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Abstract

This paper re-examines the problem of estimating risk premia in unconditional linear factor pricing models.
Typically, the data used in the empirical literature are characterized by weakness of some pricing factors,
strong cross-sectional dependence in the errors, and (moderately) high cross-sectional dimensionality. Using
an asymptotic framework where the number of assets/portfolios grows with the time span of the data while the
risk exposures of weak factors are local-to-zero, we show that the conventional two-pass estimation procedure
delivers inconsistent estimates of the risk premia. We propose a new estimation procedure based on sample-
splitting instrumental variables regression. The proposed estimator of risk premia is robust to weak included
factors and to the presence of strong unaccounted cross-sectional error dependence. We prove the consistency
of the new estimator, establish asymptotically valid inferences using Wald statistics, verify performance of the

new procedure in simulations, and revisit some empirical studies.
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1 Introduction

Since the introduction of the CAPM by Sharpe (1964) and Linner (1965), linear factor pricing models
have grown into a very popular sub-field in asset pricing. Harvey, Liu and Zhu (2016) list hundreds
of papers that propose, justify and estimate various factor pricing models. A typical paper in this
area proposes a small set of observed risk factors that price the assets, that is, the expected excess
return on an asset is equal to the quantity of risk taken (measured as a normalized covariance of the
returns with the risk factors, so called betas) times risk premia. The two most famous factor pricing
models are the market-factor CAPM and the three-factor Fama and French (1993) model. Other
pricing factors are the momentum factor (Jegadeesh and Titman, 1993), the consumption-to-wealth
ratio ‘cay’ (Lettau and Ludvigson, 2001), the liquidity factor (Péastor and Stambaugh, 2003), and so
on. In recent years, there has been a burst in econometrics research that suggests how to correct the
baseline estimation and inference in the face of many factors (for example, Kozak, Nagel, and Santosh,
2018), or how to judiciously select factors from a big pool without jeopardizing correct inference (for
example, Feng, Giglio and Xiu, 2020).

Traditionally, one estimates the model using what is commonly known as the two-pass estimation
procedure (Fama and MacBeth, 1973; Shanken, 1992),! where at the first pass one estimates risk
exposures (betas) for each asset, and then, at the second pass, those estimates are used as regressors
to estimate the risk premia. Asymptotic justification of this procedure, however, relies on assumptions
that often do not hold up in realistic circumstances. Two types of violations of the idealistic setting
have been noted in previous literature.

The first problem is one of weak (but priced) observed factors. Recent papers by Kan and Zhang
(1999), Kleibergen (2009), Bryzgalova (2016), Burnside (2016), and Gospodinov, Kan and Robotti
(2017) all point out that risk exposures (or betas) to some observed factors tend to be small to such
an extent that their estimation errors are of the same order of magnitude as the betas themselves.
This observed phenomenon is very similar to the widely studied weak instrument problem.

The second violation is a strong cross-sectional dependence in error terms, which in many cases
can be modeled as a factor structure unaccounted for (‘missing’). For example, recent literature
shows that mismeasurement of the true risk factors leads to weakness of the observed factors and
strong cross-sectional dependence in the errors (Kleibergen and Zhan, 2015), which may result in all
sorts of distortions in estimation and inference in theory and in their non-reliability in practice (Kan
and Zhang, 1999; Andrews, 2005; Kleibergen, 2009).

Along with the combination of the problems of missing factors and small betas, we also consider
one very important empirical feature of the typically employed datasets — the presence of a large
number of assets or portfolios often comparable to the number of periods over which returns are

observed. We consider an asymptotic framework where the number of assets/portfolios grows with

!Sometimes the two-pass procedure is referred to as the Fama-MacBeth procedure (Fama and MacBeth, 1973). See
Cochrane (2001, section 12.3) on their numerical equivalence when betas are time invariant. The method for obtaining
valid standard errors that account for the two step nature of the procedure is given in Shanken (1992).



its time-series dimension. Such dimension asymptotics is likely to provide a more accurate asymptotic
approximation to the finite sample properties of estimators and tests. The many-asset asymptotic
framework has been utilized previously by Gagliardini, Ossola and Scaillet (2016), Lettau and Pelger
(2020) and Feng, Giglio and Xiu (2020).

We show that within a dimension asymptotic framework the presence of small betas leads to a
failure of the classical two-pass procedure, while the additional presence of missing factors exacerbates
this problem. We propose econometric procedures that are robust to both these thorny issues with
factors — the weakness of observed factors and the presence of unobserved factors in the errors — and,
in contrast to the remedies proposed elsewhere, are easily implementable using standard regression
tools (in particular, instrumental variables regressions and two-stage least squares). The estimators
we propose are consistent; moreover, using the variance estimators (the construction of which we
describe), standard inference tools such as t- and Wald tests can be applied in a conventional way.

Our new estimation approach makes use of the idea of sample-splitting in order to create multiple
estimates for loadings B; and to correct for the first-step estimation error via an instrumental variables
regression. The presence of an unobserved (missing) factor structure in the error terms creates strong
cross-sectional dependence in the panel of returns, which is similar to the classical omitted-variables
problem in the second pass of the two-pass procedure. In order to correct for this missing factor
structure, we use sample splitting to create reasonable proxies for missing factors even in a setting
where one cannot consistently estimate the missing factor structure. The sample-splitting idea has
appeared in the econometrics literature before, in particular, in Angrist and Krueger (1992) and
Dufour and Jasiak (2001).

We explore the quality of the two-pass procedure and compare its performance with that of
sample-splitting based estimators and existing alternatives in simulations calibrated to match the
monthly returns of the 100 Fama-French sorted portfolios. We applied several existing procedures
to the estimation of the momentum risk premium using real data on Fama-French portfolios. The
important feature here is that the momentum is a tradable factor and hence there is an alternative
estimate of the risk premia — the sample average excess return on this factor. Thus, we have a
natural benchmark when comparing estimators. Lewellen, Nagel and Shanken (2010) showed that
“any (sufficiently large)? set of assets perfectly explains the cross-section of expected returns so long
as the (tested)? assets are not asked to price themselves (that is, ...the risk premia are not required
to equal their expected returns).” From that perspective, having an estimate of risk premia coming
from the pricing model, such as our split-sample estimator, is important even for tradable factors, as
it allows one to test the pricing model by comparing this estimate to the average excess return.

There is a growing number of alternative suggestions for how to correct statistical inferences for
either weak observed factors or a missing factor structure. Kleibergen (2009) proposes the use of

weak identification robust inference procedures to account for weak observed factors, however, it can

20ur addition in brackets.
30ur addition in brackets.



only be applied to a relatively small number of assets/portfolios. An extreme version of the weak
factors phenomenon, known as irrelevant factors and studied by Bryzgalova (2016), Burnside (2016)
and Gospodinov, Kan and Robotti (2017), occurs when some observed factors are assumed to have
zero loadings. The solutions to the irrelevant factors problem proposed in the literature usually
suggest dimension reduction techniques to detect the irrelevant factors with a proviso to eliminate
these detected irrelevant factors from further analysis. However, applying detection and elimination
methods to the weak observed factors would lead to invalid inferences and large biases in the estimates
of the risk premia for the remaining factors. Jegadeesh, Noh, Pukthuanthong, Roll and Wang (2019)
suggest, simultaneously and independently, the use of sample-splitting in factor models in order to fix
the errors-in-variables bias. Their proposed estimator works only when there are no missing factors.

Giglio and Xiu (2020) solve the problem of the missing factor structure by first running the
Principle Component Analysis (PCA) on excess returns, pricing principle components, and from
that deriving the risk premia of observed factors. The method of Giglio and Xiu (2020) successfully
eliminates strong missing factors, but assumes from the outset that all important pricing factors can be
uncovered by PCA. This assumption is critical for the validity of their procedure and contradicts the
empirical findings of Lettau and Pelger (2020), who demonstrate that the out-of-sample performance
using weak factors in addition to those uncovered by PCA is appreciably better than that of a model
that uses the PCA factors only. According to Lettau and Pelger (2020), “PCA-based factors often
miss low volatility components with high Sharpe ratios, which is a crucial aspect in asset pricing.”

The paper is organized as follows. Section 2 introduces notation, discusses the relevance of our
asymptotic approach, and argues for the presence of a significant factor structure in the errors. It also
explains the asymptotic failure of the classical two-pass procedure and provides detailed intuition as to
why this occurs. We propose our ‘four-split’ estimation method in Section 3, describe what motivates
it and explain why it works. In Section 4, we state a formal theorem on the consistency of the
newly proposed four-split estimator and establish the asymptotic validity of a properly constructed
Wald test using the four-split estimator. The comparison of the newly proposed estimator with the
existing alternatives is done in simulations and with an empirical example in Section 5. Appendix A
contains main proofs, while auxiliary proofs and additional results appear in a Supplemental Appendix
available on one of the authors’ web-site.*

A word on notation: 0;,, stands for a zero matrix of size [ x m, I, is an m x m identity matrix;
for an m x l4 matrix A and an m x lp matrix B, (A, B) stands for the m x (l4 + [p) matrix one
obtains by placing the initial matrices side-to-side. Given a square matrix A, we denote by dg(A) a
diagonal matrix of the same size with the same elements on the diagonal as matrix A, by tr(A) its

trace, and by minev(A) and maxev(A) — its minimal and maximal eigenvalue.

‘https://pages.nes.ru/sanatoly/Papers/ManyFM.htm



2 Formulation of the problem

The research in factor asset pricing modeling typically proposes a small set of observed risk factors
described by a vector F; of (usually) small dimension krp. An asset or portfolio of assets ¢ with
excess return 7;; has exposure to several risk factors, which is quantified by the asset’s betas 5; =
var(Fy) ~tcov(Fy, 7). A typical claim put forth in the linear factor-pricing theory is that exposure
to risk (betas) fully determines the assets’ expected excess returns. Particularly, there exists a kp-
dimensional vector of risk premia A such that Er;; = N 3;.
From an econometric perspective, a correctly-specified linear factor-pricing model is equivalent to
the following formulation:
rit = N Bi + (Fy — EFy) Bi + €it, (1)

where unobserved random error terms &;; have mean zero and are uncorrelated with Fi. Here the
statement Eey; = 0 is equivalent to Ery = N 3;, while uncorrelatedness between €;; and F} results
from the definition of ;. We treat A and 5; as unknown parameters, while r;, Fy, and ;; are random
variables.

