδ

∫ x

0

ρδ

+

∫ T

0

∫ 1

0

ϕφ′ρδuδA
−1(nδ)uδ

∫ x

0

ρδ+

∫ T

0

∫ 1

0

ϕφρδuδ
(
A−1(nδ)

)
x
uδ

∫ x

0

ρδ

+

∫ T

0

∫ 1

0

ϕφA−1(nδ)(B1(nδ))x

∫ x

0

ρδ−
∫ T

0

∫ 1

0

ϕφA−1(nδ)B2(nδ)

∫ x

0

ρδ

−
∫ T

0

∫ 1

0

ϕφ′Hδ
∫ x

0

ρδ−
∫ T

0

∫ 1

0

ϕφA−1(nδ)
(
A(nδ)

)
x
Hδ
∫ x

0

ρδ. (5.35)

By the definition of B2(nδ) and integration by parts, we obtain

−
∫ T

0

∫ 1

0

ϕφA−1(nδ)B2(nδ)

∫ x

0

ρδ

=
1

2

∫ T

0

∫ 1

0

ϕφ′A−1(nδ)
(
|(nδ)x|2, 0

)T ∫ x

0

ρδ

+
1

2

∫ T

0

∫ 1

0

ϕφ
(
A−1(nδ)

)
x

(
|(nδ)x|2, 0

)T ∫ x

0

ρδ

+
1

2

∫ T

0

∫ 1

0

ϕφρδA
−1(nδ)

(
|(nδ)x|2, 0

)T
. (5.36)

By the definition of B1(nδ), we obtain∫ T

0

∫ 1

0

ϕφA−1(nδ)
(
B1(nδ)

)
x

∫ x

0

ρδ

=

∫ T

0

∫ 1

0

ϕφ
(
A−1(nδ)B1(nδ)

)
x

∫ x

0

ρδ−
∫ T

0

∫ 1

0

ϕφ
(
A−1(nδ)

)
x
B1(nδ)

∫ x

0

ρδ.

It is not hard to see that there is a vector function F(nδ) (smooth in nδ) such that

A−1(nδ)B1(nδ) =Ft(nδ)+uδFx(nδ).

Then ∫ T

0

∫ 1

0

ϕφA−1(nδ)
(
B1(nδ)

)
x

∫ x

0

ρδ

=−
∫ T

0

∫ 1

0

ϕ′φFx(nδ)

∫ x

0

ρδ−
∫ T

0

∫ 1

0

ϕφ′uδFx(nδ)

∫ x

0

ρδ

−
∫ T

0

∫ 1

0

ϕφ
(
A−1(nδ)

)
x
B1(nδ)

∫ x

0

ρδ. (5.37)

To estimate the second term on right side of (5.35), we use ϕφn as the test function for
the first equation of (5.4) to obtain∫ T

0

∫ 1

0

ϕφρδ(nδ)t=−
∫ T

0

∫ 1

0

ϕ′φρδnδ−
∫ T

0

∫ 1

0

ϕρδuδ(nδφ)x.
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Similarly, it holds∫ T

0

∫ 1

0

ϕφρnt=−
∫ T

0

∫ 1

0

ϕ′φρn−
∫ T

0

∫ 1

0

ϕρu(nφ)x.

Taking the difference, and using (5.7), (5.13) and (5.16), we have

ρδ(nδ)t→ρnt, in D′((0,1)×(0,T )). (5.38)

Furthermore, since∫ x

0

ρδ ∈L∞(0,T ;W 1,γ),
∂

∂t

(∫ x

0

ρδ

)
=−ρδuδ ∈L∞

(
0,T ;L

2γ
γ+1

)
we obtain by Lemma 5.1 and (5.7)∫ x

0

ρδ→
∫ x

0

ρ, in C([0,1]× [0,T ]), as δ→0. (5.39)

Now, we are ready to take limit in (5.35). Letting δ→0 in (5.35) (5.36) and (5.37),
and using the facts (5.39), (5.38), (5.7)-(5.9), (5.13), (5.16) and (5.21), we obtain

lim
δ→0

∫ T

0

∫ 1

0

ϕφHδρδ

=

∫ T

0

∫ 1

0

ϕ′φρA−1(n)u

∫ x

0

ρ+

∫ T

0

∫ 1

0

ϕφρ
(
A−1(n)

)
t
u

∫ x

0

ρ

+

∫ T

0

∫ 1

0

ϕφ′ρuA−1(n)u

∫ x

0

ρ+

∫ T

0

∫ 1

0

ϕφρu
(
A−1(n)

)
x
u

∫ x

0

ρ

+

∫ T

0

∫ 1

0

ϕφA−1(n)(B1(n))x

∫ x

0

ρ−
∫ T

0

∫ 1

0

ϕφA−1(n)B2(n)

∫ x

0

ρ

−
∫ T

0

∫ 1

0

ϕφ′H
∫ x

0

ρ−
∫ T

0

∫ 1

0

ϕφA(n)
(
A−1(n)

)
x
H
∫ x

0

ρ. (5.40)

We may go through the same arguments for ρ and u, and show that right side of
(5.40) is exactly ∫ T

0

∫ 1

0

ϕφHρ,

which completes the proof of the lemma.

