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This paper establishes central limit theorems (CLTs) and proposes how to per-
form valid inference in factor models. We consider a setting where many coun-
ties/regions/assets are observed for many time periods, and when estimation of a
global parameter includes aggregation of a cross-section of heterogeneous micropa-
rameters estimated separately for each entity. The CLT applies for quantities involv-
ing both cross-sectional and time series aggregation, as well as for quadratic forms in
time-aggregated errors. This paper studies the conditions when one can consistently
estimate the asymptotic variance, and proposes a bootstrap scheme for cases when
one cannot. A small simulation study illustrates performance of the asymptotic
and bootstrap procedures. The results are useful for making inferences in two-step
estimation procedures related to factor models, as well as in other related contexts.
Our treatment avoids structural modeling of cross-sectional dependence but imposes
time-series independence.

1. INTRODUCTION

Data with an underlying factor structure are increasingly used in empirical macroe-
conomics and finance. Often these data consist of time series of observations
for multiple cross-sectional units (assets, portfolios, regions, or industries). Quite
a few new estimation strategies have appeared in the empirical literature that
use both cross-sectional and time series variation in order to estimate global
structural parameters. Often the parameter of interest arises from aggregation
or estimation using cross-sectional variation of individual parameters for each
entity. One example of such a structure is linear factor pricing model in asset
pricing (Fama and MacBeth, 1973 and Shanken, 1992), where for estimation we
usually use time series of excess returns for a number of portfolios or assets priced
by a small number of risk factors. Each portfolio or stock may have its own
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(heterogeneous) exposure to risk, often referred to as betas, which can be estimated
separately from time series observations for each portfolio. The parameter of
interest, a risk premium, is defined as the coefficient of proportionality in the
cross-sectional relation between the average excess return on a portfolio and its
individual beta.

A vast majority of macroeconomic shocks are only weakly identified via
structural VARs that use only time series observations on leading macro vari-
ables. A new approach to the estimation of causal effects of a macro shock on
the economy is to use cross-sectional variation in data on regions, countries,
or industries. For example, Serrato and Wingender (2016) use cross-sectional
variation in federal spending programs due to a Census shock to identify the causal
impact of government spending on the economy. Cross-sectional variation among
counties in government spending and in the accuracy of census-based estimates of
population provides a better justified treatment effect framework, allows for the
estimation of local fiscal multipliers, and finally gives a better global estimate of
the fiscal multiplier via aggregation of local multipliers. Hagedorn,Manovskii, and
Mitman (2015) estimate the aggregate effect of unemployment-benefit duration on
employment and labor force participation using cross-sectional differences across
US states. Sarto (2018) discusses how heterogeneous sensitivities of regions to
aggregate policy variables, so calledmicroglobal elasticities, can be used to recover
macro elasticities of interest such as, for example, a fiscal multiplier.

A shared feature of the above-mentioned examples is the use of time-series
observations onmultiple entities (stocks, portfolios, counties, states, or industries),
while data on those entities are not independent and identically distributed.
Moreover, variables for different entities often display strong co-movements to the
extent that the data have a factor structure, and estimation of these co-movements is
the main goal. Indeed, the realization of a risk factor in the economymoves returns
on all portfolios simultaneously, while a federal fiscal shock moves spending in
all US counties, though in both cases heterogeneously so. A valid estimation
procedure must explicitly model and account for the data’s factor structure to
the extent that the error terms (or residuals) can be considered idiosyncratic; see
Kleibergen and Zhan (2015) and Anatolyev and Mikusheva (2018) for how a
factor structure that is unaccounted for can lead to misleading results. However,
idiosyncrasy of the errors usually implies only that the correlation among errors
for different entities is relatively small and does not introduce first-order bias to
the estimation procedure. Usually, it is not reasonable to assume that errors for
different entities are completely independent; indeed, stocks in the same industry
are likely to co-move even after global-economy risks are removed, while errors
for neighboring counties are more likely to be correlated even after one accounts
for federal shocks. At the same time, we typically want to remain agnostic about
the correlation structure of shocks and avoid their structural modeling as long as
this does not introduce biases.

The second typical feature of the above-mentioned examples is the two-step
nature of the estimation procedure, where in the first step we estimate entity-
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specific coefficients (risk exposures/betas, local fiscal multipliers, microglobal
elasticities) by running a time-series regression separately for each entity. In the
second step, we estimate the global coefficient of interest by either aggregating
entity-specific coefficients (Serrato and Wingender, 2016 and Hagedorn et al.,
2015), or by running an OLS regression on the cross-section of entity-specific
coefficients (Fama and MacBeth, 1973 and Sarto, 2018), or by running an IV
regression on the cross-section of entity-specific coefficients (Anatolyev and
Mikusheva, 2018).

The goal of this paper is to establish central limit theorems (CLTs) and to provide
a tool for establishing asymptotic normality of estimates obtained in such two-step
estimation procedures and for finding ways to do asymptotically correct inference,
while being flexible in modeling the cross-sectional dependence of errors. The
main difficulty here is that even though the second step cross-sectional regression
has nearly uncorrelated errors (which is usually sufficient to obtain consistency
of the two-step estimator), this condition is usually insufficient for a CLT, which
typically requires that stronger discipline be imposed on the dependence structure
(such as independence, or a martingale difference structure, or mixing). Our
solution to this problem is to restrict the time series behavior while staying agnostic
about the cross-sectional dependence. We assume time-series independence of
idiosyncratic errors, which is consistent with market efficiency for factor asset
pricing models and the nonpredictability of macro shocks in macroeconomic
settings. The estimation noise in a two-stage procedure involves aggregation both
over time (from the first step) and over entities (from the second step). We show
that under certain conditions it is sufficient to have a CLT over just one of these
directions, and we use the time-series direction for that.

When the second step uses an OLS or IV estimator, the CLT must adapt to
averages of quadratic forms, as both the second-step-dependent variable and the
second stage regressor/instrument contain first-stage estimation noise. Our CLT
has a linear and a quadratic part. We also note that a need for a CLT for quadratic
forms in factor models sometimes arises for the first-step estimators (e.g., Pesaran
and Yamagata, 2018) or in higher order asymptotic derivations (e.g., Bai and Ng,
2010).

There is a growing literature that establishes different CLTs while acknowledg-
ing the importance of cross-sectional dependence in the data, which stems from
spatial relations and/or from the presence of common factors. Kuersteiner and
Prucha (2013) establish a CLT for linear sums in a panel data context with growing
cross-sectional dimension N and fixed time-series dimension T allowing for cross-
sectional dependence, and Kuersteiner and Prucha (2020) extend these results
to quadratic forms as well. Both papers impose conditional moment restrictions,
which allows the authors to construct amartingale difference sequence in the cross-
sectional direction. The main conditional moment restrictions imply a correct
specification of an underlying model, which need not be required by our CLT.
However, the mentioned papers allow more flexibility in modeling the time
dependence, and do not require large T. Another CLT that requires both large N
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and large T is established in Hahn, Kuersteiner, and Mazzocco (2020) for linear
terms only.

This paper also contributes to the literature on the CLT for quadratic forms. Vari-
ous types of CLTs for quadratic forms have been previously established and used in
the many instrument literature (see, e.g., Chao et al., 2012 ; Hausman et al., 2012;
Sølvsten, 2020) and many covariate literature (see Cattaneo, Jansson, and Newey,
2018), as well as in the literature on semi-parametric estimation (Cattaneo, Crump,
and Jansson, 2014a, 2014b). The CLT used in those papers are established for the
cross-sectional dimension only, and rely heavily on the independence assumption.
We adapt the ideas used in Chao et al. (2012), specifically the approach of de Jong
(1987), to accommodate large cross-sectionally dependent panels; an alternative
approach, known as Stein’s method, is used in Sølvsten (2020).

Our second set of results is related to ways of conducting valid statistical
inference. Under strengthened conditions on the weakness of the cross-sectional
correlation of errors, we show that a conventional variance estimator is consistent,
and so the usual asymptotic inference can be applied. When such strengthened
conditions do not hold, we propose instead a variant of a wild bootstrap scheme
that replicates the original cross-sectional dependence structure. We also conduct a
small simulation experiment that provides evidence on the approximation quality
of our CLT and on the empirical size and power of wild bootstrap in a moderately
sized panel.

This paper proceeds as follows. Section 2 explains problems with establishing
asymptotic Gaussianity for two-step and other estimators and test statistics, and
shows how discipline in the time series direction can help. Section 3 introduces
assumptions on idiosyncratic errors, states CLTs for two cases, and discusses
the relevance of those cases to empirical practice. Section 4 discusses estimation
of asymptotic variances for asymptotic inference and alternative inference tools
based on the bootstrap. Section 5 presents a small simulation experiment that
reveals properties of asymptotic and proposed bootstrap inference tools. Section 6
concludes. All proofs appear in the Appendix.

2. GOALS AND EXAMPLES

Let the data contain observations on many units indexed by i = 1,...,N, and
observed for multiple time periods t = 1,...,T . We assume that both N and T
increase to infinity without restrictions on their rates. The goal of this paper is
to find the conditions under which the following statement will hold:

�N,T ≡ 1√
N

N∑
i=1

ξi ⇒ N (0,�ξ ), (1)

where

ξi =
(

1√
T

∑T
s=1 vsγieis

1
T

∑T
s=1

∑
t<s wsteiteis

)
,
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and �ξ is an asymptotic variance matrix. Here, eit are weakly cross-sectionally
dependent entity-specific (idiosyncratic)1 errors with E (eit) = 0. Errors eit are
uncorrelated with the variables vt and wst that are common to all units i= 1,...,N
(more exact conditions are to appear in the next section). We assume γi,i= 1,...,N,

to be nonrandom entity-specific weights. Further, we want to study the circum-
stances when one can also consistently estimate the asymptotic covariance—that
is, sufficient conditions for a statement like

1

N

N∑
i=1

ξiξ
′
i

p→ �ξ . (2)

As we argue below (see Examples 1–3), statements (1) and (2) are often needed
in order to conduct statistical inferences (testing or confidence set construction)
about a structural parameter, λ, which is estimated in two steps.We consider a case
when in the first step a researcher estimates a parameter βi for each entity/unit/state
i= 1,...,N, typically via runningOLS or IV time series regressions. A typical linear
estimator can be written as β̂i = βi+εi, where the estimation error has the structure
εi =

(
1+op(1)

)
1
T

∑T
t=1 vteit, with the op(1) term uniformly small over the units. In

this setting, vt is either a regressor common to all entities, or a common systematic
part of entity-specific regressors that have a factor structure.2

Example 1. There is a variety of estimation approaches that can be used at the
second step. The simplest of them is weighted averaging of the first step estimates,
viz. λ̂ = 1

N

∑N
i=1 γiβ̂i. Such an estimator is used in Sarto (2018). In order to justify

asymptotic Gaussianity of λ̂ and to make statistical inferences about λ, one needs
statements on the asymptotic behavior of√
T

N

N∑
i=1

γiεi = 1√
N

N∑
i=1

1√
T

T∑
t=1

vtγieit.

Note that the last expression has the structure of normalized averages stated as the
first component of �N,T from equation (1). Such “linear” terms, where only the
first component of �N,T is involved, are very common in asymptotic derivations
in factor models (e.g., Bai and Ng, 2006, 2010).

Example 2. The second estimation step may invoke a more complex estimator
involving a sample covariance betweenmultiple first stage estimators or estimators
for multiple first stage parameters. For example, the Fama–MacBeth procedure

1By idiosyncratic error we mean the factor-removed part of entity-specific variables.
2Our setting can accommodate entity-specific regressors, say vit , that have a factor structure themselves. Assume that
vit = aiut +uit, where ut is a common co-movement in the regressors and uit is idiosyncratic. Then

εi = 1

T

T∑
t=1

viteit = 1

T

T∑
t=1

ut(aieit)+ 1

T

T∑
t=1

uiteit = 1

T

T∑
t=1

vte
∗
it,

where vt = (ut,1)′ and e∗it = (aieit,uiteit).
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employs the data on excess returns to a set of portfolios {rit, i= 1,...,N, t= 1,...,T}
and time series of a risk factor {Ft, t = 1,...,T}. Namely, it uses two collections
of first stage parameters—the average return on a portfolio β

(1)
i = Erit via the

sample average return β̂
(1)
i = 1

T

∑T
t=1 rit, and the risk exposure of a portfolio

β
(2)
i = var(Ft)−1cov(rit,Ft) via the time series OLS regression of rit on Ft resulting

in an estimate β̂
(2)
i . At the second stage of the Fama–MacBeth procedure, one runs

the OLS regression of the sample average return β̂
(1)
i on the portfolio risk exposure

estimated at the first step β̂
(2)
i . In this case,

λ̂ =
(

N∑
i=1

β̂
(2)
i β̂

(2)
i

)−1 N∑
i=1

β̂
(1)
i β̂

(2)
i ,

the second step involves two sample covariances. If one wants to derive the
asymptotic distribution of λ̂, one needs to establish the asymptotic distribution
for a properly normalized sample covariance of the two first step estimators
1
N

∑N
i=1 β̂

(1)
i β̂

(2)
i , where β̂

(j)
i = β

(j)
i + ε

(j)
i , with the estimation error having the

structure ε
(j)
i = (

1+op(1)
)
1
T

∑T
t=1 v

(j)
t eit, the term op(1) being uniform in i.

