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High School Science Teacher Use of Planning Tools to Integrate 
Computational Thinking
Erin Peters-Burton a, Peter Jacob Rich b, Anastasia Kitsantas a, Laura Laclede a, 
and Stephanie M. Stehle a

aCollege of Education and Human Development, George Mason University, Fairfax, Virginia, USA; bInstructional 
Psychology and Technology, Brigham Young University, Provo, Utah, USA

ABSTRACT
In an effort to deepen learning in K-12 science classrooms, there has 
been a national movement to integrate computational thinking (CT). 
The purpose of this phenomenographic study was to understand 
teachers’ perceptions of the function and usefulness of a task analysis 
and a decision tree tool designed to help them with integration. 
Teachers participated in a long-term professional development to 
improve their knowledge and application of CT and then developed 
lesson plans integrating CT into science investigations. To assist in the 
integration, teachers used the two unique tools. No one lesson plan or 
content area addressed all of the CT practices, but all CT practices were 
addressed in lessons across all four science areas. All 19 teachers found 
that the task analysis tool helped them to shift their lessons to 
a student-centered focus and helped them pinpoint data practices 
so they could systematically integrate CT practices. However, they 
expressed confusion over the amount of detail to document on the 
tool. Similarly, teachers found both benefits and barriers to the deci
sion tree tool. Teachers found the decision tree tool to be useful in 
predicting the ways students may misunderstand a data practice and 
in reflecting on the level of accomplishment of students. However, 
teachers were sometimes uncertain with how to efficiently document 
complex student behaviors when engaged with data practices and CT. 
Implications for the use of the two lesson planning tools is discussed.
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In 2012, the National Research Council (NRC) released their framework for K-12 science 
education that features a three-dimensional learning design integrating disciplinary core 
ideas, cross cutting concepts, and science and engineering practices. As part of the science 
and engineering practices, the NRC recommended computational thinking (CT) be inte
grated into science education because computational approaches are vital to the sciences for 
understanding patterns and making predictions. Science and mathematics disciplines are 
becoming more computational through the use of computer modeling and complex 
computation (Bailey & Borwein, 2011; Foster, 2006; National Research Council [NRC], 
2012). By teaching CT as part of the science curriculum, students will have a learning 
environment that more accurately models the professional nature of science and mathe
matics inquiry (Augustine, 2005; Weintrop et al., 2016).
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Wing (2006) demonstrated that STEM disciplines have become increasingly computa
tional, arguing that K-12 students should engage in computational. Since that time, there has 
been an explosion of efforts to incorporate CT in educational systems worldwide. However, 
the majority of these tend to focus on teaching students how to code (Kite et al., 2021). Yet, 
since its reemergence in 2006, CT has been seen as a fundamental skill about conceptualizing, 
not programming. Wing (2006) emphasized that CT was about how humans thing rather than 
how computers think. Some researchers have even shown that CT does not even require 
computers (Berland & Lee, 2011; Lee et al., 2020; Lee & Recker, 2018), teaching CT through 
board games, circuits, and “unplugged” activities (Lee & Vincent, 2019). While CT has long 
been a part of STEM professionals’ repertoire of professional skills, it has not been explicitly 
and systematically integrated into formative education. Perhaps it is for this reason that the 
NRC recommended that CT be integrated into science education.

Though there has yet to be a consensus on the precise definition of CT (Grover & Pea, 2018; 
Peter et al., 2021; Shute et al., 2017), there are certain practices that appear in most definitions, 
expanding on Wing’s original proposal of abstraction, algorithms and automation. Common 
CT practices are decomposition, pattern finding, abstraction, algorithmic thinking, automation, 
and analysis (Henderson et al., 2007). Decomposition is breaking a complex task down into sub- 
processes. Pattern finding involves identifying recurring elements. Abstraction is the process of 
stripping away detail to create useful generalizations. Algorithmic thinking results in the creation 
of specific sequences that, when given a specific input, result in a predictable output. Automation 
is the operationalization of these processes through technology.

In short, CT is an approach to solving problems and designing systems that takes a complex 
problem and reformulates it into a set of smaller problems that are solvable through organiz
ing, analyzing, representing, and automating solutions (International Society for Technology 
in Education [ISTE], 2011). CT and science have a reciprocal relationship where learning one 
can help students learn the other (Weintrop et al., 2016). As a result, integrating CT into 
a science classroom can deepen the learning of science (NRC, 2012).

Without proper support, integrating novel CT instruction into an established science 
curriculum can be overwhelming for teachers and students alike. Currently, there is little 
guidance and support for science teachers to integrate CT with existing content (Grover & 
Pea, 2013; Weintrop et al., 2016). Additionally, integrating CT into science lessons often 
requires a shift from a teacher-centered to a student-centered focus in the classroom, 
because students engage in CT practices and process skills rather than being on the 
receiving end of direct instruction (Grover & Pea, 2013). Research suggests that teachers 
need support learning CT and integrating it into their lessons.

Teaching students to think computationally has become increasingly important as high 
school science courses move toward data-based practices. Science educators have moved 
away from teaching a singular, lock-step method (i.e., the “scientific method”) to instead 
emphasize core practices that scientists engage in dynamically and iteratively. Analyzing 
and Interpreting Data is one of the eight core science and engineering practices promoted 
by the Next Generation Science Standards (NGSS; NGSS Lead States , 2013). The standards 
explain that, “scientific investigations produce data that must be analyzed in order to derive 
meaning” (https://ngss.nsta.org/Practices.aspx?id=4). Working with data is far from a novel 
activity in science. In fact, that’s the reason the NGSS emphasizes this (and other) scientific 
practice. Rather than encourage the teaching of science by accepting others’ interpretation 
of pre-collected data, the practice of “analyzing and interpreting data” suggests that students 
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themselves should be generating and interacting with data in order to inform their under
standing of science. In addition, the NGSS highlights the fact that modern technological 
tools have made it easier for students to generate and work with data for visualization and 
analysis, thus promoting a computational approach to working with data in science 
education.

