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ABSTRACT KEYWORDS
In an effort to deepen learning in K-12 science classrooms, there has Professional development;
been a national movement to integrate computational thinking (CT). science education;

The purpose of this phenomenographic study was to understand computational thinking;
teachers’ perceptions of the function and usefulness of a task analysis 550" Planning; task analysis
and a decision tree tool designed to help them with integration.
Teachers participated in a long-term professional development to
improve their knowledge and application of CT and then developed
lesson plans integrating CT into science investigations. To assist in the
integration, teachers used the two unique tools. No one lesson plan or
content area addressed all of the CT practices, but all CT practices were
addressed in lessons across all four science areas. All 19 teachers found
that the task analysis tool helped them to shift their lessons to
a student-centered focus and helped them pinpoint data practices
so they could systematically integrate CT practices. However, they
expressed confusion over the amount of detail to document on the
tool. Similarly, teachers found both benefits and barriers to the deci-
sion tree tool. Teachers found the decision tree tool to be useful in
predicting the ways students may misunderstand a data practice and
in reflecting on the level of accomplishment of students. However,
teachers were sometimes uncertain with how to efficiently document
complex student behaviors when engaged with data practices and CT.
Implications for the use of the two lesson planning tools is discussed.

In 2012, the National Research Council (NRC) released their framework for K-12 science
education that features a three-dimensional learning design integrating disciplinary core
ideas, cross cutting concepts, and science and engineering practices. As part of the science
and engineering practices, the NRC recommended computational thinking (CT) be inte-
grated into science education because computational approaches are vital to the sciences for
understanding patterns and making predictions. Science and mathematics disciplines are
becoming more computational through the use of computer modeling and complex
computation (Bailey & Borwein, 2011; Foster, 2006; National Research Council [NRC],
2012). By teaching CT as part of the science curriculum, students will have a learning
environment that more accurately models the professional nature of science and mathe-
matics inquiry (Augustine, 2005; Weintrop et al., 2016).
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Wing (2006) demonstrated that STEM disciplines have become increasingly computa-
tional, arguing that K-12 students should engage in computational. Since that time, there has
been an explosion of efforts to incorporate CT in educational systems worldwide. However,
the majority of these tend to focus on teaching students how to code (Kite et al., 2021). Yet,
since its reemergence in 2006, CT has been seen as a fundamental skill about conceptualizing,
not programming. Wing (2006) emphasized that CT was about how humans thing rather than
how computers think. Some researchers have even shown that CT does not even require
computers (Berland & Lee, 2011; Lee et al., 2020; Lee & Recker, 2018), teaching CT through
board games, circuits, and “unplugged” activities (Lee & Vincent, 2019). While CT has long
been a part of STEM professionals’ repertoire of professional skills, it has not been explicitly
and systematically integrated into formative education. Perhaps it is for this reason that the
NRC recommended that CT be integrated into science education.

Though there has yet to be a consensus on the precise definition of CT (Grover & Pea, 2018;
Peter et al., 2021; Shute et al., 2017), there are certain practices that appear in most definitions,
expanding on Wing’s original proposal of abstraction, algorithms and automation. Common
CT practices are decomposition, pattern finding, abstraction, algorithmic thinking, automation,
and analysis (Henderson et al., 2007). Decomposition is breaking a complex task down into sub-
processes. Pattern finding involves identifying recurring elements. Abstraction is the process of
stripping away detail to create useful generalizations. Algorithmic thinking results in the creation
of specific sequences that, when given a specific input, result in a predictable output. Automation
is the operationalization of these processes through technology.

In short, CT is an approach to solving problems and designing systems that takes a complex
problem and reformulates it into a set of smaller problems that are solvable through organiz-
ing, analyzing, representing, and automating solutions (International Society for Technology
in Education [ISTE], 2011). CT and science have a reciprocal relationship where learning one
can help students learn the other (Weintrop et al,, 2016). As a result, integrating CT into
a science classroom can deepen the learning of science (NRC, 2012).

Without proper support, integrating novel CT instruction into an established science
curriculum can be overwhelming for teachers and students alike. Currently, there is little
guidance and support for science teachers to integrate CT with existing content (Grover &
Pea, 2013; Weintrop et al., 2016). Additionally, integrating CT into science lessons often
requires a shift from a teacher-centered to a student-centered focus in the classroom,
because students engage in CT practices and process skills rather than being on the
receiving end of direct instruction (Grover & Pea, 2013). Research suggests that teachers
need support learning CT and integrating it into their lessons.

Teaching students to think computationally has become increasingly important as high
school science courses move toward data-based practices. Science educators have moved
away from teaching a singular, lock-step method (i.e., the “scientific method”) to instead
emphasize core practices that scientists engage in dynamically and iteratively. Analyzing
and Interpreting Data is one of the eight core science and engineering practices promoted
by the Next Generation Science Standards (NGSS; NGSS Lead States , 2013). The standards
explain that, “scientific investigations produce data that must be analyzed in order to derive
meaning” (https://ngss.nsta.org/Practices.aspx?id=4). Working with data is far from a novel
activity in science. In fact, that’s the reason the NGSS emphasizes this (and other) scientific
practice. Rather than encourage the teaching of science by accepting others’ interpretation
of pre-collected data, the practice of “analyzing and interpreting data” suggests that students
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themselves should be generating and interacting with data in order to inform their under-
standing of science. In addition, the NGSS highlights the fact that modern technological
tools have made it easier for students to generate and work with data for visualization and
analysis, thus promoting a computational approach to working with data in science
education.