Two-pass procedure. The estimation and inferences on risk prices, A, are traditionally accom-
plished by a procedure known as the two-pass procedure (Fama and MacBeth, 1973; Shanken, 1992),
applied to a data set consisting of a panel of asset excess returns {ry, i = 1,...,N, t = 1,...,T}
and observations of realized factors {F;, t = 1,...,T}. In the first step, one estimates 3; by running
a time series OLS regression of r;; on a constant and F; for each ¢ = 1,...,N. The second step
produces an estimate of A (denote it XTp) by regressing the time-average excess return %ZtT:l T4t
on the first-step estimates, B\z Under suitable conditions, XTP is proved to be both consistent and
asymptotically Gaussian. Discussions of the statistical properties of the two-pass procedure appear
in Fama and MacBeth (1973), Shanken (1992), and Chapter 12 of Cochrane (2001).

This paper deviates from the classical Fama-MacBeth setting in three respects, which we label as
(i) weak observed factors, (ii) many assets and (iii) missing factor structure.

Weak observed factors. Recent work by several prominent researchers raises the concern that
the two-pass procedure may provide misleading estimates of risk premia; see, for example, Kan and
Zhang (1999), Kleibergen (2009), Bryzgalova (2016), Burnside (2016), Gospodinov, Kan and Robotti
(2017). The reason for these erroneous inferences is related to the empirical observation that either
some column of 8 = (B4, ..., )" is close to zero, or, more generally, the N X kr matrix 3 appears close
to one of reduced rank (less than kp) for many well-known linear factor pricing models. According
to Lettau and Pelger (2020), weak factors are empirically important for good performance of pricing
models. They constructed factors that are impossible to uncover by PCA (i.e. weak factors) with the
Sharpe ratio twice as high as those uncovered by PCA, and the out-of-sample pricing errors from a
model that uses these weak factors are sizably smaller than those from a model that uses only strong
factors.

Bryzgalova (2016), Burnside (2016), and Gospodinov, Kan and Robotti (2017) all recently devel-



oped improved inference procedures when some factors are completely #rrelevant for pricing, that is,
when true 3; are exactly zeros. Unfortunately, these procedures fail when the 3; are not zeros, but are
small. A more empirically relevant case, which is in line with Lettau and Pelger (2020), resembles the
widely studied weak instrument problem (Staiger and Stock, 1998): if some of the observed factors
F; are only weakly correlated with all the returns in the data set, then the noise that arises in the
first-pass estimates of the corresponding components of 8; will dominate the signal, and the second-
pass estimate of the risk premia A will be oversensitive to small perturbations in the sample. In order
to model the observed phenomenon, Kleibergen (2009) considered a drifting-parameter framework
in which some component of 3; is modeled to be of order O(ﬁ) assuming that the number of time
periods, T, increases to infinity, while the number of assets, N, stays fixed. In such a setting the
first-pass estimation error is of order of magnitude Op(ﬁ), which is comparable to the size of the
coefficients themselves. This framework implies inconsistency of the two-pass estimates for the risk
premium on small components, poor coverage of regular confidence sets even for the risk premium of
strong factors, and asymptotic invalidity of classical specification tests and tests about risk premia.

Following this tradition, we also make use of drifting-parameter modeling. We assume that the
kr x 1 vector of factors Fy can be divided into two subvectors: a ki x 1 dimensional vector F;; and
a ka x 1 vector Fyy (here kp = k1 + k2) such that the risk exposure ;1 to factor Fj; is strong, while
the risk exposure coefficients 32 ; to factor Fy; jointly drift to zero at the rate VT. We make these
order assumptions for risk exposures more accurate in the next section. A more general treatment
of the near-degenerate rank condition considers some ko-dimensional linear combination of factors
(unknown to the researcher) to have a local-to-zero (of order O(%)) exposure coefficient, while
the exposure to risk formed by the orthogonal ki-dimensional linear combination remains fixed. All
our results are easily generalizable to this setting, as we do not assume that the researcher knows
which factors (or combination of factors) bear small coefficients of exposure. However, to simplify
the exposition we stick to the division of factors into two sub-vectors.

One may argue that non-zero pricing on weak factors contradicts the Arbitrage Pricing Theory of
Chamberlain and Rothschild (1983) that suggests that only strong factors are non-diversifiable and
carry risk premia. In the face of empirical evidence showing that weak factors do carry risk premia
and are important for factor pricing (e.g, Lettau and Pelger (2020) discussed above), the way to
reconcile empirical evidence with the theory is to interpret weak factor modeling as an econometric
device helpful in producing better finite-sample approximations. This device allows one to properly
account for the uncertainty in the first step estimation rather than hide it under the rug of first step
consistency. It is also worth pointing out that whether an observed factor is weak or strong depends,

at least partially, on the data set at hand, its size and representativeness.

Many assets. In theoretical justifications of the two-step procedure (Shanken, 1992; Cochrane,
2001) it is common to assume that the number of assets, N, is fixed, while the number of periods T’
grows to infinity. We notice that in many common data sets that researchers use, the number of assets

is large when compared to the number of time periods. The celebrated Fama-French data set provides



returns on N = 25 sorted portfolios for about 7" = 200 periods. The often-used Jagannathan-Wang
data set (Jagannathan and Wang, 1996) contains observations on N = 100 portfolios observed for T' =
330 periods. Lettau and Ludvigson (2001) use Fama-French N = 25 portfolios, the returns for which
are observed over T' = 141 quarters. Gagliardini, Ossola and Scaillet (2016) use N = 44 industry
portfolios observed during 7" = 546 months. In these cases it is hard to believe that the asymptotic
results derived under the assumption that N is fixed would provide an accurate approximation of
finite-sample distributions. Indeed, among other things, Kleibergen (2009) discovers that the bias of
the two-pass estimate of risk premia is strongly and positively related to the number of assets if the
total factor strength is kept constant.

In this paper we consider asymptotics when both N and T increase to infinity without restricting
the relative speed. Recent papers by Kim and Skoulakis (2018) and Raponi, Robotti and Zaffaroni
(2020) consider a factor pricing model in an asymptotic setting with N — oo while T" remains fixed
and show inconsistency of the two-pass procedures. We can show that the procedures we propose
are consistent in the setting with N — oo, fixed T for ez-post risk premia if we impose slightly
stronger assumptions on the cross-sectional dependence of the error terms than the ones introduced

in Assumption ERRORS below.

Missing factor structure. This paper deviates from the existing literature in the explicit
acknowledgment of high cross-sectional dependence among the error terms e;; in model (1). We
assume that there exists, unknown and unobserved to the researcher, a factor vy and loadings p; such
that

!
€it = Vglli + €4,

where the ‘clean’ errors e;; are only weakly cross-sectionally dependent to the extent that asymptot-
ically we may ignore that dependence (the exact formulation of this assumption appears later). The
assumptions on loadings p; guarantee that the factor structure is strong enough to be both detected
empirically and asymptotically important for inferences. An insightful discussion of a weak versus
strong factor structure and cross-sectional dependence can be found in Onatski (2012).

Kleibergen and Zhan (2015) provide numerous pieces of empirical evidence that residuals from
many well-known estimated linear factor-pricing models have non-trivial factor structures. For ex-
ample, they point out that the first three principle components of the residuals from different pricing-
model specifications used in the seminal paper by Lettau and Ludvigson (2001) explain from 82%
to 95% of all residual variation. The largest eigenvalue of the covariance matrix of residuals in all
these examples is very large and strongly separated from the other eigenvalues. Combining this ev-
idence with the theoretical results on the limiting distribution of eigenvalues from Onatski (2012),
one would suspect there is at least one strong factor present in the residuals. At least five other
prominent factor-pricing studies cited in Kleibergen and Zhan (2015) demonstrate similar evidence

of strong factor structures not accounted for in the residuals.

Relation between factor structure and correct specification. One may wonder whether



the fact that the errors €; in model (1) have a factor structure implies that the pricing model is
misspecified. The answer is “no”; the linear factor pricing model describes the expectations of excess
returns, while the factor structure in the errors is related to their covariances or co-movements. It
is easy to see that if the risk exposure and risk premia on the variables F} price the assets, then
the variables F; co-move the assets’ returns and produce factor-structure dependence in the returns.
However, not all co-movements of returns must carry non-zero risk premia; those co-movements
can be placed in the error term without causing misspecification of the pricing model. The correct
specification of a pricing model requires keeping those pricing factors F} o that carry small coefficients
of exposure 32; and produce only a weak factor structure in the returns. Dropping such observed

factors from the specification leads to asymptotically misleading inferences for the two-pass procedure.

Tradable factors. The literature on factor pricing distinguishes cases of tradable and non-
tradable factors. If a specific factor F; is a tradable portfolio and is supposed to be priced by the
same pricing model, then A = E'F}, and one can get an estimate of risk premia as the sample average
of excess returns. We do not make this assumption and allow A to differ from EF;. However, even for
tradable factors there is a value from having an alternative estimator based on the pricing equation
(1). Lewellen, Nagel and Shanken (2010) showed that it is relatively easy to price the market with
high cross-sectional R? by any set of portfolios as long as their number is large enough, but only if
one does not enforce that the risk premia be equal to the average return. The cross-sectional R? of
the pricing model is much smaller if one enforces such a restriction. Thus, having an estimator of the
risk premia that does not use the A = FF} condition and comparing it to the average excess return

for tradable factors is a valuable test of the pricing model.

2.1 Assumptions on factor structure

We consider the problem of estimation and inference on the risk premia A based on observations of
returns {ry, i = 1,...,N, t = 1,...,T} and factors {F}, t = 1,...,T} obeying a correctly-specified
factor-pricing model:

rie = NBi + (Fy — EFy)' B; + vy + €it, (2)

where the random unobserved factor v; has zero mean and is uncorrelated with F;. The idiosyncratic
error terms e; also have zero mean and are uncorrelated with F and v;. Let v = (81, VT Bb;, ;)
and Iy = (y1,...,7n) be the k X N matrix, where k = kp + k,. Technically, v; y 7 is more accurate
indexing, as parameters 7; may change with the sample size as do all other features of the data

generating process, but we drop N, T to reduce clutter.

Assumption FACTORS. The kr x 1 vector of observed factors F; is stationary with finite fourth



moments and a full-rank covariance matrix . The k, x 1 latent factors v; satisfies the following:

I i1 (B — ER) N(0, Q)
nr = ﬁ Zf:l E;lFtvé = n )
T = ﬁ 231:1 Ut g,

where vec(n) ~ N (Ogpky.15 Qur), o ~ N(Ogy 1, Iy,) and Fy = F, — LT Ry

Assumption LOADINGS. As both N and T increase to infinity, we have N*1F§VFN — I, where

I is a positive definite k x k matrix. Also assume that maxyr + Zfil v ||* < oo.

Additional assumptions are placed on the error term e; in Section 4. Most of our results can
be understood if one imagines e;; as independent both cross-sectionally and in the time series di-
rection, and also independent from all factors. However, our results hold under much more general
assumptions, an extensive discussion of which we postpone to Section 4.

