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PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF
THE NAVIER-STOKES-PLANCK-NERNST-POISSON EQUATION*
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Abstract. In this paper, inspired by the seminal work by Caffarelli, Kohn, and Nirenberg
[Comm. Pure Appl. Math., 35 (1982), pp. 771-831] on the incompressible Navier—Stokes equation,
we establish the existence of a suitable weak solution to the Navier—Stokes—Planck—Nernst—Poisson
equation in dimension three, which is smooth away from a closed set whose 1-dimensional parabolic
Hausdorff measure is zero.
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1. Introduction. Let Q C R? be a bounded, smooth domain and 0 < T < oo.
We consider the following Navier—Stokes—Nernst—Planck—Poisson equation:

du+ (u-V)u—Au+ VP =—(nt —n" )V,

div u = 0,

(1.1) ont + (u-V)nt — Ant =div (nt VD) in Qx(0,7),
on~ + (u-V)n~ —An~ = —div (n~VV¥),
—AV =nt —n—,

where u : Q x (0,7) — R? denotes the velocity field of the fluid, P : Q x (0,7) — R
denotes the pressure function, n*,n~ : Q x (0,7) — R are the number densities
of positively and negatively charged constituents, and ¥ is the quasi-electrostatic
potential function. The initial and boundary values of (1.1) are given by

(1.2) (u,n*,n7) = (ug,ng,ng ) in Qx {0},
ont  on~ OV

(13) U:O7 W—w—azo On(?QX(O,T),
where v denotes the outward unit normal vector of 0f.
The system (1.1) models an isothermal, incompressible, viscous Newtonian fluid of

uniform and homogeneous composition of a high number of positively and negatively
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charged particles ranging from colloidal to nano size. It was proposed by Rubinstein
[20] to model electro-kinetic fluids, which describes the interaction between the macro-
scopic fluid motion and the microscopic charge transportion. See Castellanos [2] for
more discussions on the physical background on (1.1). In the system (1.1), we assume
a dilute fluid and therefore the electromagnetic forces are neglected. There have seen
considerable interests in the mathematical analysis of the system (1.1). For example,
Jerome [9] has proved the existence of local strong solutions by employing Kato’s
semigroup framework. Deng, Zhao, and Cui [4] have established the existence and
well-posedness of mild solutions in the Triebel-Lizorkin and Besov spaces of negative
indices. We refer to Zhao, Zhang, and Liu [31] for some time decay results of (1.1).
The existence of global weak solutions of (1.1), (1.2), and (1.3), has been established
by Schmuck [21] under the Neumann boundary condition (for bounded initial data ng
and ng ), and Jerome and Sacco [10] under the mixed Dirichlet boundary condition.
Fan, Li, and Nakamura [5] have proved some regularity criteria of weak solutions to
(1.1) on © = R? in the spirit of Serrin. More recently, there are some interesting works
by Wang, Liu, and Tan [29, 30] on generalized Navier—Stokes—Planck—Nernst—Poisson
equations through an energetic variational approach.

When the underlying fluid is at rest, i.e., u = 0, the system (1.1) reduces to
the Planck—Nernst—Poisson (PNP) equation, which is the drift-diffusion model for
semiconductor devices, first proposed by Roosbroeck [19] in 1950, that has been widely
accepted and applied in the semiconductor industry and in device simulations. See
Gajewski [7], Mock [18], Seidman and Troianiello [25], and Fang amd Ito [6] for results
on the existence of global weak solutions to the PNP equation.

It remains an interesting question to investigate regularity properties of weak
solutions in dimension three. Motivated by the celebrated work by Scheffer [22],
Caffarelli, Kohn, and Nirenberg [1], and Lin [13] on the Navier—Stokes equation, we
introduce the notion of a suitable weak solution of (1.1)—(1.3) and establish both the
existence and partial regularity for such a weak solution. See also [8, 14, 3] for related
works on other complex fluids.

A constitutive equation of the Navier—Stokes—Nernst—Planck-Poisson system (1.1)
is the Naiver—Stokes equation: for 0 < T < oo,

{ ou+ (u-V)u—vAu+ VP = f,

(1.4) in Qr=9x(0,7),

V-u=0
with the initial and boundary conditions
(1.5) u(-,0) =upin Q, w=0o0n90Qx[0,T).

The existence of global weak solutions of (1.4) and (1.5) (T = co) was established by
Leray [11]; see also Teman [27]. While it is an outstanding open question whether
(1.4) and (1.5) has a global smooth solution when 2 = R3, there have been many
studies concerning partial regularity of suitable weak solutions of (1.4) initiated by
Scheffer [22] and then by Caffarelli, Kohn, and Nirenberg [1], where it was proven
that the singular set has 1-dimensional Hausdorff measure zero. Such a theorem was
later simplified by Lin [13]; see also Vasseur [28]. There has also been a lot of work
on the regularity criteria of (1.4), going back to Serrin [23] where it has been proven
that u € C°°(Qr), provided u € L{LP(Qr) and p > 3 and 2 < ¢ < oo satisfy

2 3
(1.6) . + »
The end point case p = 3 and ¢ = oo for (1.6) was resolved by [24].

=1
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The goal of this paper is to extend the partial regularity theory on the Navier—
Stokes equation by Caffarelli, Kohn, and Nirenberg [1] to the system (1.1). We first
recall the definition of suitable weak solutions to the system (1.1). For T' > 0, denote
Qr =Qx(0,T) and

D= {X | X € C2(Qr,R?), div X = 0}.

DEFINITION 1.1. We say that (u,n",n~, V) is a weak solution of (1.1) in Qr if

u € L*([0,T), L*(Q,R3)) N L*([0, T), H*(Q,R3)),
U e L=([0,T], H(Q)) N L3([0,T], H*(Q)), n",n~ € L*(Qr,R,),

and the system (1.1) holds in the sense of distributions: for any ¢ € D,

/ ((u, 0p0) — (Vu, Vo) + u®u : Vo) dadt = / {(nt =)V, ) dadt,

T

and, for any ¢ € C§°(Qr),
/ u- V¢ dxdt =0,

(n*,0,0) + (nT,A¢) + (nT,u-V¢)) drdt z/ (ntVV,Ve) drdt,

T T

..
/ n™,0i0) + (n", Ay + (n",u- V¢>) dxdt = 7/ (n~VU,V¢) dxdt,
Q

T T

an

/(V\II,V¢>da¢:/(n+—n—)¢dw Yo<t<T,
Q Q

where (-,-) denotes the inner product of R3.

A weak solution (u, P,n™,n~, W) is called a suitable weak solution of (1.1) if, in
addition, it enjoys the local energy inequality property defined as follows.

DEFINITION 1.2. A weak solution (u, P,nt,n=, V) of (1.1) is called a suitable
weak solution of (1.1) in Qr, if the following conditions are true:

(a) P€L5(Qr).

(b) n*,n~ € L*(Qr).

(¢) There exist positive constants 0 < Ey, E5 < 0o such that

/(W FIVUR(a, t) de < By VEE (0,T),
Q

/ (|Vu|? + |V2U|?) dzdt < Es.

T

(d) (u,P,n*,n~, W) satisfy (1.1) in the sense of distributions on Qr.
(e) For any ¢ € C(Qr),d > 0, the generalized energy inequality (1.7) holds:

(1.7)
2/ \Vu\ngdxdtg/ |u|2(8t¢+A¢)dxdt+/ (|ul* + 2P)u - V¢ dxdt
T Qr

T

1
- 2/ (V\If ®@ VY — 2|V\I/|213) 2 V(ug) dadt.
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Now we state our main theorem.

THEOREM 1.1. For any 0 < T < oo, ug € L*(,R?) with div ug = 0, and
0 < ng,ng € L3Q) with [yng dz = [, ng dx, there exists a suitable weak solution
(u, P,nT,n=, W) of (1.1)~(1.3) in Qr such that
() we LEL2 N LHN(Qr), P € Li(Qr), 0 < nt,n~ € LFL2 N LFHL(Qr),
Ve LPH2ZNL?H(Qr), and

(1.8 H(u’nJr’n_)HL,?OLgmLfH;(QT) + HPHL%(QT) + H\IJHL;?OHgmL,?Hg(QT)

< C(lluoll2 ey, Ing L2, Ing lz2@));

(ii) (u,n™,n=, V) satisfies the following global energy inequality: for any 0 < t <
T,

(1.9)
/(|u|2 +IVUR) (2, ) o + 2/ (Vul? + ot —n 2+ (nF +n7)|VO[?) duds
Q

t

< /Q (luol® + V%o [2)(2) de,

where ¥ € H%(Q)) solves

)\
_Aqfoznar—no_ in Q, %:Oon@ﬁ;

(iii) there exists a closed set ¥ C Qpr with P*(X) = 0, such that (u,n™,n=,¥) €
C=(Qr \ X).
Here P*, 0 < k < 4, denotes the k-dimensional Hausdorff measure on R* with
respect to the parabolic metric:

(1.10) §((z,t), (y,8)) = max {|z — y|, /|t — s|} V(z,1), (y,s) € R™.