The normalized sample covariance of the two first step estimators contains
several terms:

1√
N

N∑
i=1

(
β̂

(1)
i β̂

(2)
i −E

[
β̂

(1)
i β̂

(2)
i

])

= 1√
N

N∑
i=1

(
β

(1)
i ε

(2)
i +β

(2)
i ε

(1)
i

)
+ 1√

N

N∑
i=1

(
ε

(1)
i ε

(2)
i −E

[
ε

(1)
i ε

(2)
i

])
. (3)

The first term on the right-hand-side of equation (3) is similar to aweighted average
of first step estimators and has the form of the first component of �N,T (treating
β

(j)
i as constants similar to constants γi). The second term in equation ( 3) is more

complicated and calls for a CLT for quadratic forms:

T√
N

N∑
i=1

(
ε

(1)
i ε

(2)
i −E

[
ε

(1)
i ε

(2)
i

])

= 1

T
√
N

N∑
i=1

T∑
t=1

v(1)t v(2)t

(
e2it −E[e2it]

)+ 1√
N

N∑
i=1

1

T

T∑
s=1

∑
t<s

wsteiteis,

where wst = v(1)s v(2)t + v(1)t v(2)s . Here the first term can be treated as the first
component, and the second term as the second component of �N,T .

Example 3. Anatolyev and Mikusheva (2018) propose a split-sample estimator
as an alternative to the Fama–MacBeth procedure for factor asset pricing. There
are three sets of parameter estimates produced at the first stage: the sample average
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return β̂
(1)
i = 1

T

∑T
t=1 rit and two estimates of the portfolio risk exposure computed

as OLS estimates in regressions of rit on Ft on different subsamples, say, β̂
(2)
i

and β̂
(3)
i . In our notation, the usage of a subsample is accommodated by setting

vt = 0 for those t not in the currently used subsample. The second step IV estimator
is constructed as an IV estimator in the regression of β̂

(1)
i on β̂

(2)
i using β̂

(3)
i as

instrument. That is,

λ̂ =
(

N∑
i=1

β̂
(3)
i β̂

(1)
i

)−1 N∑
i=1

β̂
(3)
i β̂

(2)
i .

In order to make inferences on λ, one needs to obtain the asymptotic distribution
of sample covariances between different first step estimates. Statements like (1)
and (2) are instrumental to accomplish this.

The configuration in �N,T and a need for statements (1) and (2) occur in other
situations as well.

Example 4. Pesaran and Yamagata (2018) suggest a new test for factor pricing
models that allows many portfolios to be considered simultaneously (with N
and T both diverging to infinity). The hypothesis of interest H0 : αi = 0 for all
i = 1,...,N, where αi is a pricing error for the portfolio i. To estimate the pricing
errors the authors use OLS estimates α̂i. A large number of portfolios N does not
allow one to establish join Gaussianity of all α̂i or to consistently estimate their
covariance. Pesaran and Yamagata (2018) propose to test the hypothesis of interest
using statistics based on a weighted sum of squares of α̂i. They create a properly
normalized statistic of the form
N∑
i=1

(
α̂2
i

σ 2
i

−1

)
,

where σ 2
i are variances of pricing errors. This statistic is directly related to the

sample variance of the first step estimator, and a statement of its asymptotic
Gaussianity directly follows from (1 ) by the same logic as stated above. Pesaran
and Yamagata (2018) develop a CLT for quadratic forms that can be applied in this
setting. Theymake an assumption that the idiosyncratic components can be filtered
to make them cross-sectionally independent.3 Here we propose an alternative
version of CLT that can be applied under less restrictive assumptions on the cross-
sectional dependence of eit’s.

Example 5. A data-rich IV environment of Bai and Ng (2010) is another
example where our linear-quadratic CLTs can be useful. The authors consider an
IV setup with many instruments in a panel, where the number of instruments,
N, is potentially higher than the number of observations, T. The instruments
are generated by a factor model zit = λ′

iFt + eit, with Ft and eit independent of

3See Assump. 2 and 3 in Pesaran and Yamagata (2018).
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the structural error εt, and time-series and cross-sectional dependence in eit is
allowed, though restricted. Bai and Ng (2010) consider the bias-corrected GMM
estimator that corrects for inconsistency of the baselineGMM. It is consistent when
N/T = O(1), however, its asymptotic Gaussianity is established under a more
restrictive assumption when N/T = o(1). The challenge is that when N/T =O(1),
the asymptotic expansion for this estimator has, in addition to a linear term, a
quadratic form in the idiosyncratic components eit similar to the second component
of �N,T . Thus, using statement (1), an asymptotic theory could be developed for
the bias-corrected GMM estimator without having to impose N/T = o(1).

In most of these examples, the set of idiosyncratic components {eit,i= 1, . . . ,N,

t= 1, . . . ,T} cannot be regarded independent and/or identically distributed. Inmost
realistic applications, one is usually willing to assume that eit do not have a strong
(detectable) factor structure, but still allow for some correlation between different
units, which would not affect consistency. For example, it is reasonable to think
that stocks of firms in the same industry or of the same size may react to some local
shocks and be correlated, thoughwhen averaged over all stocks (and all industries),
this co-movement of returns would have no first-order impact on estimation.

Our attempt to be agnostic with regard to possible cross-sectional correlation
among errors and to avoid explicit modeling of its structure whenever possible
comes at a cost of more restrictive time series assumptions. In many applications
of interest, it is more credible to impose independence assumptions in a time-
series direction rather than in a cross-sectional direction. For example, the efficient
market hypothesis implies mean nonpredictability of excess returns given past
history, which is equivalent to a martingale difference property for the errors.
The definition of shocks in macroeconomics similarly presumes their time-series
independence. In this paper, we assume time-series independence, which in some
cases may be weakened to the martingale difference property or stationarity with
some proper mixing condition, but we do not pursue this generalization here.

3. CENTRAL LIMIT THEOREM

In this paper we consider asymptotics as both cross-sectional and time-series
sample sizes, N and T, increase to infinity. We allow the data-generating process
for all variables to vary with N and T. Define F to be a σ -algebra that contains at
least the σ -algebras generated by the full set of variables {vs,s = 1,...,∞} and
{wst,s,t = 1,...,∞} for all s and t. It may potentially also contain other events
related to common shocks and variables, as long as Assumption 3 stated below
is satisfied. We treat γi as nonrandom kγ ×1 vectors.

In order to simplify the notation, in what follows we will denote C to be a
positive generic constant, independent of N and T, which may be different in
different equations, but does not depend on or change with N or T. We will use
the following notation: for a square matrix A, we denote by tr(A) its trace, by
maxev(A)—its maximal eigenvalue, and by dg(A) a diagonal matrix of the same
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size with the elements from the diagonal of A; ‖ · ‖ is the l2 norm for a vector or
the operator norm for a matrix.

Assumption 1. The random kv-vector vs and kw-vector wst are measurable with
respect to the σ -algebra F for all s,t, and

(i) 1
T

∑T
s=1E(vsv′s) → �v and 1

T2

∑T
s=1

∑
t<sE(wstw′

st) → �w, where �v and �w

are full rank matrices;

(ii) max1≤s≤T E
[‖vs‖4]< C and max1≤t,s≤T E[‖wst‖4] < C;

(iii) E[‖ 1
T2

∑T
s=1

∑
t<s

(
wstw′

st −E[wstw′
st]
)‖2] → 0;

(iv) E[‖ 1
T

∑T
s=1

(
vsv′s−E[vsv′s]

)‖2] → 0.

Assumption 2. max1≤i≤N ‖γi‖ < C.

Assumption 3. (i) Conditional on F , the random N-vectors et = (e1t,...,eNt)′
are serially independent, and E(et|F) = 0 for all t;

(ii) max1≤i≤N,1≤t≤T E
(
e4it
)
< C.

Assumption 1 imposes very mild restrictions on the time-series behavior of
the common (nonentity specific) variables. For example, the part related to vt is
trivially satisfied if a time series equal to vtv′t is weakly stationary with summable
auto-covariances. Assumption 2 restricts the influence of any one entity in the
cross-sectional average and will eventually contribute to asymptotic negligence
of the cross-sectional summands needed for the CLT. Assumption 3(i) is a
restrictive assumption which imposes discipline on the time-series structure, and
the restrictionE(et|F) = 0 is a form of strict exogeneity in the first step regression.
Uniform moment boundedness in Assumption 3(ii) is traditional.

Apparently, Assumptions 1, 2, and 3 are insufficient to establish a CLT , and we
need to put some restrictions on the cross-sectional dependence and dependence
between idiosyncratic errors and common variables. Indeed, we will use a change
of summation ordering:

1√
N

N∑
i=1

ξi =
⎛⎝ 1√

T

∑T
s=1 vs

(
1√
N

∑N
i=1 γieis

)
1
T

∑T
s=1

∑
t<s wst

(
1√
N

∑N
i=1 eiteis

) ⎞⎠,

and establish asymptotic convergence in the time-series direction. In order to
apply a CLT in the time series direction we need some sort of asymptotic
negligibility of summands with different time indexes, in particular, of terms
like

{
vs(

1√
N

∑N
i=1 γieis)

}
s and

{
wst(

1√
N

∑N
i=1 eiteis)

}
s,t. Our goal is to provide low-

level assumptions. There is a trade-off in how much dependence of idiosyncratic
errors across entities and how much dependence between idiosyncratic errors
and common variables can be allowed. Below we consider two particular cases.
In the first case, full independence between the eit’s and F is assumed; as a
result, we can be agnostic about the structure of cross-sectional dependence, the
corresponding assumptions about it are relatively mild. In the second case, we
allow for conditional heteroscedasticity in eit that can be related to some common
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variables from F producing dependence in higher-order conditional moments.
This flexibility comes at the cost of imposing some structure on the cross-sectional
behavior of eit.

3.1. Independence from Common Variables

Assumption 4. (i) The errors et = (e1t,...,eNt)′,t = 1, . . . ,T are independent
from the σ -algebra F and identically distributed across t;

(ii) For the N×N covariance matrix EN,T = E(ete′t), limsupN,T→∞maxev(EN,T)

< ∞, and 1
N tr(E2

N,T) → a< ∞;
(iii) 1

N γ ′EN,Tγ → �σ , where �σ is full rank;

(iv) 1
N2

∑N
i1=1

∑N
i2=1

∑N
i3=1

∑N
i4=1

∣∣E(ei1tei2tei3tei4t)∣∣< C.

THEOREM 3.1. Under Assumptions 1, 2, 3, and 4, the CLT stated in equation

(1) holds with �ξ =
(

�V 0
0 �W

)
, where �V = �σ ⊗�v and �W = a�w.

Numerous papers that establish inferences in factor models commonly assume
that the set of factors is independent from the set of idiosyncratic errors, as in
Assumption 4(i), though cross-sectional dependence of errors is allowed; see, for
example, Assumption D in Bai and Ng (2006). We intended for the first part of
Assumption 4 (ii) to impose weak cross-sectional dependence as expressed by the
covariance matrix; in particular, it means that no strong factor structure is left in
the errors; similar assumptions appear in Onatski (2012) and Bai and Ng (2006).
The convergence of the trace in Assumptions 4(ii) and 4(iii) is needed for the
asymptotic covariance matrix to be properly defined.

Assumption 4(iv) is another way to restrict pervasive dependence in multiple
variables, in particular, precluding outliers to realize in toomany error terms simul-
taneously. For example, imagine that the cross-sectional dependence is induced
by several groups with a factor structure, for example, stock returns are correlated
because there are industry-specific shocks and geography-specific shocks. Imagine
that there are a finite number, say G, groups, indexed by g = 1,...,G, which may
be overlapping, with each having independent shocks fg,t at time t. Stock i has
nonzero loading πi,g only if it belongs to group g. Let the set of groups, to which
i belongs, be denoted by G(i). That is,

eit =
∑
g∈G(i)

πi,gfg,t +ηit,

where ηit’s are independent both cross-sectionally and across time and have
finite fourth cumulants. Then, Assumption 4 (iv) is essentially equivalent to the
following two conditions:E(f 4g,t) <C and 1

N

(∑N
i=1 |πi,g|

)2
<C for any g= 1,...,G.

Thus, for this example, essentially Assumption 4(iv) imposes that the factors fg,t do
not produce outliers too often expressed as the moment condition and a statement
about pervasiveness.
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One of the important steps in the proof of Theorem 3.1 verifies asymptotic negli-
gibility of time-series summands by checking boundedness of the fourth moments
of the cross-sectional sums 1√

N

∑N
i=1 γieis and 1√

N

∑N
i=1 eiteis; that imposes themain

way we restrict cross-sectional dependence. The fourth cumulant conditions are
reminiscent of those in de Jong (1987), which we follow while proving our CLT
using Heyde and Brown (1970). There are alternative CLTs for quadratic forms
such as Rotar (1973) that imposes weaker moment conditions on the summands
but stricter assumptions on the negligibility of coefficients and eigenvalues of
the quadratic form. In our case, following them would require imposing stronger
assumptions on the variables wst, which we would like to avoid. Another CLT for
quadratic forms for time series data can be obtained using Bhansali, Giraitis, and
Kokoszka (2007). The book by Giraitis, Koul, and Surgailis (2012) has a chapter
on this subject and allows for long memory time series as well.

3.2. Conditional Heteroscedasticity

Assumption 4(i) of independence is much stronger than Assumption 3(i) about
exogeneity: it does not allow higher conditional moments of eit to co-movewith the
common variables; in particular, it imposes conditional homoscedasticity. It may
be especially problematic in financial applications where time-varying volatility
is of strong empirical relevance, and returns on many stocks display patterns of
changing volatility driven by some common variables. The assumptions below
allow for conditional heteroscedasticity.