In this paper we treat the loadings 8; and p; as unknown non-random vectors, the true values of
which may change with the sample sizes N and T. Assumption LOADINGS characterizes the size
of the loadings as the sample size increases. Notice that the loadings on the factors Fy 1 and v; are
treated differently than the loadings on F; . Following Onatski (2012), we will refer to the former
as “strong factors” and the latter as “weak factors.” The cross-sectional average of squared loadings
is closely connected to the explanatory power the factors exhibit in cross-sectional variation. The
assumptions we make on the loadings ;1 and p; guarantee that the explanatory power of the factors
F; 1 and v; dominates the noise from the idiosyncratic error terms.

The loadings ;2 are asymptotically of the same order of magnitude as ;1 divided by VT.
Assumption LOADINGS enforces that the standard deviation of the first-step estimate Bi,g be of the
same order of magnitude as ;2 itself. The modeling assumption that makes 3; 2 drift to zero at the
rate v/7T is similar to assumptions made in Kleibergen (2009). When N and T grow proportionally,
our assumption may be re-written in terms of statements that Ef\il Bi 2 5 converges to a constant
matrix, which are common in the weak factor model literature. Our results, however, do not need
to restrict the relative rate of increase in N and 7. It is also important that the assumptions on
loadings p; are such that the unobserved factor v; in the error terms is strong. This is consistent with
the empirical observations in Kleibergen and Zhan (2015). This also guarantees that the presence of

the factor structure plays an important role in the asymptotics of two-pass estimation.

2.2 Challenges of the two-pass procedure

As we formally show in Theorem 1 in Section 4, the two-pass procedure fails in the setting described
above. Specifically, the two-pass estimate }\\TP’Q of the risk premia on weak factors Fj 2 is inconsistent
and converges in probability to an incorrect value. The two-pass estimate XTp,l of risk premia on

strong factors F} 1 is V/T-consistent, but has a bias of order ﬁ, the same order of magnitude as the



standard deviation of its asymptotic distribution. This leads to invalid inferences on the risk premia.
The failure of the two-pass estimator can be explained by an interplay of two biases that can be

labeled as attenuation and omitted variable biases.

No missing factors case. The classical error-in-variables (attenuation) bias arises even when
there is no missing factor structure as long as some factors are weak (ko > 1). For this paragraph
only assume that there are no missing factors (k, = 0). The first-pass estimate BL of the risk exposure

coefficients 3; contains estimation errors that are stochastically of order O,(1/vT):

T -7
B = (Z thji/) Zﬁmt = (Bi +ui) (14 0p(1)),

t=1 t=1
where u; = % Zle E}lﬁteit, and the o,(1) term is related to the difference between Yp = E[(Ft —
EF,)(F; — EFy) ] and 7715, ﬁtﬁt’ . As a result, the second-pass regression encounters an error-in-
variables problem. In the case of exposure to a strong observed factor, the estimation error in B\i,l
is asymptotically negligible compared to the size of the coefficient 3; ;1 itself, and so this estimation
error does not jeopardize consistency. However, the estimation error in Bi,2 is asymptotically of the
same order of magnitude as the coefficient itself. The first-pass estimation errors in Bi’g behave like
a classical measurement error as the estimation errors w;o for different assets are asymptotically

uncorrelated. This leads to a classical attenuation bias.
General case. In the presence of a strong factor structure in the errors (k, > 0), the first-pass

estimates have the following form:

_1T

T
5 ~ ~, ~7“'t: : nT ki u; o
Bi (;ma) ;th <ﬁ T )(1+ (1)), (3)

where n = % Zthl E;lﬁtvg = 7. Again, the estimation error in @71 turns out to be asymptotically
negligible when compared to the sizes of risk exposures ;1 themselves, while the estimation errors
in @',2 ~ which are now equal to n7u;/v/T + u; — are of the size O,(1/V/T), which is the same order
of magnitude as the f;2’s themselves. The estimation errors of Bi,g distort the asymptotics and
invalidate classical inferences. However, this time (when k, > 0) the estimation errors do not behave
like classical measurement errors in two respects. First, the estimation errors for different assets are
correlated due to the presence of the common component np. Second, unless p; is cross-sectionally
uncorrelated with §;, the estimation error will be correlated with its own regressor f;.

There is an additional issue classically known as an omitted variable bias. Let us look at the

second pass (normalized) ‘ideal’ regression, which one can obtain by time-averaging equation (2):
VTF; = \/TX/,BZ + n;yTﬂi + \/Téi, (4)

where 1,7 = ﬁ Z;le vy = My ~ N(Og, 1,1, ). Here we introduced normalization VT to make



regression (4) more compatible with the classical OLS setup. The regression error terms v/7¢€; all
have orders of magnitude of Op(1), zero means and finite variances. Imagine for a moment that we
know (; and p; for all assets. Then, regression (4) will take the form of a classic OLS regression, with
regressors \/Tﬁw and p; being of order of magnitude O(1), in the sense expressed in Assumption
LOADINGS, that in the classical regression setting would lead to a v/N-consistent and asymptotically
Gaussian OLS estimator of the coefficients on them. The regressor v/T Bi,1 is, in contrast, of order
O(VT) and carries a lot of information which, in the classical regression setting, leads to an OLS
estimator of the coefficient A\ on this regressor that is both super-consistent and asymptotically
centered Gaussian. However, because p; is unobserved, it becomes a part of the error term in the
second-pass regression. If I'g, # O, x,, then even if there were no first-pass estimation error and we
knew f;, running an OLS in a regression of VTT; on VTB; would produce invalid results due to the

omission of p;.

3 Sample-split estimator of the risk premia

3.1 Idea of the proposed solution

The case of no factor structure in the error terms. We begin by solving the easier case when
no unobserved factor structure is present in the errors, while some observed factors are weak. In such
a case we have a classical measurement error-in-variables problem, and we solve it by constructing a
proper instrument with the help of a sample-splitting technique.

Let us divide the set of time indexes ¢t = 1,...,T into two non-intersecting equal subsets 77 and
T5. A natural choice is to make 71 the first half of the sample, and 75 its second half. Let us run the

first-step regression twice — separately on each sub-sample:

-1

Z ﬁt(j)ﬁt(j)' Z F Yr = (B + u )(1 + op(1))

teT; teT;

for j = 1,2, where ﬁ(j) =F — ﬁZteT F,, ug ‘T | ZteT F, )eit, and the o,(1) term is
related to the difference between ¥ and ‘T i ZteT ( )F 28

We impose assumptions on the errors e;; which guarantee that the two sets of mistakes, {ugl),
i=1,..,N} and {uZ@), i =1,..., N}, are conditionally independent. One may use an estimate of 3
from one sub-sample (for example, Bgl)) as a regressor while the other (in this example, BZ(Q)) as an

instrument. This leads to a valid IV regression. Indeed, the second-step regression we run is

In this regression the regressor and the instrument are correlated since they both contain f;, hence

the relevance condition holds.
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Similar ideas, such as sample splitting and jackknife-type estimators, have been previously em-
ployed in the many instruments literature (e.g., Hansen, Hausman and Newey, 2008). There, the
number of instruments grows to infinity with the sample size, and the authors introduce a modeling
assumption that makes the estimation error of the reduced-form coefficients be of the same order of
magnitude as the coefficients themselves. This is parallel to the dimension asymptotics for a number
of portfolios and the local-to-zero asymptotics for risk exposures of weak factors in our setup. In the
many instrument setting, the regular TSLS estimator has a significant bias, and classical inferences
are asymptotically invalid. Some proposed solutions employ the second-stage instrumental variables
regression where, for each observation, the regressor is obtained from a first-stage regression run on
a sub-sample that does not include that observation, and the original instrument is still used as an
instrument (see Angrist, Imbens and Krueger (1999) and Dufour and Jasiak (2001)). This forces the
first-stage error in the projection to be uncorrelated with the instrument for this specific observation.
Sample-splitting or leave-one-out type procedures restore consistency and classical inferences. One
can re-write the two pass-procedure as a GMM moment condition, then the two-pass corresponds to
an IV estimator with many instruments in the framework of Newey and Windmeijer (2009). How-
ever, the problem of missing factor structure does not fall within the Newey and Windmeijer (2009)
framework. The main departure is that Newey and Windmeijer (2009) consider i.i.d. sampling, while
the observations in our model (indexed by both i and t) are highly dependent.

Raponi, Robotti and Zaffaroni (2017) and Kim and Skoulakis (2018) consider a similar phe-
nomenon by assuming that N — oo while T is fixed. These papers suggest correcting attenuation
bias by directly estimating it. However, these estimation techniques would fail in the presence of

missing factors in the error term.

The case of factor structure in the error terms. The model with an unobserved factor struc-
ture has an additional problem — the presence of omitted (and unobserved) variable p; in regression
(4). Formula (3) suggests that we can obtain a noisy proxy for u; by taking the difference between
two estimates for the same (; obtained from different sub-samples. Consider two non-intersecting
subsets of time indexes, 71 and 75, and assume they have the same number, say 7, of time indexes.
Then
B(l) _ 3(2) _ 779) - 779) . @ _ 0?2

i i JT pi + (ug u;)-
Notice that both the coefficient on p; and the noise term ugl) —u§2) are of the same order of magnitude
Op(1/+/7T). This means that neither the signal dominates the noise — and thus we need a correction
to account for the noise, — nor the noise dominates the signal, and thus the proxy is not useless.

Assume that k, < kg, which implies that we have a larger number of proxies than needed,
and we have a choice among them. Now we assume that we have a fixed and full-rank k, x kp
matrix A, and use A(@(l) - @(2)) as the proxy. The idea is to regress the average return 7; on Bi(l)
and A(@(l) - Bi(z)) instead of on unobserved B; and p;. This solves the omitted-variables part of

the problem, but the error-in-variables issue still remains. That problem we solve via instrumental
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variables upon additional sample splitting. The ultimate idea goes as follows: split the sample into
four equal sub-samples along the time dimension; calculate the first-pass estimates of risk exposures
for all four sub-samples; run an instrumental variables regression using @(1) and A(Bi(l) — @(2)) as
regressors and B\i(?’) and (B\Z-(S) — 354)) as instruments. We may repeat the procedure by circulating

sub-sample indexes to improve efficiency.

3.2 Algorithm for constructing four-split estimator

Divide the set of time indexes into four equal non-intersecting subsets T}, j =1, ..., 4.

