
JULY 2022 | VOL. 65 | NO. 7 | COMMUNICATIONS OF THE ACM 33

V V
viewpoints

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

rithms augmented with predictions
that are:

	˲ Consistent: when the predictions
are good, they are near-optimal on a
per instance basis;

	˲ Robust: when the predictions are
bad, they are near-optimal on a worst-
case basis;

	˲ Smooth: the algorithm interpo-
lates gracefully between the robust and
consistent settings; and

	˲ Learnable: we can learn whatever
we are trying to predict with sufficiently
few examples.

Our goal is a new approach that
goes beyond worst-case analysis.14
We identify the part of the problem

T
HE THE ORETICAL S TUDY of
algorithms and data struc-
tures has been bolstered by
worst-case analysis, where
we prove bounds on the

running time, space, approximation
ratio, competitive ratio, or other mea-
sure that holds even in the worst case.
Worst-case analysis has proven invalu-
able for understanding aspects of both
the complexity and practicality of al-
gorithms, providing useful features
like the ability to use algorithms as
building blocks and subroutines with
a clear picture of the worst-case per-
formance. More and more, however,
the limitations of worst-case analy-
sis become apparent and create new
challenges. In practice, we often do
not face worst-case scenarios, and the
question arises of how we can tune our
algorithms to work even better on the
kinds of instances we are likely to see,
while ideally keeping a rigorous formal
framework similar to what we have de-
veloped through worst-case analysis.

A key issue is how we can define
the subset of “instances we are likely
to see.” Here we look at a recent trend
in research that draws on machine
learning to answer this question.
Machine learning is fundamentally
about generalizing and predicting
from small sets of examples, and so
we model additional information
about our algorithm’s input as a “pre-
diction” about our problem instance
to guide and hopefully improve our al-
gorithm. Of course, while ML perfor-
mance has made tremendous strides

in a short amount of time, ML predic-
tions can be error-prone, with unex-
pected results, so we must take care in
how much our algorithms trust their
predictors. Also, while we suggest ML-
based predictors, predictions really
can come from anywhere, and simple
predictors may not need sophisticat-
ed machine learning techniques. For
example, just as yesterday’s weather
may be a good predictor of today’s
weather, if we are given a sequence of
similar problems to solve, the solu-
tion from the last instance may be a
good guide for the next.

What we want, then, is merely the
best of both worlds. We seek algo-

Viewpoint
Algorithms
with Predictions
Seeking a new approach that goes beyond worst-case analysis.

DOI:10.1145/3528087	 Michael Mitzenmacher and Sergei Vassilvitskii

2

4
7

7

7

11

37
38

22

16
93

44

88

http://dx.doi.org/10.1145/3528087

34 COMMUNICATIONS OF THE ACM | JULY 2022 | VOL. 65 | NO. 7

viewpoints

panding upon the “use the solution
from yesterday” heuristic.

Predictions have also been suggested
as a means for reducing space usage for
several data structures, for example no-
tably in the seminal work of Kraska et
al.7 for learned indices. As an example
of how predictions can save space, we
first explain the later work of Hsu et al.6
on data structures for frequency esti-
mation that use learning.

Frequency estimation algorithms
are used to approximately count
things, such as the number of packets
a router sees sent from each IP address.
Since it can be expensive in both space
and time to keep a separate counter for
each address, estimation algorithms
use techniques such as hashing each
address into a table of shared coun-
ters (usually hashing each address
into several locations for robustness),
and then deriving an estimate when
queried for an IP address from its as-
sociated counters. The largest count
estimate errors occur when an address
with a small count hashes to the same
locations as addresses with a large
count, as it then appears that the ad-
dress should itself have a high count.
If we somehow knew the addresses
with large counts ahead of time, we
could assign them their own counters
and handle them separately from the
sketch, avoiding such large errors and
obtaining better frequency estimation
with smaller overall space. The paper
by Hsu et al.6 introduces the idea of us-
ing machine learning to predict which
objects (in this example, IP addresses)
have large counts, and separate them
out in this way. They prove bounds for
specific cases and demonstrate empiri-
cally both that high-count elements are
predictable and that using such predic-
tions can lead to improved practical
performance.

As another example of how predic-
tions can save space, Kraska et al.7 pro-
pose a framework for learned Bloom
filters. Bloom filters are compressed
data structures for set membership;
for a set X of keys, a Bloom filter cor-
rectly returns yes for any x that is truly
in X, but may give a false positive for
keys not in the set. Bloom filters have
a space-accuracy trade-off, where more
space allows for fewer false positives.
The work of Kraska et al.7 suggests that
if a set can be learned, that is, a predic-

space that a deployed algorithm is see-
ing and automatically tune its perfor-
mance accordingly.