We would like to point out the major steps in the proof of Theorem 1.1:

1. The existence of suitable weak solutions to (1.1) is established by first study-
ing approximate systems of (1.1) through modifying a “retarded” mollifica-
tion of its drifting coefficients, ©.(u), originally due to [1] on the Navier—
Stokes equation. Here we need to modify it so that its normal component
vanishes on the boundary of  in order to guarantee the equations for n*
enjoy both the positivity and maximum principle property. For the existence
of suitable weak solutions to an approximate version of (1.1), we employ
a contraction map theorem on the function spaces L{L2(Qr) for n* which
was first employed by Schmuck [21]. Then we prove that such a sequence
of suitable weak solutions to the approximate equation enjoys some uniform
estimates and hence converges to a suitable weak solution to (1.1).

2. The partial regularity of a suitable weak solution constructed in step (1)
above is proven by first employing the fact ¥ € L H2(Q7) and performing
a blowing up argument to establish an ep-decay property for (u, P) in the
renormalized L? x L%—norms, and then applying the Reisz potential estimate
of u in parabolic Morrey spaces to obtain L%-boundedness of u for any 1 <
q < oo, which eventually yields the ep-smoothness of (u,n*,n™, ¥) via the
bootstrap argument.
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3. To obtain the size estimate of the singular set, we improve the €y-regularity
from (2) through the process, similar to that of the Navier—Stokes equation
by [1], that establishes the so-called A-B-C-D lemmas.

The paper is organized as follows. In section 2, we will establish the existence of
the suitable weak solutions of (1.1)—(1.3). In section 3, we will prove an ep-regularity
for suitable weak solutions to (1.1). In section 4, we will improve the ep-regularity
from section 3 and provide a proof of Theorem 1.1.

2. Existence of suitable weak solutions. In order to obtain the existence
of suitable weak solutions of (1.1), we first consider the following system: given
w € C®(Q x [0,T],R?) with divw = 0in Qr and w-v = 0 on 9Q x [0,T] , let
(u, P,n™,n~, ¥) solve

Ou+ (w-Vyu—Au+ VP =—(nt —n")VY,

div u =0,

(2.1) o + (w-V)nt — Ant =div ([nT]L V),
on~ + (w-V)n~ — An~ = =div ([n" ]+ V),
—AV =nt —n~,

subject to the initial and boundary conditions

(2.2) (u,n™,n7)|=o = (uo,na',na) in Q,
ont  On— OU

(23) 'LL:O, W:WZEZO On(‘?QX(O,T).

Here [y]+ = max{y, 0} denotes the positive part of y € R.
We shall use the following function spaces:

V=C(Q,RY) N {u:divu=0};
H = Closure of V in L?();
V = Closure of V in H'(Q).

Concerning (2.1), (2.2), and (2.3), we have the following existence theorem.

THEOREM 2.1. For a bounded and smooth domain Q C R3, ug € H, and two

nonnegative ng ,ng € L?(Y) satisfying

/Qnar(x) dx = /Qna (2) dx,

if we C®°(Q x [0,T],R?) with divw =0 in Qr and w-v =0 on 9Q x [0,T], then
there is a unique weak solution (u, P,n™,n~,¥) of (2.1), (2.2), and (2.3) such that
nt,n~ >0inQ x[0,7], and

u € C([0,T), H) N L*([0,T], V),
(2.4) W e L>([0,T], H*(Q)) N L*([0, T, H?()),
ntn— € L0, T), L2(Q)) N L2([0, T], H'(2)).

The existence of weak solutions (u, P,n™,n~,¥) to (2.1), (2.2), and (2.3) will
be established by the contraction mapping theorem. The uniqueness of such weak
solutions (u, P,n™,n~,¥) can be employed to show the nonnegativity of n™,n~ as
follows.
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LEMMA 2.1. Under the assumptions of Theorem 2.1, the weak solution
(u, P,nT,n~, W) of (2.1), (2.2), and (2.3), satisfying (2.4), must satisfy n*™,n= >0
mn QT'

Proof. This proof is similar to that of [21, Lemma 1]. In order to prove that
nt,n~ are nonnegative, let (i, P,nt, 7, ¥), that satisfy (2.4), be a weak solution of
the system:

Qi+ (w- V)i — A+ VP = —(at — 72" )V,

div a =0,

(2.5) ot + (w-V)at — At = div ([at] L VI) in Qr,
o~ + ( V)n~ — An~ = —div ([a7], V),
AT =7t —q,

subject to the initial and boundary conditions

(2.6) (@, 7", 77 )|1=0 = (uo,ng,ng) in Q,

. ont  dn~ O
(27) ’ll/—O7 W—w—a—o On(?QX(O,T).

The existence of such a weak solution (@, P,2", 7™, ¥) will be constructed by Theo-
rem 2.1 below.

Note that nt = [n]. — [-n1]+. Multiplying (2.29)3 by [-n"]; and integrating
over {), we have that
/ - \2dx+/ V[t 2 de = / ], V=it - VT dz = 0.
2 dt Q

This implies that

[t de < [ el e =0,
+

since ng is nonnegative. Thus we conclude that 7t > 0 in Qr. Similarly, we can show
that 7~ > 0 in Qr. Therefore, we see that (4, Pt a~ \I/) is also a weak solution
of (2.1), (2.2), and (2.3). From Theorem 2.1, the uniqueness holds for weak solutions
0 (2.1), (2.2), and (2.3) that satisfy (2.4). Thus

(@, P,n*,n~,0) = (u, P,n",n", ) in Qr.

In particular, n* =T >0and n™ =7~ > 0in Q7. O

PROPOSITION 2.1. Under the same assumptions as Theorem 2.1, if, in addition,
ng,ng € LP(Q) for some p > 2, then the weak solution (u, P,nt ,n=, W) of (2.1),
(2.2), and (2.3), satisfying (2.4), would enjoy

(2.8) nt,n~ € L*([0,T], LP(Q)), ¥ € L*>([0,T], W*P (1))
and
(2.9)
/Q (0P + |n [P) (@, £) dz + p(p — 1) / [(n)?2Vn* 2 + (0™ )P~ Vn~|?] dadt

t

§/(|n3‘|p+|n5|p)(x)d:v, 0<t<T.
Q
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Proof. Multiplying (2.1)3 by [n*|P~2n* and (2.1)4 by |n~|P~2n~, integrating the
resulting equations over 2, and applying (2.1)s, we obtain that

1d

- +|p 1P\ d
S Lt s

1) / (V2 P2 + [V~ 2o [P-2) de
Q
= —E/ VU - V(nt P —|n"|P) de
p Q
—1
=2 [t )t =) do <0,
p Q

where we have used in the last step the fact that n,n~ are nonnegative, and
(In* [P = In~P)(n* —n7) =[(n")P = (n7)"][n* —n~] > 0.

Therefore, we obtain that

% (InT P 4+ |n~ ") dz + (p — 1)/ [(n+)p72\Vn+|2 + (nf)p72|Vn7|2} dedt < 0.
Q

t

This implies (2.9) and completes the proof. a0

Proof of Theorem 2.1. Step 1: Fxistence. We will modify the approach by Schmuck
[21] as follows. For T > 0, set the function space

Yr = {y = (n*,n7) :n* € L*([0,T],L*())},
which is equipped with the norm
+ - Mt

H(” v )HYT = H(” T )HL4([O,T],L2(Q))'
Now we define a map F' : Yr — Yp as follows. For any y = (n*,7~) € Yr, define
F(y) =y = (nT,n7), where y is a solution of the system

7

(2.10) AU =aT -7 in Q, g— =0 on 01,

om* +(w- V)t — At = div (n*],VF) i Qr,
on~ + (w-V)n~ — An~ = —div ([n7]_VV¥) in Qr,
)

(2.11) (nt,n7) = (ng,ngy) on Q x {t =0},
ont  On~
@—W—O on@Qx[O,T].

Note that for any f,g € L'(Q), it holds that

(Al <AL U = lgl+ ]l < 1F — gl ae. Q.