(1) For each asset ¢ and each subset j run a time-series regression to estimate the coefficients of
risk exposure:
~1
Z ﬁt(j)ﬁt(j)/ Z ﬁt(j)rit-
teT; teT;
(2) Run an IV regression of 7; = %Z;‘le Tit ON TEZressors xl(l) = (32-(1)/, (B\i(l) — B;(Q))’A’l)l with
instruments zzm = (ﬁi(g)/, (BZ-(?’) — BZ@)’)/, where A; is a non-random k,, X kp matrix of rank k.

Let A be the TSLS estimate of the coefficient on regressor @(1)

(3) Repeat step (2) three more times exchanging indexes 1 to 4 circularly; that is, the 2%

regression
is an IV regression of 7; on regressors %(2) = (/’8\7;(2)/? (3(2) — gfg))’A’Q)/ with instruments 27;(2) =

(51(4),, (@4) — 31(1)),)/; denote the estimate as A2, etc.
(4) Obtain the four-split estimate as Ayg = : 2?21 AU

(5) In order to compute an estimate of the covariance matrix for Aag, denote by XU the N x k
matrix of stacked regressors used in the j** IV regression, and by ZU) the N x k. matrix of
instruments from this regression (here k, = 2kp and k = kp + k). Let Py = Z (Z’Z)_1 7z,

calculate the following matrices:

~(1)~1) ~1)~1) \ ' Gi Okr Okk Okg
N Zi € Zp €
$ 1 G Ok G2 Opr Ok
=< Z : =10 o o o :
e Y ORE) S4)~4) kk Ok Gz Opg

Okke Opr Opr Gy

where € /\(]) i"" residual from the (§)* IV regression, Ef) = X(j)’Z(j)(Z(j)'Z(j))*lzgj), and
Gj = NX(J),Pz(j)X( ). Denote R = (1,1,1,1) ® (ZIkF OkFJ%)/, a 4k x kp matrix. Then,

~ 1 ~ 1 ~
Yis = —R'G1E0G'R+ =0
45 = 37 0 + T
where Q r is a consistent estimator of the long-run variance of Fj.
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3.3 Comparison with existing approaches

Kleibergen (2009) introduced weak observed factors, showed their impact on the estimation of the risk
premia and proposed robust procedures inspired by weak IV robust tests. An important prerequisite
for the robust tests is consistent estimation of the N x N cross-sectional covariance matrix of the
pricing errors. Kleibergen (2009) assumes that N is fixed, as consistent estimation of the covariance
matrix becomes problematic with a growing number of assets. A recent paper by Kleibergen, Kong
and Zhan (2020) demonstrates the problems arising from large N. The authors propose finite-sample
inferences for large NV and limited 7' that differ dramatically from asymptotic inferences valid for
fixed N and T' — oo. The finite-sample approach of Kleibergen, Kong and Zhan (2020) allows for an
arbitrary covariance matrix but requires Gaussianity of the pricing errors. The four-split approach we
propose has an asymptotic justification and does not place distributional assumptions on the errors.
However, we restrict the complexity of the covariance matrix by imposing the assumption of a latent
k,-dimensional factor structure in the pricing errors. This allows us to create proxies for the missing
factor loadings and to account for the biases that arise from the cross-sectional correlation of the
pricing errors.

Giglio and Xiu (2020) propose a three-pass method to estimate the risk premium of an observed
factor. The procedure extracts factors from a set of assets returns using the PCA, calculates the risk
premia of the extracted factors and then linearly transforms the estimated risk premia to price the
observed factor. The three-pass method is robust both to missing strong factors as well as to weak
or even irrelevant observed factors. The important assumption behind the three-pass method is that
all priced risk factors are pervasive and can be uncovered by the PCA, the assumption we do not
require. From this perspective, we consider our method as complimentary to Giglio and Xiu (2020).
Recently, Lettau and Pelger (2020) questioned the abovementioned assumption and demonstrated
that the PCA often misses weak factors that are empirically important for pricing. Lettau and Pelger
(2020) propose an alternative to the PCA that finds statistical factors explaining both the covariance
matrix and the expected returns of the assets, but, in contrast to the papers discussed above, it does

not consider the issue of inference on the risk premia.

4 Theoretical statements

4.1 Assumptions about idiosyncratic errors

Assumption ERRORS.

(i) The random vectors e; = (eyy, ..., ent)’ are serially independent conditionally on F, and E(e:|F) =

0, where F the sigma-algebra generated by variables (F1, ..., Fr) and (v, ..., vr).
(ii) Let p(t,s) = LN SN | eireis. Assume sup, sup,, B [(1+[[F[|*)(p(s,t)* +1)] < C.

(ili) Let Sp = + SN €2, Assume g ST F,S, = op(1) and %Z;‘FZI F,FS; =P Sgpe.
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(iv) Let Wy = —c SN Yieir. Assume E [(1+ ||F|?)|[Wi][?] < oc.

Assumption ERRORS are high-level assumptions introduced to establish our results formally. The
main goal is to allow for very flexible weak cross-sectional dependence among the idiosyncratic errors,
as well as flexible conditional heteroscedasticity and dependence in higher-order moments of errors
and factors. Serial independence of errors as stated in Assumption ERRORS(i) is consistent with the
efficient market hypothesis and the unpredictability of asset returns, and is generally consistent with
empirical evidence and tradition in the literature. This assumption may be weakened, though we do
not pursue this in the current paper.

The random variables p(s,t) stand for a (normalized) empirical analog of the error autocorrela-
tion coefficient, S; is an empirical variance, and W is a (normalized) weighted average error. These
variables are normalized so that they are stochastically bounded when the errors are cross-sectionally
ii.d. In order to clarify the content of Assumption ERRORS and to show that our assumptions are
more flexible than those typically made in the literature, first, we provide a set of more restrictive
primitive assumptions that are common in the literature and that guarantee the validity of Assump-
tion ERRORS. Second, we also provide an empirically relevant example not covered by the primitive

assumptions but which satisfies our more general Assumption ERRORS.

Assumption ERRORS*

(i) The factors {F}, t = 1,...,T} are independent from the errors {ej;, i = 1,..., N, t = 1,...,T}; the
error terms e; = (e, ...,en¢) are serially independent and identically distributed for different

t with Fe;; = 0 and Sup; ¢ Ee?t < 0.

(ii) Let En,r = E [ere}] be the N x N cross-sectional covariance matrix. For some positive constants

a, ¢ and C, we have limy 7 %tr(é’N,T) =q and

¢ < liminf minev (Exy 1) < limsupmaxev (Ey 1) < C.
N,T—o0 ’ N,T—00 ’

2
(iii) B| 5 2Li(e} — Bed)| <C.
Lemma 1 Assumptions LOADINGS and ERRORS* imply Assumption ERRORS.

The primitive Assumption ERRORS* is very close to those standard in the literature. Numerous
papers that establish inferences in factor models commonly assume that the set of factors {F;, t =
1,...,T} is independent from the set {e;;, i = 1,..., N, t = 1,..., T}, though cross-sectional dependence
of errors is allowed; see, for example, Assumption D in Bai and Ng (2006). Many papers allow for
both time-series and cross-sectional error dependence. We exclude time-series dependence, which is
justified by the efficient-market hypothesis in our application. Assumption ERRORS*(ii) is intended
to impose only weak dependence cross-sectionally as expressed by the covariance matrix; similar

assumptions appear in Onatski (2012) and in Bai and Ng (2006).
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Our high-level Assumption ERRORS is more general than the more standard primitive Assump-
tion ERRORS*. In particular, our assumptions allow for very flexible conditional heteroscedasticity
in the error terms and time-varying cross-sectional dependence, which seems relevant when we con-
sider observed factors that characterize market conditions like the momentum factor. Consider the

following example.

Example 1. Assume that errors e; have the following weak latent factor structure:
eir = mwy + it

where (wy, F}) is stationary, wy is ky, x 1, serially independent conditional on F, with E(w|F) =0
and E(wiw;) = Iy, (normalization). Assume E [(||Fy||* 4+ 1)(|lw¢||* +1)] < co. We assume that the
loadings satisfy the condition Zf\il mim, — I'x (the factors wy are weak), and N—1/2 vazl miy; = Dy
Assume that the random variables 7;; are independent both cross-sectionally and across time, are
independent from w; and F}, and have mean zero and finite fourth moments and variances 01-2 that
are bounded above and are such that N1 Zf\il 02-2 — 02, As proven in the Supplemental Appendix,
this example satisfies Assumption ERRORS.

An interesting feature of this example is that it allows the errors to be weakly cross-sectionally
dependent to the extent that they may possess a weak factor structure. Moreover, this factor structure
may be closely related to the observed factors Fy, which causes the cross-sectional dependence among

the errors e;+ to change with the observed factors F; and allows a very flexible form of conditional

heteroskedasicity. Indeed, the conditional cross-sectional covariance is
E(eje| F) = W%E(wtwﬂ]:)ﬂ'j + H{i:j}ag.

Since we do not restrict E(wyw;|F) beyond the proper moment conditions, the strength of any
cross-sectional dependence as well as error variances may change stochastically depending on the
realizations of the observed factors. This flexibility is extremely relevant for observed factors such
as the momentum. For example, one may consider wy = ¢ g(F, Fi—1,...), where ¢ ~ N(0,1) is
independent from all other variables; then for a proper choice of the function g(-) one may observe
higher volatility and cross-sectional dependence of the idiosyncratic error for higher values of the

observed factor Fj.

4.2 Asymptotic properties of the two-pass procedure

Let us denote A = A + %Zthl F, — EF;, a random quantity known as ex-post risk premia. It was

introduced in Shanken (1992). Now let us introduce two asymptotically important terms. The first
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term we refer to as “attenuation bias” is

N -1 N _
BA_ _ (Z B Z’) Zuiu;)\,
i=1

=1

while the second term we call the “omitted variable bias” is

N ~ A~
BOY = (Z 51'52{)
=1

~ , ~
E s —— 1y — P ).
i:15 \/T(Tl T 77T)

These terms are not biases in an exact sense as they are random, but rather they are sample analogues
of the expressions that are classically known as attenuation and omitted variable biases. Notice that
both quantities are infeasible as they depend on unobserved errors e;, unobserved factors v; and
unknown parameters A and p;. Both terms are kp x 1 vectors. Let Bi' and BYY denote k; x 1
sub-vectors containing the first k; components, while BQA and BQO Vo are ko x 1 sub-vectors of the last
ko components of B4 and BOV, correspondingly. We also adopt the following notation: I's,, is the
ka x k,, sub-block of matrix I' (defined in Assumption LOADINGS) corresponding to the limit of
N1 Zf\il VT Bi2pi- Other sub-matrices are denoted similarly.