We also need the following result.

Lemma 5.4 ( [7]). Let Ō⊂Rn be a measurable set and fk ∈L1(O;RN ) for k∈Z+ such
that

fk⇀f, in L1(O;RN ).

Let Φ :RN→ (−∞,∞] be a lower semi-continuous convex function such that Φ(fk)∈
L1(O) for any k and

Φ(fk)⇀Φ(f), in L1(O).
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Then

Φ(f)≤Φ(f), a.e. in O.

Moreover, if Φ is strictly convex on an open convex set U ⊂RN and

Φ(f) =Φ(f), a.e. in O,

then

fk→f, for a.e. y∈{y∈O |f(y)∈U}.
The proof of Theorem 1.1 will be completed by the following lemma.

Lemma 5.5. As δ→0, it holds

lim
δ→0

∫ T

0

∫ 1

0

ρδ log(ρδ) =

∫ T

0

∫ 1

0

ρ logρ. (5.41)

Proof. By Proposition 4.2 in [8], if ρ∈L2((0,1)×(0,T )), u∈L2(0,T ;H1
0 ) solves

the equation

ρt+(ρu)x= 0, in D′((0,1)×(0,T ))

then

(b(ρ))t+(b(ρ)u)x+(b′(ρ)ρ−b(ρ))ux= 0, in D′((0,1)×(0,T )) (5.42)

for any b∈C1(R) such that b′(x)≡0 for all large enough x∈R.
For any positive integers j,K, we may take a family of functions bjK ∈C1(R) with

bjK(x) =


(
x+

1

j

)
log

(
x+

1

j

)
, if 0≤x≤K,(

K+1+
1

j

)
log

(
K+1+

1

j

)
, if x≥K+1.

Since ρ∈L∞(0,T ;Lγ), we have ρ<∞ a.e. in (0,1)×(0,T ). This implies that bjK(ρ)→
(ρ+ 1

j )log(ρ+ 1
j ) a.e. in (0,1)×(0,T ) as K→∞. Hence, by using the Lebesgue Domi-

nated Convergence theorem, we conclude((
ρ+

1

j

)
log

(
ρ+

1

j

))
t

+

((
ρ+

1

j

)
log

(
ρ+

1

j

)
u

)
x

+
(
ρ− 1

j
log
(
ρ+

1

j

))
ux= 0,

in D′((0,1)×(0,T )).

It is easy to see that
(
ρ+ 1

j

)
log
(
ρ+ 1

j

)
∈L2((0,1)×(0,T )) since ρ∈L2γ((0,1)×

(0,T )). By Lemma 3.3 in [7], the zero-extension of ρ outside (0,1) satisfies the same
equation. By the mollification, the integration by parts and the limiting process, we
may take the test function to be the constant 1 so that∫ T

0

∫ 1

0

ρux=

∫ 1

0

(
ρ0 +

1

j

)
log

(
ρ0 +

1

j

)
−
∫ 1

0

(
ρ+

1

j

)
log

(
ρ+

1

j

)
(T )

+
1

j

∫ T

0

∫ 1

0

ux log

(
ρ+

1

j

)
. (5.43)
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Similar estimates are valid for approximated solutions ρδ, uδ. More precisely, we
have

(ρδ log(ρδ))t+(ρδ log(ρδ)uδ)x+ρδ(uδ)x= 0, (5.44)

in D′((0,1)×(0,T )), and∫ T

0

∫ 1

0

ρδ(uδ)x=

∫ 1

0

ρδ0 log
(
ρδ0
)
−
∫ 1

0

ρδ log(ρδ)(T ). (5.45)

Since ρδ ∈L∞(0,T ;Lγ), we have

ρδ log
(
ρδ
)
∈L∞(0,T ;Lγ̃)

for 1<γ̃<γ. By the Equation (5.44), we obtain

(ρδ log(ρδ))t∈L
2γ
γ+1 (0,T ;W−1, 2γ

γ+1 ).

By Lemma 5.2, we conclude as δ→0

ρδ log
(
ρδ
)
→ρ log(ρ), in C([0,T ];Lγ̃−ω).