Computational tools have made the creation, collection, manipulation, analysis and 
visualization of data more accessible than ever before (Weintrop et al., 2016). For example, 
students can now use smartphones to access computational tools in lab-like mobile envir
onments (Shabrina & Kuswanto, 2018). Freely available computational tools give students 
the ability to work with data to model phenomena in ways previously only available at high 
cost to professional scientists. Furthermore, through computational tools, students have 
access to data collected outside of their immediate geographies through scientific organiza
tions that make large and small datasets available (e.g., noaa.org, data.gov). Inasmuch as 
data has become more accessible, teachers need to teach students how to think computa
tionally so they can engage in data-driven inquiry. Simply working with data does not 
equate to data science any more than working with computers equates to computer science. 
Rather, as Weintrop et al. (2016) highlights, modern STEM professionals work with data in 
order to engage in scientific inquiry.

The purpose of this study was to examine high school teachers’ perspectives about the 
use of two planning tools to assist in CT integration into data practices in science lessons: 
a task analysis tool used to identify opportunities to integrate data practices and CT into 
lessons, and a decision tree tool used to predict student responses to CT activities.

Computational thinking in the science classroom

As culture and industries become more automated, there is a greater need for problem 
solving skills and CT, which are not currently being taught explicitly in many public schools 
(Kale et al., 2018). Weintrop et al. (2016) analyzed 30 different high school lesson plans and 
drew upon prior research and interviews with experts in mathematics and science to 
develop four primary categories of CT integration into science: (a) data practices, (b) 
modeling and simulation practices, (c) computation problem solving practices, and (d) 
system thinking practices. Because CT has the potential to be adapted to fit any subject and 
taught in a manner that enhances students’ ability to problem solve and think computa
tionally (Kale et al., 2018), using CT in the classroom can offer students the opportunity to 
acquire skills needed to prepare them for careers in the STEM disciplines.

In this study, we adopted Weintrop et al.’s (2016) category of data practices for the 
integration point of CT integration into lesson plans which are organized into five 
practices: creating data, collecting data, manipulating data, visualizing data, and analyz
ing data (see Table 1). We selected data practices as the integration point because the 
teachers in the study had experience with incorporating data practices into lessons 
involving student investigations in science, and because CT can be used to engage in 
data practices (Peters-Burton et al., 2020). Therefore, in this study, we proposed strategies 
to teachers for integrating CT into lesson plans and explored how teachers understood 
and used the strategies. Table 1 provides definitions for data practices and CT practices 
relevant to this study.
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Instructional planning tools

Although there has been published work on student learning of CT, and on the potential for 
teachers to assist CT learning (Kite & Park, 2020), the current study is unique in examining 
teacher planning for integration of CT. Since there is little known about teacher planning in 
this context, we will review literature in this section on teacher planning activities. Teacher 
preparation programs emphasize the importance of instructional planning in assisting 
prospective teachers to become effective in designing lessons (Kitsantas & Baylor, 2001). 
Reiser and Dick (1996) defined lesson planning as a detailed step-by-step guide that high
lights teaching objectives for what students will learn, how students will learn, and what will 
be accomplished during the course of the lesson. It generally consists of seven steps: (a) 
identifying instructional goals; (b) identifying an instructional objective; (c) planning 
instructional activities to employ; (d) choosing instructional media; (e) developing assess
ment tools; (f) implementing the instruction; and (g) revising the instruction. Practicing 
teachers are generally aware of and able to implement these steps when developing their 
lesson plans. However, most teachers need professional development in designing effective 
lesson plans that not only focus on content but also attempt to develop science practices 
(Peters-Burton & Botov, 2017). Engagement in using a variety of tools to create effective 
lesson plans might help teachers identify new ways to teach complex concepts in the 
classroom, particularly in science education (Baylor et al., 2001).

Table 1. Definitions of data practices and computational thinking.
Data Practice Definition

Collecting Data Data can be collected through observation and measurement. Computational 
tools can assist by automating the process of gathering data, recording data, 
and data storage.

Creating Data Data can be created by taking an observation or measurement, often with the 
assistance of computational tools like probe-ware, sensors, or cameras. Creating 
data can also include using computational tools to generate data involving 
phenomena that cannot be easily observed or measured.

Manipulating Data Data manipulation includes sorting, filtering, cleaning, normalizing, and merging 
data sets in order to analyze and communicate trends. Computational tools 
allow larger, more complex data sets to be manipulated.

Analyzing Data Analyzing data includes identifying patterns or anomalies, defining rules to 
categorize data, and identifying trends and correlations in order to make claims 
and draw conclusions. Computational tools make it possible to analyze larger 
data sets in a more reliable, effective manner.

Visualizing Data Visualizing data involves displaying data using graphs and charts. Computational 
tools can be used to create these as well as more dynamic, interactive displays.

Computational Thinking Practice Definition

Decomposition Deliberately breaking down a complex problem into less complex sub-problems. 
Reducing the main problem into manageable steps or sub-problems.

Pattern Recognition Identifying repeated sequences within the data.
Abstraction Clarifying the problem by removing as much unnecessary or distracting 

information from the problem. Create a generalized representation of the 
problem/solution.

Algorithmic Thinking Creating a series of precisely defined steps or rules used to solve a problem. 
Generating a structured formula that provides a predictable outcome given 
a specified input.