Theorem 1 Assume that the samples {ry, i = 1,..,N, t = 1,....,T} and {F, t = 1,...,T} come
from a data-generating process that satisfies factor-pricing model (2) and assumptions FACTORS,
LOADINGS and ERRORS. Let }\\Tp denote the estimate obtained via the conventional two-pass pro-
cedure. Let both N and T increase to infinity without restrictions on relative rates. Then the following

asymptotic statements hold simultaneously:

-1

\/TBOV . B
( L= ((Ikﬁ; T (T 1) + Ik22u1k2> (Tpp + T p0) (100 = 0'A),

B9V
\/TBA " _
< BA1 = — (I T ) + Tiy STy Ty B,
2
\/T(X - )\) = N(ngF)7

and
VNT (Arpy — M — B = BV) \ 0,(1)
\/N(XTP,z—X2—Bé4—B2OV) e

Okl,kl Okl N

where X, = Z;lZSFzEgl, Tk, = ( > is a kp X kp matriz, and 1 = Zy,n is a kp X ky

Okaky ks
random matriz (with n as in Assumption FACTORS).

Theorem 1 states the rates of convergence for different parts of the two-pass estimator. Notice
that the theorem does not impose a relative rate of increase between N and 1. One observation is

that the two-pass procedure cannot estimate A at a rate faster than /T despite the fact that the
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dataset has NT observations of portfolio excess returns, and one could expect the v NT rate. This

comes from the fact that the correct specification (1) if averaged across time, gives
Ti = A3 +Ei. (5)

Thus, even if 3; were known, the ‘true’ coefficient X in the only ideal regression we have (that is,
regression of average return on ;) differs from the parameter A we want to estimate, by the term
% Z;‘FZI F; — E'Fy, which, if multiplied by VT, is asymptotically zero mean Gaussian with variance
Qp. Notice also that if the limits of the normalized B®Y and B are non-zero, then these terms
(together with Xl) asymptotically dominate estimation. The two-pass estimate B\\TP’Q of the risk
premia on weak factors Fj 2 is inconsistent and, asymptotically, has a poorly-centered, non-standard
distribution. The two-pass estimate XTPJ of risk premia on strong factors F}; is \/T—consistent,
but this estimate has a bias of order % and an asymptotically non-standard distribution as long

as some of observed factors are weak (k2 > 0). This makes standard inferences (based on the usual

t-statistics) invalid.

4.3 Consistency of the four-split estimator

Theorem 2 Assume that the samples {ry, i = 1,...N, t = 1,.. T} and {F;, t = 1,...,T} come
from a data-generating process that satisfies factor pricing model (2) and Assumptions FACTORS,
LOADINGS and ERRORS. Assume that krp > k,. Let both N and T increase to infinity, then

VT (s — A1) = VT (A — A1) + O,(1/V/N) = N(0,9Qp),

\/min{N, T}(X4S’2 - )\2) = Op(l)

Theorem 2 establishes the consistency rate for the four-split estimator X45 under exactly the
same assumptions we showed the failure of the two-pass procedure. The four-split estimator for
the risk premia on the strong observed factor is v/T-consistent, asymptotically equivalent to A1 and
asymptotically Gaussian, while the four-split estimate of the risk premia on the weak observed factor
is consistent, and the rate of convergence depends on the relative size of N and T. Theorem 2
shows that the four-split estimator has superior asymptotic properties in comparison to the classical
two-pass procedure.

Theorem 2 can be generalized to allow local misspecification of the pricing model. The statement
of the theorem remains true if the missing factors carry a risk premium of size up to 1/v/7. One
way of expressing this is to assume that the expectation of v; is not zero but is of order no larger
than 1/v/T. The presence of the risk premia on the missing factors does not change the first stage
estimation. The proof of Theorem 2 only uses that 1, = ﬁ Zle vy is asymptotically Op(1) but
not its mean-zero property.

If we consider an asymptotic setting where N — oo while T' remains fixed, one can prove that
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under slightly stronger assumptions on the error term, the four-split estimate is consistent for the ex-
post risk premia X, and the t-statistics are asymptotically Gaussian. The distinction between ex-post
and ex-ante risk premia is discussed in Shanken (1992) as well as in Raponi, Robotti and Zaffaroni
(2017) and in Kim and Skoulakis (2018). We need to strengthen the cross-sectional dependence
assumptions on the error terms to the extent that the law of large numbers and cental limit theorems
hold when summation is done over the cross-sectional index only. The assumptions in Raponi, Robotti
and Zaffaroni (2017) and Kim and Skoulakis (2018) are of this type.

One important assumption for the validity of our procedure is that we know the number of
missing factors k,. One may combine our estimator with a consistent selector of the number of
factors as Onatski (2009), Bai and Ng (2002) or Gagliardini, Ossola and Scaillet (2019) do. A
similar assumption/suggestion is used in Giglio and Xiu (2020) where properties of the estimator
crucially depend on the proper choice of the number of factors. Underestimation of the number of
missing factors leads to the omitted variable bias, while overestimation may produce weak instrument

distortion on step (2) of our algorithm and calls for weak IV robust inferences.

4.4 Inference procedures using four-split estimator

Theorem 2 shows that the new four-split estimator is consistent but does not provide a basis for
confidence set construction or testing. Apparently, the stated assumptions are not strong enough
to obtain the asymptotic distribution of the four-split estimator. Below we formulate the needed
additional high-level assumptions and establish a result about statistical inferences using the four-split
estimator. We also provide primitive assumptions that will guarantee the validity of the additional
assumptions in examples.

For a set of vectors aj, we denote by (%’)?;1 = (al,...,aly)" a long vector consisting of the four

vectors stacked upon each other; we denote by (ajj+);<j+ the vectors aj;+ stacked together.

Assumption GAUSSIANITY Assume that the following convergence holds:

VT Eve
N 1 N
Ly | e | D Lsse L | @l |
VN i—1 (Té'i“z(]'))jle VN i=1 (e ?=1
(Tuuf) e (&.4%)i<s*

where § is a Gaussian vector with mean zero and covariance Y.

Assumption COVARIANCE Assume that % ZZ]\LI &€, =P X¢, where & and Y¢ are defined in
Assumption GAUSSTANITY.

The assumptions we maintained in the previous sections are enough to guarantee that ﬁ Zf\i 16
is Op(1). Assumption GAUSSIANITY establishes the asymptotic distribution of that quantity, while

Assumption COVARIANCE allows one to construct valid standard errors. Below we provide sufficient
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conditions for the two new assumptions in the two leading examples discussed before: one where
the observed factors are independent from the errors and the example of factor-driven conditional

heteroskedasticity.
Lemma 2 Assume that Assumption ERRORS* holds, and additionally,
(i) E||F||® < oo; EH‘%' Sier, FrFY — Sp|| = 0;
(ii) masx; |l < C;
(111) %tr(é’fvi) — az and %’y’&v;p’y — Ty, where Ty is a full rank matriz;

. N N N N
(iv) ﬁ Zz’l:l Zig:l Zig:l Zi4:1 |Eeiteigteigeeist| < C;

then Assumption GAUSSIANITY holds. If in addition
lEnT —dg(EnT)|| = 0 as N,T — oo,

then Assumption COVARIANCE holds as well.

Lemma 3 Assume we have a setting as in Example 1. Assume additionally that conditions (i) and

(ii) of Lemma 2 hold and the following is true:
(i) E [([IF¢]® + 1)flwe[®] < oo;
(11) % Ef\;l ot — g and % Zi\il 027y — Ty, where Ty is a full rank matriz.

Then Assumption GAUSSIANITY holds. If in addition I'ry = 0, then Assumption COVARIANCE

holds as well.

Assumption GAUSSIANITY is a result of strengthening moment restrictions (condition (i) in
both Lemmas), guaranteeing that the asymptotic covariance matrix is well defined and full rank
(condition (iii) in Lemma 2 and condition (ii) in Lemma 3) and further restricting cross-sectional
dependence (condition (iv) in Lemma 2).

From a theoretical perspective, the derivation of a proper central limit theorem in a factor model
setting with a relatively free cross-sectional dependence structure is a major endeavor for two reasons.
The first difficulty here is that the quite unrestrictive structure of the cross-sectional dependence of
idiosyncratic error terms e;; makes &; cross-sectionally dependent, though the correlation between &;
and &+ for i # i* converges to zero for large sample sizes. Without imposing further discipline on the
structure of dependence, it is hard to obtain a central limit theorem. Secondly, the components &;
and &j ;+ are quadratic forms in the original errors. Here we use the asymptotic results established
for exactly this setting in a separate paper Anatolyev and Mikusheva (2021). There, we exploit
time-series conditional independence of errors to obtain a central limit theorem for cross-sectional

sums.
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Theorem 3 Assume that the samples {ry, i = 1,..,N, t = 1,.T} and {F;, t = 1,....,T} come
from a data-generating process that satisfies factor pricing model (2) and Assumptions FACTORS,
LOADINGS, ERRORS, GAUSSIANITY and COVARIANCE as both N and T increase to infinity.
Assume kg > k,. Then

$18 Qs — A) = N(0, I,).

Theorem 3 suggests the use of ¢- and Wald statistics for the construction of confidence sets and
testing hypotheses about values of the risk premia. These inference procedures are standard and can
be implemented using standard econometrics software. From a theoretical perspective, however, the
asymptotics of the four-split estimator are not fully standard. Notice that the coefficient 7, 7 on the
omitted variable p; is random, even asymptotically. This implies that the amount of information
contained in the sample, which is used to correct for the omitted-variable problem, is random as well,
and thus results in the scale of uncertainty depends of the four-split estimator depends on random
variables 7, 7. Theorem 3 shows that a properly constructed proxy for the asymptotic variance
restores the asymptotic Gaussianity of the multivariate t-statistic. Another important aspect of
Theorem 3 is that inferences or construction of a proxy for the variance do not assume knowledge
of the number or identity of strong/weak factors. This is a desirable feature, as we do not have a
procedure that can credibly differentiate between weak and strong factors.

Theorem 3 is effective for any choice of instruments governed by a choice of matrices Ay, ..., A4 in
the four-split algorithm. Intuitively, the informativeness of a proxy for p; constructed as a difference
in estimated betas is related to €,r, the covariance matrix introduced in Assumption FACTORS,
which is not easily estimable. The optimal choice of Aj,..., A4 is an interesting topic for future
research and is beyond the scope of the present paper.

Theorem 2 also states that the difference between X4S and A is of order \/]1\77 Typically, N is

infeasible. However, if all observed factors are portfolios themselves and are priced by the same
model, then we have A = E'F;. In such a case the literature suggests the use of an alternative feasible
estimator \ = % Zthl F;, which in this case is equal to A Thus, in this special case we have two
competing estimators for A and can create a test for model specification. In particular, the statistic
compares the difference between 3\\45 and X to zero. The proof of Theorem 3 shows that X45 Y
converges to zero at the rate v/ NT, and ilv is a proper proxy for the variance that delivers a x?

asymptotic distribution to the corresponding Wald statistic.