Since it —n~ e L*([0,T], L*()), it follows from the W*?2-theory of the Laplace
equation that ¥ € L*([0,T], W?2(Q2)), and

(2.12) < C|n*

H@HL‘l([O,T],W?v?(Q)) - ﬁ7HL4([0,T],L2(Q)) < CHS’HYT'

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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By the theory of linear parabolic systems [12], there exists a unique solution (n*,n™)
of (2.11) in L>([0,T], L3(2)) N L2([0,T], H'(?)) for any T > 0. Moreover, by mul-
tiplying (2.11); by n™ and (2.11)2 by n™, integrating the resulting equation over €,
and adding these two equations, we obtain that
1d
2dt Jo
=— / (VU,[nT]4Vnt — [n7]_Vn ™) dx
Q

(Int]2 + |n~|*) dx + / (Va2 +|Vn~|?) dx
Q

= CHVEHUS(Q)H‘”H + |n_|||L3(Q)H|Vn+| + \V"_\Hm(m
< Ol ¥lwe20) (Int 22y + In"Ilz2g)®

— _ 1
(I llzz ) + lIn” lzz@) + (VAT L2(e) + VR [l 20)]2

[
(2.13) o
VT2 ) + 1IVRT [ L2 (o)
_ _ _ 1
< C[||n+||L2(Q) +[|n ||L2(Q)](||n+HL2(Q) +[In ||L2(Q))2
(In* 2y + I le2)) + (VT 2 @) + 11VRT [ L2(0)]

o 3
VT2 ) + 11IVRT |2 (o)
1 _
< i(anJrH%%Q) + Ve (220
+CO[1+ (||ﬁ+||%2(9) + Hff”%‘z’(g))] : [||”+H%2(Q) +In" lr20))?]-
This implies that

d
— [ (InTP 4+ |n"|?) dx + / (Vnt|? + |V~ |?) dx
(2.14) dt Jo Q
<C[1+ (||ﬁ+||%2(9) + ||T_f||i2(9))] : [||n+||%2(fz) + [In llr2(0))?]-

Applying Gronwall’s inequality, we obtain that

sup /(|n+|2+|n*|2)dx+/ (Va2 4+ |Vn~ |?) dodt
0<t<T JQ T

t
< e {c / (7 Wy + 17 [4ae) dr} /Q (nd 12 + Ing %) (x) d.
For R>0,ify = (A™,7n~) € Yr belongs to

BE={v: 5l < B).

(2.15)

then (2.15) yields that

P, = /OT (/Q(|n+|2 =B, ) dx>2 dt < Coexp(CT + CRYT < (1;)4,

provided that T = T7 € (0,1] is chosen sufficiently small. Hence there exists a
sufficiently small 7' = Tj € (0,1] such that F(y) € By C B).
2
Next we want to show that F : B}é — B}g is a contractive map. For ¢ = 1,2, let
yi=(n,n;) € By and y; = (n;,n;) = F(y;) € BY be the solutions of (2.10) and
(2.17). Then n{ —nJ and n] — n, solve
o0 — Wy)

(2.16) —A(¥, —Uy) = (A —n]) — (A —ny ) in €, Y

=0 on 012,
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(2.17)
O(ny —ng) + (w- V)(nl —n3) = Anf —n3)

— div ([nf]: V(1 — o)) +div ([nf )4 — [13])VT2)  in Qr,

O(ny —ny )+ (w-V)(ny —ny) —Alny —ny)

= —div ([n; ]+ V(¥1 = U2)) — div (([n; ]+ — [25]+)VP2) in Qr,

nf —ny,ny —ny)=(0,0) on Q x {t =0},
B(nfa; n;) = 3(7118; nz) =0 on 02 x [0,T7.
Multiplying (2.17); by (nj — n3), (2.17)2 by (n] — ny), integrating the resulting
equations over 2, and adding them together, we obtain that

(2.18)
1d
2dt

Q(|nl — Ny ‘ +ny —ny | ) dx
+ [Vt = n) 4+ V(g = 03) ) o
=— /Q[nﬂJrW@l —U,), V(nf —n3)) + (Inf]y — n3]4)(V¥2, V(nf —n3))dx
+ /Q[”f]+<v@1 — W), V(ny —n3)) + ([nT ] — [n5]4)(V¥2, V(n] —ny))dz
< CHVEQHLG(Q)(HWTH — 34 lls @IV —nd)lle2 @)
+ I[n7 ]+ = 2 14 L@ IV (nT = n3)|lp2(q))
+C||V (¥ - a2)HL6(Q)(H[nf]JrHLii(sz)||V(”1+ —n3)llL2(0)

14 s IV (rr = n3) @)
< Cllag =15 || 2oy {Ind =73 2@ IV o = 2|z

3
+ lInd = nd 12 IV (0 = 1)1
+ny —ny HLZ(Q [V(n1 —ny)llr2(a)
3
s =15 o) IV 05 =252y }

Ot =5 ey + 177 =72 | oo
(I 2@ 1900 = nf) 220
0 s 197 1o ) 19 0 = )z
+ It @ V07 = 13l
107 12 IV 1oy IV (07 = 1) 2200y }
< 2 (190 = m) By + 19017 13 o)
+ C(14 |7 a0y + 172 [ agey ) (105 = 13 1320y + 107 = 15 1320y )
+ C{ It oy 175 L gy + 12 gy 175 o §

S P e O}
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where we have used the following inequalities: for any f,g € H(Q),

[f+llze@) < [1fllze@) < CIIflle(Q ||Vf|\L2(g)7
I f+ _9+HL3(Q) < Hf 9||L3 @ < CHf 9||L2 )Hv(f g)||L2(Q)

Therefore we conclude that

d _ _
G [t =Pt =g Py dat [ (VG =)+ 97 =) de

< C(1+ |17 oy + 173 132y ) (Ind = nd ey + Int = 3 132
+ {1 | oy 12 1y + 1175 1| oy 127 N

(219) {1 — 5 [2aggy + 17 — 5 |y

Applying Gronwall’s inequality, we obtain that

sup /(Im —ng |+ Iny —ny | )dr+/(|V(nT—n§)|2+|V(nf—n2‘)|2)dwdt
Q Q

0<t<T
1 T %
a0 <ot [t~ + it}
where
T
ot =esp (0 [ (4 37+ 5 ) 1)

and

T
2 _2 2 2
A(T) = (H|”1+|HLoo([o,T],LZ(Q))+|||”1 |||Loo([o,T],L2(Q)))/0 (Hnﬂ|H1(Q)+H”1 HHl(Q)} dt.
It follows from (n],7; ) € BY, and (2.15) that for 0 < T' < T7,
max {a(T), A(T)} < C(R)

Hence (2.20) yields that for 0 < T < T,

2

ot ) = ol < [ [ Gt =i - gy ae)

2
ST{ swp [ (it = ng P+ g n;|2>d:c}
0<t<T JQ

T
< Ta?(T)B(T) /O AT = A2 + 171 = 72 |20y d
< C(R)T||(nf a7 ) — (ﬁ;’ﬁQ_)HYT
(2.21) <274 (af,a7) - (3, 73|y,

provided T'= Ty < min{T}, %C(R)}.
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This implies that F : B}, — B}, is a contractive map with a contraction constant
%, provided T and R are chosen sufficiently small. Therefore, there exists a unique
fixed point y = (n™,n™) € B} of F, i.e., y = F(y). In particular, (n™,n=, ¥) is a
solution of

(2.22) — AU =nt —n~ in Q, g—qj =0 on 09,
v

din* + (w- V)n* — An* = div ([n*], V) in Qr,
On” + (w-V)n~ — An~ = —div ([n7]4V¥) in Qr,

(2.23) (n*,n~) = (nd,ng) on Q x {t =0},
ont  On~
W_W_O on 9Q x [0, T5]

on the interval [0, 7] such that n* € L°L2 N L2HX(Q1,), ¥ € L H2 N L?H2(Qr,),
and

(2.24)

||(n+, §C(||(n3',na Tg).

n7)||Lf°LiﬂLfH;(QT2) + ||\Ij||L§°H§ﬁL§Hg(QT2) )HL?(Q)’

For such a solution (n™,n™, ¥) to (2.22) and (2.23), let u € L>°([0, T»], H)NL?([0, T3], V)
be a weak solution to the system

Ou+ (w-Vu—Au+VP=—(nt —n")VY in Qr,

(2.25) divu=20 %n Qr,
u=1ugp in Q x {0},
u=0 on 9 x [0, Ty].

Since (nt —n ")V € L>®([0, T3], L? (Q)), it follows from the regularity theory of the
linear Stokes system that dyu, V2u € L2 (Qp,) and VP € L3 (Qr,)) and

(2.26)

HUHLOO([O,TQ],LQ(Q)) + ||“HL2([0,T2],H1(Q)) + H(

atu’vzu)HL%(QTz) + ||VP||

L3 (Qry)

< ClluollLz(ey: 1(ng ,ng)l 20y, T2)-

From the estimates (2.24) and (2.26), we can extend (u, P,n",n~,¥) beyond T
to get a global weak solution of (2.1)—(2.3) on the interval [0,7] such that both
(2.24) and (2.26) hold with T3 replaced by T'. Finally, we know that by Lemma 2.1,
(u, P,nT,n~,¥) is also a weak solution of the system (2.1) in Qr.