Automation Using coding and/or technology to outsource work so that it reduces or removes 
the requirement for direct human action in order to achieve a desired outcome.

Data Practices as defined by Weintrop et al. (2016), p. 136. 
Computational thinking practices defined by Henderson et al. (2007).
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A number of instructional planning tools exist in the literature that attempt to help 
teachers become effective planners. For example, the Instructional Planning Self-Reflective 
tool (Baylor et al., 2001) was developed based on Zimmerman’s (2000) model of self- 
regulated learning to facilitate reflective thinking during the process of lesson planning. 
Another tool, the Constructivist Planning Self-Reflective Tool (Baylor et al., 2001) was 
developed based on self-regulated learning (Zimmerman, 2000) and constructivism 
(Jonassen, 1999) and was intended as a learning support plan, consisting of several ques
tions addressing three phases of the lesson planning process: before, during, and after. 
Further, Guskey (2005) developed a tool called the Table of Specification for teachers to add 
precision and clarity to their teaching. Guskey designed this tool to provide guidance for 
consistency among standards in an effort to assist students reaching benchmarks. To use the 
Table of Specifications in a manner that addresses the standards, Guskey recommended 
teachers ask two questions: (a) what must students learn to be proficient at a specific 
standard? and (b) what must students do with what they learn? Linking classroom assess
ment to the Table of Specification can help teachers accurately match assessment items to 
table components and incorporate items that address a range of skills while generating 
consistency and thoroughness (Notar et al., 2004). Through table development, teachers can 
structure key benchmarks students must reach to progress toward proficiency.

Task analysis
Another instructional planning tool, cognitive task analysis, has received recent attention in 
science education (Feldon et al., 2010). Task analysis was developed during the early part of 
the industrial revolution. Task analysis protocols allowed industrial managers to observe 
highly skilled workers and describe precise activities that were required to perform the 
variety of jobs required for manufacturing. These task analysis processes include gradual, 
motivated, deliberate practice that is challenging and accompanied by consistent relevant 
feedback over a significant amount of time results in the creation of cognitive structures that 
contribute directly to exceptional performance. This is the process that distinguishes 
novices from experts (Clark & Estes, 1996).

Cognitive task analysis is defined as the process of breaking down a skill into smaller, 
more manageable tasks in order to reduce the cognitive load on a learner so that they can 
focus on one part at a time, eventually synthesizing the parts to be proficient in the skill. 
This process has been used in a number of content areas to improve curriculum design and 
implementation such as in science education to articulate scientific inquiry skills in an 
undergraduate biology course (Feldon et al., 2010). Additionally, cognitive task analysis has 
been used to improve learning with students in special education, computer science, 
educational technology, and nursing (Chao & Salvendy, 1994; Clark & Estes, 1996; Clark 
et al., 2008; Crandall & Getchell-Reiter, 1993; Szidon & Franzone, 2009).

Decision trees
One drawback of only using cognitive task analysis is that it emphasizes expert thinking 
(Clark & Estes, 1996). While emphasizing expert thinking enables teachers to plan lessons 
that draw on proven and implicit practices, it ignores the many mistakes that novices might 
make. Decision Tree analysis provides a way to identify the many types of thinking or 
decisions students might make as they work through the lesson. In turn, teachers are then 
able to pinpoint and prepare for potential naïve understandings.
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While these tools may help teachers to highlight otherwise ignored aspects of their 
lessons, a focus on cognitive task analysis and decision trees in instructional planning 
might be even more critical for teaching computational skills to students. Since CT 
skills cut across many disciplines of science (i.e. physics, chemistry, and biology), these 
tools may be widely used in science classrooms (Weintrop et al., 2016; Wing, 2006). In 
order to study how the teachers interacted with the task analysis and decision tree 
lesson planning tools, we asked the following question: How did teachers perceive the 
function and usefulness of two tools designed to help them integrate CT into high 
school science data practices?

Method

Research design

Phenomenography was chosen for this study because it has promise to communicate 
findings in a way that is suited to address educational challenges directly, particularly in 
science education (Han & Ellis, 2019). Phenomenography as a research design illustrates 
the qualitatively different ways in which people experience, conceptualize, realize and 
understand various aspects of a phenomenon that could be explained (Marton, 1986). In 
this study, the teachers’ use of the two unique tools, task analysis and decision tree, to 
integrate CT into data practices in their science lesson plans was the focus phenomenon. 
Qualitative variance was examined among individual teachers for the research question 
since individuals may have different personal experiences with lesson planning tools. 
Rather than reduce results into a few generalizable categories, phenomenography high
lights the varied approaches that teachers might take as they engage with tools to 
integrate CT into their existing lessons.

The present study uses the conceptions of learning how to use new lesson planning tools 
in the same way that Han and Ellis (2019) have used conceptions of learning science as 
a research object. By defining the research object as the use of the two tools in lesson 
planning for the purpose of integrating CT, the design of the study focused on the 
intentionality of the teachers’ experiences, which first described the structural aspect of 
the research object (the variation among the integration of CT in lessons) and the referential 
aspect of the research object (the meaning that teachers perceived in using the tools to 
integrate CT; Han & Ellis, 2019).