Computational tools have made the creation, collection, manipulation, analysis and
visualization of data more accessible than ever before (Weintrop et al., 2016). For example,
students can now use smartphones to access computational tools in lab-like mobile envir-
onments (Shabrina & Kuswanto, 2018). Freely available computational tools give students
the ability to work with data to model phenomena in ways previously only available at high
cost to professional scientists. Furthermore, through computational tools, students have
access to data collected outside of their immediate geographies through scientific organiza-
tions that make large and small datasets available (e.g., noaa.org, data.gov). Inasmuch as
data has become more accessible, teachers need to teach students how to think computa-
tionally so they can engage in data-driven inquiry. Simply working with data does not
equate to data science any more than working with computers equates to computer science.
Rather, as Weintrop et al. (2016) highlights, modern STEM professionals work with data in
order to engage in scientific inquiry.

The purpose of this study was to examine high school teachers” perspectives about the
use of two planning tools to assist in CT integration into data practices in science lessons:
a task analysis tool used to identify opportunities to integrate data practices and CT into
lessons, and a decision tree tool used to predict student responses to CT activities.

Computational thinking in the science classroom

As culture and industries become more automated, there is a greater need for problem
solving skills and CT, which are not currently being taught explicitly in many public schools
(Kale et al., 2018). Weintrop et al. (2016) analyzed 30 different high school lesson plans and
drew upon prior research and interviews with experts in mathematics and science to
develop four primary categories of CT integration into science: (a) data practices, (b)
modeling and simulation practices, (c) computation problem solving practices, and (d)
system thinking practices. Because CT has the potential to be adapted to fit any subject and
taught in a manner that enhances students’ ability to problem solve and think computa-
tionally (Kale et al., 2018), using CT in the classroom can offer students the opportunity to
acquire skills needed to prepare them for careers in the STEM disciplines.

In this study, we adopted Weintrop et al.’s (2016) category of data practices for the
integration point of CT integration into lesson plans which are organized into five
practices: creating data, collecting data, manipulating data, visualizing data, and analyz-
ing data (see Table 1). We selected data practices as the integration point because the
teachers in the study had experience with incorporating data practices into lessons
involving student investigations in science, and because CT can be used to engage in
data practices (Peters-Burton et al., 2020). Therefore, in this study, we proposed strategies
to teachers for integrating CT into lesson plans and explored how teachers understood
and used the strategies. Table 1 provides definitions for data practices and CT practices
relevant to this study.
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Table 1. Definitions of data practices and computational thinking.
Data Practice Definition

Collecting Data Data can be collected through observation and measurement. Computational
tools can assist by automating the process of gathering data, recording data,
and data storage.

Creating Data Data can be created by taking an observation or measurement, often with the
assistance of computational tools like probe-ware, sensors, or cameras. Creating
data can also include using computational tools to generate data involving
phenomena that cannot be easily observed or measured.

Manipulating Data Data manipulation includes sorting, filtering, cleaning, normalizing, and merging
data sets in order to analyze and communicate trends. Computational tools
allow larger, more complex data sets to be manipulated.

Analyzing Data Analyzing data includes identifying patterns or anomalies, defining rules to
categorize data, and identifying trends and correlations in order to make claims
and draw conclusions. Computational tools make it possible to analyze larger
data sets in a more reliable, effective manner.

Visualizing Data Visualizing data involves displaying data using graphs and charts. Computational
tools can be used to create these as well as more dynamic, interactive displays.

Computational Thinking Practice Definition

Decomposition Deliberately breaking down a complex problem into less complex sub-problems.
Reducing the main problem into manageable steps or sub-problems.

Pattern Recognition Identifying repeated sequences within the data.

Abstraction Clarifying the problem by removing as much unnecessary or distracting

information from the problem. Create a generalized representation of the
problem/solution.

Algorithmic Thinking Creating a series of precisely defined steps or rules used to solve a problem.
Generating a structured formula that provides a predictable outcome given
a specified input.

Automation Using coding and/or technology to outsource work so that it reduces or removes
the requirement for direct human action in order to achieve a desired outcome.

Data Practices as defined by Weintrop et al. (2016), p. 136.
Computational thinking practices defined by Henderson et al. (2007).