5 Empirical Application

5.1 Simulations using artificial data

The goal of this section is to explore the size of potential deficiency of the two-pass procedure and
performance of the four-split and competing estimators in a setting close to a real-life application.

We calibrate the data-generating process to match the data set of the monthly returns on N = 100
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Fama-French portfolios, sorted by size and book-to-market and asset returns’ relation with the 3
Fama-French factors (market, SmB, HmL). The data are taken from Kenneth French’s web-site. We
substitute missing values with zeros. The returns are monthly (not annualized), value-weighted,
the excess returns are calculated using one-month Treasury bills. The time span is from 01:1972 to
04:2020, resulting in 1" = 580.

First, we run PCA on the panel of excess returns, call the first three principle components Gy
with their loadings 7;, and the fourth main principle component g; with loadings ¢;. We use the
normalization 31, (G4, 9:)' (G4, 9:) = Ii, making the variance of each factor 1/T. We compute
sample means of the loadings, i and pg, respectively, and their sample variances, V. and vs. We
calculate the sample variance 03 of the residuals €; from a regression on the four main PCs. In
order to preserve the relation between PCs and Fama-French factors, we run a regression of F} on
a constant and Gy, obtain intercepts 7o r, slopes nr and residual variance matrix ,cs. In order to
have a proper comparison consistent with our theoretical results, we measure the strength of a given
factor as the total variation in the data it produces; that is, its strength is measured as a sum of
squared loadings on that factor times the variance of the factor. The strengths of the four main PCs
and Fama-French factors are reported in Table 1. These numbers can serve as a reference for the
simulation results below.

Table 1: Fractions of variation explained and strengths of principle components and Fama-French factors in Fama-
French data set

1st PC 2nd PC 3rd PC 4th PC
Fraction of variation explained 73.6% 5.9% 3.0% 1.3%

Strength of principle components 2829 229 116 49
market SmB HmL
Strength of Fama-French factors 2263 482 230

Simulation design. We simulate the data by following three steps. In the first step, we strive
to match the relation of the principle components and Fama-French factors. We simulate G; ~
i.i.d.N(0,13/T) and v; ~ 4.3.d.N(uy,V,), and then construct the simulated ‘observed factors’ by
F; = no,r +nrGi+wy, where wy ~ 1.4.d.N (0, £,¢5). In the second step, we introduce one more factor,
part of which represents a missing factor structure in the errors, by simulating g; ~ .9.d.N(0,1/T)
and ¢; ~ i.i.d. 94 - N(pg,ve). The parameter ¥y indexes the strength of the missing factor. Finally,
we introduce one more observed factor, which we label as mom because we want to imitate the
relation of the momentum factor to the PCs. We simulate mom; = 10.mom + Nmom Gt + ut +v¢, where
10,mom and 7mem are coefficients from a regression of the momentum factor on the PCs in the data.

The simulated error is composed of two parts: vy ~ i.i.d.N (0, p02,,,.) is uncorrelated with returns

2

= om) 18 @ part of excess returns and is the reason for

or other factors, while u; ~ i.i.d.N(0, (1 — ¢)o

2

= om 18 the residual variance from the regression of mom on

using mom in pricing the assets. Here, o
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where & ~ N (0, O'g), so that they are correlated with the loadings on g;. Now, by increasing a we

PCs. In all simulations, we set ¢ = 0.001. We generate loadings on u; according to §; =

can increase the correlation, and by increasing Ug we can increase the strength of mom.
In the third step, we generate a cross-section of returns and impose a correct pricing model.
We generate the demeaned part of excess returns according to 7}, = Gyv; + gi¢; + uid; + €i, where

€it ~ i.i.d.N(0,02) is an idiosyncratic error. The implied true betas are

F,o\ 7! F 5o\l e
Bi = var ! cov L)ry ) =var t nEvi/ ‘
momt mony momy NmomYi/T + (1 — 90)0’72nom5i

The correctly priced excess returns are obtained by adding risk premia: r;; = 7}, + A\B;, where A is

the sample means of the Fama-French and momentum factors.

Methods compared. We compare multiple estimators including the two-pass. The four-split
estimator uses A1 = ... = A4 = (1,0,0,0)". Giglio and Xiu’s (2020) three-pass estimator depends
on the number p of the principle components selected; we run it for p = 4 and p = 5. Lettau
and Pelger (2020) do not address the question of estimation of risk premia but instead suggest an
alternative way to construct factor mimicking portfolios. Unlike the PCA, which extracts factors
based on covariances among returns, their method takes into account the expected returns and can
pick up a factor that has a high risk premium but is not strongly correlated with returns (i.e., a weak
factor). We combined the ideas in the two mentioned papers by implementing a three-pass estimator
that uses Lettau and Pelger’s (2020) approach in place of PCA to extract factors in the first step.’
The theoretical statistical properties of this combined procedure are unknown; we computed the
standard errors for these estimates in the same way as for the procedure of Giglio and Xiu (2020). In
simulations, we used the value of regularization coefficient v = 20 and show the results for K = 4 and
K =5 factors. We also implemented two-split IV estimation without creating a proxy for the missing
factor, which would work in the case of no missing factors, but, as expected, it is not competitive in
the current setting.5

In all simulation experiments, we read off biases, ‘absolute’ biases, and standard deviations of the
estimates for the momentum risk premium, as well as actual 95% coverage rates for the risk premium
on the momentum factor. An ‘absolute’ bias is a characterization of the centrality of a distribution
keeping factors fixed. We calculate the bias averaged across R(;) = 100 draws of simulated cross
sections (such as 7;, ¢;, etc.) keeping factors fixed, then take its absolute value and average across
each of R(;) = 100 draws of time-series processes (such as Gy, Fy, momy, etc.). Thus, the total number
of simulations is R(; ) = R(;)R(;) = 10,000.

Simulation results. In the first set of experiments, we explore the effect of a change in the

strength of the missing factor. We set @ = 0.1 and ag = 0.3, and then vary ¥4 from 0 to 5, the value

"We are grateful to a referee for suggesting this idea.
SThe results on the two-split estimation are available upon request, we do not report them here in order to remove
the clutter.
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Figure 1: Simulated statistics for estimates and coverage rates for momentum risk premium
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Notes: The strength of factor g: measured as the total variation explained is on the horizontal axis. The number of
simulations of the time series process is Z(;y = 100. For each time series draw, we simulate R(;y = 100 cross-section

draws. The total number of simulations is 10, 000.

0 meaning no missing factors, the value 1 corresponding to the strength of the fourth PC. Figure 1
shows the performance measures for different estimators, with the strength of the missing factor (as
measured by the total variation explained by the factor, % Zfil d)?) on the horizontal axis. One can
see that the absolute bias of the two-pass estimator grows fewfold larger than that of the four-split
estimator as the missing factor g: increases in importance. One can see that if the missing factor
is of the size of SmB (see Table 1), the two-pass can easily get coverage around 60% instead of the
declared 95%, while the four-split largely restores the inferences. The methods of Giglio-Xiu with
p = 4 and Lettau-Pelger with k¥ = 4 factors produce nearly identical results because they extract
nearly identical factors (somewhat noisy versions of Gy and g;) that do not span mom;. This leads

to an extremely biased (though with a low variance) estimator of the risk premium on mom and to

23



nearly zero coverage of the corresponding confidence sets. It is interesting that these two methods
drastically diverge if one extracts 5 factors. Adding the fifth factor to the three-pass with PCA
recovers only a small portion of mom and still leads to a large bias, but the Lettau-Pelger procedure
with 5 factors captures mom well due to its non-trivial risk premia. This illustrates the importance
of the major assumption underlying the idea of the three-pass procedure — the ability to uncover all

priced factors.

Figure 2: Simulated statistics for estimates and coverage rates for momentum risk premium
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Notes: The strength of the momentum factor mom is on the horizontal axis. The number of simulations of the time
series process is [Z(;y = 100. For each time-series draw, we simulate R(;) = 100 cross-section draws. The total number

of simulations is 10, 000.

In the second set of experiments, we set ¥4 = 3 and a = 0.1, and then vary Jg from 0.1 to 0.9
with a step of 0.1, which makes the strength of the missing factor (as measured by % Zfil ¢7) fixed
at 466, and the strength of the momentum factor (as measured by S~ | 524% ST, (momy — mom)?)

increase from 12.7 to 124.0. Figure 2 shows the performance measures for different estimators, with
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the strength of the momentum factor on the horizontal axis. As mom becomes stronger all methods
except both three-pass procedures with 4 factors start producing reliable estimate and inferences,
especially once the strength of mom exceeds 60. Both three-pass procedures with 4 factors fail to
uncover the pricing factors correlated with mom, although, as we can see, as mom become stronger
the performance of both methods somewhat improves. The Lettau-Pelger method extracts the factor
correlated with mom faster than the PCA as it has a non-trivial risk premium. This distinction
gets clear when we compare the three-pass procedures with 5 factors extracted by the PCA method
and with 5 factors extracted by the Lettau-Pelger procedure. When we compare the four-split with
three-pass using the Lettau-Pelger procedure with 5 factors, we notice that the four-split has a higher
average variance for all levels of factor strength as probably should be expected from an IV estimator.
What is puzzling and surprising of the Lettau-Pelger version of three-pass with 5 factors is that the
variance is not reflective of the difficulty of estimation in that it stays nearly constant, which occurs
in a stark contrast to the bias which is very high when mom is weak. This leads to misleading
confidence sets for this method when mom has strength lower than 20. The coverage of the four-
split also deteriorates for weak mom, to a much lesser degree though. In such situations, it may be

advisable to use weak IV robust tests at the IV step of four-split estimation.

5.2 Size of the effect in empirical application

In this subsection we run all the estimation procedures described above on two data sets, which
we describe further below. We estimate the risk premia on 3 Fama-French factors (market, SmB,
HmL) and the momentum factor. For estimation of the long-run variance of observed factors we use
the Newey-West estimator with 4 lags (the results are not sensitive to a lag choice). The four-split
estimator uses A; = (1,0,0,0)’, the Lettau and Pelger (2020) procedure uses v = 20. Since all the
observed factors are tradable, we have an alternative (and the most efficient) estimator of the risk
premia, 2= %Zthl F;, the average excess return. This allows us to discuss the quality of different
estimates relative to this benchmark. Also, having two valid estimates with different efficiency allows
us to test for a correct specification of the linear pricing model. The specification test based on the
Wald statistic is equal to the squared difference between the (two-pass or four-split) estimate and the
average factor, weighted by an inverse of the difference in covariance matrices. The validity of such
a test comes from the proof of Theorem 3. We do not report the specification test for the three-pass
estimates as we are not aware of one.