Assumption 5. The errors eit have the following weak (unobserved) factor
structure:

eit = π ′
i ft +ηit,

where the following assumptions hold:

(i) The kf ×1 process ft, where kf is fixed, is serially independent, conditionally
on F , with E(ft|F) = 0, E(ftf ′t ) = Ikf ,max1≤t,s≤T E

[
(‖vs‖4 + 1)‖ft‖4

]
< C,

and max1≤s,t,t∗≤T E
[‖wst∗‖4‖ft‖8]< C;

(ii) maxev
(∑N

i=1πiπ
′
i

)
< C and 1√

N

∑N
i=1πiγ

′
i → �πγ ;

(iii) The random variables ηit are independent both cross-sectionally and across
time, independent from both fs’s and F , have mean zero and variances
var(ηit) = ω2

i that are bounded from above and such that 1
N

∑N
i=1ω4

i →
ω4 < ∞, 1

N

∑N
i=1ω2

i γiγ
′
i → �ω, where �ω is finite and has full rank, and

max1≤i≤N,1≤t≤T E
(
η4
it

)
< C;

(iv) Additionally, if �πγ 
= 0, then there exists a matrix �fv such that

E

⎡⎣∥∥∥∥∥ 1T
T∑
s=1

(fsf
′
s )⊗ (vsv

′
s)−�fv

∥∥∥∥∥
2
⎤⎦→ 0.
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THEOREM 3.2. Under Assumptions 1, 2, 3, and 5, the statement of the CLT

stated in equation (1) holds with �ξ =
(

�V 0
0 �W

)
, where �W = ω4�w and �V =(

�′
πγ ⊗ Ikv

)
�fv
(
�πγ ⊗ Ikv

)+�ω ⊗�v.

An interesting feature of this example is that it allows the errors to be weakly
cross-sectionally dependent to the extent that they may possess a weak (latent)
factor structure. The condition E(ftf ′t ) = Ikf is a normalization and involves no loss
of generality. Assumption 5(ii) forces the factors to be weak to such an extent that
the factor structure cannot be consistently detected; it implies that the covariance
matrix of idiosyncratic errors would satisfy the first half of Assumption 4(ii).
Moreover, this factor structure may be closely related to the common variables
in F , which causes the cross-sectional dependence among the errors eit to change
with the common variables and allows a very flexible form of conditional het-
eroscedasticity. Indeed, the conditional cross-sectional covariance is

E(eitejt|F) = π ′
iE(ftf

′
t |F)πj+ I{i=j}ω2

i .

Since we do not restrict E(ftf ′t |F) beyond proper moment conditions, the strength
of any cross-sectional dependence as well as error variances may change stochas-
tically depending on realizations of the common variables.

The moment conditions in Assumption 5(i) help to establish asymptotic negligi-
bility of the time-series summands. Assumption 5(iii) about �ω and Assumption 5
(iv) allow us to define properly the asymptotic covariance matrix.

4. VALID INFERENCE

In this section, we first discuss estimation of asymptotic variances for asymptotic
inference when this leads to valid inference. Then, we propose alternative tools
based on the wild bootstrap to apply in situations when asymptotic inference fails
to provide asymptotically correct inference.

4.1. Asymptotic Inference

Statistical inferences such as confidence set construction and hypotheses testing
about the structural parameter typically require consistent estimation of asymptotic
variances of all important quantities that are asymptotically Gaussian. The easiest
to implement and thus the most appealing from an applied perspective are those
that use the same variables and have a structure similar to the original averages,
such as the statement in equation (2).

Notice that equation (2) contains the cross-sectional summation outside, and
hence it treats the cross-section as nearly uncorrelated observations, or at least
it ignores the cross-sectional correlation. A relevant analogue is the difference
between the long-run covariance and instantaneous covariance in a classical time
series. However, implementing an analogue of long-run covariance estimation here
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would be a challenge since we do not have any cross-sectional stationarity or a
measure of distance between cross-sectional entities. Rather, we explore under
which conditions the convergence in (2) holds.

Theorem 4.1 below obtains a statement for the case when the common variables
are independent from the idiosyncratic errors, while Theorem 4.2 establishes a
similar statement for the conditionally heteroscedastic case.

THEOREM 4.1. If in addition to Assumptions 1, 2, 3, 4, we also have that

‖EN,T −dg(EN,T)‖ → 0 as N,T → ∞, (4)

then consistency statement (2) holds.

THEOREM 4.2. If in addition to Assumptions 1, 2, 3, 5, we also have that
�πγ = 0, then consistency statement (2) holds.

The additional assumption (4) in Theorem 4.1 strengthens conditions on the
weakness of the cross-sectional correlation; in particular, it requires that the
covariance matrix converges to a diagonal one. The additional assumption in The-
orem 4.2 requires that the weights used for averaging the cross-sectional entities
are orthogonal to the loadings on the latent factor structure, which precludes the
latent factor structure (that represents the cross-sectional dependence) from being
amplified. This is a necessary assumption for consistency of the variance estimator.
Indeed, let Assumptions 1, 2, 3, 5 hold, and consider the first component of ξi:

ξ
(1)
i = 1√

T

∑
t

vtγieit = πiγ
′
i ϒT + η̃i,

where η̃i = 1√
T

∑
t vtγiηit, and ϒT = 1√

T

∑T
t=1 ftvt. Note that 1√

N

∑N
i=1 η̃i ⇒

N (0,σ 2
η ) and 1

N

∑N
i=1 η̃2

i
p→ σ 2

η , as all conditions of Theorems 3.2 and 4.2 are
satisfied by cross-sectionally and time independent errors ηis. Assumption 5(iv)
guarantees that ϒT ⇒ N (0,�fv) as T → ∞, while according to Assumption 5(ii),
we have 1√

N

∑N
i=1πiγ

′
i → �πγ as N → ∞. Thus,

1√
N

N∑
i=1

ξ
(1)
i ⇒ N

(
0,�πγ �fv�

′
πγ +σ 2

η

)
,

while 1
N

∑N
i=1

(
ξ

(1)
i

)2 p→ σ 2
η because 1

N

∑N
i=1πiγ

′
i γiπ

′
i → 0 by Assumptions

2 and 5(ii).

4.2. Bootstrap Inference

As one way to conduct valid inferences in settings when 1
N

∑N
i=1 ξiξ

′
i is an inconsis-

tent estimator of the variance (in particular, when �πγ 
= 0 under Assumption 5),
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we propose the following simple wild bootstrap procedure. In each bootstrap
repetition,

(i) simulate independent draws of random variables δt ∼ {−1, + 1},t = 1,...,T,

with success probability 1/2;
(ii) compute the bootstrap analogues of errors e∗it = δteit,i= 1,...,N,t = 1,...,T;
(iii) compute the bootstrap analogues ξ∗

i using the definition of ξi, with e
∗
it in place

of eit for all i= 1,...,N,t = 1,...,T .

Then the distribution of �∗
N,T = 1√

N

∑N
i=1 ξ ∗

i has the same asymptotic limit as
that of �N,T has, and can be used for inferences. Alternatively, the distribution of
�∗
N,T normalized by the bootstrap analogue of the variance estimate 1

N

∑N
i=1 ξ ∗

i ξ ∗′
i

can be used to approximate the distribution of �N,T normalized by the variance
estimate 1

N

∑N
i=1 ξiξ

′
i .We call the two described bootstrap procedures bootstrap and

bootstrap-t. In the next section, we implement both variations of the wild bootstrap
for the setup of Assumption 5.

The wild bootstrap works because it introduces independence in the time direc-
tion while preserving the (unknown) cross-sectional dependence. Specifically,
we base our proof of Theorem 3.2 on the change of order of summations in
double/triple summations over i and time index/indices. For example,

�
(1)
N,T = 1√

N

N∑
i=1

ξ
(1)
i = 1√

T

T∑
t=1

(
1√
N

N∑
i=1

vtγieit

)
.

We then argue that our assumptions guarantee that the CLT with respect to
summation over t is applicable. If the assumptions of the CLT hold, then �

(1)
N,T

is asymptotically Gaussian with mean zero and variance equal to the limit of
1
T

∑T
t=1E

[(
1√
N

∑
i vtγieit

)2]
. This limit clearly depends on howmuch there is cross-

sectional correlation between eit and ejt. Now, in the bootstrapped samples,(
�

(1)
N,T

)∗ = 1√
N

N∑
i=1

(
ξ

(1)
i

)∗ = 1√
T

T∑
t=1

(
1√
N

N∑
i=1

vtγieit

)
δt.

Conditional on the original sample, only δt’s are random, and they are independent
and have zero mean and unit variance. When T is large, this bootstrapped normal-
ized sum satisfies the CLT and thus converges to a zero-mean Gaussian random
variable with the variance equal to the limit of 1

T

∑T
t=1

(
1√
N

∑N
i=1 vtγieit

)2
as

N,T → ∞. This limit coincides with 1
T

∑T
t=1E

[(
1√
N

∑N
i=1 vtγieit

)2]
under rela-

tively weak assumptions, as long as the Law of Large Numbers holds. For example,
under Assumptions 5, we have:

lim
1

T

T∑
t=1

(
1√
N

N∑
i=1

vtγieit

)2

= lim
1

T

T∑
t=1

(
�πγ vtft + 1√

N

N∑
i=1

vtγiηit

)2

p→ �πγ �fv�
′
πγ +σ 2

η .
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A similar argument can be made about the second component as well. Indeed,(
�

(2)
N,T

)∗ = 1√
N

N∑
i=1

(
ξ

(2)
i

)∗ = 1

T

T∑
s=1

∑
t<s

(
1√
N

N∑
i=1

wsteiteis

)
δtδs.

For a bootstrapped statistic, conditional on the original sample, the weights
1√
N

∑N
i=1wsteiteis are fixed, while δt’s are independent random variables, and all the

conditions of LemmaA.1 are satisfied. Thus, a zero-meanGaussian limit obtains as
T → ∞. It is straightforward to verify that its variance converges to the asymptotic
variance of �

(2)
N,T .

In the simulation experiments in the following section, we check, among other
things, that both wild bootstrap variations deliver correctly sized tests even when
the asymptotic-t tests fail to do so, and also that the bootstrap-based tests have a
nontrivial power.

5. MONTE CARLO SIMULATIONS

The goals of this section are to check finite sample performance of an asymp-
totic Gaussian approximation for �N,T , to explore when the variance estimator
�̂ξ = 1

N

∑N
i=1 ξiξ

′
i allows to construct reliable asymptotic-t inferences, and to

evaluate the performance of the wild bootstrap and bootstrap-t procedures in terms
of both size and power.

5.1. Setup

Our setup adheres to Assumption 5. We generate the errors eit according to the
following weak (unobserved) factor structure:

eit = π ′
i ft +ηit,

where ft ∼ iidN (0,1) across t= 1,...,T,γi = 1 for all i= 1,...,N, and ηit = ωiεη,it,

where εη,it are iidN (0,1) across i and t. The standard deviations are set to ωi =
cω (1+|τi|), and the factor loadings are πi = (cπ + τi)/

√
N, where τi ∼ iidN (0,1)

across i = 1,...,N. The multiplier cω is tuned so that the average cross-sectional
variance of ηit is unity. The parameter cπ indexes the degree of cross-sectional
dependence as measured by the strength of the factor structure. Specifically, as∑N

i=1πiπ
′
i → 1+ c2π , this parameter is assumed to be bounded for the Gaussian

approximation to hold. We also have �πγ = cπ , hence we can expect consistency
of variance estimation only when cπ = 0, so we will explore the distortions
for different values of cπ . The errors generated this way are cross-sectionally
dependent and heteroscedastic, while still satisfying Assumption 5.

The common variables are generated as follows: vt = cfvft +
√
1− c2fvεv,t,

with εv,t ∼ iid N (0,1) across t = 1,...,T, and wst = vsvt,s,t = 1,...,T . All the
disturbances ft,τi,εη,it and εv,t are mutually independent. The parameter cfv indexes
the dependence between common variables and eit. Themean zeroAssumption 3(i)
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Table 1. Characteristics of simulated finite-sample distribution of �N,T for
N = T = 500

Element of �N,T → Linear Quadratic

cπ ↓ Mean Skew Kurt Quant Mean Skew Kurt Quant

0.5 0.01 −0.05 3.01 1.63 −0.01 0.25 3.20 1.71

1 0.01 −0.04 2.97 1.64 −0.01 0.25 3.20 1.71

2 0.00 −0.00 2.95 1.65 0.02 0.20 3.11 1.71

Notes: Based on 10,000 simulations. The first component of �N,T is labeled “linear” and second
component is labeled “quadratic.” “Mean” stands for average, “skew” for skewness coefficient, “kurt”
for kurtosis coefficient, and “quant” for right 5% quantile of simulated marginal distribution of
components of �N,T normalized by corresponding standard deviations. Rows with cπ = 0.5,1 and
2 correspond to a very weak, weak and moderately strong error factor structure.

requires cfv = 0; the nonzero values of cfv index deviations from the null hypothesis
E(ξi) = 0, and will be used to study the power properties of the proposed wild
bootstrap. In wild bootstrap samples, we generate the bootstrap errors by e∗it = δteit,
where δt = 2ζt − 1, and ζt ∼ iid B( 12 ) across t,...,T . The bootstrap analogues of
γi,vt, and wst are set equal to their original sample values.