Instructional planning tools

Although there has been published work on student learning of CT, and on the potential for
teachers to assist CT learning (Kite & Park, 2020), the current study is unique in examining
teacher planning for integration of CT. Since there is little known about teacher planning in
this context, we will review literature in this section on teacher planning activities. Teacher
preparation programs emphasize the importance of instructional planning in assisting
prospective teachers to become effective in designing lessons (Kitsantas & Baylor, 2001).
Reiser and Dick (1996) defined lesson planning as a detailed step-by-step guide that high-
lights teaching objectives for what students will learn, how students will learn, and what will
be accomplished during the course of the lesson. It generally consists of seven steps: (a)
identifying instructional goals; (b) identifying an instructional objective; (c¢) planning
instructional activities to employ; (d) choosing instructional media; (e) developing assess-
ment tools; (f) implementing the instruction; and (g) revising the instruction. Practicing
teachers are generally aware of and able to implement these steps when developing their
lesson plans. However, most teachers need professional development in designing effective
lesson plans that not only focus on content but also attempt to develop science practices
(Peters-Burton & Botov, 2017). Engagement in using a variety of tools to create effective
lesson plans might help teachers identify new ways to teach complex concepts in the
classroom, particularly in science education (Baylor et al., 2001).
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A number of instructional planning tools exist in the literature that attempt to help
teachers become effective planners. For example, the Instructional Planning Self-Reflective
tool (Baylor et al., 2001) was developed based on Zimmerman’s (2000) model of self-
regulated learning to facilitate reflective thinking during the process of lesson planning.
Another tool, the Constructivist Planning Self-Reflective Tool (Baylor et al., 2001) was
developed based on self-regulated learning (Zimmerman, 2000) and constructivism
(Jonassen, 1999) and was intended as a learning support plan, consisting of several ques-
tions addressing three phases of the lesson planning process: before, during, and after.
Further, Guskey (2005) developed a tool called the Table of Specification for teachers to add
precision and clarity to their teaching. Guskey designed this tool to provide guidance for
consistency among standards in an effort to assist students reaching benchmarks. To use the
Table of Specifications in a manner that addresses the standards, Guskey recommended
teachers ask two questions: (a) what must students learn to be proficient at a specific
standard? and (b) what must students do with what they learn? Linking classroom assess-
ment to the Table of Specification can help teachers accurately match assessment items to
table components and incorporate items that address a range of skills while generating
consistency and thoroughness (Notar et al., 2004). Through table development, teachers can
structure key benchmarks students must reach to progress toward proficiency.

Task analysis

Another instructional planning tool, cognitive task analysis, has received recent attention in
science education (Feldon et al., 2010). Task analysis was developed during the early part of
the industrial revolution. Task analysis protocols allowed industrial managers to observe
highly skilled workers and describe precise activities that were required to perform the
variety of jobs required for manufacturing. These task analysis processes include gradual,
motivated, deliberate practice that is challenging and accompanied by consistent relevant
feedback over a significant amount of time results in the creation of cognitive structures that
contribute directly to exceptional performance. This is the process that distinguishes
novices from experts (Clark & Estes, 1996).

Cognitive task analysis is defined as the process of breaking down a skill into smaller,
more manageable tasks in order to reduce the cognitive load on a learner so that they can
focus on one part at a time, eventually synthesizing the parts to be proficient in the skill.
This process has been used in a number of content areas to improve curriculum design and
implementation such as in science education to articulate scientific inquiry skills in an
undergraduate biology course (Feldon et al., 2010). Additionally, cognitive task analysis has
been used to improve learning with students in special education, computer science,
educational technology, and nursing (Chao & Salvendy, 1994; Clark & Estes, 1996; Clark
et al., 2008; Crandall & Getchell-Reiter, 1993; Szidon & Franzone, 2009).

Decision trees

One drawback of only using cognitive task analysis is that it emphasizes expert thinking
(Clark & Estes, 1996). While emphasizing expert thinking enables teachers to plan lessons
that draw on proven and implicit practices, it ignores the many mistakes that novices might
make. Decision Tree analysis provides a way to identify the many types of thinking or
decisions students might make as they work through the lesson. In turn, teachers are then
able to pinpoint and prepare for potential naive understandings.
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While these tools may help teachers to highlight otherwise ignored aspects of their
lessons, a focus on cognitive task analysis and decision trees in instructional planning
might be even more critical for teaching computational skills to students. Since CT
skills cut across many disciplines of science (i.e. physics, chemistry, and biology), these
tools may be widely used in science classrooms (Weintrop et al., 2016; Wing, 2006). In
order to study how the teachers interacted with the task analysis and decision tree
lesson planning tools, we asked the following question: How did teachers perceive the
function and usefulness of two tools designed to help them integrate CT into high
school science data practices?

Method
Research design

Phenomenography was chosen for this study because it has promise to communicate
findings in a way that is suited to address educational challenges directly, particularly in
science education (Han & Ellis, 2019). Phenomenography as a research design illustrates
the qualitatively different ways in which people experience, conceptualize, realize and
understand various aspects of a phenomenon that could be explained (Marton, 1986). In
this study, the teachers’ use of the two unique tools, task analysis and decision tree, to
integrate CT into data practices in their science lesson plans was the focus phenomenon.
Qualitative variance was examined among individual teachers for the research question
since individuals may have different personal experiences with lesson planning tools.
Rather than reduce results into a few generalizable categories, phenomenography high-
lights the varied approaches that teachers might take as they engage with tools to
integrate CT into their existing lessons.

The present study uses the conceptions of learning how to use new lesson planning tools
in the same way that Han and Ellis (2019) have used conceptions of learning science as
a research object. By defining the research object as the use of the two tools in lesson
planning for the purpose of integrating CT, the design of the study focused on the
intentionality of the teachers’ experiences, which first described the structural aspect of
the research object (the variation among the integration of CT in lessons) and the referential
aspect of the research object (the meaning that teachers perceived in using the tools to
integrate CT; Han & Ellis, 2019).

Participants

Twenty in-service secondary science teachers were recruited from a school district in the
mid-Atlantic region of the United States to participate in a professional development
program focused on integrating CT into science lessons that featured data practices. The
nineteen teachers that agreed to participate in the study (15 female, 4 male; 17 White, 2
Asian) were licensed in their respective discipline: biology (n = 9), chemistry (n = 4), Earth
science (n = 2) and physics (n = 4). Their teaching experience ranged from 3 to 26 years with
an average of 10.45 years.
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Description of the professional development

The professional development (PD) experience consisted of a two-week summer institute in
2019, followed by monthly two-hour meetings from September 2019 to March 2020. The
monthly meetings were intended to continue until May but were halted due to COVID-19
protocols. The two-week summer institute focused on learning about CT in the context of
data practices in week one, and supports for students to learn about CT in the context of
data practices in week two. The monthly meetings focused on improving teaching under-
standing of CT, further integrating CT from the summer work products, and reflecting on
student performance when the lesson was taught. The overarching goal of the PD was for
the teachers to work in groups so they could integrate CT into three already established
lessons using the lesson planning tools.