As a natural starting example, let us
consider binary search with the addi-
tion of predictions. When looking for
an element in a large sorted array, clas-
sical binary search compares the target
with the middle element and then re-
curses on the appropriate half (see Fig-
ure 1). Consider, however, how we find
a book in a bookstore or library. If we
are looking for a novel by Isaac Asimov,
we start searching near the beginning
of the shelf, and then look around, it-
eratively doubling our search radius if
our initial guess was far off (see Figure
2). We can make this precise to show
that there is an algorithm with run-
ning time logarithmic in the error of
our initial guess (measured by how far
off we are from the correct location),
as opposed to being logarithmic in the
number of elements in the array, which
is the standard result for binary search.
Since the error is no larger than the size
of the array, we obtain an algorithm
that is consistent (small errors allow us
to find the element in constant time)
and robust (large errors recover the
classical O(log n) result, albeit with a
larger constant factor).

Many readers may notice this is a
variation on the idea of interpolation
search, using only a predicted starting
point. (Interpolation search uses the
data to estimate the next comparison
point, instead of always picking the
middle as in binary search.) With this
view, algorithms with predictions have
been in the air for some time, and the
ML explosion has simply provided mo-
tivation to both expand the idea and
develop richer formalizations.

A recent success along these lines
formalizes the idea of ‘warm start.’
When repeatedly solving similar op-
timization problems, practitioners
often don’t start from scratch each
time, but instead start searching near
a previous solution. Dinitz et al.4 ana-
lyze the performance gains of treating
such a solution as a prediction in the
context of min cost perfect matchings.
In their setting, one solves a number
of problems on the same graph, but
with different edge weights for each
instance, where the edge weights may,
for example, come from a distribution.
They show that given a prediction for
the dual solution of a corresponding
linear program, they can compute a
feasible dual solution from it, improv-
ing the overall running time and ex-

Figure 1. The execution of traditional binary search.

2 4 7 11 16 22 37 38 44

7

88 89 93 94 95 96 97 98

Figure 2. The execution of binary search, starting with a prediction.

2 4 7 11 16 22 37 38 44

7

h

88 89 93 94 95 96 97 98

JULY 2022 | VOL. 65 | NO. 7 | COMMUNICATIONS OF THE ACM 35

viewpoints

References
1.	 Antoniadis, A. et al. Secretary and online matching

problems with machine learned advice. In Advances
in Neural Information Processing Systems
33: Annual Conference on Neural Information
Processing Systems 2020, H. Larochelle et al., Eds.
NeurIPS 2020 (Dec. 6–12 (virtual) 2020).

2.	 Azar, Y., Leonardi, S., and Touitou, N. Distortion-
oblivious algorithms for minimizing flow time. In
Proceedings of the 2022 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022, S. Naor and N.
Buchbinder, Eds. (Jan. 9–12, 2022), 252–274.

3.	 Balcan, M. Data-driven algorithm design. CoRR
abs/2011.07177 (2020).

4.	 Dinitz, M. et al. Faster matchings via learned duals.
In Advances in Neural Information Processing
Systems (2021), M. Ranzato, A. et al., Eds., vol. 34,
Curran Associates, Inc., 10393–10406.

5.	 Dütting, P. et al. Secretaries with advice. In EC
’21: The 22nd ACM Conference on Economics and
Computation. P. Biró, S. Chawla, and F. Echenique,
Eds., Budapest, Hungary, July 18–23, 2021t al.
(2021), ACM, 409–429.

6.	 Hsu, C. et al. Learning-based frequency
estimation algorithms. In Proceedings of
the 7th International Conference on Learning
Representations, ICLR 2019, (New Orleans, LA,
USA, May 6–9, 2019); OpenReview.net.

7.	 Kraska, T. et al. The case for learned index
structures. In Proceedings of the 2018
International Conference on Management of
Data. G. Das, C.M. Jermaine, and P.A. Bernstein,
Eds. SIGMOD Conference 2018 (Houston, TX,
USA, June 10–15, 2018), 489–504.

8.	 Lykouris, T., and Vassilvitskii, S. Competitive caching
with machine learned advice. J. ACM 68, 4 (2021).

9.	 Mitzenmacher, M. A model for learned BLOOM filters
and optimizing by sandwiching. In Advances in
Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, S. Bengio et al., Eds.
(Dec. 3–8, 2018, Montréal, Canada (2018), 462–471.

10.	 Mitzenmacher, M. Queues with small advice. In
Proceedings of the 2021 SIAM Conference on
Applied and Computational Discrete Algorithms,
ACDA 2021, M. Bender, et al., Eds., (July 19–21,
(virtual) 2021), 1–12.

11.	 Mitzenmacher, M., and Vassilvitskii, S. Algorithms
with predictions. In Beyond the Worst-Case Analysis
of Algorithms, T. Roughgarden, Ed. Cambridge
University Press, 2020, 646–662.