Participants

Twenty in-service secondary science teachers were recruited from a school district in the 
mid-Atlantic region of the United States to participate in a professional development 
program focused on integrating CT into science lessons that featured data practices. The 
nineteen teachers that agreed to participate in the study (15 female, 4 male; 17 White, 2 
Asian) were licensed in their respective discipline: biology (n = 9), chemistry (n = 4), Earth 
science (n = 2) and physics (n = 4). Their teaching experience ranged from 3 to 26 years with 
an average of 10.45 years.
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Description of the professional development

The professional development (PD) experience consisted of a two-week summer institute in 
2019, followed by monthly two-hour meetings from September 2019 to March 2020. The 
monthly meetings were intended to continue until May but were halted due to COVID-19 
protocols. The two-week summer institute focused on learning about CT in the context of 
data practices in week one, and supports for students to learn about CT in the context of 
data practices in week two. The monthly meetings focused on improving teaching under
standing of CT, further integrating CT from the summer work products, and reflecting on 
student performance when the lesson was taught. The overarching goal of the PD was for 
the teachers to work in groups so they could integrate CT into three already established 
lessons using the lesson planning tools.

Week one
In the first week of the PD, the teachers were introduced to the need for CT, both for 
themselves and for their students. Next, the concept of CT along with the components of 
decomposition, pattern recognition, algorithmic thinking, abstraction, and automation were 
defined and then reinforced as teachers engaged in hands-on activities that supported the use 
of CT as a cognitive tool to leverage data practices. Next, teachers learned about the concept of 
data practices based on Weintrop et al.’s (2016) categories of creating, collecting, manipulating, 
visualizing, and analyzing data. Finally, teachers analyzed lesson plans to locate and categorize 
data practices and then used the common lesson plan template to fill in the task analysis tool.

Task analysis tool. The purpose of the task analysis tool was to help teachers break down 
lessons into smaller tasks so that they could locate opportunities to integrate CT. The task 
analysis tool, as seen in the partial example of Figure 1, consisted of four columns. Teachers 
were initially instructed to fill out the first two columns of “teacher will” and “student will.” 
Then teachers were asked to identify data practices in their lesson and mark that on the 
correct row in the task analysis tool. Finally, teachers were instructed to choose at least one 
computational thinking practice for every data practice they identified. During the PD, the 
researchers reviewed the teachers’ task analysis and provided feedback. Teachers completed 
and revised the task analysis tools by either meeting as a small group and working through 
disagreements, or completed the tool individually and met to revise after they discussed to 
consensus. Figure 1 explains the first few activities of an Earth science lesson on factors that 
influence the height of tides.

Week two
Week two of the summer institute was focused on ways that teachers can support students 
in learning CT. Similar to week one, this week of the summer institute was a combination of 
direct instruction, small group practice, feedback, and revision of products. Teachers 
learned about self-regulated learning and the role of self-reflection in helping students to 
become more aware of their learning processes. A variety of learning strategies were 
introduced to the teachers, and they worked on how to articulate the learning strategies 
in their lesson plans while receiving feedback from the instructors. In addition to self- 
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reflection, teachers learned about ways to motivate students and then applied the motiva
tional strategies to science lessons. Finally, teachers applied the learning and motivational 
strategies to CT practices in their lesson plans using the decision tree tool.

Decision tree tool. The purpose of the decision tree tool was to help teachers tangibly plan 
for ways to give feedback to students who need support. The format of the decision tree tool 
consisted of a matrix:

● the first column of the matrix was filled out with the “student will” column from the 
task analysis tool only from rows that indicated data practices and CT

Partial Task Analysis Sheet as an Example of Teacher Entries for Tides Lesson

Teacher will… Student will… Data 
Practice

Computational 
Thinking Practice

Lesson 1- Introduction/Hook 

Show students map of 
Chesapeake Bay Tunnel 
Bridge (video)  

Can stop video at 
keyword (variable) 
and look it up 

Explain ideas about water 
level change over the 
course of a day 
(knowledge model) 

Explain next task – students 
will be looking at 4 locations 
for patterns of ocean levels 
over one day 

Lesson 1- Activity 1 Looking for Patterns

etisbewetacoL
http://tidesandcurrents.no
aa.gov/stations.html

Software will log 
what will occur 
Classlist (time 
period of when to 
see website) – 
will be visually 
marked for the 
teacher 

Collecting Automation: Tell 
students that they are 
going to create a 
model that will help 
them to predict the 
height of tides at 
different locations. 
They can do this 
using Google Sheets. 

dnasretemarapesoohC
collect data from the 
website 

Can identify what 
students mark  
Can feed 
information to 
teacher/lab 
partners/self 

Collecting Decomposition:  
Students will break 
down the problem 
and choose which 
parts to focus on 
resolving first. 

Pattern-
finding: Students will 
analyze current tide 
data to look for 
patterns that might 

.

.

.

.

.

allow them to create 
an accurate model. 

Figure 1. Partial task analysis sheet as an example of teacher entries for tides lesson.
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● the second and subsequent columns were to be filled in to describe possible 
ways students had errors in carrying out the task in the first column.

Teachers worked together when they planned lessons to create a decision tree for the lesson. 
They discussed the possible errors students could make on the task and filled in the row for 
that task with conceptions of possible student errors. The process of filling out a decision 
tree was to encourage teachers to think deeply about how a student would react to the data 
practices in the lesson. Figure 2 displays a partial decision tree from a biology lesson on 
experimental design.

Monthly content area meetings
As part of the PD, teachers attended monthly meetings for two hours with the other 
teachers in their content area (biology, chemistry, Earth science, and physics) and two of 
the paper’s authors to discuss lesson planning and implementation.

Data sources

Data sources for this study were collected with a focus on the ways teachers integrated CT into 
their lessons and their perceptions of the process of integration. The data sources include a survey 
of demographic information, lesson plans and planning tools (task analysis tool as seen in 
Figure 1 and decision trees as seen in Figure 2) developed during the PD, individual interviews of 
all teachers after they completed the lesson plans, and transcripts of monthly meetings.