The distribution characteristics are computed from 10,000 simulations, while
the rejection rates are based on 5,000 simulation runs. In all simulations, we set
N = T = 500. The number of bootstrap repetitions is 600.

5.2. Results

Table 1 contains distributional characteristics of �N,T . We report averages, coeffi-
cients of skewness, coefficients of kurtosis, and right 5% quantiles of normalized
marginal distributions of both elements of �N,T . For the exactly normal distribu-
tions, these values are 0, 0, 3, and 1.645, respectively.

The actual distribution of the linear component of�N,T is very close toGaussian,
in all respects: all themoments and the right tail are almost equal to their theoretical
counterparts. The quadratic component of �N,T, however, albeit mean unbiased,
is somewhat positively skewed and a bit leptokurtic. The shifted right quantile
confirms slight over-dispersion. The distortions, however, do not seem to increase
with the strength of the error factor structure.

In Table 2, we document the empirical rejection rates for tests with 10%,5%, and
1% declared size based on the asymptotic-t, wild bootstrap, and wild bootstrap-
t approaches. In the asymptotic-t approach we create a t-statistic using �̂ξ as a
variance estimator and compare it with the symmetric standard Gaussian critical
values. We also explore the performance of two wild bootstrap procedures—one
that bootstraps �N,T and another that bootstraps the t -statistics (referred to in
Table 2 as bootstrap ξ and bootstrap t). In both bootstrap procedures, we compare
the absolute value of the statistic from the sample to the right quantile of the
absolute value of the bootstrapped statistic. We verify the empirical size by setting
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Table 2. Simulated rejection rates for asymptotic and wild bootstrap tests

Element → Linear Quadratic

1% 5% 10% 1% 5% 10%

cπ ↓ Asy Bootstrap Asy Bootstrap Asy Bootstrap Asy Bootstrap Asy Bootstrap Asy Bootstrap

t ξ t t ξ t t ξ t t ξ t t ξ t t ξ t

Size: cfv = 0

0.5 2 1 1 8 5 5 14 10 10 0 1 1 3 6 5 6 10 10

1 7 1 1 16 5 5 24 10 10 0 1 1 3 6 5 6 10 10

2 25 1 1 38 5 5 46 10 10 0 1 1 3 6 6 7 11 12

Power: cfv = 0.1

0.5 9 6 6 22 17 17 32 27 26 0 2 1 3 7 6 7 12 12

1 39 16 16 56 35 35 67 47 46 1 2 2 3 7 6 6 13 11

2 79 29 29 87 51 51 90 63 63 1 6 3 5 14 9 11 20 17

Power: cfv = 0.2

0.5 35 28 26 58 51 49 68 63 62 1 5 3 5 13 9 10 19 16

1 90 73 71 96 88 87 97 93 93 2 10 5 9 21 15 17 30 25

2 100 93 92 100 98 98 100 99 99 18 45 29 40 61 50 53 68 61

Notes: The table contains actual rates, computed from 5,000 simulations for 10%,5%, and 1% declared size asymptotic-t (“asy t”), bootstrap (“bootstrap ξ”) and
bootstrap-t (“bootstrap t”) two-sided tests for deviations of each component of �N,T from the zero value. The first component of �N,T is labeled ‘linear’ and second
component is labeled ‘quadratic’. The size figures are in panel with cfv = 0, and power figures are in panels with cfv 
= 0. Rows with cπ = 0.5,1, and 2 correspond to
a very weak, weak, and moderately strong error factor structure.

https://doi.org/10.1017/S0266466620000468 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0266466620000468


LIMIT THEOREMS FOR FACTOR MODELS 1051

cfv = 0 and empirical power by setting cfv = 0.1 for relatively small deviations from
the null and cfv = 0.2 for relatively large deviations from the null.

As expected, the size of the test based on asymptotic approximations sometimes
deviates from nominal rates by a wide margin, especially for the linear component
of ξN,T, the gap quickly increasing with the strength of the error factor structure.
This happens due to inconsistency of the variance estimator �̂ξ and becomes more
pronounced with stronger cross-sectional dependence. What is surprising is that
for the quadratic component of ξN,T, the distortions are relatively minor and not
very sensitive to the strength of the factor structure. In contrast, both bootstrap
procedures exhibit excellent size control and stability thereof across the strength
of the error factor structure for both components of ξN,T . In terms of power,
however, the two bootstrap statistics are approximately equally powerful for the
linear component of ξN,T, while there is a gap, sometimes sizable, between power
figures for its quadratic component. It seems that bootstrapping the statistic itself
is preferable.

6. CONCLUDING REMARKS

Possible directions for future research may be relaxing the error time-series inde-
pendence to martingale difference structures and inventing ways to consistently
estimate the asymptotic variance matrix when it is not diagonal in the limit.
Other interesting areas involve establishing formal properties of the proposed
wild bootstrap schemes, exploring the possibility of asymptotic refinements, and
examining the superiority of one bootstrap scheme over the other.

APPENDIX: PROOFS

A.1. Preliminary Results

We use the following CLT for a vector valued martingale difference sequence:

LEMMA A.1. Let the sequence (Zt,T,Ft,T ),t = 1,...,T, be a martingale difference

sequence of r × 1 random vectors with �T = var
(∑T

t=1Zt,T
)
. If the following two

conditions hold as T → ∞,

(1) (minev(�T ))−2∑T
t=1E

[‖Zt,T‖4]→ 0,

(2) (minev(�T ))−2
E
[∥∥∑T

t=1Zt,TZ
′
t,T −�T

∥∥2]→ 0,

then, as T → ∞,

�
−1/2
T

T∑
t=1

Zt,T ⇒ N (0,Ir).

Proof of Lemma A.1. Indeed, the statement of Lemma A.1 holds if for any nonrandom
r × 1 vector λ, we have (λ′�Tλ)−1/2∑T

t=1 λ′Zt,T ⇒ N (0,1). Let us define a scalar
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martingale difference sequence zt = λ′Zt,T with variance σ 2
T = var

(∑T
t=1 λ′Zt,T

)= λ′�Tλ.
Let us check that all conditions of the CLT by Heyde and Brown (1970) are satisfied for
δ = 1. Indeed,

1

σ 4
T

T∑
t=1

E

[
|zt|4

]

= 1

(λ′�Tλ)2

T∑
t=1

E

[
|λ′Zt,T |4

]
≤ 1

(‖λ‖2minev(�T ))2

T∑
t=1

‖λ‖4E
[
‖Zt,T‖4

]
→ 0,

and

E

⎡⎣∣∣∣∣∣
∑T

t=1 z
2
t

σ 2
T

−1

∣∣∣∣∣
2
⎤⎦= E

⎡⎣∣∣∣∣∣
∑T

t=1(λ
′Zt,T )2

λ′�Tλ
−1

∣∣∣∣∣
2
⎤⎦

= 1

(λ′�Tλ)2
E

⎡⎢⎣
∣∣∣∣∣∣λ′
⎛⎝ T∑
t=1

Zt,TZ
′
t,T −�T

⎞⎠λ

∣∣∣∣∣∣
2
⎤⎥⎦

≤ 1

(‖λ‖2minev(�T ))2
‖λ‖4E

⎡⎢⎣
∥∥∥∥∥∥
T∑
t=1

Zt,TZ
′
t,T −�T

∥∥∥∥∥∥
2
⎤⎥⎦→ 0.

These two conditions imply that σ−1
T
∑T

t=1 zt ⇒ N (0,1). This finishes the proof.

As a preliminary result, we establish a CLT for quadratic forms. The idea of this result
comes from the CLT for quadratic forms by de Jong (1987). All random variables are
implicitly indexed by the sample sizes T (orN,T in the further application to factor models),
which are omitted to reduce clutter; for example,Wst in full notation is indexed asWst,T or
Wst,N,T .

LEMMA A.2. Let Wst =Wst(Xst,es,et) be a set of random vectors defined for all s> t,
where s,t ∈ {1,...,T}, such that Xst is a random vector measurable with respect to the
σ -algebra F , and all et are independent from each other, conditionally on F . Assume
that

E(Wst|F,et) = 0 and E(Wst|F,es) = 0. (A.1)

Define W(T) =∑T
s=1

∑
t<sWst and�W,T = var(W(T)). Assume the following statements

hold as T → ∞:

(i) �W,T → �W, where �W is a full rank matrix;
(ii) T4max1≤t,s≤T E[‖Wst‖4] < C;

(iii) E
[∥∥∑T

s=1
∑

t<sWstW ′
st −�W,T

∥∥2]→ 0;
(iv) T4maxs1 
=s2,t1 
=t2

t1<s1,t2<s2

∣∣E(W ′
s1t2Ws2t1W

′
s2t2Ws1t1

)∣∣→ 0.

Then, as T → ∞,

W(T) ⇒ N (0,�W ).
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LEMMA A.3. Let Wst = Wst(Xst,es,et) satisfy all conditions of Lemma A.2. Let Vs =
Vs(Xs,es) be a random vector defined for all s ∈ {1,...,T} such that Xs is a random vector
measurable with respect to the σ -algebra F , and E(Vs|F) = 0. Define V(T) =∑T

s=1Vs
and �V,T = var(V(T)). Assume the following statements hold as T → ∞:

(a) �V,T → �V , where �V is a full rank matrix;
(b) Tmax1≤s≤T E[‖Vs‖4] → 0;
(c) E[‖∑T

s=1VsV
′
s−�V,T‖2] → 0;

(d) T3max1≤t<min{s1,s2}≤T ‖E(Ws1tV
′
s1Vs2W

′
s2t)‖ → 0.

Then, as T → ∞(
V(T)

W(T)

)
⇒ N

((
0

0

)
,

(
�V 0
0 �W

))
.

Proof of LemmaA.2. The proof of this lemma follows closely the proof and ideas stated
in de Jong (1987). Call Wst clean if

E
(
Ws1t1 ⊗Ws2t2 · · ·⊗Wsktk

)= 0

when at least one index from the set {s1,t1,...,sk,tk} has a value that occurs only once. The
functional form of Wst and the condition stated in (A.1) guarantee that in our case Wst is
clean. Indeed, if, for example, the index s1 occurs only once, then

E
(
Ws1t1 ⊗Ws2t2 ⊗·· ·⊗Wsktk

)= E
[
E(Ws1t1 ⊗Ws2t2 ⊗·· ·⊗Wsktk |F,et1,es2,et2,...,etk )

]
= E

[
E(Ws1t1 |F,et1,es2,et2,...,etk )⊗Ws2t2 ⊗·· ·⊗Wsktk

]
= E

[
E(Ws1t1 |F,et1)⊗Ws2t2 ⊗·· ·⊗Wsktk

]= 0.

Now, W(T) =∑T
s=1

∑
t<sWst =∑T

s=1Zs,T, where Zs,T =∑
t<sWst. We denote by Fs

the σ -algebra generated byF and et for all t< s. Then, (Zs,T,Fs) is a martingale difference
sequence. Below we check that all conditions of Lemma A.1 are satisfied.

Condition (i) implies that minev(�W,T ) → C > 0. Now let us check condition (1) of
Lemma A.1:

E

[
‖Zs,T‖4

]
= E

⎡⎣∥∥∥∥∥∑
t<s

Wst

∥∥∥∥∥
4
⎤⎦

= E

⎡⎣⎛⎝∑
t1<s

Wst1

⎞⎠′⎛⎝∑
t2<s

Wst2

⎞⎠⎛⎝∑
t3<s

Wst3

⎞⎠′⎛⎝∑
t4<s

Wst4

⎞⎠⎤⎦
≤
∑
t<s

E

[
‖Wst‖4

]
+C

∑
t1<s

∑
t2<s,t2 
=t1

E

[
‖Wst1‖2‖Wst2‖2

]
.

The last statement follows from the fact that Wst is clean, and nonzero summands
are only those where either t1 = t2 = t3 = t4 or the set {t1,t2,t3,t4} consists of
two distinct elements each occurring twice. We also notice that E

[‖Wst1‖2‖Wst2‖2
]

≤ 1
2

(
E
[‖Wst1‖4

]+E
[‖Wst2‖4

]) ≤ max1≤t,s≤T E
[‖Wst‖4

]
< CT−4due to condition (ii).