Since the solution (u, P,n™,n~,¥) to (2.1) constructed in Step 1 satisfies the
estimates (2.24) and (2.26) (with T = T'), it is not hard to verify that the LP-theory

of linear parabolic equations [12] implies that d;n™, dyn~ € L%(QT). From
+ - 9
(2.27) — A(0T) =0n™ — On” in Q, a(@pﬂ) =0 on 09,

we can conclude by the LP-theory of linear elliptic equations that V28,¥ € L% (Qr).
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Multiplying (2.27) by ¥, (2.1); by w, integrating over 2, and applying integration
by parts, and adding these two resulting equations together, we can obtain that

(2.28)
/ (Jul* + V) (z, t) dz + 2/ (IVul® + [n" —n" >+ (n* +n7)|VE|?) dads
Q

t

_ / (uol? + |V To[2)(x) d + 2/ (0" — 0w —u) - VU dads
Q ¢
holds for all 0 < ¢t < T.

Step 2: Uniqueness. We want to prove that there exists at most one weak solution
of (2.1)—(2.3) satisfying the estimates (2.24) and (2.26). Let (u1, P1,¥1,n],n]) and
(u2, P2, o, ng ,ny ) be two weak solutions of (2.1), (2.2), and (2.3), satisfying (2.24)
and (2.26). Set

U:ul—ug, P:P1—P2, \I/Z\Ill—\l’g, N+:n1"—n;, N_:nl_—n;.

Then
U+ (w-V)U — AU + VP = —(NT = N7)VU; — (nd —n;3 )V,
div U =0,

(2.29) INT + (w-V)NT — ANT =div (NTVV,) + div (n] V),
N~ + (w-V)N~™ — AN~ = —div (N~V¥;) — div (n; VV),
—~AV =Nt - N—,

subject to the initial and boundary conditions

(U,N*,N7)|,_, = (0,0,0) on Q,
(2.30) ONt ON— 9w
U =0, £y £y £y 0 on 902 x (0,7)

Multiplying (2.29); by U, (2.29)3 by NT, (2.29), by N—, and (2.29)5 by ¥, integrating
the resulting equations over §2, and adding all these equations together, we obtain that

2.31)

[P+ VU 4+ [N+ NP de
Q
J

+

N TS
Sl

(VU4 Nt = N7 2+ |[VNT 2+ |[VN" > + (nf +ny)|VE[?) dx
- f/ [(N+ —~N)U -V + (nf —ny)U-VV¥ — (Nt = N )w- VU
Q
L (NT = NT)V, - VU + N*VE, - VNT +0f V- VN* — n[ V- VN*} dz
1
<Nt -nT HiZ(Q) + O|U ) V11760 + CllwlF (g !IVW!!2L2(Q)
T 2 2
+ 1[0z n2)| Lo U120y + C 1+ [V [Lo ) [ V2N Zs )
+ OV INT G2y + 1070 | V15

1 2 _2
(TN ey + N[
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By the interpolation inequality, Sobolev’s embedding theorem, and (2.24), we have

2
10125 @y < ClNUN ey VU] 2y
le(t)HLG(Q) < IV ()| 20y < C, ae. t €[0,T],
2
H(";v”E)HLG(Q) + ||“f||L6(Q) = CZ ’|(”i+v”;)||H1(Q)’
i=1
IN* 2y < CUNT sy + CINF oo VN o
2
IV Loy < IV 2@ IV oo
< c||ve],.
< c||ve],.

@ ¥l

(Q)HNJr - N” HL2(Q)'

Putting these estimates into (2.31) and applying Young’s inequality, we obtain

d _
7 Q(IU\2 VP + N2+ [NT[?) do

+ / (|VUP 4 Nt = N2+ VN2 + |[VN"|? + (nd +ny)|VT|?) d
Q
_ 2
(232) S C<1 + ”wH%N(Q) + ||(n1 ’n;)HHl(Q)>
2
1010y + 1317y + IV 20
1 2 2 _ 112
+ 5 (IVN* 120 + 190 ey + [V = N7 qy )-

This, combined with

T) = exp (o / "t gy + ||<n;7n2+>|!i,1<m>dt> <,
implies that for any 0 <t < T,
U+ (99 4 |8 4 1N 0.0 o
< (1) /Q (U2 + [VO2 4+ [N*2 4 [N~ 2)(z,0) d = 0.

Hence the proof is complete. 0

Next we want to provide a global L3 -estimate of the pressure function P of
the weak solution (u, P,n™,n~,¥) of the system (2.1). More precisely, we have the
following.

THEOREM 2.2. Assume nd,ny; € L*(Q)) are nonnegative, ug € H, and w €
C*>(Qr) satisfies div w =0 in Qr and w-v =0 on 02 x [0,T]. Let (u, P,n",n=, ¥)
with [, Pdx =0, be the weak solution of the system (2.1) in Qp that satisfies (2.4).
Then P € L3 (Qr) and
(2.33)

HPHLg(QT) < 0(1 + lwllzee r2nrzm@e + Ind lz2 @) + 117 20 + Hu0||L2(Q)>~
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Furthermore, for every nonnegative ¢ € C3°(Qr), it holds that

2/ \vu\%dxdt:/ |u|2(8t¢+A¢)dxdt+/ (|u*w + 2Pu) - Vo dadt
T Qr

T

(2.34) )
— 2/ (V\If ®@ VU — 2|V\I/213) . V(ug) dadt.

Proof. Equation (2.1); 2 can be written as the Stokes system:

{atu—Au—kVP:f, 0
T,

divu =20
where f = —(w - V)u+ AUVV. By Hélder’s inequality, we have
(2.35)
HfHL%([o,T],L%(Q))

= C[HwHL}OLE*g(QT)||V“HL2<QT> + "~ ”_Hquo}TLLZ(Q))HV‘I’HLM[O,T],L%Q)]

< O<1 +lwllpee 2nrzm@r + 175 2@ + 176 | 22() + Huo||L2(Q))~
Here we have used the Sobolev-interpolation inequality,
HU’HL%OLE%(QT) < CHwHLgOLgmL,?H;(QT)'
In particular, f € L%([O,T],L%(Q)). Applying the theorem by Sohr and von Wahl
[26] and (2.35), we obtain that VP e L3 ([0, 7], L1 (Q)) and

VPt oy 880y = ClM Nt o,y 88 )

< C<1 + HwHLfoLiﬂLin(QT) + ||nE)F||L2(Q) + Hn6”L2(0) + ||UOHL2(Q))-
This, combined with Sobolev’s inequality, implies that P € L3 (Qr) satisfies (2.33).
Mollify u, P, f in R* as follows. Choose mg € N* so that = < d(supp ¢, d(Q x
[0,77)), where d(-,-) denotes the parabolic distance function given by (1.10). Let
n € C§°(By1 x (—1,0)) be a standard mollifier function, and n,,(z,t) = m>n(mx, m>t)

for (x,t) € R? x R. For m > my, define sequences of smooth functions w,, = 1, * u,
Py =nm % P, f, = nm * f. Then for m > mg, we have that

(2.36) Oy, — Aty + VP = frn,  div u,, =0,

holds in a small neighborhood of supp ¢. Moreover,
Up —u 0 L3 (Qr), Vu, — Vu in L. (Qr),
PuP in Li@r),  fu—f i (BLdd(@r).

Multiplying (2.36) by 2u,,¢ and integrating by parts, we obtain that

2/ |Vum|2¢dmdt:/ [ |2 (0 + A) dmdt+2/ P, - Vo dadt
T Qr

T

+ 2 fm - um@ dxdt.
Qr
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Sending m — oo, we have

2/ |Vu|2¢da:dt:/ [ul? (9 + Ap) dxdt—|—2/ Pu - Vo dxdt
T Qr

T
+ 2/ (—w - Vu+ AUVYE) - uep drdt.
T
Note that since div w = 0, we have that
—2/ w- Vu - updrdt = / |u|?w - Ve dxdt
Qr Qr
and
1
2 AUV - yp dxdt = —2/ <V\I' ®RVYE — |V\Il|213) : V(ug) dadt.

Qr T 2

Thus (2.34) holds. This completes the proof. |

Now recall Aubin-Lions’ compactness lemma; see [27, section III].