This implies

lim
δ→0

∫ 1

0

ρδ log
(
ρδ
)
(T ) =

∫ 1

0

ρ log(ρ)(T ). (5.46)

Since the function x log(x) is convex for any x>0, Lemma 5.4 implies that

ρ log(ρ)≤ρ log(ρ), a.e. in (0,1)×(0,T ). (5.47)

Subtracting (5.43) by (5.45) and sending δ→0, we have∫ 1

0

ρ log(ρ)(T )−
∫ 1

0

(
ρ+

1

j

)
log

(
ρ+

1

j

)
(T )

=

∫ 1

0

ρ0 log(ρ0)−
∫ 1

0

(
ρ0 +

1

j

)
log

(
ρ0 +

1

j

)
+

∫ T

0

∫ 1

0

ρ(u)x− lim
δ→0

∫ T

0

∫ 1

0

ρδ(uδ)x−
1

j

∫ T

0

∫ 1

0

ux log

(
ρ+

1

j

)
. (5.48)

The first two terms of right-hand side can be estimated as follows∫ T

0

∫ 1

0

ρ(u)x− lim
δ→0

∫ T

0

∫ 1

0

ρδ(uδ)x

=

∫ T

0

∫ 1

0

ρ(u)x− lim
δ→0

∫ T

0

∫ 1

0

ρδH1
δ− lim

δ→0

∫ T

0

∫ 1

0

A−1
11 (nδ)ρ

γ+1
δ

=

∫ T

0

∫ 1

0

ρ(u)x−
∫ T

0

∫ 1

0

ρH1− lim
δ→0

∫ T

0

∫ 1

0

A−1
11 (nδ)ρ

γ+1
δ

=

∫ T

0

∫ 1

0

ρA−1
11 (n)ργ− lim

δ→0

∫ T

0

∫ 1

0

A−1
11 (n)ργ+1

δ
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− lim
δ→0

∫ T

0

∫ 1

0

(
A−1

11 (nδ)−A−1
11 (n)

)
ργ+1
δ

= lim
δ→0

∫ T

0

∫ 1

0

A−1
11 (n)

(
ρργ−ργ+1

δ

)
, (5.49)

where we have used Lemma 5.3 in the second equality, and (5.16), γ >1, and (3.20)
in the last step. Here H1 is the first element of H, and A−1

11 (·) is the (1,1) element
of inverse matrix A−1(·). By the estimate (5.26) and the property of 2×2 matrices,
A−1

11 (·)>0.

Since ρ,ρδ≥0, it is not hard to verify that

(ρ−ρδ)γ+1 = (ρ−ρδ)γ(ρ−ρδ)≤ (ργ−ργδ )(ρ−ρδ).

Thus

lim
δ→0

∫ T

0

∫ 1

0

A−1
11 (n)(ρ−ρδ)γ+1

≤ lim
δ→0

∫ T

0

∫ 1

0

A−1
11 (n)(ργ−ργδ )(ρ−ρδ)

= lim
δ→0

∫ T

0

∫ 1

0

A−1
11 (n)

(
ργ+1−ργρδ−ργδρ+ργ+1

δ

)
= lim
δ→0

∫ T

0

∫ 1

0

A−1
11 (n)

(
ργ+1
δ −ρργ

)
+ lim
δ→0

∫ T

0

∫ 1

0

A−1
11 (n)

(
ργ+1−ργρδ−ργδρ+ρργ

)
= lim
δ→0

∫ T

0

∫ 1

0

A−1
11 (n)

(
ργ+1
δ −ρργ

)
. (5.50)

Substituting (5.50) into (5.49), we have∫ T

0

∫ 1

0

ρ(u)x− lim
δ→0

∫ T

0

∫ 1

0

ρδ(uδ)x≤0.

Combing this inequality with (5.48), we conclude that∫ 1

0

ρ log(ρ)(T )−
∫ 1

0

(
ρ+

1

j

)
log

(
ρ+

1

j

)
(T )

≤
∫ 1

0

ρ0 log(ρ0)−
∫ 1

0

(
ρ0 +

1

j

)
log

(
ρ0 +

1

j

)
− 1

j

∫ T

0

∫ 1

0

ux log

(
ρ+

1

j

)
.

Sending j→∞, we obtain that∫ 1

0

ρ log(ρ)(T )−
∫ 1

0

ρ log(ρ)(T )≤0.

This and (5.47) imply that ρ log(ρ) =ρ log(ρ), combined with (5.46), implies (5.41).

Combining Lemma 5.5 with Lemma 5.4, and using the strict convexity of ρ logρ for
ρ≥0, we know that

ρδ→ρ, a.e. in (0,1)×(0,T ).
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It follows from the Egorov theorem that for any ε>0, there is Iε⊂ (0,1)×(0,T ) such
that |

(
(0,1)×(0,T )

)
\Iε|<ε and

sup
(x,t)∈Iε

|ρδ(x,t)−ρ(x,t)|→0.

Since ρδ is uniformly bounded in L2γ , we can estimate∫ T

0

∫ 1

0

|ρδ−ρ|γ≤ sup
(x,t)∈Iε

|ρδ(x,t)−ρ(x,t)||Iε|+C|
(
(0,1)×(0,T )

)
\Iε|

1
2 ‖ρδ−ρ‖γL2γ

→0, as δ→0.

This implies that ργ =ργ in (0,1)×(0,T ). This completes the proof of Lemma 5.5.
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