Week one

In the first week of the PD, the teachers were introduced to the need for CT, both for
themselves and for their students. Next, the concept of CT along with the components of
decomposition, pattern recognition, algorithmic thinking, abstraction, and automation were
defined and then reinforced as teachers engaged in hands-on activities that supported the use
of CT as a cognitive tool to leverage data practices. Next, teachers learned about the concept of
data practices based on Weintrop et al.’s (2016) categories of creating, collecting, manipulating,
visualizing, and analyzing data. Finally, teachers analyzed lesson plans to locate and categorize
data practices and then used the common lesson plan template to fill in the task analysis tool.

Task analysis tool. The purpose of the task analysis tool was to help teachers break down
lessons into smaller tasks so that they could locate opportunities to integrate CT. The task
analysis tool, as seen in the partial example of Figure 1, consisted of four columns. Teachers
were initially instructed to fill out the first two columns of “teacher will” and “student will.”
Then teachers were asked to identify data practices in their lesson and mark that on the
correct row in the task analysis tool. Finally, teachers were instructed to choose at least one
computational thinking practice for every data practice they identified. During the PD, the
researchers reviewed the teachers’ task analysis and provided feedback. Teachers completed
and revised the task analysis tools by either meeting as a small group and working through
disagreements, or completed the tool individually and met to revise after they discussed to
consensus. Figure 1 explains the first few activities of an Earth science lesson on factors that
influence the height of tides.

Week two

Week two of the summer institute was focused on ways that teachers can support students
in learning CT. Similar to week one, this week of the summer institute was a combination of
direct instruction, small group practice, feedback, and revision of products. Teachers
learned about self-regulated learning and the role of self-reflection in helping students to
become more aware of their learning processes. A variety of learning strategies were
introduced to the teachers, and they worked on how to articulate the learning strategies
in their lesson plans while receiving feedback from the instructors. In addition to self-
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Partial Task Analysis Sheet as an Example of Teacher Entries for Tides Lesson

Data Computational

Teacher will... Student will... Practice Thinking Practice

Lesson 1- Introduction/Hook

Show students map of Explain ideas about water
Chesapeake Bay Tunnel level change over the
Bridge (video) course of a day

e Can stop video at (knowledge model)

keyword (variable)
and look it up

Explain next task — students
will be looking at 4 locations
for patterns of ocean levels
over one day

Lesson 1- Activity 1 Looking for Patterns

Locate website Collecting Automation: Tell
http://tidesandcurrents.no students that they are
aa.gov/stations.html going to create a
o  Software will log model that will help
what will occur them to predict the
®  Classlist (time height of tides at
period of when to different locations.
see website) — They can do this
will be visually using Google Sheets.
marked for the
teacher

Choose parameters and Collecting Decomposition:

collect data from the Students will break
website down the problem
o Can identify what and choose which
students mark parts to focus on
* Can feed resolving first.
information to
teacher/lab Pattern-
partners/self finding: Students will

analyze current tide
data to look for
patterns that might

allow them to create
an accurate model.

Figure 1. Partial task analysis sheet as an example of teacher entries for tides lesson.

reflection, teachers learned about ways to motivate students and then applied the motiva-
tional strategies to science lessons. Finally, teachers applied the learning and motivational
strategies to CT practices in their lesson plans using the decision tree tool.

Decision tree tool. The purpose of the decision tree tool was to help teachers tangibly plan
for ways to give feedback to students who need support. The format of the decision tree tool
consisted of a matrix:

o the first column of the matrix was filled out with the “student will” column from the
task analysis tool only from rows that indicated data practices and CT
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e the second and subsequent columns were to be filled in to describe possible
ways students had errors in carrying out the task in the first column.

Teachers worked together when they planned lessons to create a decision tree for the lesson.
They discussed the possible errors students could make on the task and filled in the row for
that task with conceptions of possible student errors. The process of filling out a decision
tree was to encourage teachers to think deeply about how a student would react to the data
practices in the lesson. Figure 2 displays a partial decision tree from a biology lesson on
experimental design.

Monthly content area meetings

As part of the PD, teachers attended monthly meetings for two hours with the other
teachers in their content area (biology, chemistry, Earth science, and physics) and two of
the paper’s authors to discuss lesson planning and implementation.

Data sources

Data sources for this study were collected with a focus on the ways teachers integrated CT into
their lessons and their perceptions of the process of integration. The data sources include a survey
of demographic information, lesson plans and planning tools (task analysis tool as seen in
Figure 1 and decision trees as seen in Figure 2) developed during the PD, individual interviews of
all teachers after they completed the lesson plans, and transcripts of monthly meetings.

Teachers created lessons on a template provided at the PD (see Appendix A for the
template) which included explicit instructions for student objectives, formative and sum-
mative assessments, and student activities. Each content area group of teachers were asked
to produce three lessons over the course of the year of PD. All lessons were focused on
student investigation of science phenomena using data and included a task analysis chart
and decision tree tool. The lessons ranged in duration from one to four days. At least two
teachers from each content area taught each of the lessons created in their group.