Teachers created lessons on a template provided at the PD (see Appendix A for the 
template) which included explicit instructions for student objectives, formative and sum
mative assessments, and student activities. Each content area group of teachers were asked 
to produce three lessons over the course of the year of PD. All lessons were focused on 
student investigation of science phenomena using data and included a task analysis chart 
and decision tree tool. The lessons ranged in duration from one to four days. At least two 
teachers from each content area taught each of the lessons created in their group.

The aim of the semi-structured interview was to examine teachers’ experiences and 
perceptions in integrating task analysis tools and decision trees into their lesson plans 
after they engaged in opportunities to practice and apply what they learned. A one- 
hour interview was conducted after the summer PD with each teacher individually. 
Interview questions were grouped into the following topics: motivations for teaching 
CT, PD planning tools, and learning about CT. An example prompt was: “When you 
were developing lesson plans, please explain the process you followed for integrating 
CT in the lesson plan.” Responses were recorded and transcribed, as were the discus
sion during the monthly meetings.

Analysis

The central goal of phenomenographic analysis is to capture the set of qualitatively different 
categories representing variations of experiences amongst participants for a phenomenon 
(Han & Ellis, 2019). All data were collected before analysis began, allowing for iterative, 
rather than sequential consideration of the categories (Yates et al., 2012). Marton’s (1986) 
process for analysis was used, which began with identifying data related to the phenomenon, 
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the use of the task analysis, and decision tree tools. After identification, we sorted the data 
into the categories of task analysis benefits, task analysis drawbacks, decision tree benefits, 
and decision tree drawbacks. Once sorted, the categories were contrasted for variation among 
the teachers, and finally the reliability was checked through interrater reliability.

Coding

All transcriptions and lesson plan artifacts were coded for any references to the task analysis 
tools and decision tree tools. Four a priori codes were initially used to fragment the 
interviews: task analysis benefits, task analysis barriers, decision tree benefits, and decision 

Example of Teacher Entries for Possible Student Misdirection During Tides Lesson 
noitceridsiMtnedutSelbissoP…lliwtnedutS

Create their own driving 
question for lab 
extension and identify 
independent and 
dependent variable 

• incorrectly identify dependent variable 
• incorrectly identify independent variable 
• not identify any dependent variable 
• not identify any independent variable 

Justify why their 
research question is 
relevant and interesting 
to test 

• question is not relevant to experiment 

Students write a null 
hypothesis and 
alternative hypothesis 

• incorrectly write one of their two hypotheses 
• incorrectly write both of their hypotheses 
• not write any hypotheses 

Students identify 
constants and how many 
trials will be performed 

• incorrectly identify constants, but correctly identify how 
many trials will be performed 

• correctly identify constants, but incorrectly identify how 
many trials will be performed 

• incorrectly identify constants and how many trials will be 
performed 

• not identify constants but do identify how many trials 
will be performed 

• identify constants but do not identify how many trials 
will be performed 

• not identify constants or how many trials 

Students identify how 
they will 
summarize their data 

• not identify how they will summarize their data 
• have a hard time understanding that they had two 

different ways they could summarize their data. They 
could either calculate the averages or they could look 
at the last 30 seconds value.

Students write new 
procedure to test their 
driving question 

• write new procedure but procedure will not result in data 
to answer their driving question 

• not write procedure. 

Students construct a 
data table to record data 
next class 

• not construct a data table to record data next class 

Figure 2. Example of teacher entries for possible student misdirection during tides lesson.
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tree barriers. Once the codes were placed broadly into these four categories, they were 
refined line by line. Two coders fragmented the data independently. Out of 84 total 
utterances, there were only two disagreements, resulting in a kappa value of .98. These 
disagreements were discussed until consensus. The two initial discrepancies across the 
coders occurred in the area of barriers, particularly when an interviewee mentioned that 
there were no barriers. Once the data were fragmented into the four codes, excerpts were 
read for meaning and grouped within each of the codes to describe trends. Each researcher 
involved in the analysis developed their own matrix of trends and brought their groupings 
to a discussion. Trends were discussed until consensus was reached.

Findings and discussion

To answer the research question, How did teachers perceive the function and usefulness of 
two tools designed to help them integrate CT into high school science data practices?, we 
analyzed teacher lesson plans, planning tools, transcripts from teacher interviews, and the 
monthly teacher meetings. The transcripts from these data sources revealed several themes 
regarding benefits and barriers of both tools.

Task analysis tool benefits

The teachers reported that the task analysis tool helped them to break down complicated 
lessons and better understand the role of the teacher and the student, similar to the finding 
of Szidon and Franzone (2009). Others remarked on its capacity to help them find holes or 
gaps in data practices and CT in their lesson planning process, similar to the findings of 
Chao and Salvendy (1994) and Clark et al. (2008).

Shifting to student-centered lessons
As teachers decomposed their lessons using the task analysis tool, they filled in the “teacher 
does” and “student does” columns. The teachers reported that the format helped them 
realize that often the teacher column was filled while the student column only had few 
entries. As teachers reflected on their lessons as part of using this planning tool, they were 
able to re-design the lesson as student-centered. 

LR: You’re really separating out what the teacher does versus what the students do and 
looking at how much teachers are controlling the process. And [I wonder] how much of it is 
left to them [the students] to explore? That’s always a fine line because you want them to just 
come to the epiphany on their own with little guidance.

The act of using the task analysis tool to break down lessons helped the teachers think 
about the design of their lesson with more detail and attention to individual processes. As 
the teacher, CK, explained,

I found it really useful to think about how I guide kids step by step through a process. I don’t 
think I had really thought about some of the questions that I asked them for every single step. 
I think so much of what we do becomes automated because we’re just used to doing it, and we 
don’t stop and think . . ., this is really decomposition.
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The task analysis tool initiated an iterative reflective process whereby teachers returned to 
their lesson plans to replace teacher actions with student actions, making their lessons more 
student-centered, which was also recommended by Grover and Pea (2013) as a prerequisite 
to integrating CT into science lessons.