12.	 ML4A 2021—Machine Learning for Algorithms (July
2021); https://bit.ly/3wThaVs

13.	 Purohit, M., Svitkina, Z., and Kumar, R. Improving
online algorithms via ML predictions. In Advances in
Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing
Systems 2018. S. Bengio et al., Eds. NeurIPS
2018 (Dec. 3–8, 2018), Montréal, Canada (2018),
9684–9693.

14.	 Roughgarden, T., Ed. Beyond the Worst-Case
Analysis of Algorithms. Cambridge University Press,
2020.

15.	 Scully, Z., Grosof, I., and Mitzenmacher, M. Uniform
bounds for scheduling with job size estimates. In
13th Innovations in Theoretical Computer Science
Conference, ITCS 2022, Jan.–Feb. 3, 2022, Berkeley,
CA, USA (2022), M. Braverman, Ed., vol. 215 of
LIPIcs, Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, pp. 114:1–114:30.

16.	 STOC 2020 - Workshop 5: Algorithms with
Predictions. https://bit.ly/3wThgwi

17.	 Vaidya, K. et al. Partitioned learned BLOOM filters.
In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3–7, 2021 (2021), OpenReview.net.

Michael Mitzenmacher (michaelm@eecs.harvard.edu)
is the Thomas J. Watson, Sr. Professor of Computer
Science at the Harvard School of Engineering and
Applied Sciences, Cambridge, MA, USA.

Sergei Vassilvitskii (sergeiv@google.com) is a principal
scientist at Google Research, New York, NY, USA.

Michael Mitzenmacher was supported in part by NSF
grants CCF-2101140, CNS-2107078, and DMS-2023528.

Copyright held by authors.

tor can imperfectly predict whether
an element is or is not in the set, that
can be used to derive a learned Bloom
filter that combines the predictor with
a standard Bloom filter in a way that
improves the space-accuracy trade-off.
We leave the details of the various im-
proved learned Bloom filters to the rel-
evant papers.7,9,17

Perhaps unsurprisingly, one area
where using predictions is having a
tremendous impact is for online algo-
rithms, where the algorithm responds
to an incoming data stream and the
future is unknown. The theoretical
framework of competitive analysis
considers the worst-case ratio between
the performance of an online algo-
rithm and the optimal algorithm as a
measure, so a “two-competitive” algo-
rithm is always within a factor of two
of optimal. Coping with the worst-case
possible future is often difficult, and
thus taking advantage of predictions
in this setting is often quite power-
ful. For example, some recent results
consider scheduling problems. Jobs
arrive over time at a single server and
have to be scheduled; the cost for each
job is the time between when it arrives
and when it finishes, and one wants to
minimize the total cost over all jobs.
If a job’s required processing time is
known on arrival, then scheduling by
Shortest Remaining Processing Time
(SRPT) is optimal. But what if only es-
timates of job times are known? Re-
cent work shows that if every job with
true size s has an estimate between
[bs,as] for constants a,b with 0 < b < 1 <
a, there is an algorithm with competi-
tive ratio O((a/b)log2(a/b)), even if the
algorithm does not know a and b in ad-
vance. That is, one can achieve perfor-
mance close to optimal, and the per-
formance gracefully degrades with the
estimate quality.2 Scheduling with pre-
dictions has similarly been studied in
the context of queueing theory, where
the models have probabilistic assump-
tions, such as Poisson arrivals and in-
dependent and identically distributed
service times. In this setting, when
using estimates, SRPT can perform
quite badly even when estimates are
again bounded in [bs, as] for a job of
size s, but a variation of SRPT using es-
timates converges to the performance
of SRPT with full information as a and
b go to 1, and is within O(a/b) of SRPT

always, again without knowing a and b
in advance.15 Other work looking at the
queueing setting has shown that even
one bit of advice, predicting whether a
job is short or long for some suitable
notion of short or long, can greatly
improve performance.10 Several other
online problems have been studied
with predictions, including caching,8
online clustering, and the historically
fun and enlightening ski rental13 and
secretary problems.1,5

It is worth noting there is also a
great deal of recent work in the closely
related area of data-driven algorithm
design. At a high level, this area often
studies the tuning of an algorithm’s
hyperparameters, such as the step-
size in a gradient descent, or which of
the many possible initializations for
k-means clustering is best. (The survey
by Balcan3 provides a deep dive into
this area.)

The research area of Algorithms
with Predictions has really only just
started, but it seems to be booming,
as researchers reexamine classical al-
gorithms and see where they can be
improved when good predictions are
available. This marriage of classical
algorithms and data structures with
machine learning may lead to signifi-
cant improvements in systems down
the road, providing benefits when good
predictions are available (as they seem
to be in the real world) but also limit-
ing performance downsides when pre-
dictions go wrong (as, inevitably, also
seems to happen in the real world).

For those interested in more techni-
cal detail, we have a short survey avail-
able,11 and there are related recent
workshops with talks online.12,16	

Predictions
have also been
suggested as
a means for
reducing space
usage for several
data structures.