LEMMA 2.2. Let Xq, X1, X2 be three Banach spaces with X and X self-refiexive,
that satisfy Xo C X1 C Xa3. Suppose that the embedding of Xq into X1 is compact
and the embedding of X1 into Xs is continuous. For p,q € (0,00), assume that

{ur}ren C LP([0,T], Xo)
is a bounded sequence such that each uy has a weak derivative Oyuy, and the sequence
{3tuk}keN S Lq([O, T], XZ)

is also bounded. Then there is a subsequence of uy, converging strongly in LP ([0, T], X1).

Now we utilize Theorem 2.1 to obtain a suitable weak solution to the system
(1.1). To do this, we adapt the retarded mollification technique by Caffarelli, Kohn,
and Nirenberg [1] on the Navier—Stokes equation.

Let ¢ € C§°(R*) be nonnegative and satisfy

/(d:rdtflandsuppCC{xt eR*: |z? < t, 1<t<2}
R4

For f € LY(Q7), let f =R3 x R+ R3 be

Fe flx,t) if (z,t) € Qr,
0 otherwise.
For € > 0, define the retarded mollifier of f by
_ T
(2.37) Oc(f)(x,t) = € 4/ ¢(%,%) Fa—y,t = )dyar.
R4 € €

Then it is well known (see [1, Lemma A.8]) that
div (©( —Olfdlvf:()
sup / |@ (2,1) dz +/ V(0. (f))[2 dadt
Qr

< sup |fI? (x,t)dm+/ |V f|? dxdt,
0<t<T JQ Qr
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and if f € LP(Qr) for 1 < p < oo, then O.(f) — f in LP(Qr) as ¢ — 0. Since
O(f) - v may not be 0 on 9Q x [0,T], we want to modify it as follows. For § > 0, let
Qs = {y € R3 : dist(y, ) < 5} be the d-neighborhood of 2, and &5 : Q@ — Qs be a
smooth differeomorphism such that

H% - Id”cl(ﬂ) < 5,

where Id(z) = z, x € €, is the identity map. From the definition, we see that
Oc(f) = 0in (R?\ Qac) x [0,7]. Hence Oc(f)(x,t) = O(f(P2e(2), 1)), (,t) € Qr,
satisfies that ©.(f) =0 on 992 x [0,T]. If div (f) = 0 in @, then

div ©.(f)(z, 1) = tr[VO.(f) (Do (), 1) (VPoc (z) — I)], (2.t) € Qr-

Therefore we have that

sup /|@ (2,1) dm+/ V(6.(f)) dedt
0<t<T T

§C’ sup /\f| ;Utdx+/ \Vf\zdxdt)

0<t<T
and

/ |div (C:)e(f))|2dxdt§C’ez/ IV f|? dadt.

T T

For 0 <t < T, let g.(t) € C>(Q) satisfy / ge(z,t) dx = 0, and solve
Q

—Age(z,t) = div (O.(f))(z,t) in €, %(x,t)zO on H.

By the standard elliptic theory, we have that for any 0 < ¢ < T,
/|Vg6 xtdx<C/|® wtdaz<C’/|f| x,t)d
/|V296 xtdm<C/|d1v |*(x,t) dz < Cé? /|Vf| (x,t)dx

Now we define ©,(f) € C>(Q x (0,T),R3) by letting
O.(f)(@,t) = Oc(f)(x,t) + Vge(x,t), (z,t) € 2 x [0,T].
Then it is easy to check that for f € L°L2 N LZHL(Qr) with div (f) =0 in Qr,

div (O(f)) =0 in Qr, O.f)-v=0 on 92 x [0,T],

sup / (z,t) da:+/ |V((:)E(f))\2da:dt
0<t<T Or

SC sup /\f| xtdm—i—/ \Vf\2dxdt),

O<t<T

and
O.f) = fin LL2NL2HN(Qr), as € — 0.
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For any large positive integer M, set € = % and let (ups, Pas, nL, Ny, Yar) solve
the following system:
(2.38)

Orupr + (AC(UM) . V)UM — Aupy + VPy = —(n& — nX/j)v\PI\/D
div Upr = U,
0y,

Ot + (Oclunr) - V)nl, — Ant, = div (nf, V¥ ), in Qr,
Oy + (Oc(unr) - Vny, — Any, = —div (ny, V),

+ —_
—AVU = nj; —nyy,

subject to the initial and boundary conditions (2.2) and (2.3).

Since @e(uM) =0 in Q., the system (2.38) decomposes into the PNP equation
and the inhomogeneous Stokes equation, both of which can be solved in the stan-
dard ways. While in the interval [e, 2¢], ©.(ups) are smooth and their values depend
only on the values of uy; and ¥y, at interval [0,¢]. Hence by Theorem 2.1, we can
solve the solution (uns, Par,ni;, nyy, War) of (2.38) on the interval Q x [e, 2¢] with the
initial condition (uar,ni;,n},)(-,€) and the boundary condition (2.3). Keeping this
process in each interval (me, (m + 1)e),0 < m < M — 1, we obtain a global solution
(unr, Prrysmiyy iy, War) to (2.38), (2.2), and (2.3).

It follows from Lemma 2.1, Proposition 2.1 (for p = 2), (2.24) and (2.26) of the
proof of Theorem 2.1, and (2.33) of Theorem 2.2 that {uys} is bounded in L{°L2 N
L?HX(Qr), {ni,} are nonnegative and bounded in L& L2NL?H(Qr), ¥ is bounded
in L°H2 N L2H3(Qr), and {Py} is bounded in L3 (Q7).

By (2.38)1,(2.38)3, (2.38)4, we have that

Opupr = —div (UM X @e(uM) — Vuy + PMI:;) — (n& — TLA_/[)V\IJM,
ony, = —div (nL@E(uM) - Vni —ni V),

~

Onyy = —div (npOc(unr) — Viny, +ny, V).
Hence {Oyuns}aren, {0y, aren, {0y} aren are bounded in the space
LE (0, 7], W3 ().

We can apply Lemma 2.2 with

XO = Hl(Q),
X, = L3(Q),
X2 = W_l’g,

to conclude that there exist u € L{°L2 N L?HL(Qr), n* € L¥L2 N LZH(Q7),
W e LH2N L2H3(Qr), and P € L3(Qr) such that as M — oo, after passing to a
subsequence,

(2.39) Uy — u in L2HY(Q7), upr — uwin LYQr) V1 < ¢ < ?,
(2.40) {(nL, nap) = (0, o) in LEH}(Qr),

(nig, nyy) — (0, n7) in L(Qp) VI < 1< 2,
(2.41) VU, — V¥ in LY(Qr),
and
(2.42) Py — P in L3(Qr).
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With (2.39), (2.40), (2.41), and (2.42), we can easily verify that (u, P,n™,n=,¥) is a
weak solution of (1.1), (2.2), and (2.3).

Since (unr,nyy,ny, War) satisfies the global energy equality (2.28), with
(u,nT,n~,¥) and w replaced by (uM,nX/[,n]Q, Uys) and (:je(uM)7 respectively, and
since R

nj(/[ —nt, ny —n -, Ocuy) = u, V¥ = VU in LB(QT),

it is not hard to verify that as e — 0,
2/ (ni; — nj_w)(C:)e(uM) —u) VU deds - 0V0 <t <T,
so that for any 0 <t < T,

/ (|u* + |V¥|?) dz + 2/ (IVul® + [nT —n >+ (n" +n7)|VE|?) dzds
Q

t

< liminf { / (Jurr]® + |V |?) do
e—0 Q
+ 2/@ (|IVunr | + [nj; — ny 2+ (nd; + 1)V ?) dxds}
= hmi(l)lf (/ (Juol* + |V |?) da + 2/ (nf; —n3)(Oclunr) — ups) - VU dxds)
€— Q s

— /(|u0|2+ |V |?) da;
Q

this yields that (u,n*,n~, ¥) satisfies the global energy inequality (1.9).

Finally, we need to verify that (u, P,n™,n~, ¥) satisfies the local energy inequality
(1.7). For this, consider a test function ¢ € C*(Qr) with ¢ > 0 and supp ¢ € Q7.
By Theorem 2.2, we have

(2.43)
2 Vu 2¢dmdt = 2 0t + A¢) dxdt
/T| M| /T|“M|(t ) da

T
1
— 2/ (V\I/M QR VU — 2|V‘~I/M|2.[3> : V(UM¢) dzdt.