Connecting data practices to computational thinking
Many teachers found the task analysis tool instrumental for making connections between 
data practices and CT. The tool allowed teachers to isolate data practices, in the same way 
that Feldon et al. (2010) found, which in turn allowed them to directly connect data 
practices to CT, which as teachers remarked, was empowering. 

KC: Being able to identify within the task analysis [tool] where the computational thinking 
and data practices are. Being able to think about the two together was something that I had 
not done before. . . . Being able to identify that the lesson has those components is really 
empowering.

Weintrop et al. (2016) discussed the need for teachers to be comfortable teaching the 
material to effectively integrate CT into science lessons. Some teachers recognized that they 
had been applying CT generally to lesson plans, but without structure. As recommended by 
Weintrop et al. (2016), this tool scaffolded the teachers so that they could identify where CT 
practices were taking place within a specific lesson and link them to data practices.

Task analysis tool barriers

With regard to barriers to using the task analysis tool, teachers grappled with two main 
areas: conceptions of CT terms which inhibited their ability to link CT and data 
practices, and establishing the amount of detail to provide when writing the task analysis 
tool.

Using computational thinking terms with students
Many teachers noted that while data practices were familiar to them, computational thinking 
was new to them. Several teachers discussed wrestling with the ideas involved in CT. 

AP: I’m always double checking because I haven’t practiced [CT] as much. The task analysis 
tool to me is the most overwhelming step because I have very little practice with computa
tional thinking.

MS: I was just talking with another teacher and we were both kind of joking. These terms, 
we still get them confused, we’re still not comfortable with using them.

Unfamiliarity with CT practices and related concepts resulted in a lack of confidence 
about labeling a lesson component with an incongruent CT practice. This finding corro
borates Clark and Estes (1996) claim that the use of task analysis requires expert thinking 
and reiterates the call for targeted PD experiences on CT practices and how they can be 
applied in science (Augustine, 2005; Kale et al., 2018; NRC, 2012; Weintrop et al., 2016; 
Wing, 2006).
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Level of detail required
The process of breaking down lessons into teacher and student steps was met with some 
resistance as teachers were unsure of the level of detail to provide in the task analysis. 

JC: So it was a combination of not getting too nitty gritty and going down a rabbit hole And 
sometimes, I think we were wondering if we broke things down too much.

CK: You could break it down to be every minute of the lesson or is it a bigger chunk? So, 
I think that was frustrating for me because I could spend five hours on this, making it every 
single tiny thing that takes place. Or I could spend two hours on this and make it more big 
picture, and it was hard to find the balance between that.

Teachers struggled with this new task of breaking the lesson down into manageable steps 
in order to pinpoint CT and data practices, while at the same time striking a balance 
between becoming too detailed and losing sight of the overall goal of the lesson. Although it 
has been demonstrated previously that task analysis of lessons can improve depth and 
completeness of student knowledge (Chao & Salvendy, 1994; Clark & Estes, 1996; Clark 
et al., 2008; Crandall & Getchell-Reiter, 1993), this can occur only when teachers are clear 
about the level of detail of understanding that is appropriate for the students that they teach.

Decision tree tool benefits

The decision tree was conceptualized as a tool to be used by teachers during the lesson 
planning process to predict the ways in which students could become misdirected when 
accomplishing data practices using CT. Although decision trees are not specific to CT, they 
were used to help teachers prepare to address as many student scenarios as possible and 
think deeply about this new area of instruction. In effect, it asked teachers to predict student 
behavior about using CT in data practices in the planning stage. There were three main 
themes found regarding the benefits of the decision tree tool: (a) predicting students’ 
misdirection during the science investigation, (b) understanding student performance 
during the lesson, and (c) reflecting on the lesson after it was taught.

Useful in predicting student behavior
There was a large amount of evidence in the interviews that teachers found the tool useful 
in predicting student behavior. For example, JC said, “It forced us to think about what 
students will go through to the lesson and what mistakes we predict they’re going to 
make. And how we can help them.” Similarly, KC stated, “So, I think it’s useful in being 
able to think about how to redirect students if they don’t come to the right conclusion or 
if they don’t come to the intended conclusion.” The decision tree tool was a concrete way 
for the teachers to predict student actions, particularly when the lesson content is new to 
the teacher.

Useful to understand student performance
One trend that emerged from monthly meeting discussions involved differentiating lessons 
for students of different academic levels. In one instance, a chemistry teacher who taught 
advanced classes authored the lesson and two other chemistry teachers who taught regular 
level chemistry were concerned about the extensive vocabulary and the in-depth data 
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analysis that required a higher mathematics level. A great deal of discussion ensued about 
how to modify the lesson to meet the needs of students who come to class with various levels 
of understanding and experience. The task analysis and decision trees tools were the focal 
point of the discussion and were used to record the differences.

Additional discussion during the monthly meetings focused on how to scaffold tasks within 
lesson plans taught in both higher and lower level classes. Teachers who worked with students 
in higher academic-level classes did not want their students confined to certain choices but 
instead wanted their students to have more freedom within the investigation. This generated 
decision trees with more branches documenting possible student errors and redirection.

Useful as a reflective tool
Some teachers used the decision tree as a reflective tool. Following the lesson, teachers 
would return to and revise the decision tree, incorporating items from their observations. 
Many times teachers did this in consultation with each other, generating robust documen
tation of student action. 

KG: I’m now going back and reworking those decision trees based on what I took notes on 
what the students did [during the lesson]. So, what I discovered is the decision tree is exactly 
what I thought they were going to do on other things.