The aim of the semi-structured interview was to examine teachers’ experiences and
perceptions in integrating task analysis tools and decision trees into their lesson plans
after they engaged in opportunities to practice and apply what they learned. A one-
hour interview was conducted after the summer PD with each teacher individually.
Interview questions were grouped into the following topics: motivations for teaching
CT, PD planning tools, and learning about CT. An example prompt was: “When you
were developing lesson plans, please explain the process you followed for integrating
CT in the lesson plan.” Responses were recorded and transcribed, as were the discus-
sion during the monthly meetings.

Analysis

The central goal of phenomenographic analysis is to capture the set of qualitatively different
categories representing variations of experiences amongst participants for a phenomenon
(Han & Ellis, 2019). All data were collected before analysis began, allowing for iterative,
rather than sequential consideration of the categories (Yates et al., 2012). Marton’s (1986)
process for analysis was used, which began with identifying data related to the phenomenon,
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Example of Teacher Entries for Possible Student Misdirection During Tides Lesson

Student will...

Possible Student Misdirection

Create their own driving
question for lab
extension and identify
independent and
dependent variable

incorrectly identify dependent variable
incorrectly identify independent variable
not identify any dependent variable

not identify any independent variable

Justify why their
research question is
relevant and interesting
to test

question is not relevant to experiment

Students write a null
hypothesis and
alternative hypothesis

incorrectly write one of their two hypotheses
incorrectly write both of their hypotheses
not write any hypotheses

Students identify
constants and how many
trials will be performed

incorrectly identify constants, but correctly identify how
many trials will be performed

correctly identify constants, but incorrectly identify how
many trials will be performed

incorrectly identify constants and how many trials will be
performed

not identify constants but do identify how many trials
will be performed

identify constants but do not identify how many trials
will be performed

not identify constants or how many trials

Students identify how
they will
summarize their data

not identify how they will summarize their data

have a hard time understanding that they had two
different ways they could summarize their data. They
could either calculate the averages or they could look
at the last 30 seconds value.

Students write new
procedure to test their
driving question

write new procedure but procedure will not result in data
to answer their driving question
not write procedure.

Students construct a
data table to record data
next class

not construct a data table to record data next class

Figure 2. Example of teacher entries for possible student misdirection during tides lesson.

the use of the task analysis, and decision tree tools. After identification, we sorted the data
into the categories of task analysis benefits, task analysis drawbacks, decision tree benefits,
and decision tree drawbacks. Once sorted, the categories were contrasted for variation among
the teachers, and finally the reliability was checked through interrater reliability.

Coding

All transcriptions and lesson plan artifacts were coded for any references to the task analysis
tools and decision tree tools. Four a priori codes were initially used to fragment the
interviews: task analysis benefits, task analysis barriers, decision tree benefits, and decision
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tree barriers. Once the codes were placed broadly into these four categories, they were
refined line by line. Two coders fragmented the data independently. Out of 84 total
utterances, there were only two disagreements, resulting in a kappa value of .98. These
disagreements were discussed until consensus. The two initial discrepancies across the
coders occurred in the area of barriers, particularly when an interviewee mentioned that
there were no barriers. Once the data were fragmented into the four codes, excerpts were
read for meaning and grouped within each of the codes to describe trends. Each researcher
involved in the analysis developed their own matrix of trends and brought their groupings
to a discussion. Trends were discussed until consensus was reached.

Findings and discussion

To answer the research question, How did teachers perceive the function and usefulness of
two tools designed to help them integrate CT into high school science data practices?, we
analyzed teacher lesson plans, planning tools, transcripts from teacher interviews, and the
monthly teacher meetings. The transcripts from these data sources revealed several themes
regarding benefits and barriers of both tools.

Task analysis tool benefits

The teachers reported that the task analysis tool helped them to break down complicated
lessons and better understand the role of the teacher and the student, similar to the finding
of Szidon and Franzone (2009). Others remarked on its capacity to help them find holes or
gaps in data practices and CT in their lesson planning process, similar to the findings of
Chao and Salvendy (1994) and Clark et al. (2008).

Shifting to student-centered lessons

As teachers decomposed their lessons using the task analysis tool, they filled in the “teacher
does” and “student does” columns. The teachers reported that the format helped them
realize that often the teacher column was filled while the student column only had few
entries. As teachers reflected on their lessons as part of using this planning tool, they were
able to re-design the lesson as student-centered.

LR: You're really separating out what the teacher does versus what the students do and
looking at how much teachers are controlling the process. And [I wonder] how much of it is
left to them [the students] to explore? That’s always a fine line because you want them to just
come to the epiphany on their own with little guidance.

The act of using the task analysis tool to break down lessons helped the teachers think
about the design of their lesson with more detail and attention to individual processes. As
the teacher, CK, explained,

I found it really useful to think about how I guide kids step by step through a process. I don’t
think I had really thought about some of the questions that I asked them for every single step.
I think so much of what we do becomes automated because we’re just used to doing it, and we
don’t stop and think .. ., this is really decomposition.
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The task analysis tool initiated an iterative reflective process whereby teachers returned to
their lesson plans to replace teacher actions with student actions, making their lessons more
student-centered, which was also recommended by Grover and Pea (2013) as a prerequisite
to integrating CT into science lessons.

Connecting data practices to computational thinking

Many teachers found the task analysis tool instrumental for making connections between
data practices and CT. The tool allowed teachers to isolate data practices, in the same way
that Feldon et al. (2010) found, which in turn allowed them to directly connect data
practices to CT, which as teachers remarked, was empowering.