Hence, E
[‖Zs,T‖4] ≤ CT−2. Thus,

∑T
s=1E

[‖Zs,T‖4] ≤ CT−1, implying that condition
(1) of Lemma A.1 holds.
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Now let us turn to condition (2). First, notice that

�W,T = var(W(T)) = var

⎛⎝ T∑
s=1

∑
t<s

Wst

⎞⎠=
T∑
s=1

∑
t<s

var(Wst),

the last equality holding becauseWst is clean. Next,

E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

Zs,TZ
′
s,T −�W,T

∥∥∥∥∥∥
2

F

⎤⎥⎦
= E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

⎛⎝∑
t1<s

Wst1

⎞⎠⎛⎝∑
t2<s

Wst2

⎞⎠′
−�W,T

∥∥∥∥∥∥
2

F

⎤⎥⎦
= E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

∑
t<s

(WstW
′
st−E[WstW

′
st])+

T∑
s=1

∑
t1 
=t2

Wst1W
′
st2

∥∥∥∥∥∥
2

F

⎤⎥⎦
= E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

∑
t<s

(WstW
′
st−E[WstW

′
st])

∥∥∥∥∥∥
2

F

⎤⎥⎦+E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

∑
t1 
=t2

Wst1W
′
st2

∥∥∥∥∥∥
2

F

⎤⎥⎦ . (A.2)

The last equality holds because of the clean form, as the expectation of the Frobenius norm
is equal to the trace of the sums of various products of four terms, and any such product that
contains two of the same indexes t and two different indexes t1 
= t2, has a zero expectation.
Now, the first summand in equation (A.2) converges to zero due to condition (iii) of the
lemma. Now consider the second term in (A.2):

E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

∑
t1 
=t2<s

Wst1W
′
st2

∥∥∥∥∥∥
2

F

⎤⎥⎦=
T∑

s1=1

∑
t1 
=t2

T∑
s2=1

∑
t3 
=t4

E
[
tr
(
Ws1t1W

′
s1t2Ws2t3W

′
s2t4

)]

= C
T∑

s1=1

T∑
s2=1

∑
t1 
=t2

E[tr
(
Ws1t1W

′
s1t2Ws2t1W

′
s2t2

)
],

the last equality holding because Wst is clean. The last summation can be divided into a
category when s1 
= s2, the corresponding sum being asymptotically o(1) due to condition
(iv), and a category when s1 = s2, there being at most CT3 of such summands, each smaller
than Cmax1≤t,s≤T E

[‖Wst‖4
]
< CT−4. Thus,

E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

∑
t1 
=t2

Wst1W
′
st2

∥∥∥∥∥∥
2

F

⎤⎥⎦→ 0. (A.3)

Putting statements (A.2) and (A.3) together we obtain that condition (2) of Lemma A.1 is
satisfied. Thus, the conclusion of Lemma A.2 holds.

Proof of LemmaA.3. Let us define Zs = (V ′
s,
∑

t<sW
′
st)

′, and letFs be defined as in the
proof of Lemma A.2. We will show that all conditions of Lemma A.1 are satisfied. Notice
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that

E
[
VsW

′
st
]= E

[
E(VsW

′
st|F,es)

]= E
[
VsE(W ′

st|F,es)
]= 0.

Thus,

�T = var

⎛⎝ T∑
s=1

Zs

⎞⎠=
(

�V,T 0
0 �W,T

)
→
(

�V 0
0 �W

)
.

The right-hand-side is a full rank matrix by condition (i) of Lemma A.2 and condition (a)
of Lemma A.3. Thus, the minimal eigenvalue of �T is separated away from zero for large
T. Now,

T∑
s=1

E

[
‖Zs‖4

]
≤ C

T∑
s=1

E

[
‖Vs‖4

]
+C

T∑
s=1

E

⎡⎣∥∥∥∥∥∑
t<s

Wst

∥∥∥∥∥
4
⎤⎦ .

The first term here is bounded by Tmax1≤s≤T E
[‖Vs‖4] which goes to zero by condition

(b) of Lemma A.3, while convergence to zero of the second sum has been already shown
during the proof of Lemma A.2 . Thus, condition (1) of Lemma A.1 holds. Next,

E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

ZsZ
′
s−�T

∥∥∥∥∥∥
2
⎤⎥⎦≤ E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

ZsZ
′
s−�T

∥∥∥∥∥∥
2

F

⎤⎥⎦
= E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

VsV
′
s−�V,T

∥∥∥∥∥∥
2

F

⎤⎥⎦+2E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

(∑
t<s

Wst

)
V ′
s

∥∥∥∥∥∥
2

F

⎤⎥⎦
+E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

(∑
t<s

Wst

)(∑
t<s

Wst

)′
−�W,T

∥∥∥∥∥∥
2

F

⎤⎥⎦ .

Here we use that the Frobenius norm of a matrix equals to the sum of squares of all elements
and can be decomposed into sums over four blocks of the matrix. Condition (c) guarantees
that

E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

VsV
′
s−�V,T

∥∥∥∥∥∥
2

F

⎤⎥⎦≤ CE

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

VsV
′
s−�V,T

∥∥∥∥∥∥
2
⎤⎥⎦→ 0.

During the proof of Lemma A.2 we show that

E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

(∑
t<s

Wst

)(∑
t<s

Wst

)′
−�W,T

∥∥∥∥∥∥
2

F

⎤⎥⎦→ 0.

Finally,

E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

(∑
t<s

Wst

)
V ′
s

∥∥∥∥∥∥
2

2

⎤⎥⎦=
T∑

s1=1

∑
t1<s1

T∑
s2=1

∑
t2<s2

tr
(
E
(
Ws1t1V

′
s1Vs2W

′
s2t2

))
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=
T∑

s1=1

T∑
s2=1

∑
t<min{s1,s2}

tr
(
E
(
Ws1tV

′
s1Vs2W

′
s2t
))

≤ CT3 max
1≤s1,s2,t≤T

∥∥E(Ws1tV
′
s1Vs2W

′
s2t
)∥∥→ 0.

Here we used that E
(
Ws1t1V

′
s1Vs2W

′
s2t2

)= 0 if t1 
= t2 and condition (d) of the lemma. To
conclude, condition (2) of Lemma A.1 also holds.

LEMMA A.4. For an N×N symmetric matrix A = (aij) denote � to be the Hadamard

product. Then ‖A�A‖ ≤ √
N‖A‖2.

Proof. Using the equivalence of norms, we have

‖A�A‖ ≤ ‖A�A‖F =
√ ∑
1≤i,j≤N

a4ij ≤
√

max
1≤i,j≤N a

2
ij

√ ∑
1≤i,j≤N

a2ij ≤ ‖A‖‖A‖F ≤ √
N‖A‖2.

A.2. Proofs for Independent Case

Proof of Theorem 3.1. We will check that all conditions of Lemma A.3 are satisfied for

Wst = 1

T
√
N
wst

N∑
i=1

eiteis = 1

T
wst

e′tes√
N

and

Vs = 1√
TN

N∑
i=1

γieis⊗ vs = 1√
T

γ ′es√
N

⊗ vs.

(i) First notice that due to Assumption 4 (ii)

E

[(
e′tes√
N

)2]
=

tr
(
E2N,T

)
N

→ a.

Due to the independence between the common variables and eit and because Wst is clean,
we have:

�W,T = var

⎛⎝ T∑
s=1

∑
t<s

Wst

⎞⎠= 1

T2

T∑
s=1

∑
t<s

E(wstw
′
st)E

[(
e′tes√
N

)2]
→ a�w,

and the limit is a positive definite matrix.
(ii) By Assumption 4(i) and the i.i.d. nature of et, we have:

T4E
[
‖Wst‖4

]
= E

[
‖wst‖4

]
E

[(
e′tes√
N

)4]
≤ C

N2

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

E
[(
ei1tei2tei3tei4t

)2 ]
< C.
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Here we used that |E(ei1tei2tei3tei4t) | ≤ max1≤i≤N,1≤t≤T E
(
e4it

)
< C and Assump-

tion 4(iv).
(iii) Next,

T∑
s=1

∑
t<s

WstW
′
st−�W,T = 1

T2

T∑
s=1

∑
t<s

wstw
′
st

[(
e′set√
N

)2
− 1

N
tr(E2N,T )

]

+ 1

N
tr
(
E2N,T

)⎡⎣ 1

T2

T∑
s=1

∑
t<s

(
wstw

′
st−E

(
wstw

′
st
))⎤⎦

= A1 +A2,

hence it is enough to prove that E
[‖A1‖2]→ 0 and E

[‖A2‖2]→ 0. The latter is postulated
by Assumption 1(iii). Notice that all summands in A1 are uncorrelated with each other due
to Assumptions 3(i) and 4(i). Thus,

E
[
tr(A1A

′
1)
]= 1

T4

T∑
s=1

∑
t<s

E

[
‖wst‖4

]
E

⎡⎣(( e′set√
N

)2
− tr(E2N,T )

N

)2⎤⎦
≤ 1

T4

T∑
s=1

∑
t<s

E

[
‖wst‖4

]
E

[(
e′set√
N

)4]
<

C

T2
.

In the last inequality, we use the proof of statement (ii) above. This implies that condition
(iii) of Lemma A.2 holds.

(iv) If the set {s1,s2,t1,t2} contains four distinct indexes, then

T4
∣∣E(W ′

s1t2Ws2t1W
′
s2t2Ws1t1

)∣∣≤ E

[
‖wst‖4

] tr(E (es1e′s1et1e′t1es2e′s2et2e′t2))
N2

≤ C

N2
tr
(
E4N,T

)
≤ C

N2
Nmaxev

(
E4N,T

)
≤ C

N
→ 0.

We now move to conditions (a)–(d) of Lemma A.3.
(a) By Assumptions 4(iii) and 1(i), we have

�V,T =
(
1

N
γ ′EN,Tγ

)
⊗
⎛⎝ 1

T

T∑
s=1

E
(
vsv

′
s
)⎞⎠→ �σ ⊗�v,

and the limit is a full rank matrix.
(b) Next,

TE
[
‖Vs‖4

]
= 1

T
E

[∥∥∥∥ 1√
N

γ ′es
∥∥∥∥4
]
E

[
‖vs‖4

]
,

where E
[‖vs‖4]≤ C due to Assumption 1(ii). Assumptions 2 and 4(iv) imply that

E

[∥∥∥∥ 1√
N

γ ′es
∥∥∥∥4
]

= 1

N2

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

E
(
ei1tei2tei3tei4t

)
γ ′
i1

γi2γ
′
i3

γi4
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< max
1≤i≤N ‖γi‖4 1

N2

N∑
i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

|E(ei1tei2tei3tei4t) | < C.

(c) Next,

T∑
s=1

VsV
′
s−�V,T =

(
1

N
γ ′EN,Tγ

)
⊗
⎛⎝ 1

T

T∑
s=1

(
vsv

′
s−E

(
vsv

′
s
))⎞⎠

+ 1

T

T∑
s=1

(
γ ′ese′sγ

N
− γ ′EN,Tγ

N

)
⊗ (vsv′s)

= A1 +A2.

Notice that A1 and A2 are uncorrelated, hence

E

⎡⎢⎣
∥∥∥∥∥∥
T∑
s=1

VsV
′
s−�V,T

∥∥∥∥∥∥
2

F

⎤⎥⎦= tr
(
E(A′

1A1)
)+ tr

(
E(A′

2A2)
)
.

Assumption 1(iv) guarantees the convergence of the first term. Notice that the summands
in A2 are uncorrelated due to time independence of errors, hence

tr
(
E(A′

2A2)
)= 1

T2

T∑
s=1

E

[∣∣∣∣γ ′ese′sγ
N

− 1

N
γ ′EN,Tγ

∣∣∣∣2
]
E

[
‖vs‖4

]

≤ C

T
E

[∣∣∣∣γ ′ese′sγ
N

− 1

N
γ ′EN,Tγ

∣∣∣∣2
]
.

Given the bounds on the fourth moment of N−1/2γ ′es derived in the proof of part (b) we
get that condition (c) holds.

(d) By Assumption 4(i), we have that

T3
∥∥E(Ws1tV

′
s1Vs2W

′
s2t
)∥∥=

∥∥∥∥∥E(ws1tv′s1vs2w′
s2t
)
E

(
e′s1γ√
N

γ ′es2√
N

e′s1et√
N

e′s2et√
N

)∥∥∥∥∥ .
Using that scalars can be reshuffled to make two same-index et stand back to back and
employing time series independence of errors, we obtain that∣∣∣∣∣E
(
e′s1γ√
N

γ ′es2√
N

e′s1et√
N

e′s2et√
N

)∣∣∣∣∣= 1

N2

∣∣tr(γ γ ′
E(es2e

′
s2 )E(ete

′
t)E(es1e

′
s1 )
)∣∣

≤ 1

N2
tr(γ γ ′)maxev

(
E3N,T

)
≤ C

N
.

Here we use Assumption 2 to getN−1tr(γ γ ′) <C and Assumption 4(ii). Given Assumption
1(ii), we obtain that

T3 max
1≤t<min{s1,s2}≤T

∥∥E(Ws1tV
′
s1Vs2W

′
s2t
)∥∥≤ C

N
→ 0.

Thus, condition (d) of LemmaA.3 is satisfied. This concludes the proof of Theorem 3.1.
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Proof of Theorem 4.1. We will prove the following three statements for

ξV,i = 1√
T

T∑
s=1

γieis⊗ vs

and

ξW,i = 1

T

T∑
s=1

∑
t<s

wsteiteis:

(i) N−1∑N
i=1 ξV,iξ

′
V,i

p→ �V ;

(ii) N−1∑N
i=1 ξW,iξ

′
W,i

p→ �W ;

(iii) N−1∑N
i=1 ξV,iξ

′
W,i

p→ 0.

Let us start with statement (i). Denote by σ 2
i the diagonal and by σij the off-diagonal

elements of matrix EN,T . Notice that the additional assumption of Theorem 4.1 implies that

�σ = lim
γ ′EN,Tγ

N
= lim

1

N

N∑
i=1

γiγ
′
i σ

2
i .

Let us define �̃V,T = (
N−1∑N

i=1 γiγ
′
i σ

2
i

)(
T−1∑T

s=1E
(
vsv′s

))
, and notice that �̃V,T →

�V . Thus,

1

N

N∑
i=1

ξV,iξ
′
V,i− �̃V,T

= 1

NT

N∑
i=1

T∑
t=1

T∑
s=1

((
γiγ

′
i eiseit

)⊗ (vsv
′
t)− I{s= t}σ 2

i
(
γiγ

′
i
)⊗E(vtv

′
t)
)

= 1

NT

N∑
i=1

T∑
t=1

(e2it−σ 2
i )
(
γiγ

′
i
)⊗ (vtv

′
t)+ 1

NT

N∑
i=1

T∑
t=1

∑
s
=t

(
γiγ

′
i eiseit

)⊗ (vsv
′
t)

+ 1

NT

N∑
i=1

T∑
t=1

(
γiγ

′
i σ

2
i

)
⊗ (vtv′t−E

(
vtv

′
t
))

= A1 +A2 +A3.