EB: I did the decision tree after [teaching the lesson], but we just met last night and had 
a productive discussion, all the physics teachers together, and we were able to fill it in 
completely. They’re hitting on all these things that as a teacher I know I’m aware of and 
I might point out to my students, but to then document them in writing the lesson plan.

Perhaps because teachers were actively looking for and documenting student misconcep
tions, teachers were surprised to find that student actions did not match their predictions or 
expectations. One teacher, despite creating a robust decision tree, found that her students 
made very few missteps. Another teacher was surprised to find trends in the mistakes made by 
students in different academic levels. This teacher found that students in the regular chemistry 
class were more diligent in following scientific practices while students in the higher-level 
chemistry course skimmed or bypassed the way they performed scientific practices.

Decision tree tool barriers

Following the PD session and during the first few months of the academic year, there was 
still some uncertainty surrounding the format in which to create the decision tree. There 
were some issues associated with how to record what goes on in the classroom—which is 
a dynamic environment—and put these actions into a document that reflected student 
behavior. Many times, the teachers were able to document the pathway for a student who 
understands the concepts and practices well but were not able to predict the types of 
missteps or misconceptions students may have. 

SI: It’s hard to predict what the student will do until you’ve done it with students. It’s hard 
to predict what they will do, which directions they’ll go know. Until once you’ve done a few 
times and then it’s easier to see what decisions are making.
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ZMP: I think it is hard for a person to create a decision tree that encompasses the level of 
complexity of decision trees in a real classroom. So the early stages of [creating a] decision 
tree are tough.

HY: I think it was just confusing in the beginning like, what a decision tree is and how 
detailed it needed to be and then like trying to figure out all the different pathways 
a student might go.

Other researchers have similarly attempted to “CT-ify” science instruction by providing 
teachers with lesson planning tools (Bain & Wilensky, 2020). While no framework currently 
exists to help science teachers identify specific opportunities for integrating CT, Bain and 
Wilensky found that helping teachers focus on factors of time, size, number and repeat
ability provided clearer entrance points (or “vectors”) for thinking computationally. 
Curiously, each of these factors focus on the data practices that teachers might use in 
their classes, which may be a more natural entry for teachers to incorporate CT. As our 
findings revealed, the practice of identifying how students will work with data and then 
implementing this in the classroom can be an effective tool for science teachers to begin 
integrating computational thinking into investigation-based lessons.

Conclusions

Many science teachers already use data practices and CT in their science lessons, but are not 
yet using the vocabulary associated with those practices or overtly teaching the practices. In 
order to use the decision tree and task analysis to effectively incorporate CT into science 
lessons using data practices, teachers need a solid understanding of both. Because the 
teachers worked together, there is evidence that using these tools in small groups helps to 
spur conversations about integrating CT into data practices.

Shifting to student-centered lesson and integrating CT

The process of using both tools in science lessons facilitated activity among teachers and moved 
them toward what the students were accomplishing and away from what the teacher was 
presenting. The use of the decision tree and task analysis charts gave teachers two mechanisms 
to discuss and decompose their own lessons, leading them to look more closely at the 
components. When used either to predict or reflect upon student actions, the decision tree 
tool helped teachers identify where student misconceptions could (or did occur during the 
lesson while the task analysis tool helped teachers systematically select parts of a lesson to 
integrate CT. Some teachers found it helpful to have one or both tools on a clipboard or mobile 
device while teaching the lesson, allowing them to move about the classroom and update the 
tools in real-time.

Differentiating lessons

Finally, teachers found the use of the task analysis and decision tree tools helpful in 
identifying the ways that the instruction could be differentiated for students. The tools 
created a space for teachers to break down their lesson and consider how students would 
react to their instruction. In doing so, the tools helped to illustrate areas during the lesson 
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where more support could be given to struggling students and support could be faded for 
advanced students. More work needs to be done with understanding how teachers may be 
able to use the decision tree tool in a deeper way.

Implications for research and practice

The present findings might benefit practitioners such as curriculum designers, school 
administrators, and educational researchers who are interested in integrating CT in science 
lessons. First, the planning tools used in this study supported teacher integration of CT into 
science lesson plans, and assisted teachers in breaking apart lessons so that they could look 
deeper into the aims and objectives for each lesson “move” and clear away the noise or 
unnecessary parts of instruction. Second, findings showed that it was not sufficient to ask 
teachers to integrate CT when armed only with knowledge about CT. Teachers often need 
more systematic and structured support (e.g., PD) when attempting to complement existing 
lessons with new instruction. Further research is needed in this area to examine forms of PD 
that might enable teachers to infuse CT into science lessons plans. In addition, the task 
analysis charts and decision tree tools are one way to assist teachers in analyzing their 
lessons through the lens of student engagement in science investigation. It might be 
interesting to explore the role of technology in this process.

Limitations

Although the current research provided an initial study of integrating computational 
thinking into data practices using task analysis and decision trees, there are several limita
tions that need to be acknowledged. First, conceptions of the students are not included in 
this study which would have provided an additional layer of information about the 
functionally and effectiveness of the two tools. Second, the study was conducted in one 
school district and therefore findings may not be representative of other school systems 
around the country. Finally, it could be that more experienced teachers may infuse 
computational thinking into data practices differently from less-experienced teachers, 
which was not taken into consideration in this present study. Therefore, future studies 
should examine whether variables such as teacher knowledge and experience in engaging 
deeply with computational thinking while designing lesson plans might alleviate differences 
among domains.
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APPENDIX A
SPIN Lesson Plan Template
Module Summary: Identify how the project fits into the big picture, develops authentic skills, and 
embraces habits of mind of the discipline.
Module Science Content Topic(s):
Module Computational Thinking Practices (select all that apply) 

Decomposition Pattern Seeking Algorithmic thinking Abstraction Automation

Data Practices (select all that apply)

Grade Level(s):
Established Goals of the curriculum: students will understand (big ideas/key knowledge), know, be 
able to do what (key skills)? What are the big ideas (cross-cutting themes) in the project? How does it 
address science and engineering practices? How does it address mathematics and language objectives?

