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rithms augmented with predictions 
that are:

	˲ Consistent: when the predictions 
are good, they are near-optimal on a 
per instance basis;

	˲ Robust: when the predictions are 
bad, they are near-optimal on a worst-
case basis;

	˲ Smooth: the algorithm interpo-
lates gracefully between the robust and 
consistent settings; and

	˲ Learnable: we can learn whatever 
we are trying to predict with sufficiently 
few examples.

Our goal is a new approach that 
goes beyond worst-case analysis.14 
We identify the part of the problem 

T
HE  THE ORETICAL S TUDY of 
algorithms and data struc-
tures has been bolstered by 
worst-case analysis, where 
we prove bounds on the 

running time, space, approximation 
ratio, competitive ratio, or other mea-
sure that holds even in the worst case. 
Worst-case analysis has proven invalu-
able for understanding aspects of both 
the complexity and practicality of al-
gorithms, providing useful features 
like the ability to use algorithms as 
building blocks and subroutines with 
a clear picture of the worst-case per-
formance. More and more, however, 
the limitations of worst-case analy-
sis become apparent and create new 
challenges. In practice, we often do 
not face worst-case scenarios, and the 
question arises of how we can tune our 
algorithms to work even better on the 
kinds of instances we are likely to see, 
while ideally keeping a rigorous formal 
framework similar to what we have de-
veloped through worst-case analysis.

A key issue is how we can define 
the subset of “instances we are likely 
to see.” Here we look at a recent trend 
in research that draws on machine 
learning to answer this question. 
Machine learning is fundamentally 
about generalizing and predicting 
from small sets of examples, and so 
we model additional information 
about our algorithm’s input as a “pre-
diction” about our problem instance 
to guide and hopefully improve our al-
gorithm. Of course, while ML perfor-
mance has made tremendous strides 

in a short amount of time, ML predic-
tions can be error-prone, with unex-
pected results, so we must take care in 
how much our algorithms trust their 
predictors. Also, while we suggest ML-
based predictors, predictions really 
can come from anywhere, and simple 
predictors may not need sophisticat-
ed machine learning techniques. For 
example, just as yesterday’s weather 
may be a good predictor of today’s 
weather, if we are given a sequence of 
similar problems to solve, the solu-
tion from the last instance may be a 
good guide for the next.

What we want, then, is merely the 
best of both worlds. We seek algo-
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panding upon the “use the solution 
from yesterday” heuristic.

Predictions have also been suggested 
as a means for reducing space usage for 
several data structures, for example no-
tably in the seminal work of Kraska et 
al.7 for learned indices. As an example 
of how predictions can save space, we 
first explain the later work of Hsu et al.6 
on data structures for frequency esti-
mation that use learning.

Frequency estimation algorithms 
are used to approximately count 
things, such as the number of packets 
a router sees sent from each IP address. 
Since it can be expensive in both space 
and time to keep a separate counter for 
each address, estimation algorithms 
use techniques such as hashing each 
address into a table of shared coun-
ters (usually hashing each address 
into several locations for robustness), 
and then deriving an estimate when 
queried for an IP address from its as-
sociated counters. The largest count 
estimate errors occur when an address 
with a small count hashes to the same 
locations as addresses with a large 
count, as it then appears that the ad-
dress should itself have a high count. 
If we somehow knew the addresses 
with large counts ahead of time, we 
could assign them their own counters 
and handle them separately from the 
sketch, avoiding such large errors and 
obtaining better frequency estimation 
with smaller overall space. The paper 
by Hsu et al.6 introduces the idea of us-
ing machine learning to predict which 
objects (in this example, IP addresses) 
have large counts, and separate them 
out in this way. They prove bounds for 
specific cases and demonstrate empiri-
cally both that high-count elements are 
predictable and that using such predic-
tions can lead to improved practical 
performance.

As another example of how predic-
tions can save space, Kraska et al.7 pro-
pose a framework for learned Bloom 
filters. Bloom filters are compressed 
data structures for set membership; 
for a set X of keys, a Bloom filter cor-
rectly returns yes for any x that is truly 
in X, but may give a false positive for 
keys not in the set. Bloom filters have 
a space-accuracy trade-off, where more 
space allows for fewer false positives. 
The work of Kraska et al.7 suggests that 
if a set can be learned, that is, a predic-

space that a deployed algorithm is see-
ing and automatically tune its perfor-
mance accordingly.

As a natural starting example, let us 
consider binary search with the addi-
tion of predictions. When looking for 
an element in a large sorted array, clas-
sical binary search compares the target 
with the middle element and then re-
curses on the appropriate half (see Fig-
ure 1). Consider, however, how we find 
a book in a bookstore or library. If we 
are looking for a novel by Isaac Asimov, 
we start searching near the beginning 
of the shelf, and then look around, it-
eratively doubling our search radius if 
our initial guess was far off (see Figure 
2). We can make this precise to show 
that there is an algorithm with run-
ning time logarithmic in the error of 
our initial guess (measured by how far 
off we are from the correct location), 
as opposed to being logarithmic in the 
number of elements in the array, which 
is the standard result for binary search. 
Since the error is no larger than the size 
of the array, we obtain an algorithm 
that is consistent (small errors allow us 
to find the element in constant time) 
and robust (large errors recover the 
classical O(log n) result, albeit with a 
larger constant factor).