KC: Being able to identify within the task analysis [tool] where the computational thinking
and data practices are. Being able to think about the two together was something that I had
not done before. ... Being able to identify that the lesson has those components is really
empowering.

Weintrop et al. (2016) discussed the need for teachers to be comfortable teaching the
material to effectively integrate CT into science lessons. Some teachers recognized that they
had been applying CT generally to lesson plans, but without structure. As recommended by
Weintrop et al. (2016), this tool scaffolded the teachers so that they could identify where CT
practices were taking place within a specific lesson and link them to data practices.

Task analysis tool barriers

With regard to barriers to using the task analysis tool, teachers grappled with two main
areas: conceptions of CT terms which inhibited their ability to link CT and data
practices, and establishing the amount of detail to provide when writing the task analysis
tool.

Using computational thinking terms with students
Many teachers noted that while data practices were familiar to them, computational thinking
was new to them. Several teachers discussed wrestling with the ideas involved in CT.

AP: I'm always double checking because I haven’t practiced [CT] as much. The task analysis
tool to me is the most overwhelming step because I have very little practice with computa-
tional thinking.

MS: I was just talking with another teacher and we were both kind of joking. These terms,
we still get them confused, we’re still not comfortable with using them.

Unfamiliarity with CT practices and related concepts resulted in a lack of confidence
about labeling a lesson component with an incongruent CT practice. This finding corro-
borates Clark and Estes (1996) claim that the use of task analysis requires expert thinking
and reiterates the call for targeted PD experiences on CT practices and how they can be
applied in science (Augustine, 2005; Kale et al., 2018; NRC, 2012; Weintrop et al., 2016;
Wing, 2006).
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Level of detail required
The process of breaking down lessons into teacher and student steps was met with some
resistance as teachers were unsure of the level of detail to provide in the task analysis.

JC: So it was a combination of not getting too nitty gritty and going down a rabbit hole And
sometimes, I think we were wondering if we broke things down too much.

CK: You could break it down to be every minute of the lesson or is it a bigger chunk? So,
I think that was frustrating for me because I could spend five hours on this, making it every
single tiny thing that takes place. Or I could spend two hours on this and make it more big
picture, and it was hard to find the balance between that.

Teachers struggled with this new task of breaking the lesson down into manageable steps
in order to pinpoint CT and data practices, while at the same time striking a balance
between becoming too detailed and losing sight of the overall goal of the lesson. Although it
has been demonstrated previously that task analysis of lessons can improve depth and
completeness of student knowledge (Chao & Salvendy, 1994; Clark & Estes, 1996; Clark
et al., 2008; Crandall & Getchell-Reiter, 1993), this can occur only when teachers are clear
about the level of detail of understanding that is appropriate for the students that they teach.

Decision tree tool benefits

The decision tree was conceptualized as a tool to be used by teachers during the lesson
planning process to predict the ways in which students could become misdirected when
accomplishing data practices using CT. Although decision trees are not specific to CT, they
were used to help teachers prepare to address as many student scenarios as possible and
think deeply about this new area of instruction. In effect, it asked teachers to predict student
behavior about using CT in data practices in the planning stage. There were three main
themes found regarding the benefits of the decision tree tool: (a) predicting students’
misdirection during the science investigation, (b) understanding student performance
during the lesson, and (c) reflecting on the lesson after it was taught.

Useful in predicting student behavior

There was a large amount of evidence in the interviews that teachers found the tool useful
in predicting student behavior. For example, JC said, “It forced us to think about what
students will go through to the lesson and what mistakes we predict theyre going to
make. And how we can help them.” Similarly, KC stated, “So, I think it’s useful in being
able to think about how to redirect students if they don’t come to the right conclusion or
if they don’t come to the intended conclusion.” The decision tree tool was a concrete way
for the teachers to predict student actions, particularly when the lesson content is new to
the teacher.

Useful to understand student performance

One trend that emerged from monthly meeting discussions involved differentiating lessons
for students of different academic levels. In one instance, a chemistry teacher who taught
advanced classes authored the lesson and two other chemistry teachers who taught regular
level chemistry were concerned about the extensive vocabulary and the in-depth data
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analysis that required a higher mathematics level. A great deal of discussion ensued about
how to modify the lesson to meet the needs of students who come to class with various levels
of understanding and experience. The task analysis and decision trees tools were the focal
point of the discussion and were used to record the differences.

Additional discussion during the monthly meetings focused on how to scaffold tasks within
lesson plans taught in both higher and lower level classes. Teachers who worked with students
in higher academic-level classes did not want their students confined to certain choices but
instead wanted their students to have more freedom within the investigation. This generated
decision trees with more branches documenting possible student errors and redirection.

Useful as a reflective tool

Some teachers used the decision tree as a reflective tool. Following the lesson, teachers
would return to and revise the decision tree, incorporating items from their observations.
Many times teachers did this in consultation with each other, generating robust documen-
tation of student action.

KG: I'm now going back and reworking those decision trees based on what I took notes on
what the students did [during the lesson]. So, what I discovered is the decision tree is exactly
what I thought they were going to do on other things.

EB: I did the decision tree after [teaching the lesson], but we just met last night and had
a productive discussion, all the physics teachers together, and we were able to fill it in
completely. They’re hitting on all these things that as a teacher I know I'm aware of and
I might point out to my students, but to then document them in writing the lesson plan.