Notice that the three terms are uncorrelated, so it is enough to prove that tr
(
E(AjA

′
j)
)

→ 0

for j= 1,2,3. Indeed, if the expectation of the Frobenius norm of a matrix converges to zero,
this implies that each entry converges to zero as well. First,

tr
(
E(A1A

′
1)
)= tr

⎛⎝E
⎡⎣ 1

N2T2

N∑
i,j=1

T∑
t=1

T∑
s=1

(
γiγ

′
i γjγ

′
j (e

2
it−σ 2

i )(e2js−σ 2
i )
)

⊗ (vtv
′
tvsv

′
s)

⎤⎦⎞⎠
= 1

N2T2

N∑
i,j=1

T∑
t=1

tr
(
γiγ

′
i γjγ

′
j cov(e

2
it,e

2
jt)
)
tr
(
E(vtv

′
tvtv

′
t)
)
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≤ 1

T2

T∑
t=1

max
1≤i≤N ‖γi‖4 max

1≤i≤NE
[
(e2it−σ 2

i )2
]
E
[‖vt‖4]≤ C

T
.

Here we used that eit’s are independent from each other for different t by Assumption 3(i),
which forces s= t. The last inequality uses Assumptions 1(ii), 3 (ii), and 2.

Consider the term A2 and notice that any two summands in the two-directional sum (over
t and over s) are uncorrelated due to time series independence of et’s and all summands are
mean zero. Thus,

tr
(
E(A2A

′
2)
)= 1

N2T2

T∑
t=1

∑
s
=t

N∑
i,j=1

tr
(
E(γiγ

′
i γjγ

′
j eiteisejtejs)⊗E(vsv

′
tvtv

′
s)
)

= 1

N2

N∑
i,j=1

tr(γiγ
′
i γjγ

′
j σ

2
ij )

1

T2

T∑
t=1

∑
s
=t

tr
(
E
(
vsv

′
tvtv

′
s
))
.

We notice that T−2∑T
t=1

∑
s
=t tr

(
E
(
vsv′tvtv′s

)) ≤ E
[‖vt‖4] < C due to Assumption 1(ii).

Denote r,r∗ to be indexes that go over 1,...,kγ . For any fixed value of r,r∗ denote B(r,r∗) =(
(γiγ

′
i )r,r∗

)N
i=1, an N×1 vector. Then,

1

N2

N∑
i,j=1

tr(γiγ
′
i γjγ

′
j σ

2
ij ) = 1

N2

N∑
i,j=1

∑
r,r∗

(γiγ
′
i )r,r∗(γjγ

′
j )r,r∗σ

2
ij

=
∑
r,r∗

1

N2

N∑
i=1

(γiγ
′
i )r,r∗(γiγ

′
i )r,r∗σ

4
i +

∑
r,r∗

1

N2
B(r,r∗)′

× [(EN,T −dg(EN,T ))� (EN,T −dg(EN,T ))
]
B(r,r∗)

≤ k2γ max
1≤i≤N ‖γi‖4

⎛⎝ 1

N2

N∑
i=1

σ 4
i +

√
N‖EN,T −dg(EN,T )‖

N2

⎞⎠
≤ C√

N
→ 0,

where in the second to last inequality we used Lemma A.4 and the last inequality is due to
Assumptions 2, 4(ii), and the additional assumption stated in Theorem 4.1. This shows that
tr
(
E(A2A

′
2)
)→ 0.

Finally, tr
(
E(A3A

′
3)
)→ 0 due to Assumption 1(iv). This ends the proof of statement (i).

Let us turn to statement (ii):

1

N

N∑
i=1

ξW,iξ
′
W,i−�W,T = 1

T2N

N∑
i=1

T∑
s=1

∑
t<s

(
e2ite

2
is−σ 4

i

)
wstw

′
st

+ 1

T2N

N∑
i=1

T∑
s1=1

∑
t1<s1

T∑
s2=1

∑
t2<s2,{s1,t1}
={s2,t2}

ws1t1w
′
s2t2eit1eis2eit2eis1
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+ 1

N

N∑
i=1

σ 4
i

1

T2

T∑
s=1

∑
t<s

(
wstw

′
st−E(wstw

′
st)
)

= A1 +A2 +A3.

Again, A1,A2, and A3 are uncorrelated with each other. Thus, we can deal with each one
of them separately. We show that the expectation of the Frobenius norm of each matrix
converges to zero, this implies that each entry converges to zero as well.

Let us start with

tr
(
E(A1A

′
1)
)= 1

T4N2

N∑
i,j=1

T∑
s,s∗=1

∑
t<s,t∗<s∗

tr
(
E(wstw

′
stws∗t∗w

′
s∗t∗)

)
E(bi,t,sbj,t∗,s∗),

where

bi,t,s = e2ite
2
is−σ 4

i = (e2it−σ 2
i )(e2is−σ 2

i )+σ 2
i (e2is−σ 2

i )+σ 2
i (e2it−σ 2

i ).

Notice that E(bi,t,sbj,t∗,s∗ ) 
= 0 only if at least one of the indexes from the set {t,t∗,s,s∗}
appears twice. Thus, the summation over time index is three-dimensional and there are at
mostCT3N2 nonzero summands in tr

(
E(A1A

′
1)
)
. Let us bound every summand from above.

Notice that since t < s and t∗ < s∗, all indexes in the set {t,t∗,s,s∗} can appear at most
twice; also errors with different time indexes are independent from each other, so the largest
moment of the error term we will have is the fourth. To sum up, each nonzero summand
is bounded above by T−4N−2Cmax1≤t,s≤T E[‖wst‖4]max1≤i≤N,1≤t≤T E[(e4it)2], thus
tr(E(A1A

′
1)) ≤ C/T → 0.

The term tr
(
E(A2A

′
2)
)
includes summation over eight time indexes but most of the

summands are zeros. The nonzero terms place at least four restrictions on the time indexes.
We note that the nontrivial part of the sum in tr

(
E(A2A

′
2)
)
includes summation over

i,j= 1,...,N and over time indexes {s1,s∗1,t1,t∗1,s2,s∗2,t2,t∗2}, where in the last set any distinct
index appears at least twice. The summands are

1

T4N2
E

(
ws1t1w

′
s∗1t∗1

w′
s∗2t∗2

ws2t2

)
E

(
eit1eis1eit∗1 eis∗1ejt2ejs2ejt∗2 ejs∗2

)
.

Notice also that due to restrictions that t’s are strictly smaller than their corresponding s’s,
each time index can appear at most four times, hence we get at most fourth power of each
error term.

First, consider the case when the set {s1,s∗1,t1,t∗1,s2,s∗2,t2,t∗2} contains at most three
distinct indexes (this makes the summation over time three-dimensional). We can show that
each summand is bounded by T−4N−2max1≤t,s≤T E[‖wts‖4]max1≤i≤N,1≤t≤T E(e4it)

2

≤ C/(T4N2) in absolute value, and as there are at most N2T3 of them (two-dimensional
cross-sectional and three-dimensional over time summations), the sum of such terms will
go to zero.

Finally, we consider the case when the set {s1,s∗1,t1,t∗1,s2,s∗2,t2,t∗2} contains four distinct
indexes. Then each summand of this type is bounded in absolute value by

C
|σij|a(σ 2

i )b(σ 2
j )c

T4N2
max

1≤s,t≤TE
[
‖wst‖4

]
,

where a+ b+ c = 4, and the values of a,b and c depend on which indices coincide with
which; however, due to the conditions {s1,t1} 
= {s2,t2} and t1 < s1,t2 < s2, we know that
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the set {s1,s2,t1,t2} contains at least three distinct indexes. Thus, c and b are either 0 or 1
each, and a≥ 2. Hence, due to Assumption 1(ii), the corresponding sum is bounded above
by

C

N2

N∑
i=1

N∑
j=1

|σij|a(σ 2
i )b(σ 2

j )c ≤ C

N2
max
1≤i≤N σ 4

i

N∑
i=1

N∑
j=1

σ 2
ij

= C

N2

N∑
i=1

σ 4
i + C

N2

N∑
i=1

N∑
i
=j

σ 2
ij (A.4)

≤ C

N
max
1≤i≤N σ 4

i + C

N2
‖EN,T −dg(EN,T )‖2F ≤ C

N
.

In the first inequality, we use |σij| ≤ σiσj. In the second inequality, we use the definition of
the Frobenius norm. In the last inequality, we use that for any symmetric matrix A, we have
‖A‖2F ≤ N‖A‖2 and assumption stated in Theorem 4.1. Thus, tr

(
E(A2A

′
2)
)→ 0.

Next, Assumption 1(iii) implies the convergence of A3. This finishes the proof of (ii).
Finally, we need to prove statement (iii) that

1

NT3/2

N∑
i=1

T∑
s=1

∑
t<s

T∑
s∗=1

(γi⊗ vs∗)w′
steis∗eiteis →p 0.

As before, we look at the expectation of the square of the sum above, which involves six-
dimensional summation over time indexes and two-dimensional summation over cross-
section (over i,j) and is normalized by N−2T−3. Due to time-series independence of eit,
the six-dimensional summation over time indexes has mostly zeros and can be reduced to
three-dimensional summation over time indexes as the set {s1,t1,s∗1,s2,t2,s∗2} should have
any distinct index to appear at least twice.

First, consider only those terms for which the set {s1,t1,s∗1,s2,t2,s∗2} contains at

most two distinct indexes; there are at most N2T2 of such terms. Since t1 < s1 and
t2 < s2, each time index can appear at most four times; thus, the highest power of
each individual shock can be the fourth. As a result, each summand is bounded above
by N−2T−3max1≤i≤N ‖γi‖2max1≤t≤T E[‖vt‖2]max1≤t,s≤T E[‖wst‖2]max1≤i≤N,1≤t≤T
E(e4it)

3/2. Given Assumptions 1(ii) and 3(ii), the sum of these terms is bounded above by
C/T .

Finally, consider only those terms for which the set {s1,t1,s∗1,s2,t2,s∗2} contains exactly
three distinct indexes. The summation over these indexes is equal to

tr

⎛⎝ 1

N2

N∑
i,j=1

γiγ
′
j

(
C1σijσ

2
i σ 2

j +C2σ
3
ij

)⎞⎠ .

The term σ 3
ij appears when {s1,t1,s∗1} = {s2,t2,s∗2}, while σijσ

2
i σ 2

j arises when the sets

{s1,t1,s∗1} and {s2,t2,s∗2} have two coinciding indexes each. Therefore,

tr

⎛⎝ 1

N2

N∑
i,j=1

γiγ
′
j σijσ

2
i σ 2

j

⎞⎠
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= tr

⎛⎝ 1

N2

N∑
i=1

γiγ
′
i σ

6
i

⎞⎠+ tr

⎛⎝ 1

N2

∑
i
=j

(γiσ
2
i )(γ ′

j σ
2
j )σij

⎞⎠
= 1

N2

N∑
i=1

‖γi‖2σ 6
i + 1

N2

∑
i
=j

tr(γiγ
′
j )σ

2
i σ 2

j σij

≤ max
1≤i≤N ‖γi‖2

(
1

N
max
1≤i≤N σ 6

i + ‖EN,T −dg(EN,T )‖
N

max
1≤i≤N σ 4

i

)
→ 0.

Also,

tr

⎛⎝ 1

N2

N∑
i,j=1

γiγ
′
j σ

3
ij

⎞⎠= 1

N2

N∑
i=1

‖γi‖2σ 6
i + 1

N2

∑
i
=j

tr(γiγ
′
j )σ

3
ij

≤ max
1≤i≤N ‖γi‖2

⎛⎝ 1

N
max
1≤i≤N σ 6

i + 1

N2

N∑
i,j=1

σ 2
ij max
1≤i≤N σ 2

i

⎞⎠→ 0.

Here we used the statement N−2∑N
i,j=1 σ 2

ij → 0, which is proved in equation (A.4). This
ends the proof of Theorem 4.1.

A.3. Proofs for Conditional Heteroscedasticity Case

Proof of Theorem 3.2. In order to apply Lemma A.3, we check conditions (i)–(iv) of
Lemma A.2 and conditions (a)–(d) of Lemma A.3 for

Wst = 1

T
wst

e′tes√
N

and

Vs = 1√
T

γ ′es√
N

⊗ vs.

(i) Due to serial independence of eit conditionally on F , we have

�W,T = 1

T2

T∑
s=1

∑
t<s

E

[
wstw

′
stE

((
e′tes√
N

)2
|F
)]

.

Notice that
(
e′tes

)2 = tr
((
e′set

)(
e′tes

))= tr
((
ete′t

)(
ese′s

))
, and hence, given the conditional

independence assumption,

E

[(
e′tes√
N

)2
|F
]

= 1

N
tr
(
E(ete

′
t|F)E(ese

′
s|F)

)
.