Qr

As M — oo, by the lower semicontinuity we have that
2/ |Vul|?¢ drdt < liminf/ |Vuar|?¢ dadt,
M —o0 Q
T T
while by (2.39)-(2.42) and O, (uy;) — u in L3(Qr) as € — 0, we have
/ lurt|* (s + Ap) da:dt+/ (luar*@c(unr) + 2Parunr) - Vo ddt

T T

1
— 2/ (V\I/M QR VWU, — 2|V\I’M|213) : V(uMgZ)) dxdt
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- [ul*(0r¢ + Ag) dxdt—|—/ (Ju|?*u + 2Pu) - V¢ dxdt
Qr T

1
- 2/ (V\I/ ® V¥ — 2V\IJ|QI3> : V(ug) dzdt.

Hence (1.7) follows.

3. The e-regularity, part I. In this section, we will prove the partial regularity
of suitable weak solutions to (1.1). The crucial steps are the two levels of e-regularities.
For (z,t) € Qr and r > 0, set

By(z)={yeR’: |y—z[<r}, Qr(z,t)={(y7)|ly—a|<r, t—r*<r<t}

and denote B,(0) and Q. (0,0) by B, and Q,.

LEMMA 3.1. There ezist g > 0 and 0y € (0, %) such that if (u, P,n",n",¥) is a
suitable weak solution of the system (1.1) in Qr, which satisfies, for an (xo,to) € Qr
and 0 < ro < min{dist(zo, 9Q), v/},

r(;?/ lu|® dzdt + rgl/ V| dadt
Qrg(z0,t0) Qrg (z0,t0)

3
1

(3.1) 5
+ 7‘0_2/ |P|% dzdt | <€,
Qrq (T0,t0)
then
2
oro)” ul? dedt + | (Boro)~ 3 dadt
0 2 3dxd 0 2 P
Qogro (To,to) Qogro (To,t0)
%
1
(3.2) <= rgQ/ lu| dxdt + (7“01/ |V\Il4da:dt>
2 Qo (w0,t0) Qr (z0,t0)

2
+ <7"0_2/ |P|3dxdt> ]
Qrg (z0st0)

Proof. For zy = (z9,t9) € Qr and r¢ > 0, define the rescaling functions

(1], P.at,n, \i/) (z,t) = (rou,r(z)P, nt,n", \I/) (wo + rox, to + 7at).

Then (i, P,n", 7™, ¥) solves the following system:

Oyt + (- V)i — A+ VP = —r2(t — 77 )V,

div u =0,
(3.3) ot + (a- V)it — At = div (At VD),
o~ 4 (- V)~ — AR~ = —div (A~ V¥),

—AT =72(At — 7).

From (3.3)5, we can see that

- - - - -1 -
—rg(At —A7)VE = AV - VU = div (v\p ®@ VU — 2|v\1/|213) i
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Thus (3.3); can be rewritten as
- - S
(3.4) Byt + (- V)i — A+ VP = div (V\II@V\IJ— 2|V\Il|213>.

Because of the invariance of the first four equations of (3.3) under translations and
scalings, we will assume zo = (0,0) and ro = 1. We prove (3.2) by contradiction.
Suppose the conclusion were false. Then for any 6 € (0, %), there would exist a
Fon;,¥;) of (1.1) in Q; such that

R

3 2
(3.5) / |u;|? dedt + (/ |V\Ili|4dxdt) + (/ Ik dxdt) = =0
1 1 1

sequence of suitable weak solutions (u;, P*,n

and
X 2
02 | |u|® dedt + (9—2/ |Pi|2 dmdt)
Q Q
(3.6) 19 ‘ s ,
>3 V |ug|* dadt + (/ V\Ifi|4)dxdt> + (/ |Pi|3dxdt> ] .
1 1 1
Now we define the blowing up sequences v; = %, R; = %, d, = % on 1. Then

(vi, R;) solves the system

{ Owv; + €v; - Vu; — Av; + VR; = ¢;div (V(I% RV, — %‘V‘I)i‘ng,),

(3.7) div v; = 0,

and satisfies
2

%
(3.8) /|vi|3dscdt+</ |V<I>i|4dxdt> +(/ |Ri|3dxdt) =1,
1 Ql 1

2
s 1
(3.9) 072 [ |vi|® dedt + (9—2/ Ri|2dxdt> P
Qo Qo 2

Moreover, since (u;, P;, ¥;) satisfies the local energy inequality (1.7), we can see that
(vi, R;, ®;) satisfies a rescaled version of (1.7): for any 0 < ¢ € C5°(Q1),

2/ |V |>¢ dxdt

< / [vi?(¢¢ + A¢) dzdt + / (€ilvil® 4+ 2R;)v; - Ve dadt

1

1
(3.10) — 2/ €; (V‘bz ® V‘I)Z' — 2|V<I>Z|213) : V(’Ul(ﬁ) dxdt

g/ |v1;|2(¢t+A¢)dmt+/ (eilvi|® + 2R;)v; - Vo dadt

1

—&-Cei/ |V<I>i|2(¢+|vi\|v¢|)dmdt+/ |V, |>¢ dzdt.

1 1

By choosing suitable test functions ¢, (3.10) and (3.8) imply that v; € L{°L2 N
L{H,;(Q1) and there exists C' > 0 such that

(3.11) ?12113 HWHL;?OLgmLfH;(Q%) =G
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Moreover, we see from (3.7) that

(3.12) || 0pvi| C.

Lo w3 m) S
Indeed, for ¢ € L3([—1,0], Wy*(B1)), we have
‘ aﬂhd)d.’ﬂdt‘
Q1
1
1

< C(luill3aian + IVOillay) + IRl 1 g, ) IV6 L@

< CH(bHL3([71,0],W01"3(Bl))-
From (3.11) and (3.12), we can apply Lemma 2.2 to conclude that after passing to a

subsequence, there exist v € L{°L2 N LfH;(Q%), Re Lg(Q%), and ¢ € LfW;A(Q%)
such that

(3.13) v; — v in LtzH;(Q%), v; — v in LB(Q%),
and
(3.14) R; = Rin L3(Qy), & — ® in LiW}*(Qy).

Passing to the limit in (3.7), we see that (v, R) solves the Stokes equation:
(3.15) dv—Av+VR=0,dive=0 in Q.

Therefore by the standard theory on the Stokes equation, we conclude that v €
C>(Q1), and for any ¢ € (0, 1),

(3.16) 02 [ o dedt < 093/ (o] dedt < C6°.
Qo Q

%

This and (3.13) imply that for ¢ sufficiently large,

(3.17) 62 lvs|® dedt < CH® + o(1).
Qo

Here o(1) denotes a quantity such that lim; o(1) = 0.
As for the pressure function R;, taking the divergence of (3.7); yields that R;
solves the Poisson equation:

1
By the Calderon—Zygmund theory, we can show that
02 | |R|? dadt < 00*265 / (|vi® + |V®,|?) dxdt + CO? / |R;|? dadt

(3.19) Qo Q1 1
3
< 09_26i2 + C03.
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Adding (3.17) and (3.19) together, we obtain that

=

2 3
(3.20) 072 [ || dadt + (9—2/ |R;|? da:dt) < OO+ CO7 22 +o(1) <
Qo Qo

provided we choose a sufficiently small 6 € (0, %) and a sufficiently large i. It is clear
that (3.20) contradicts (3.9). The proof is complete. |

Keep iterating Lemma 3.1; we then obtain the following decay property.

COROLLARY 3.1. There ezist eg > 0 and 0y € (0, 3) such that if (u, P,n*,n~, V)
is a suitable weak solution of the system (1.1) in Qr, which satisfies, for a zy =
(zo,t0) € Qr, 0 < rg < min{dist(zq, 9N),/to}, and 0 < o < 4

2
max rgQ/ lu|? dadt + <r02/ |P|? dwdt |
Qrg(20) Qrg (20)

3
1

1

sup r_(l'“")/ |V |* drdt < —e,

0<r<ro Qr(20) 2

then for any positive integer k € N,

(3.21)

(3.22)

1 k
O [ Pdears | @ [ P <cq <2>
Qgé/'ro(z()) Qggro(zr))

Proof. Tt is readily seen that (3.22) follows from Lemma 3.1 for k = 1. Note that
(3.21) and (3.22) for k =1 yield that

(907“0)_2/ lul? dxd + <(eoro)‘1/ V\If|4)dxdt>
Qogro (20) Qogro (20)

2
+ <(007’0)2/ |P|3dxdt> <e€.
Qogro (20)

Hence applying Lemma 3.1, we obtain that

2
(ngo)_Q/ lu|® dadt + ((Ggro)_2/ |P|% dmdt)
Qg%,.o(zﬂ) QB%T'O(ZO)

(907‘0)_2/ |u|® dedt + ((907‘0)_1/ |V dxdt)
Qogro (20) Qogr (20)
2
+ ((907‘0)2/ P|S’dxdt> ]
Qogro (20)

2
(907“0)*2/ lu|® dxdt + ((007'0)2/ |P|? dxdt)
Qogro (20) Qogrg (20)

3
1

3
4

IN

1
2

IA

1
2
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3
a
+ ((907"0)_1/ |V\Il4da:dt> 1
Qogro (20)
(7"0_2/ lul? dxdt + (ro_l/ |V\I/|4dmdt>
Qrq(20) Qry(20)
2 3
+ <r0_2/ |P|%dxdt> >+ ((907«0)—1/ V\IJ|4dxdt> ]
Qrq (20) Qogro (20)
2
7’0_2/ |u|® dedt + (7'0_2/ |P|gdxdt>
Qry(20) Qrq(20)
2 2
1 1
+ () rgl/ V| dadt | + = (00r0)—1/ |VU|* dadt
2 Qrq (20) 2 Qogro (20)
1\? ’
< () ro—2/ lu|® dzdt + (7“0_2/ |P|3da;dt>
2 Qu (20) Qro (20)

1\N? 5 o[ 1
+<2) 687'0 |:60 +2:|.