The first data set contains the monthly returns on N = 100 Fama-French portfolios sorted by size
and book-to-market; they are described in the previous subsection. The time span is from 01:1972
to 04:2020, resulting in T = 580. The results are reported in Table 2. The two-pass procedure
produces a very high value for the momentum risk premium, and also falsely overstates the accuracy
of that estimate to such an extent that the two-pass procedure strongly rejects the linear pricing

model with four factors, while the same specification test does not reject the model with only 3
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Table 2: Estimates of monthly risk premia on Fama-French factors and momentum factor and tests of specification,
using monthly returns on 100 portfolios sorted by size and book-to-market

J Procedure Market SMB HML MOM Wald p-value
average excess return —  0.556  0.128 0.263  0.656
0.192 0.124  0.145 0.185
Two-pass 0.612 0.099 0.311 1.905 22.96 0.000
0.194 0.131  0.152 0.365
Four-split 0.533 0.151 0.292 0.515 0.81  0.937
0.198 0.142  0.159 0.804
Giglio-Xiu (p = 4) 0.471  0.206 0.235 —0.155
0.237 0.127  0.147 0.105
Giglio-Xiu (p = 5) 0.471  0.207 0.235 —0.155
0.243 0.128  0.147 0.106
Lettau-Pelger (K = 4) 0.401  0.253 0.242  0.048
0.198 0.124  0.142 0.123
Lettau-Pelger (K = 5) 0.399 0.255 0.242  0.048
0.198 0124  0.143 0.123

Notes: The sample size is T' = 580. The standard errors are computed using the Newey-West estimator with 4 lags.
In the Giglio and Xiu (2020) three-pass PCA method, p is a maximum number of latent factors to use. In the Lettau
and Pelger (2020) RP-PCA procedure, K is a number of factors; the risk premium penalty + is set to 20.

Fama-French factors. We attribute this to the momentum factor having only weak correlation with
returns. The four-split procedure, however, produces an estimate of the momentum risk premium
close to the average excess return and accepts the correctness of specification. The four-split estimates
have much larger standard errors in comparison to the average excess returns, which is an implicit
confirmation of the weakness of the momentum factor. All the variations of the three-pass produce
momentum risk premium estimates very far from the benchmark average return on the momentum.
This can be explained by the failure of both the PCA and Lettau—Pelger procedure to extract a risk

factor correlated with the momentum. The situation here is that the test assets cannot capture all

Table 3: Estimates of monthly risk premia on Fama-French factors and momentum factor and tests of specification,
using monthly returns on 25 portfolios sorted by size and book-to-market and 25 portfolios sorted by size and momentum

4 Procedure Market SMB HML MOM Wald p-value
average excess return —  0.654  0.199  0.331  0.658
0.166 0.100 0.119 0.140

Two-pass 0.673 0.167 0.410 0.740  5.67 0.225
0.167 0.115 0.136 0.148

Four-split 0.652 0.237 0.373  0.715  2.73  0.605
0.169 0.112 0.135 0.151
Giglio-Xiu (p = 4) 0.690 0.307 —0.033 0.427
0.379 0.102 0.093 0.172
Giglio-Xiu (p = 5) 0.652 0.202 0.364  0.661
0.249 0.094 0.120 0.149
Lettau-Pelger (K = 4) 0.608 0.230 0.218 0.595
0.182 0.095 0.092 0.150
Lettau-Pelger (K = 5) 0.592 0.178 0.358  0.646
0.174 0.091 0.113 0.140

Notes: The sample size is T' = 1120. The standard errors are computed using the Newey-West estimator with 4 lags.
In the Giglio and Xiu (2020) three-pass PCA method, p is a maximum number of latent factors to use. In the Lettau
and Pelger (2020) RP-PCA procedure, K is a number of factors; the risk premium penalty + is set to 20.
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the pricing information that is necessary to explain the momentum risk premium, but the four-split is
still able to uncover some information related to it, though the signal is very weak here as suggested
by very large four-split standard errors.

The second data set is intended to be more informative in capturing the momentum. It contains
25 size and book-to-market sorted portfolios and 25 size and momentum sorted portfolios taken from
Kenneth French’s web-site, hence N = 50. The time span is from 01:1927 to 04:2020, leading to
T = 1120. The results are reported in Table 3. Here all the methods are in agreement. The best
results for the three-pass approach is achieved with 5 factors. Interestingly, the four-split exhibits
almost no loss of efficiency in comparison to the benchmark and other estimators. Another fact worth
pointing out is that a small mistake in estimating a number of factors (like running the three-pass

with 4 PCA factors) can yield huge bias while it has almost no reflection on the reported variance.
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Appendix A: proofs

Note that Lemma S1 often referred to is contained in the Supplemental Appendix.

Proof of Theorem 1. Assumption FACTORS guarantees that vT'(A— ) = N(0,Qp). The first-
pass (time series) regression yields equation (3), where we use Assumption FACTORS, and o,(1)

appears from the difference between ¥ and 7! ZtT:I ﬁ’tﬁ{ .
Iy, Oky ks

Denote Qp =
( 0k27k’1 \/TI/Q

statement: as N, T — oo,

) . Notice that Qr/vT — Ii,. Below we prove the following

AT Z QTBZ/BzQT = (Ikﬁa ,?//)F(Ikgvm + IkQE Ikg (6)
171
Indeed,
1 N ~ 1 N /
N ; QrBiBiQr = N ; <QT& +Qr \Fuz + QTUZ> (QTBz + QT\FM + QTU1>
N
= % > (kg ir) v + Qrs) ((Tngs i) vi + Qrs) (7)
=1

where N = QTnT/\/T = Ty,m =1 is kr X k, Gaussian random matrix. Let us show that

7N
N Z iy, — Xy (8)
i=1
Indeed, due to statement (4) of Lemma S1 we have that = le\il Z?zl ZST:LS# FFlejteis = 0,(1).
Thus,

T N T T
NZuzu;: r (TNZZZFtF eztezs>

i=1 t=1 s=1

N T
. 1 ~ =~ _
B EFl (TN Z;;FtFt/egt) ZFl + Op(l) —P By,

1= =
where the last convergence comes from statement (3) of Lemma S1. Statement (5) of Lemma S1

implies

VT &
W Z%u; —P Ok,kp- (9)

i=1

Combination of equations (7)-(9) and Assumption LOADINGS implies (6).
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For the “attenuation bias,”

VIB{\ Ly s ) QT o
( Al )ZQTl\/TBA:—(NQT;@ﬂiQT> \/%N;Uiuik

By
Combining equations (6), (8), A =P A and Q7 /vT — Ty, we arrive at

["a

1
B ):»—((Ikﬁ; DT (T 1) + Tay S I,Q) T, Su.

For the “omitted variable bias,”

) v = (Sadier) &S et
Byv ) T S\ N - Qr it (o, = nrA)-
Let us consider the following expression:
1 ZN L v T
~ ; /
N it = N7 E : i i) - 1

By Assumption LOADINGS, % Zf\il QrBip, — Ty and + Zfil pipth — T, while Qrnr /VT = 7.
The last term in equation (10) is op(1) by statement (5) of Lemma S1. Thus,

N
1 ~
=1

We also note that n, 7 — 77’TX = 1, — N’ A. This implies validity of the asymptotic statement about

BV contained in Theorem 1.

For the remaining part, by time averaging equation (2) we get 7; = BZ’X + ué% +€;. Combining

the last equation with equation (3), we obtain

!/

Ty = //B\;}V\ ;N \II/LZT (nv,T - 77&’;‘) + €

Thus, we arrive at

R N N\t N N
Arp — A — B4 - B = (Z ; ,') <—Z(ﬁi—w)u;)\+25i€i>
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Let us prove that the numerator is asymptotically O,(1):

\/? ( ZQT Bi + ”jﬁ’ ’A+ZQT@61>

= (Ing3 1) \/>Z'Yz € \/>ZQTU16@+O (1). (11)

By statement (5) of Lemma S1, we have /% SN i = Op(1) and L+ LS i = 0,(1),
which makes the first summand in equation (11) Op(1). Consider the second term in equation (11)

and recall that Q7/vT = O(1):

N T T ~
\/>ZQTU161—\/> \/» ZZZFseiseit

Qr R;
\FF\FTZZ:

ewen + QT 2 1 \/> Z FtSt

M

st

The first term is Op(1) by statement (4) of Lemma S1, while the second term is Op(1) by Assumption
ERRORS(iii). This ends the proof of Theorem 1. [J

Proof of Theorem 2. We first discuss the asymptotics of just one IV regression described on
step (2), then this argument will be repeated for the other three IV regressions from step (2) of the
algorithm. Denote 7 = | %] = |T}].

The time-series regression on a sub-sample j gives us that

B9 = (o + ) (14 0y1),

where ;17 = f ZteT IF( )vg = n;, 1; is random kg x k, matrix with the distribution vec(n;) ~
N(Ok ko1, Qor), and the op(1) term is related to the difference between ¥ p and 1 Zte F(J) t(j)/.

On step (2) we run an IV regression of y; = £ thl ;¢ on the regressor

2 = Bfl) _ @(1)
CN A A ) A - )
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with the instruments

L) B\i(g) _ 3(3)
i ’5\2(3) . ’5\1(4) 3, T\/l74 UEK i/ T (u 2(3) B u£4)) .

The main estimation equation can be written in the following way:

1 37 T 5(1) s T T (1)
_*Zn‘t NBi + Nz‘f’@z—Aﬂi + - A i +e; — )\Ui
T ﬁ VT VT
= X,B\i(l) + CLLTAl (BZ(I) — 51(2)) +e; — X'ugl) — aLTAl (ufl) — uEQ))
Thus, we can write it as follows:

yi = (Vyar )z + e, (12)

Here we use the following notation:

=€ — X’ugl) — a1 7A1 (ugl) — u,@). Notice that a1 is a random 1 X k, matrix that is well

(1)

and €;
defined with probability approaching 1 (as 11,7 and 7 7 weakly converge to two independent random
Gaussian matrices), and a7 is asymptotically of order Op(1).

The estimator computed on the step (2) of the four-split algorithm is
AW = Ly, Okp k) ( X 70 (700 W)~ 70y Xu))*l Xz (70y z0) 7! Wy,
Using equation (12) we obtain:
~ ~ -1
AD =X = (Ip, Ok <X(1)’PZ<1>X(1)) XOp e, (13)
where Py is a projection matrix onto Z. Let us introduce two normalizing matrices:
Qr  Okpk, Qr  Oppkp
Qm = ) Qz = .
Ok, kp ﬁjkv Ok ke \/TIkF
The dimensionality of @, is k x k, where k = kr + k, is a number of regressors in the second stage

regression, while the dimensionality of Q. is 2kr X 2kp, where 2k is the number of instruments.