Recall that et = π ft+ηt. We will use the notation �η = E
(
ηtη

′
t
)= dg{ω2

i }Ni=1. Then,

E

[(
e′tes√
N

)2
|F
]

= 1

N
tr
((

πE(ftf
′
t |F)π ′ +�η

)(
πE(fsf

′
s |F)π ′ +�η

))
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= 1

N

N∑
i=1

ω4
i +�N,T,

where

�N,T ≤ C

N
E

[
(‖ft‖2 +1)(‖fs‖2 +1)|F

]
.

Indeed, �N,T has three terms each of which is easy to bound. For example,

1

N
tr
(
�ηπE(fsf

′
s |F)π ′)≤ 1

N
max
1≤i≤Nω2

i · tr(E(fsf
′
s |F)π ′π

)
≤ 1

N
max
1≤i≤Nω2

i ·maxev(π ′π) ·E
[
‖fs‖2|F

]
.

Since we assumed that max1≤i≤N ω2
i < C and from Assumption 5(ii), it follows that∥∥∥∥∥∥ 1

T2

T∑
s=1

∑
t<s

E
[
wstw

′
st�N,T

]∥∥∥∥∥∥≤ C

NT2

T∑
s=1

∑
t<s

E
[
‖wst‖2(‖ft‖2 +1)(‖fs‖2 +1)

]
≤ C

N
→ 0,

where the last inequality is due to Assumption 5(i). So, we obtain that

�W,T (T,N) = lim
1

T2

T∑
s=1

∑
t<s

E
[
wstw

′
st
] 1
N

N∑
i=1

ω4
i = ω4�w = �W .

(ii) Notice that

e′tes√
N

= f ′t π ′π fs√
N

+ f ′t π ′ηs√
N

+ f ′sπ ′ηt√
N

+ η′
tηs√
N
.

Using the Marcinkiewicz–Zygmund inequality for a second power applied twice we notice

that in order to bound E
[(
e′tes/

√
N
)4|F] from above it is enough to bound the fourth

moment of each summand. Using serial and cross-sectional conditional independence of
η’s as well as their conditional independence from f ’s, we obtain

E

⎡⎢⎣
⎛⎝ 1√

N

N∑
i=1

ηitηis

⎞⎠4
⎤⎥⎦= 1

N2

N∑
i=1

E

[
(ηitηis)

4
]
+C

1

N2

∑
i1 
=i2

E
[
η2i1t

η2i1s
η2i2t

η2i2s
]≤ C,

E

⎡⎢⎣
∥∥∥∥∥∥ 1√

N

N∑
i=1

πiηis

∥∥∥∥∥∥
4
⎤⎥⎦≤ 1

N2

N∑
i=1

E

[
‖πiηis‖4

]

+C
1

N2

∑
i1 
=i2

‖πi1‖2‖πi2‖2E
[
η2i1s

η2i2s

]
≤ C

N2
,

where we use Assumption 5(ii,iii), and that
∑

i ‖πi‖4 ≤ (∑i ‖πi‖2
)2 ≤ C. Hence,

E

[(
e′tes√
N

)4
|F
]

≤ C

N2
E

[
‖ft‖4‖fs‖4|F

]
+ C

N2

(
E

[
‖ft‖4|F

]
+E

[
‖fs‖4|F

])
+C.
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Finally, due to Assumption 5(i),

T4E
[
‖Wst‖4

]
≤ E

[∥∥∥∥wst e′tes√
N

∥∥∥∥4
]

≤ CE
[
‖wst‖4(‖ft‖4 +1)(‖fs‖4 +1)

]
< C.

Thus, condition (ii) of Lemma A.2 holds.
(iii) Let us define a σ -algebra A = F ∪{ft,t = 1,...,T}. Let us now denote

ϑst = E

[(
e′set√
N

)2
|A
]

= E

[(
(π fs+ηs)

′(π ft+ηt)
)2

N
|A
]

= 1

N

⎛⎝(f ′sπ ′π ft
)2 + f ′sπ�ηπ ′fs+ f ′t π�ηπ ′ft+

N∑
i=1

ω4
i

⎞⎠ .

We have:

T∑
s=1

∑
t<s

WstW
′
st−�W,T = 1

T2

T∑
s=1

∑
t<s

wstw
′
st

[(
e′set√
N

)2
−ϑst

]

+ 1

T2

T∑
s=1

∑
t<s

(
wstw

′
stϑst−E

[
wstw

′
stϑst

])
= A1 +A2,

so, it is enough to prove convergence of each term separately. Now, E
[
tr(A1A

′
1)
]
is equal to

1

T4

T∑
s1,s2=1

∑
t1,t2

E

⎡⎣tr(ws1t1w′
s1t1ws2t2w

′
s2t2)

⎛⎝(e′s1et1√
N

)2
−ϑs1t1

⎞⎠⎛⎝( e′s2et2√
N

)2
−ϑs2t2

⎞⎠⎤⎦.
Notice that in order for a summand from the last sum to be nonzero we need that some
indexes in the set {s1,s2,t1,t2} coincide, and we obtain at most CT3 nonzero summands.
Each nonzero summand is bounded above by a constant due to the moment assumptions
formulated in Assumption 5(i,iii). Thus, E

[
tr(A1A

′
1)
]→ 0.

Notice that due to Assumption 5, and similar to the argument above,∣∣∣∣∣∣ϑst− 1

N

N∑
i=1

ω4
i

∣∣∣∣∣∣≤ C

N
(‖fs‖+‖ft‖+1)4. (A.5)

Thus,

A2 =
⎛⎝ 1

N

N∑
i=1

ω4
i

⎞⎠ 1

T2

T∑
s=1

∑
t<s

(
wstw

′
st−E

(
wstw

′
st
))

+ 1

T2

T∑
s=1

∑
t<s

⎛⎝wstw′
st

⎛⎝ϑst− 1

N

N∑
i=1

ω4
i

⎞⎠−E

⎡⎣wstw′
st

⎛⎝ϑst− 1

N

N∑
i=1

ω4
i

⎞⎠⎤⎦⎞⎠,
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where the first sum converges to zero due to Assumption 1(iii), while expectation of the
second moment of the second term is bounded by

1

T4

∑
s1,s2

∑
t1,t2

C

N2
E
[
(‖fs1‖+‖ft1‖+1)4(‖fs2‖+‖ft2‖+1)4‖ws1t1‖2‖ws2t2‖2

]≤ C

N2
,

due to inequality (A.5) and Assumption 5(i). Thus, condition (iii) of Lemma A.2 holds.
Let us check condition (iv):

T4E
(
W ′
s1t2Ws2t1W

′
s2t2Ws1t1

)
= 1

N2
E
[
w′
s1t2ws2t1w

′
s2t2ws1,t1E(e′s1et1e

′
t1es2e

′
s2et2e

′
t2es1 |F)

]
,

where we used that the scalar products e′tes = e′set are scalars and they can be reshuffled
to make two same-index et stand back to back. Let us bound the N×N matrix E(ete′t|F)

= πE(ftf ′t |F)π ′ +�η:

maxev
(
E(ete

′
t|F)

)≤ maxev
(
π ′
E(ftf

′
t |F)π

)+maxev
(
�η

)
≤ tr

(
π ′
E(ftf

′
t |F)π

)+ max
1≤i≤Nω2

i

≤ maxev(ππ ′)E
(
‖ft‖2|F

)
+C

≤ CE
(
‖ft‖2 +1|F

)
. (A.6)

As a result,∣∣E(e′s1et1e
′
t1es2e

′
s2et2e

′
t2es1 |F)

∣∣= ∣∣tr(E(et1e
′
t1 |F)E(es2e

′
s2 |F)E(et2e

′
t2 |F)E(es1e

′
s1 |F)

)∣∣
≤ Nmaxev

⎛⎝ ∏
t∈{s1,s2,t1,t2}

E(ete
′
t|F)

⎞⎠
≤ N

∏
t∈{s1,s2,t1,t2}

maxev
(
E(ete

′
t|F)

)
≤ NC

∏
t∈{s1,s2,t1,t2}

E

(
‖ft‖2 +1|F

)
.

Also using Assumption 5(i) we obtain that

T4
∣∣E (W ′

s1t2Ws2t1W
′
s2t2Ws1t1

)∣∣≤ C

N
max

1≤s,t,t∗≤T E
[
‖wst‖4‖ft∗‖8

]
→ 0.

Thus, condition (iv) holds as well.
Now we will check assumptions (a)–(d) of Lemma A.3. First, we find the limit of the

covariance matrix �V,T .

E

[(
γ ′es√
N

)(
γ ′es√
N

)′
|F
]

=
(

γ ′π√
N

)
E[fsf

′
s |F ]

(
π ′γ√
N

)
+ 1

N

N∑
i=1

ω2
i γiγ

′
i

→ �′
πγE

(
fsf

′
s |F

)
�πγ +�ω.
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Here we used Assumptions 5(ii,iii). Therefore,

�V,T = var

⎛⎝ T∑
s=1

Vs

⎞⎠= E

⎡⎣ 1

T

T∑
s=1

E

((
γ ′es√
N

)(
γ ′es√
N

)′
|F
)

⊗ (vsv′s)
⎤⎦

= 1

T

T∑
s=1

E

[(
�′

πγ fsf
′
s�πγ +�ω

)
⊗ (vsv′s)]

→ (�′
πγ ⊗ Ikv)�fv(�πγ ⊗ Ikv)+�ω ⊗�v.

The limit matrix is positive definite since both �ω and �v are positive-definite due to
Assumptions 1 (i) and 5(iii).

Now note that due to Assumption 5(ii),

E

[∥∥∥∥γ ′et√
N

∥∥∥∥4 |F
]

= 1

N2
E

(
‖γ ′π ft+γ ′ηt‖4|F

)
≤ CE

(
‖ft‖4|F

)
+ C

N2
E

(
‖γ ′ηt‖4

)
,

E

(
‖γ ′ηt‖4

)
= E

⎡⎢⎣
∥∥∥∥∥∥
N∑
i=1

γ ′
i ηit

∥∥∥∥∥∥
4
⎤⎥⎦≤

N∑
i=1

‖γi‖4E(η4it)+C
N∑

i1,i2=1

‖γi1‖2‖γi2‖2ω2
i1

ω2
i2
.

Due to Assumptions 2 and 5(iii), we have that E
(‖γ ′ηt‖4

)≤ CN2, and thus

E

[∥∥∥∥γ ′et√
N

∥∥∥∥4 |F
]

≤ CE
(
‖ft‖4 +1|F

)
.

Collecting the pieces,

TE
(
‖Vs‖4

)
≤ CTE

[
1

T2
E

[∥∥∥∥γ ′es√
N

∥∥∥∥4 |F
]

⊗‖vs‖4
]

≤ C

T
E

[(
‖fs‖4 +1

)
‖vs‖4

]
→ 0.

This gives us the validity of condition (b) of Lemma A.3.
(c) Denote �ω,N = N−1∑N

i=1ω2
i γiγ

′
i → �ω. Then,

T∑
t=1

VtV
′
t −�V,T

= 1

T

T∑
t=1

(
γ ′et√
N

e′tγ√
N

)
⊗ (vtv

′
t)− 1

T

T∑
t=1

E

[(
γ ′π√
N
ftf

′
t
π ′γ√
N

+�ω,N

)
⊗ (vtv′t)]

= 1

T

T∑
t=1

(
γ ′et√
N

e′tγ√
N

− γ ′π√
N
ftf

′
t
π ′γ√
N

−�ω,N

)
⊗ (vtv

′
t)

+ 1

T

T∑
t=1

[(
γ ′π√
N
ftf

′
t
π ′γ√
N

+�ω,N −E

[
γ ′π√
N
ftf

′
t
π ′γ√
N

+�ω,N

])
⊗ (vtv′t)]

= A1 +A2.

https://doi.org/10.1017/S0266466620000468 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466620000468


1068 STANISLAV ANATOLYEV AND ANNA MIKUSHEVA

Notice that given the conditional independence of ηit’s, the two terms in the last expression,
A1 and A2 are uncorrelated, so in order to check condition (c) of Lemma A.3 we can prove
convergence to zero of E

[‖A1‖2] and E
[‖A2‖2] separately. First,

E

[
‖A1‖2

]
= E

⎡⎢⎣
∥∥∥∥∥∥ 1T

T∑
t=1

(
γ ′π√
N
ft

η′
tγ√
N

+ γ ′ηt√
N
f ′t

π ′γ√
N

+
(

γ ′ηt√
N

η′
tγ√
N

−�ω,N

))
⊗ (vtv′t)

∥∥∥∥∥∥
2
⎤⎥⎦

≤ 1

T2

T∑
t=1

E

[∥∥∥∥γ ′π√
N
ft

η′
tγ√
N

+ γ ′ηt√
N
f ′t

π ′γ√
N

+
(

γ ′ηt√
N

η′
tγ√
N

−�ω,N

)∥∥∥∥2 ‖vt‖4
]

≤ 1

T
CE

[
(‖ft‖2 +1)‖vt‖4

]
→ 0.

The former inequality is due to ηt’s being conditionally serially uncorrelated, and thus the
summation over t can be taken outside the expectation of the square; the latter inequality
uses bounds on the moments of η′

tγ /
√
N we derived before. Second, the convergence of

term A2 is due to Assumptions 5(iv) and 1(iv). Putting all terms together, we obtain that
condition (c) is satisfied.

Finally, we check the condition (d):

T3
∥∥E(Ws1tV

′
s1Vs2W

′
s2t
)∥∥=

∥∥∥∥∥E
[
ws1tv

′
s1vs2w

′
s2tE

(
e′s1γ√
N

γ ′es2√
N

e′s1et√
N

e′s2et√
N

|F
)]∥∥∥∥∥ .