Hence we have that for & > 1,

e

IN
DN |

1
2

IN
7N
|~
N~
[\V]

3
1

(96“7“0)*2/ lul® dxdt + (9’0“7“0)72/ |P|? dadt
QQSTO(ZO) Q%cro(ZO)

5 2
1
< (> ro_z/ lu|® dzdt + 7’0_2/ |P|% dxdt
2 Qrq (20) Qrg (20)
2 k—2
1 « — 1 o — 1
+(2> e3rg leo(k 1)+§90(k D4 (2) 93]

X 2
1 : :
< (> [ uPdedes (g [ (Pl dade) | -2 0
2 QT‘O (Zo) QTO (ZU)

< COed2*.
This yields (3.22) and completes the proof. d
With (3.22), we can now prove the following ey-regularity property.

THEOREM 3.1. There exists eg > 0 such that for any 0 < T < o0, ug € H, and
0 < nf € L*(Q) with Jond dv = [,ng do, if (u,P,nT,n=, V) is the suitable weak
solution obtained by Theorem 3.1(1), which satisfies
(3.23)

3 2
TO_Q/ lu|? dedt+ | ry? / |Vt dedt | + 7’0_2/ |P|% dadt | <€,
Qrq (20) Qrq (20) Qrq (20)

Jor zg = (0, t0) € 2x(0,00) and 0 < ro < min {dist(zo, 9Q), vt }, then (u,n*,n=, V)
€ C*(Q1a (20)).
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Proof. Tt follows from (1.8) and Sobolev’s embedding theorem that V¥ €
LLS(Qr) and

(324) ||V\I’||Lf°Lg(QT) < CH\I/HL;X’H? QT) (”UO“L?(Q) ||(TL0 7n0 )”L2 Q))

This implies that
4 3 4 3
(3.25) /Q " VOt dzdt < Cr3 ||V < 6 o, < O VQr(2) C Q.

It follows from (3.25) and (3.23) that for any « € (0,2), the condition (3.21) holds on
Q i (1) for any z; € Q i (20), provided we may choose a smaller ry > 0, depending
on €. Thus by Corollary (3.1), we conclude that there exists 6y € (0, 1) such that

(3.26)

k
5 (1
(egro)”/ lu|® dxdt + (93%)*2/ |P|? dadt | < Céd (2>
Qﬂéro(zl) Qgétro(zl)

for any z1 € Qo (20). Therefore there exists 79 € (0,1) such that

2
(3.27) 3*2/ lu|® dxdt + 5*2/ |P|? dadt | < Cs®™
Qs(z1) Qs(21)

for all 21 € Qo (20) and 0 < s < 7. From (3.27), we can repeat the same argument
of Lemma 3.1 and Corollary 3.1 to improve the exponent 7y such that (3.27) remains
to be true for all 7 € (0,1).

Now we plan to apply the Riesz potential estimates between parabolic Morrey
spaces to show that u € Lq(Q%o (z0) for any 1 < g < oo, analogous to that by Huang
and Wang [15], Hineman and Wang [16], and Huang, Lin, and Wang [17].

For any open set U C R* xR, 1 < p < oo, and 0 < A < 5, define the Morrey
space MP*(U) by

Mp,A(U) {f € Lloc ||f“Mp X(U = Sup 7’)\75/ |f|p dl‘dt < OO} .
cU,r>0 Qr(2)

It follows from (3.25) and (3.27) that for any a € (0, 1), it holds that
(u, VI) € M330=) (@ (20)), P € M3301-a) (Qzp (20))-

We now proceed with the estimation of u. Let n € C§°(R*) be a cut-off function
of Qra(20) such that 0 < <1, 7 =11in Q= (20), and |0y + V2| < Cry?. Let
v:R3 x (0,00) — R? solve the Stokes equation:

O —Av+ VP = —div [*(u@u+ (V¥ @ V¥ — $|VU|?]3))] inRY,
(3.28) Qdive =0 in RY,
v(-,0) =0 in R3.

By using the Oseen kernel (see Leray [11]), an estimate of v can be given by

(3.29) lo(z, 1) < CTL(1X|)(a, ) Y(z,t) € R? x (0, 00),
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where )
X =17’ [u@u—i— <V\IJ @V — 2|V\I/|213>} 7

and Z; is the Riesz potential of order 1 on R* defined by

l9(y, s)]
R4 54((1" t)? (ya S))

We can verify that X € M3-31-2)(R4) and

Ti(g)(z,t) = dyds Vg € L'(R*).

2 2
11| 53 50— gy < C[”“”M&S“-“MQ%(%)) + ||V‘I’||M313<1—a><cz%o<20>>}
S C(]. + 60).

Hence we conclude that v € M T-za-3(1=2) (R*) and

M%,s(lfa)(Rél) < C(l + 60)'

(3.30) HUHMSSEZH“*‘*)(RAL) = CHXH

By taking o 1 %, we conclude that for any 1 < ¢ < 0o, v € Lq(Q%o(zo)) and

(331) HUHL‘?(Q%(ZO)) < C(q,T0,€0)~

Note that u — v solves the linear homogeneous Stokes equation:
d(u—v)—Alu—v)+ VP =0, div (u—v) =0 in Qr(20).

Hence u — v € L‘X’(Q%o(zo)), and for any 1 < ¢ < 00, u € Lq(QjTo(zo)) and

(3.32) HuHLq(Q%(ZO)) < C(q,70,¢€0)-

From ¥ € L¥H2 N L?H2(Qr) and the Sobolev inequality, we have that A¥ €
L3 (Qr), V¥ € LY(Qr) for ¢ > 5, and

22 TNV aen < Ol e mznnzmsion < C-

|aw]|
Since nt solves
ot — Ant = (AV)nT — (u — V¥) - VnT in Qo (20),

where (u — V¥) € LI(Qr) and AV € L3(Qr) for some ¢ > 5, we can apply the
standard theory of linear parabolic equation [12] to conclude that there exists 5 €
(0,1) such that n* € C’ﬁ(Q%o(zo)) and

(3.33) Hn+HC5(Qm(ZO)) < C(ro, €)-
4

Similarly, n~ € Cﬁ(Q%o(zO)) and

(3.34) ||n7||CB(Q'r0 (0)) < C(rg,€0)-
4
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Substituting the estimates (3.33) and (3.34) into (1.1)5 for ¥, we conclude that V¥ €

2
L*>([to — g3 tol, C%(Bra (z0)) and

< C(To, 60).

7‘2 —
LW([to—ﬁ%,toLC"‘(Bﬂgl (z0))

(3.35) [V2u|

Substituting (3.33), (3.34), and (3.35) into (1.1); 2, we conclude that u € C? (@1 (20))
and

(336) S C(To,eo).

el oo
16
By a bootstrap argument, we eventually show that (u,n™,n™,¥) € C* (@rg(20)). D

Remark 3.1. Similar to [22] and [1], Theorem 3.1 yields that (u,n™,n™,¥) is
smooth away from a closed set ¥ with P35 () = 0.

4. The e-regularity, part II. In this section, we will improve the size esti-
mate of the singular set ¥ for suitable weak solutions (u, P,n™,n~,¥) obtained by
Theorem 1.1. The argument is based on the A-B-C-D lemmas, originally due to [1].
Namely, we want to establish the following theorem.

THEOREM 4.1. Under the same assumptions as in Theorem 1.1, there exists e; >
0 such that if (u, P,n",n~, W) is the suitable weak solution of (1.1) given by Theo-
rem 1.1, and satisfies

1
(4.1) lim sup f/ |Vu|? dzdt < €
QT(ZO)

r—0 T
for z0 = (xg,t0) € Qr, then (u,n*,n~, ) is smooth near 2.