The matrix Q7 was defined in the proof of Theorem 1. Now,
Qr  Okpip ut)
Qo) = | Avuryi+ ’ o )
o VTA, T4, )\ o

33



where

~ I oz I 27, ~
Air = ( kp Qr NG ) N ( kp ko711 ) _ A,
Ok b 2A1(Mm1 — M2,7) Oky ke 241(m —12)

RS Qr Ok kg . Tky  Okpkp
VT \ VTA, —VT4A, A —A )
Here 7y, is a kp X kp matrix which was introduced in Theorem 1. We also have

(3)
T 0 \
szlgl) = | Al rvi + Qr/VT Ok ke VT u1(4) ;
’ IkF _Ikp u;

)

where

At = ( T QTUL\FT ) N ( Tip 273,13 ) _an
’ Okpkr 2037 — M) Orpkr  2(13 —ma)

( Qr/NT Ok gy ) R ( Tiy Okpokp )
Ikp _Ikp IkF —1I;

F

Statements (1) and (5) of Lemma S1 imply that

\/TNZuEJ)uEJ*)/—Op(l) for j# 5%, (14)
i=1
T N
T 20h e = 0,(1) (15)
=1

This together with Assumption LOADINGS gives us that
1 ~
52 Q.M Q, = A Ay (16)
i=1

By Assumption LOADINGS, T’ is full rank, while Ay and A3 are full rank with probability 1. State-
ments (3) and (4) of Lemma S1 imply that

N
% Z ugj)ul(-j)/ —P X, (17)
i=1
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Thus, we obtain

N
1 (1) (1) o %7 Ty Okp kg Yu  Okpkp Ty,  Iip

— Q.z.727"Q, = ATA] +4 ’ ’

N ; et Aar) z 1 1 I —Ik Zu —Ik

kr F OkFJﬂF OkFJCF F

T, STy TiySu )

(18)
Sulp, 25

= ATAY +4 (

Let us now show that

\f 2 Qe = 0,(1). (19)

We have e(l) = é, X’uz(-l) — a1, 1A (y; 1) _ u(z)) The sum in (19) contains summands of the form

\/ N LS i@ u Z ) \FZZ | €l u) and L ZZ 1 Z] V' (]) . All three types of summands are O, (1)
due to statements (5), (2) and (1) of Lemma S1, correspondingly. Putting equations (16) and (18)

together, we obtain

NQ'OnT1Q; ' =

QXVZ0Q. (Q.20720Q.\ " .2V x W,
N N N

Q.XWZ0Q. (Q.22WQ.\" _

Putting everything together, we have:

VNTQ A = X) = (I, Ok, )INQ; ' ON 1 Q7 \/>ZQZZ e = O,(1).

NTI 0
Because \/WQFF - VNTIy, K1,k2
Oko ks VNI,

premia A; and A2 on the strong and weak observed factors. We have v NT (Xgl) - Xl) = Op(1), while
VNS = X3) = 0,(1). Thus,

) , we obtain different rates of estimation of the risk

VIR = 0) = VI = 0) +VIRD = 31) = VIR = 0) +0,(1/VN) = N0, 2%)

As for the estimator of the risk premia on the weak factors,

~

A — g = (Ra = o) + (O = 33) = 0,(1/VT) + 0,(1/VN) = 0p(1/+/min{N, T}).

We have proved the statement of Theorem 2 for an estimator obtained on step (2) of the algorithm,
but the same line of reasoning applies to //\\(2),3\\(3),/)\\(4) and their average. This finishes the proof of
Theorem 2. [
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Proof of Theorem 3. Following the steps of the proof of Theorem 2 we get the following two

statements:

Qe 9'Q, = AT AY, (20)

2=
M=

@
Il
—_

2|~
1=

Qz2" %" Q. = AJT A} +4 ( ; 7 T ’ (21)
1 utko QEU

-
Il

where A% and ﬁj are random matrices that are deterministic functions of random vectors (91, ..., 74).

Indeed, let us adopt the following notation. Let ji, ..., j4 be the circular indexes used for computing
(4 _
7=

(Bi(jl)" (gi(jl) _ 31(12))/149)’ and the instruments Zz(j) = (Bi(j?’)” (gl.(ji") - B.(j‘*))’)/. Then, similarly to the

(2

@), In particular, the estimate A0 s computed from the IV regression with the regressors z

proof of Theorem 2, we obtain:

A ( Iy 21, Mjs ) i - ( Iy 2Tk, My )
i ’ 7 '
Ok 2(0j5 = 7js) Oky ke 245 (i1 = 752)
So,
NQ;! (X(j)/Z(j)(Z(j)’Z(j))_lz(j)/X(j)>_1 X(j)/Z(j)(Z(j)/Z(j))_lQ;1 = 0.

The limit ©; in the last expression is a known deterministic function of random vectors (11, ..., 74),
which can be explicitly written in terms of A;k» and ﬁj.
We have the following expression for the estimates obtained on steps (2) and (3) of the four-split

algorithm:
o~ 7XN L
VNTQ: (A9 - X) = (IkF7Okp,kv)NQ;19N,T,jQ;1\/ N Z Q.2
i=1

where e(j) — & — X’U,Ejl) — a7 A; (uz(‘jl) _ u@(]é))7 and

(43)
. JT (
QZZZ(J) :A;,T% + ( QT/ OkFku ) ﬁT ( Uu; > )

IkF _IkF 'LL,EJ4)
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The following term can be rewritten in terms of & from Assumption GAUSSIANITY:

/

1
vV ZQz Vel =50 [y Z% ugji A = Ajd
J
Aj5r
(4s) €
L QEINVT Ok T Z u e N A
I, _I, VN - MEZY é‘) i9%5,1
F F i= l J2
U Ajajr

1 N

where A;r is a k. X k¢ matrix which is a deterministic function of A;}T,Aj,ajj,j\. The exact
expression for A;r is obvious though too complicated to write down. We have discussed before the
convergence of all terms separately, which implies that A; 7 = A;, where the limit is a deterministic
function of (91, ...,m4).

Given Assumption GAUSSIANITY, we have \/721 1 QZ ) = A;€. Following step (4) of

the four-split algorithm, we can put all pieces together:
VNTQ ' (Mus — A) = (I, Okt 1 > 04 | & (22)
j=1

As we can see, the four-split estimator is asymptotically mixed Gaussian; that is, the limit distribution
conditionally on 71, ...,m4 (which is independent of £ due to Assumption ERRORS) is Gaussian with
mean zero and the variance depending on 71, ...,74.

Denote EA][V = %R’G_IEOG_IR. We show below that EAIIV has the following asymptotic distri-
bution:

!/

4 4
~ 1 1
NTQ7'SrvQr" = (Inps Okp ) ZE 0;A; | ¢ ZE A5 | (T Onp) " (23)
L -

Statement (23) implies the statement of Theorem 3. Indeed, equations (22) and (23) imply that
1/ 2 (/\45 )\) = N(0, I},), where the limiting Gaussian vector is independent of the limiting Gaussian

vector in the following convergence:
VT (X = A) = N(0, I).

The expression iz;/ 2 (X45 — )\) is the weighted sum of the expressions staying on the left-hand-side of
the last two convergence with weights asymptotically independent from both limiting N (0, Ix). This
leads to the validity of the statement of Theorem 3.
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To prove the validity of statement (23) we notice that \/TszEj)e(-j) = A;r&. Thus,

(2 )

TN Q.2 eV 20V / Ar N Air /
NZ = Nz&fg
i=1 ngfzx)el@) Zi4)€§4) Ay i=1 Ayr
Aq Ay /
= 25 . (24.)
Ay Ay

Let us consider an infeasible variance estimator >y which is constructed in the same way as Xy
)

but uses €, in place of 'e(ij ). That is, denote
/
L [ [
- N ; %4.)”(4) ~(4‘)“(4) ,
- 2 6 %€

and consider Xy = %R’G_lioG_lR. By putting together (20), (21) and (24) we obtain

!/

4 4
- 1 1
NTQ7'SrvQr" = (Inps Okpo ) ZZ@]"Aj e ZZGJ'AJ' (Tps Okpoi,) -
j=1 j=1

The only thing left to show is that the difference between 5 v and Sy is asymptotically negligible.

In particular, we will show for any j and j*,

N

T N N N

y ZQZZZ(J)ZZ(J )/QZ (QQ)Q('] ) _éy)éy )) P, (25)
i—1

where EZ(»j ) are the residuals from the (j)th IV regression. Indeed, this last statement implies that

5 =2y 1v(1 + op(l)), and usage of residuals in place of true errors does not have an asymptotic

effect on estimation of variance.

In order to prove (25) we write down an equation analogous to equation (12):

Y = (X/,aj’T)x(j) + Ez(‘j) — 0;561(]) + E(j).

i %

From the proof of Theorem 2 we have that vV NTQ;,* (51 —6;) = Op(1), where §J is the IV estimator
obtained on Steps (2) for j = 1 or on Step (3) for j = 2,3 or 4. The residuals for this regression are

D =Gl = 5 0)a = (@1, 0) @l
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The left hand expression of (25) is equal to

=1

N
Do Qual 5. ([ 03) s D (= 0)) 5l = (B —03)'s (- 0,)'a)
1=1

This expression contains three sums. We can show that each of them is asymptotically negligible.

For example, consider the first of the three sums:

N
i 2 (VTQ2e) (@) (Qua ) VNTQL (07— 07:)
=1

N
1 sk -5 ~
= i 2 Air&i(Q) Qe V) VNTQ; (B — 65-).
=1

Note that VNTQ, ( + —0j=) = Op(1). As before, szi(j) = Op(1)yi + Op(l)ﬁ(u§j3),u§j4))/, while

mel(.j) = 0,(1)vi + O,(1 )\F(ugﬂ), ugh)), where all the mentioned O,(1) terms are not indexed by
1. Thus,

N
1 ()Y ()Y _ Z Z
N3/2 ;A],Tgl (Qz,’(‘:z] ) (Qxxz] ) = O N3/2 fzfz + O N3/2 gz "}/z’yz .

By Assumption GAUSSIANITY, 1 S=% | &¢/ —7 0 and thus

N N
1
Za ()| < Ng/J 3 §J Sl = 0.
=1 =1

N3/2

This gives the asymptotic negligibility of the first sum; the negligibility of the other two sums is

proved in a similar manner. This ends the proof of Theorem 3. [
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