Using that scalars could be reshuffled to make two same-index et stand back to back and
employing conditional independence we obtain:∣∣∣∣∣E
(
e′s1γ√
N

γ ′es2√
N

e′s1et√
N

e′s2et√
N

|F
)∣∣∣∣∣= 1

N2

∣∣tr(γ γ ′
E(es2e

′
s2 |F)E(ete

′
t|F)E(es1e

′
s1 |F)

)∣∣
≤ 1

N2
tr(γ γ ′)

∏
s∈{s1,s2,t}

maxev
(
E(ese

′
s|F)

)

≤ C

N
E

⎡⎣ ∏
s∈{s1,s2,t}

(
‖fs‖2 +1

)
|F
⎤⎦ .

We use Assumption 2 that N−1tr(γ γ ′) < C and the bound (A.6) we derived before. In the
last equality, we also exploit that ft’s are conditionally independent of each other. Thus,
Assumption 5(i) implies that

T3 max
1≤t<min{s1,s2}≤T

∥∥E (Ws1tV
′
s1Vs2W

′
s2t
)∥∥≤ C

N
→ 0.

Thus, condition (d) of LemmaA.3 is satisfied. This concludes the proof of Theorem 3.2.

Proof of Theorem 4.2. We will prove three statements:

(i) N−1∑N
i=1 ξV,iξ

′
V,i → �V ;

(ii) N−1∑N
i=1 ξW,iξ

′
W,i → �W ;

(iii) N−1∑N
i=1 ξV,iξ

′
W,i → 0.
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(i) Given assumption �πγ = 0, we have �V = �ω ⊗�v. Then,

1

N

N∑
i=1

ξV,iξ
′
V,i =

1

NT

T∑
t=1

T∑
s=1

⎛⎝ N∑
i=1

γiγ
′
i (π

′
i fs+ηis)(π

′
i ft+ηit)

⎞⎠⊗ (vsv
′
t). (A.7)

After we open up the brackets there will be three different types of terms. We will show
that

1

NT

T∑
t=1

T∑
s=1

N∑
i=1

(
γiγ

′
i ηisηit

)⊗ (vsv′t) p→ �V, (A.8)

while terms that involve π ′
i wsπ

′
i wt or ηitπ

′
i fs converge to zero in probability. Indeed,

1

NT

T∑
t=1

T∑
s=1

N∑
i=1

(
γiγ

′
i ηisηit

)⊗ (vsv
′
t)−�V,T = 1

NT

T∑
t=1

T∑
s
=t

N∑
i=1

(
γiγ

′
i ηisηit

)⊗ (vsv
′
t)

+ 1

NT

T∑
t=1

N∑
i=1

(
γiγ

′
i
)⊗(η2itvtv′t−ω2

i E
(
vtv

′
t
))
.

We check that the first sum in the last expression is negligible:

E

⎡⎢⎣tr
⎛⎜⎝
⎛⎝ 1

NT

T∑
t=1

T∑
s
=t

N∑
i=1

(
γiγ

′
i ηisηit

)⊗ (vsv
′
t)

⎞⎠2
⎞⎟⎠
⎤⎥⎦

≤ 1

N2T2

T∑
t=1

T∑
s
=t

N∑
i=1

‖γi‖4ω4
i E
[‖vt‖2‖vs‖2]

≤ C

N2

N∑
i=1

‖γi‖4ω4
i → 0.

Here we use the conditional cross-sectional and temporal independence of ηit, that is, for
s 
= t we have E(ηitηisηjt∗ηjs∗ |F) = ω4

i if i= j and {t,s} = {t∗,s∗}, and zero otherwise. We
also use Assumptions 2 and 5(iii). As for the second sum, we notice that all summands in
the expression below are uncorrelated with each other, hence

tr

⎛⎜⎝E
⎡⎢⎣
⎛⎝ 1

NT

N∑
i=1

T∑
t=1

(
γiγ

′
i η

2
it

)
⊗ (vtv

′
t)−�V

⎞⎠2
⎤⎥⎦
⎞⎟⎠

= 1

N2T2

N∑
i=1

T∑
t=1

tr

(
E

[((
γiγ

′
i η

2
it

)
⊗ (vtv

′
t)−E

[(
γiγ

′
i η

2
it

)
⊗ (vtv

′
t)
])2])

≤ C

N2T2

N∑
i=1

T∑
t=1

‖γi‖4E
[
‖vt‖4

]
→ 0.

Thus, we showed the convergence (A.8).
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Now consider terms in (A.7) that involve π ′
i fsπ

′
i ft:

1

NT

T∑
t=1

T∑
s=1

⎛⎝ N∑
i=1

γiγ
′
i π

′
i fsπ

′
i ft

⎞⎠⊗ (vsv
′
t)

=
⎛⎝ 1

N

N∑
i=1

(
γiγ

′
i
)⊗ (π ′

i ⊗π ′
i )⊗ Ikv

⎞⎠⎛⎝ 1

T

T∑
t=1

T∑
s=1

Ikγ ⊗ vec(fsf
′
t )⊗ (vsv

′
t)

⎞⎠ .

Using Assumption 2 and 5(ii) we can show that∥∥∥∥∥∥ 1N
N∑
i=1

(
γiγ

′
i
)⊗ (π ′

i ⊗π ′
i
)∥∥∥∥∥∥≤ 1

N

N∑
i=1

‖γi‖2 ‖πi‖2 ≤ C
1

N

N∑
i=1

‖πi‖2 → 0.

Now observe that

E

⎡⎢⎣
∥∥∥∥∥∥ 1T

T∑
t=1

T∑
s=1

vec(fsf
′
t )⊗ (vsv

′
t)

∥∥∥∥∥∥
2

F

⎤⎥⎦
= tr

⎛⎝ 1

T2
E

⎡⎣ T∑
t=1

T∑
s=1

T∑
t∗=1

T∑
s∗=1

(
vec(fsf

′
t ) vec(fs∗ f

′
t∗)

′)⊗ (vsv
′
tvs∗v

′
t∗)

⎤⎦⎞⎠
≤ C

1

T2
E

⎡⎣ T∑
t=1

T∑
s=1

‖ft‖2‖fs‖2‖vs‖2‖vt‖2
⎤⎦< C.

Here the equality is due to ft’s being serially independent and mean zero conditionally on
F by Assumption 5(i) and vt ∈ F ; hence, among the four summation indexes at most two
may be distinct. The last inequality is due to Assumption 5 (i). Thus, we showed that

1

NT

T∑
t=1

T∑
s=1

⎛⎝ N∑
i=1

γiγ
′
i π

′
i fsπ

′
i ft

⎞⎠⊗ (vsv′t) p→ 0.

And finally, we show that

1

NT

T∑
t=1

T∑
s=1

⎛⎝ N∑
i=1

γiγ
′
i π

′
i fsηit

⎞⎠⊗ (vsv′t) p→ 0.

This holds because ηit’s are mean zero, cross-sectionally independent and independent from
ft conditionally onF . This implies that the mean of the sum above is zero, and all summands
are uncorrelated with each other. The second moment of the sum is bounded above by

C

N2T2

T∑
t=1

T∑
s=1

N∑
i=1

‖γi‖4‖πi‖2ω2
i E
[
‖ft‖2‖vt‖2‖vs‖2

]
→ 0.

Thus, we proved statement (i).
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Let us turn to statement (ii):

1

N

N∑
i=1

ξW,iξ
′
W,i−�W,T = 1

T2N

N∑
i=1

T∑
s=1

∑
t<s

wstw
′
st

(
e2ite

2
is−ω4

i

)

+ 1

T2N

N∑
i=1

T∑
s=1

∑
t<s

T∑
s∗=1

∑
t∗<s∗,{s,t}
={s∗,t∗}

wstw
′
s∗t∗eiteiseit∗eis∗

+ 1

N

N∑
i=1

ω4
i
1

T2

T∑
s=1

∑
t<s

(
wstw

′
st−E(wstw

′
st)
)

= A1 +A2 +A3.

As for A1, we can notice that all summands with indexes {s,t} 
= {s∗,t∗} are uncorrelated
with each other, so the correlation for summands with different indexes i can come only
from the π ′

i ft part. Thus,

E
[‖A1‖2F ]= 1

T4N2

T∑
s=1

∑
t<s

E

⎡⎢⎣
∥∥∥∥∥∥
N∑
i=1

wstw
′
st

(
e2ite

2
is−ω4

i

)∥∥∥∥∥∥
2

F

⎤⎥⎦
≤ C

T4N2

T∑
s=1

∑
t<s

N∑
i=1

⎛⎝ E
[‖wst‖4]max1≤i≤N,1≤t≤T E

(
η4it

)2
+∑N

j=1 ‖πi‖4‖πj‖4E
[‖wst‖4‖ft‖4‖fs‖4]

⎞⎠
→ 0.

In the last convergence we used that due to Assumption 5,

C

N2

N∑
i=1

N∑
j=1

‖πi‖4‖πj‖4 ≤ C

N2
max
1≤i≤N ‖πi‖4

⎛⎝ N∑
i=1

‖πi‖2
⎞⎠2

→ 0, (A.9)

and hence the term A1 converges to zero.
The term E

[‖A2‖2F] equals the following expression:
1

T4N2

N∑
i,j=1

T∑
s1,s∗1,
s2,s∗2

∑
tm<sm,
t∗m<s∗m{sm,tm}
={s∗m,t∗m}

E
[
tr(ws1t1w

′
s∗1t∗1

ws2t2w
′
s∗2t∗2

)eit1eis1eit∗1 eis∗1ejt2ejs2ejt∗2 ejs∗2
]
.

(A.10)

Notice that if sm < tm, s∗m < t∗m and {sm,tm} 
= {s∗m,t∗m} for m = 1,2, the only ways when
the expectation

E(eit1eis1eit∗1 eis∗1ejt2ejs2ejt∗2 ejs∗2 |F) 
= 0 (A.11)

can be nonzero is when we place at least four restrictions on the time indexes. Indeed, if
{s1,s∗1,t1,t∗1} are all distinct, then to get a nonzero expectation we need indexes to coincide
as sets: {s1,s∗1,t1,t∗1} = {s2,s∗2,t2,t∗2}. If the set {s1,s∗1,t1,t∗1} contains three distinct indexes,
for example, s1 = s∗1 (this is one restriction), then the set {s2,s∗2,t2,t∗2} should contain (t1,t

∗
1)

(these are two restrictions), and the remaining indexes should be either equal to each other
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(one restriction) or equal to the ones previously mentioned (two restrictions). Thus, instead
of eight-dimensional summation over time indexes in equation (A.10) we have a four-
dimensional summation.

Let us consider those terms in (A.10) when the summation index j is equal to i. Notice that
since each t index is strictly smaller than the corresponding s index, then any distinct time
index can appear in the set {s1,s∗1,t1,t∗1,s2,s∗2,t2,t∗2} at most four times, thus any individual
error term eit may appear in at most power four. Thus, all nonzero terms are bounded above
by max1≤i≤N,1≤s,t,t∗≤T E[‖wst‖4(E(η4it) + C‖ft∗‖4)2] < C due to Assumption 5(i,iii).

There are at most CT4N of such terms while the normalization is N−2T−4, hence that
sum converges to zero.

Now consider those terms in (A.10) when i 
= j. Since eit = π ′
i ft + ηit, with ηit’s

independent of each other both cross-sectionally and temporally, i 
= j and {sm,tm} 
=
{s∗m,t∗m}, we have that all terms including ηit are zero, and only a nontrivial part of the
term in ( A.11) is the one including π ′

i ft in place of eit. So, every nonzeros term in the

sum (A.10) is bounded by ‖πi‖4‖πj‖4E
[‖wst‖4‖ft‖8]. So, the sum in (A.10) over j 
= i

is bounded above in the same manner as stated in equation (A.9). Thus, we showed that

A2
p→ 0. The convergence A3

p→ 0 comes from Assumption 1(iii). This finishes the proof
of (ii).

Finally, let us prove statement (iii):

1

NT3/2

N∑
i=1

T∑
s=1

∑
t<s

T∑
s∗=1

(γi⊗ vs∗)w′
steis∗eiteis

p→ 0.

As before, we look at the expectation of the square of the sum above, which involves six-
dimensional summation over time indexes and two-dimensional cross-sectional summation
(over i,j) and is normalized by N−2T−3. Due to time-series independence of eit, the six-
dimensional summation over time indexes has mostly zeros and can be reduced to three-
dimensional summation over time indexes as the set {s1,t1,s∗1,s2,t2,s∗2} should have any
distinct index to appear at least twice. If we consider the cases when i = j, then all terms
are bounded above by a constant and the number of nonzero terms is NT3; given the
normalization, this sum converges to zero. When we sum over i 
= j, the only part of eit
that yields a nontrivial effect is π ′

i ft; hence this sum is bounded by

1

N2

T∑
i,j=1

‖γi‖‖γj‖‖πi‖3‖πj‖3 max
1≤s,t,s∗≤TE

[
‖vs∗‖2‖wst‖2‖fs∗‖2‖fs‖2‖ft‖2

]

≤ C

⎛⎝ 1

N

N∑
i=1

‖γi‖‖πi‖3
⎞⎠2

≤ 1

N2
max
1≤i≤N ‖γi‖2 max

1≤i≤N ‖πi‖4
N∑
i=1

‖πi‖2 → 0.

This ends the proof of Theorem 4.2.
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