For simplicity, we will assume zo = (0,0) € Q7. In order to prove Theorem 4.1,
we first recall the following interpolation inequality; see [1].

LEMMA 4.1. For u € H'(R?),

ultdr < u|” dx u|“dr | +Crot2 u|” dx
idr < C Vul?d 2d Cori=2) 2d
B B, B, B,

[d

for any B, C R3, 2 < ¢ <6, anda:%(l—%),
Assume zp = (0,0). Set
A(r)= sup 7“_1/ lu|? da,
B, x{t}

—r2<t<0

B(r) :r_1/ |Vul|? dadt,

r

C(r) = r_z/ lu|? dadt,

r

D(r):ﬂ/ |P|? dadt.

r

By Lemma 4.1, we see that for any 0 < r < p, it holds that

ENE

(42) C(r) < Cy [(T)SA%H (2)’ k(0B (p)

p r

Now we need to estimate the pressure function.
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LEMMA 4.2. Let (u, P,n™,n=,¥) be a suitable weak solution of (1.1) in Q1 given

by Theorem 1.1. Then for any 0 <r < &, we have

(43) Dy <C [;Dw +(O) At + ("’)Qp%} |

Proof. Taking the divergence of (1.1);, we obtain

(4.4) —AP = div? {(u —(u),) ® (u—(u),) + (v\p ® VY — ;|v\1/|213>} in B,.

Here (u), denotes the average of u over B,.
Let 1 € C5°(R?) be a cut-off function of By such that

1 in Bg,
0 outside B,
n

n
(4.5) 7
0<n<1 |Vnl <8 L.

Define an auxiliary function

Pet) == [ V36 =)0 (= (W) @ (0= ()
+ (W ® VI — ;|V\11213> ] (y, 1) dy.
Then we have
_AP, = div? [(u ~(w),) ® (u— (u),) + (w © V- ;|v\1/|213)] in By

and

~A(P-P)=0 in Be.

For P, we apply the Calderon—Zygmund theory to deduce

/ |P1\%dxsc/ 7 — (), * + |VO[) da
R3 R3

(4.6) < c/ (Ju — (u),* + |VU[*) da.

Since P — P; is harmonic in Bg, we get that for 0 < r < 57

1 1 -
7/ |P—P1|3dx<C<T)2/ P — Py|? dx
= JB, P) P Bg

1 1 (
gc(r) 7/ |P|%dx+—2/ |P1|? dz| .
P P By P By
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Integrating it over [—72,0], we can show that

1
/ |P|? dxdt

r2

s

3 2
<C<r> iz/ |p|adxdt+0(3) %/ (Ju— (u),* + [VU[?) dzdt
p p Qp r p Qp

ry 1 3 Py* 1 3 P\ 8
< — 2 - — = 2
_C(p) p /Qp |P| dscdt+0(r) p /Qp lu— (u),| dxdt+c(r) P

where we have used the inequality (3.25) in the last step.
This, combined with the interpolation inequality

1 ]
,02/Q lu — (u),|* dvdt

1
<C sup f/ lu|? dx
—p2<t<0 \ P /B,

e

1 i
. </ |Vul? dxdt) ,
P,

implies that
ooy <c| (L) oo+ (£) atwsieor+ () .

This completes the proof. 0

Proof of Theorem 4.1. Here we closely follow the presentation by [3]. For 0 < 6 <
% and 0 < p < 1,let 0 < ¢ € C5°(Qop) be such that

16
(0p)*

Applying the local energy inequality (1.7) and div u = 0, we obtain

4
o=1in Qu, Vo< &, V76| + o] <

sup /|u\2¢>2 d:r—l—Q/ |Vu|?¢? dadt
—(op2<t<0Ja Qx[~(00)2.0]

< / (0] + [V + |V29)) derdt
Qx [~ (0)2,0]

(@.7)
+f (Il = (juf?)| + 21P])ul| V| dedt
Qx[—(0p)2,0]
1
+2/ VU © VU — 2 |[VU2T| (Vulé + [u]|Vo|) dud,
Qx[—(6p)?.0] 2
where

()= fuf do

P

is the average of |u|? over B,. By Sobolev’s inequality, we have

3
(/ ||u2—<u|2>§|2dx> <c / ][V .
B, B,
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By Holder’s inequality, we can bound

/QX[—(%)?,O]
< C/
Qop

< c(0p)> B (0p) (/Q

+c(6p)! (/Qgp

< () (B} (90) + € (69))

1
VU@ VT — 2‘V\D|213|(Vu|qb + [ul|V|) dadt

|V\P|2|Vu|d:cdt+c(9p)_1/ V0[] dadt
Qop

1

2

Vo dxdt)

(L

Op

3

3
V|3 dxdt) |u|? dxdt)

P

where we have used (3.25) in the last step and

/ |V dedt < c(6p)3.
Q

0p

Substituting these two estimates into (4.7), we obtain
(4.8)
]. ]. 2 1 1 1
4 (29p) B (29/)) < o[CF(0p) + A% (0)BH 69)CH 6p)
+CH(0)D3 (0p) + (00)2 B (0p) + (099)°C* (0)]

< c[C}(8p) + A(Bp) B(0p) + (99)* + (0p)* B (6p) + D (6p)] .

Thus we obtain

Nlw

4 (;0p> < o[C(80) + 43 (6p) B (9) + D2(6p) + (6p)° + (0p)" B3 (6p)].

While we also have

D?(0p) < c#?[D*(p) +0°A% () B2 (p) + 059",
C(6p) < c[0*A% (p) + 072 A (p) B (p),

wlw

and
Az (0p)B2(0p) < 07> A= (p) B2 (p).

Putting all these estimates together, we arrive at

s (1 A
< c[0?(D(0) + A3 () + 075 AF () B () + 07 + 07497 + 6°0° + 0% B ()]

3

< c(6?+675B2(p)) (A2 (p) + D%(p)) + c(62 + 64p° + 6%0° + 07> B1(p)).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/10/22 to 128.210.126.199 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NAVIER-STOKES-PLANCK-NERNST-POISSON EQUATION 3335

For €, > 0 given by Theorem 3.1, let 6y € (0, 1) be such that
. 11
cf? = min {4, 86%} .

1
limsup;/ |Vu|? dedt < €3,

r—0

Since

r

we can choose pg > 0 such that
—2 53 1
ey "B (p) < 7 V0 < p < po

and

9 E
(02 + 0574 p% + 050° + 05 p° B (p)) < €2 Y0 < p < po.

1
2
Therefore we obtain that there exist 6y € (0, %) and pg > 0 such that

3 (1 2 (1 1 3 20 )2 L,
2 | — - < — 2 - .
A (290p>—|—D (200p> <3 (A (p) + D*(p) >+2€1 Y0 < p < po

Tterating this inequality yields that

((;Qp) D2 ( (ie)p) < o (43 () + D)) +

holds for all 0 < p < pg and k > 1.
Employing (4.9) and (4.2), we obtain that

o((30)'s) <] (30) ((;%)“pz | )
+ <;90>_ Af ((;90> ) p> B ((;90) ) p>
(50) +(5%) ] s (404 020) + 4]

holds for all 0 < p < pg and k£ > 1.
Putting (4.9) and (4.10) together, we obtain that

k k
(4.11) limsup [C ((;90) p) + D? ((;80> p)]
k—oc0
1\ /1, \ 7" 1.
c|l1+ (290) + <290) ef] e% < 568

holds for all p € (0,pg), provided e = €1(fp,€9) > 0 is chosen sufficiently small.
It follows from Theorem 3.1 that (u,n™,n~,¥) is smooth near zg = (0,0). This
completes the proof. 0

[SI[)

49) A

[

(4.10) <c

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/10/22 to 128.210.126.199 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3336 HUAJUN GONG, CHANGYOU WANG, AND XIAOTAO ZHANG

Completion of Proof of Theorem 1.1. Define the singular set of (u,n™,n=, ¥) by

Y=< (z,t) € Qr limsupril/ |Vul? dedt > €3
Qr(2,t)

r—0

From Theorem 4.1, we know that ¥ is closed and (u,nt,n=,¥) € C>®(Qr \ X).
Let U be a small neighborhood of ¥ and let § > 0. For each (z,t) € X, choose
0 < r < ¢ such that

Tﬁl/ |Vu|? dzdt > € and Q,(z,t) C U.
Qr(z,t)

By Vitali’s five time covering lemma, there exists a disjoint subfamily { Q,, (z;, ;) }
such that

¥ C U Q5ri($i,ti).

Hence
PL(2) <Y b <562y /
i i Qr

Sending § — 0, this implies that P!(X) = 0. The proof is now complete. ]

|Vu|? dzdt < 56;2/ |Vu|? dzdt.
) U

(xisti

i
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