Perhaps because teachers were actively looking for and documenting student misconcep-
tions, teachers were surprised to find that student actions did not match their predictions or
expectations. One teacher, despite creating a robust decision tree, found that her students
made very few missteps. Another teacher was surprised to find trends in the mistakes made by
students in different academic levels. This teacher found that students in the regular chemistry
class were more diligent in following scientific practices while students in the higher-level
chemistry course skimmed or bypassed the way they performed scientific practices.

Decision tree tool barriers

Following the PD session and during the first few months of the academic year, there was
still some uncertainty surrounding the format in which to create the decision tree. There
were some issues associated with how to record what goes on in the classroom—which is
a dynamic environment—and put these actions into a document that reflected student
behavior. Many times, the teachers were able to document the pathway for a student who
understands the concepts and practices well but were not able to predict the types of
missteps or misconceptions students may have.

SI: It’s hard to predict what the student will do until you've done it with students. It’s hard
to predict what they will do, which directions they’ll go know. Until once you’ve done a few
times and then it’s easier to see what decisions are making.
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ZMP: 1 think it is hard for a person to create a decision tree that encompasses the level of
complexity of decision trees in a real classroom. So the early stages of [creating a] decision
tree are tough.

HY: I think it was just confusing in the beginning like, what a decision tree is and how
detailed it needed to be and then like trying to figure out all the different pathways
a student might go.

Other researchers have similarly attempted to “CT-ify” science instruction by providing
teachers with lesson planning tools (Bain & Wilensky, 2020). While no framework currently
exists to help science teachers identify specific opportunities for integrating CT, Bain and
Wilensky found that helping teachers focus on factors of time, size, number and repeat-
ability provided clearer entrance points (or “vectors”) for thinking computationally.
Curiously, each of these factors focus on the data practices that teachers might use in
their classes, which may be a more natural entry for teachers to incorporate CT. As our
findings revealed, the practice of identifying how students will work with data and then
implementing this in the classroom can be an effective tool for science teachers to begin
integrating computational thinking into investigation-based lessons.

Conclusions

Many science teachers already use data practices and CT in their science lessons, but are not
yet using the vocabulary associated with those practices or overtly teaching the practices. In
order to use the decision tree and task analysis to effectively incorporate CT into science
lessons using data practices, teachers need a solid understanding of both. Because the
teachers worked together, there is evidence that using these tools in small groups helps to
spur conversations about integrating CT into data practices.

Shifting to student-centered lesson and integrating CT

The process of using both tools in science lessons facilitated activity among teachers and moved
them toward what the students were accomplishing and away from what the teacher was
presenting. The use of the decision tree and task analysis charts gave teachers two mechanisms
to discuss and decompose their own lessons, leading them to look more closely at the
components. When used either to predict or reflect upon student actions, the decision tree
tool helped teachers identify where student misconceptions could (or did occur during the
lesson while the task analysis tool helped teachers systematically select parts of a lesson to
integrate CT. Some teachers found it helpful to have one or both tools on a clipboard or mobile
device while teaching the lesson, allowing them to move about the classroom and update the
tools in real-time.

Differentiating lessons

Finally, teachers found the use of the task analysis and decision tree tools helpful in
identifying the ways that the instruction could be differentiated for students. The tools
created a space for teachers to break down their lesson and consider how students would
react to their instruction. In doing so, the tools helped to illustrate areas during the lesson
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where more support could be given to struggling students and support could be faded for
advanced students. More work needs to be done with understanding how teachers may be
able to use the decision tree tool in a deeper way.

Implications for research and practice

The present findings might benefit practitioners such as curriculum designers, school
administrators, and educational researchers who are interested in integrating CT in science
lessons. First, the planning tools used in this study supported teacher integration of CT into
science lesson plans, and assisted teachers in breaking apart lessons so that they could look
deeper into the aims and objectives for each lesson “move” and clear away the noise or
unnecessary parts of instruction. Second, findings showed that it was not sufficient to ask
teachers to integrate CT when armed only with knowledge about CT. Teachers often need
more systematic and structured support (e.g., PD) when attempting to complement existing
lessons with new instruction. Further research is needed in this area to examine forms of PD
that might enable teachers to infuse CT into science lessons plans. In addition, the task
analysis charts and decision tree tools are one way to assist teachers in analyzing their
lessons through the lens of student engagement in science investigation. It might be
interesting to explore the role of technology in this process.

Limitations

Although the current research provided an initial study of integrating computational
thinking into data practices using task analysis and decision trees, there are several limita-
tions that need to be acknowledged. First, conceptions of the students are not included in
this study which would have provided an additional layer of information about the
functionally and effectiveness of the two tools. Second, the study was conducted in one
school district and therefore findings may not be representative of other school systems
around the country. Finally, it could be that more experienced teachers may infuse
computational thinking into data practices differently from less-experienced teachers,
which was not taken into consideration in this present study. Therefore, future studies
should examine whether variables such as teacher knowledge and experience in engaging
deeply with computational thinking while designing lesson plans might alleviate differences
among domains.
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APPENDIX A

SPIN Lesson Plan Template

Module Summary: Identify how the project fits into the big picture, develops authentic skills, and
embraces habits of mind of the discipline.