Many readers may notice this is a 
variation on the idea of interpolation 
search, using only a predicted starting 
point. (Interpolation search uses the 
data to estimate the next comparison 
point, instead of always picking the 
middle as in binary search.) With this 
view, algorithms with predictions have 
been in the air for some time, and the 
ML explosion has simply provided mo-
tivation to both expand the idea and 
develop richer formalizations.

A recent success along these lines 
formalizes the idea of ‘warm start.’ 
When repeatedly solving similar op-
timization problems, practitioners 
often don’t start from scratch each 
time, but instead start searching near 
a previous solution. Dinitz et al.4 ana-
lyze the performance gains of treating 
such a solution as a prediction in the 
context of min cost perfect matchings. 
In their setting, one solves a number 
of problems on the same graph, but 
with different edge weights for each 
instance, where the edge weights may, 
for example, come from a distribution. 
They show that given a prediction for 
the dual solution of a corresponding 
linear program, they can compute a 
feasible dual solution from it, improv-
ing the overall running time and ex-

Figure 1. The execution of traditional binary search. 
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Figure 2. The execution of binary search, starting with a prediction. 
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tor can imperfectly predict whether 
an element is or is not in the set, that 
can be used to derive a learned Bloom 
filter that combines the predictor with 
a standard Bloom filter in a way that 
improves the space-accuracy trade-off. 
We leave the details of the various im-
proved learned Bloom filters to the rel-
evant papers.7,9,17

Perhaps unsurprisingly, one area 
where using predictions is having a 
tremendous impact is for online algo-
rithms, where the algorithm responds 
to an incoming data stream and the 
future is unknown. The theoretical 
framework of competitive analysis 
considers the worst-case ratio between 
the performance of an online algo-
rithm and the optimal algorithm as a 
measure, so a “two-competitive” algo-
rithm is always within a factor of two 
of optimal. Coping with the worst-case 
possible future is often difficult, and 
thus taking advantage of predictions 
in this setting is often quite power-
ful. For example, some recent results 
consider scheduling problems. Jobs 
arrive over time at a single server and 
have to be scheduled; the cost for each 
job is the time between when it arrives 
and when it finishes, and one wants to 
minimize the total cost over all jobs. 
If a job’s required processing time is 
known on arrival, then scheduling by 
Shortest Remaining Processing Time 
(SRPT) is optimal. But what if only es-
timates of job times are known? Re-
cent work shows that if every job with 
true size s has an estimate between 
[bs,as] for constants a,b with 0 < b < 1 < 
a, there is an algorithm with competi-
tive ratio O((a/b)log2(a/b)), even if the 
algorithm does not know a and b in ad-
vance. That is, one can achieve perfor-
mance close to optimal, and the per-
formance gracefully degrades with the 
estimate quality.2 Scheduling with pre-
dictions has similarly been studied in 
the context of queueing theory, where 
the models have probabilistic assump-
tions, such as Poisson arrivals and in-
dependent and identically distributed 
service times. In this setting, when 
using estimates, SRPT can perform 
quite badly even when estimates are 
again bounded in [bs, as] for a job of 
size s, but a variation of SRPT using es-
timates converges to the performance 
of SRPT with full information as a and 
b go to 1, and is within O(a/b) of SRPT 

always, again without knowing a and b 
in advance.15 Other work looking at the 
queueing setting has shown that even 
one bit of advice, predicting whether a 
job is short or long for some suitable 
notion of short or long, can greatly 
improve performance.10 Several other 
online problems have been studied 
with predictions, including caching,8 
online clustering, and the historically 
fun and enlightening ski rental13 and 
secretary problems.1,5

It is worth noting there is also a 
great deal of recent work in the closely 
related area of data-driven algorithm 
design. At a high level, this area often 
studies the tuning of an algorithm’s 
hyperparameters, such as the step-
size in a gradient descent, or which of 
the many possible initializations for 
k-means clustering is best. (The survey 
by Balcan3 provides a deep dive into 
this area.)

The research area of Algorithms 
with Predictions has really only just 
started, but it seems to be booming, 
as researchers reexamine classical al-
gorithms and see where they can be 
improved when good predictions are 
available. This marriage of classical 
algorithms and data structures with 
machine learning may lead to signifi-
cant improvements in systems down 
the road, providing benefits when good 
predictions are available (as they seem 
to be in the real world) but also limit-
ing performance downsides when pre-
dictions go wrong (as, inevitably, also 
seems to happen in the real world).

For those interested in more techni-
cal detail, we have a short survey avail-
able,11 and there are related recent 
workshops with talks online.12,16	

Predictions  
have also been 
suggested as  
a means for  
reducing space  
usage for several 
data structures.