Learning Objectives for the Lessons:
Lesson 1:
Lesson 2:
Lesson 3:

Content Standards Addressed in Lesson

Teacher Background Information
What content does the teacher need to know about to deliver this lesson? Brief summary.

Creating Data Collecting Data Manipulating Data Visualizing Data Analyzing Data

Strategies for students when working on independent practice outside of the classroom

State Standards of Learning
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Research Question for Data Analysis: Fill in the research question that the data analysis is 
attempting to answer here.
Methodology for Creating Data :
Data Set(s): (actual data that was obtained from the methodology that can be used by students to 
answer question if the teacher does not have time to complete)
Conclusions (Scientific Argument) from Data Analysis: (how do you explain the results based 
upon the content knowledge students should have learned or be learning – this could be an example 
of an exemplary student connection between content learned and results)
Prerequisite Key Knowledge: What are the key concepts that are most important for students to 
know in each discipline for the unit?

Glossary of key vocabulary: Identify terms and their definitions that will be used in the lesson for 
each of the areas below. This shared vocabulary will help the SPIN system communicate more 
effectively and efficiently.

Assessment Plan: Define the products and artifacts for the lesson. Be sure to include a variety of 
assessments for learning that are closely tied to the content, learning skills and technology tools 
outcomes. The products and criteria must align with the objectives and outcomes for the project. 

Prerequisite key knowledge

Content vocabulary

Computational thinking and data practices vocabulary

Self-regulated learning vocabulary
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State the criteria for exemplary performance for each product. Plan for assessments that provide 
student feedback as the project progresses and provide for a culminating appraisal of performance or 
product with an accompanying rubric that clearly assesses the learning targets.

Lesson #1 Plan
Lesson Title:
Lesson Summary:
Lesson Science Content Topic(s):
Lesson Computational Thinking Practices (select all that apply)

Lesson Data Practices (select all that apply)

Essential Question(s): what questions will guide student learning in this lesson?
Measurable Learning Objectives: Must be measurable; give criteria and condition for student 
performance
Time Required:
Necessary Materials:
Safety Considerations:

Lesson Preparation
What will the teacher need to plan ahead of time for this lesson?
Lesson Plan Components
Opening Activity / Introduction (includes students’ active participation and links to prior 
knowledge)
Teaching Activities (outline of activities, good questions to pose, major points, etc. – INCLUDE 
APPROXIMATE TIMES FOR ALL ACTIVITIES)
Closing Activity (includes students’ active participation, reviews lesson, and relates to objective)
Task analysis of Lesson 1

Lesson #2 Plan
Lesson Title:
Lesson Summary:
Lesson Science Content Topic(s):

Lesson Computational Thinking Practices (select all that apply)

Formative Assessments

Summative Assessments

Decomposition Pattern Seeking Algorithmic thinking Abstraction Automation

Creating Data Collecting Data Manipulating Data Visualizing Data Analyzing Data

Teacher 
will

Student 
will

Data 
Practice

Computational Thinking 
Practice

Metacognitive Prompt (instructional or 
assessment)
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Lesson Data Practices (select all that apply)

Essential Question(s): what questions will guide student learning in this lesson?
Measurable Learning Objectives: Must be measurable; give criteria and condition for student 
performance
Time Required:
Necessary Materials:
Safety Considerations:
Lesson Preparation
What will the teacher need to plan ahead of time for this lesson?
Lesson Plan Components
Opening Activity / Introduction (includes students’ active participation and links to prior 
knowledge)
Teaching Activities (outline of activities, good questions to pose, major points, etc. – INCLUDE 
APPROXIMATE TIMES FOR ALL ACTIVITIES)
Closing Activity (includes students’ active participation, reviews lesson, and relates to objective)
Task analysis of Lesson 2

Lesson #3 Plan
Lesson Title:
Lesson Summary:
Lesson Science Content Topic(s):
Lesson Computational Thinking Practices (select all that apply)

Lesson Data Practices (select all that apply)

Essential Question(s): what questions will guide student learning in this lesson?
Measurable Learning Objectives: Must be measurable; give criteria and condition for student 
performance
Time Required:
Necessary Materials:
Safety Considerations:
Lesson Preparation

Teacher 
will

Student 
will

Data 
Practice

Computational Thinking 
Practice

Metacognitive Prompt (instructional or 
assessment)

Decomposition Pattern Seeking Algorithmic thinking Abstraction Automation

Creating Data Collecting Data Manipulating Data Visualizing Data Analyzing Data

Decomposition Pattern Seeking Algorithmic thinking Abstraction Automation

Creating Data Collecting Data Manipulating Data Visualizing Data Analyzing Data
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What will the teacher need to plan ahead of time for this lesson?
Lesson Plan Components

Opening Activity / Introduction (includes students’ active participation and links to prior 
knowledge)
Teaching Activities (outline of activities, good questions to pose, major points, etc. – INCLUDE 
APPROXIMATE TIMES FOR ALL ACTIVITIES)
Closing Activity (includes students’ active participation, reviews lesson, and relates to objective)
Task analysis of Lesson 3

Teacher 
will

Student 
will

Data 
Practice

Computational Thinking 
Practice

Metacognitive Prompt (instructional or 
assessment)
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