Module Science Content Topic(s):

Module Computational Thinking Practices (select all that apply)

| Decomposition | Pattern Seeking | Algorithmic thinking | Abstraction Automation

Data Practices (select all that apply)

‘ Creating Data ‘ Collecting Data I Manipulating Data ‘ Visualizing Data ‘ Analyzing Data ‘

Strategies for students when working on independent practice outside of the classroom

Grade Level(s):

Established Goals of the curriculum: students will understand (big ideas/key knowledge), know, be
able to do what (key skills)? What are the big ideas (cross-cutting themes) in the project? How does it
address science and engineering practices? How does it address mathematics and language objectives?

Learning Objectives for the Lessons:
Lesson 1:
Lesson 2:
Lesson 3:

Content Standards Addressed in Lesson

State Standards of Learning

Teacher Background Information
What content does the teacher need to know about to deliver this lesson? Brief summary.


https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.29173/lirg496
https://doi.org/10.29173/lirg496
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Research Question for Data Analysis: Fill in the research question that the data analysis is
attempting to answer here.

Methodology for Creating Data :

Data Set(s): (actual data that was obtained from the methodology that can be used by students to
answer question if the teacher does not have time to complete)

Conclusions (Scientific Argument) from Data Analysis: (how do you explain the results based
upon the content knowledge students should have learned or be learning - this could be an example
of an exemplary student connection between content learned and results)

Prerequisite Key Knowledge: What are the key concepts that are most important for students to
know in each discipline for the unit?

Prerequisite key knowledge

Glossary of key vocabulary: Identify terms and their definitions that will be used in the lesson for
each of the areas below. This shared vocabulary will help the SPIN system communicate more
effectively and efficiently.

Content vocabulary

Computational thinking and data practices vocabulary

Self-regulated learning vocabulary

Assessment Plan: Define the products and artifacts for the lesson. Be sure to include a variety of
assessments for learning that are closely tied to the content, learning skills and technology tools
outcomes. The products and criteria must align with the objectives and outcomes for the project.
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State the criteria for exemplary performance for each product. Plan for assessments that provide
student feedback as the project progresses and provide for a culminating appraisal of performance or
product with an accompanying rubric that clearly assesses the learning targets.

Formative Assessments

Summative Assessments

Lesson #1 Plan
Lesson Title:
Lesson Summary:
Lesson Science Content Topic(s):
Lesson Computational Thinking Practices (select all that apply)

‘ Decomposition Pattern Seeking Algorithmic thinking Abstraction Automation ‘

Lesson Data Practices (select all that apply)

‘ Creating Data Collecting Data Manipulating Data Visualizing Data Analyzing Data |

Essential Question(s): what questions will guide student learning in this lesson?

Measurable Learning Objectives: Must be measurable; give criteria and condition for student
performance

Time Required:

Necessary Materials:

Safety Considerations:

Lesson Preparation

What will the teacher need to plan ahead of time for this lesson?

Lesson Plan Components

Opening Activity / Introduction (includes students’ active participation and links to prior
knowledge)

Teaching Activities (outline of activities, good questions to pose, major points, etc. - INCLUDE
APPROXIMATE TIMES FOR ALL ACTIVITIES)

Closing Activity (includes students’ active participation, reviews lesson, and relates to objective)
Task analysis of Lesson 1

Teacher  Student Data Computational Thinking Metacognitive Prompt (instructional or
will will Practice Practice assessment)

Lesson #2 Plan
Lesson Title:
Lesson Summary:
Lesson Science Content Topic(s):
Lesson Computational Thinking Practices (select all that apply)
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| Decomposition Pattern Seeking Algorithmic thinking Abstraction Automation ‘

Lesson Data Practices (select all that apply)

‘ Creating Data Collecting Data Manipulating Data Visualizing Data Analyzing Data ‘

Essential Question(s): what questions will guide student learning in this lesson?

Measurable Learning Objectives: Must be measurable; give criteria and condition for student
performance

Time Required:

Necessary Materials:

Safety Considerations:

Lesson Preparation

What will the teacher need to plan ahead of time for this lesson?

Lesson Plan Components

Opening Activity / Introduction (includes students’ active participation and links to prior
knowledge)

Teaching Activities (outline of activities, good questions to pose, major points, etc. - INCLUDE
APPROXIMATE TIMES FOR ALL ACTIVITIES)

Closing Activity (includes students’ active participation, reviews lesson, and relates to objective)
Task analysis of Lesson 2

Teacher Student Data Computational Thinking Metacognitive Prompt (instructional or
will will Practice Practice assessment)

Lesson #3 Plan
Lesson Title:
Lesson Summary:
Lesson Science Content Topic(s):
Lesson Computational Thinking Practices (select all that apply)

Decomposition Pattern Seeking Algorithmic thinking Abstraction Automation

Lesson Data Practices (select all that apply)

I Creating Data Collecting Data Manipulating Data Visualizing Data Analyzing Data

Essential Question(s): what questions will guide student learning in this lesson?

Measurable Learning Objectives: Must be measurable; give criteria and condition for student
performance

Time Required:

Necessary Materials:

Safety Considerations:

Lesson Preparation
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What will the teacher need to plan ahead of time for this lesson?

Lesson Plan Components
Opening Activity / Introduction (includes students’ active participation and links to prior
knowledge)
Teaching Activities (outline of activities, good questions to pose, major points, etc. - INCLUDE
APPROXIMATE TIMES FOR ALL ACTIVITIES)
Closing Activity (includes students’ active participation, reviews lesson, and relates to objective)
Task analysis of Lesson 3

Teacher | Student Data Computational Thinking Metacognitive Prompt (instructional or
will will Practice Practice assessment)
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