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ABSTRACT

We introduce Proteus, a novel self-designing approximate range
filter, which configures itself based on sampled data in order to
optimize its false positive rate (FPR) for a given space requirement.
Proteus unifies the probabilistic and deterministic design spaces of
state-of-the-art range filters to achieve robust performance across
a larger variety of use cases. At the core of Proteus lies our Con-
textual Prefix FPR (CPFPR) model —a formal framework for the
FPR of prefix-based filters across their design spaces. We empiri-
cally demonstrate the accuracy of our model and Proteus’ ability
to optimize over both synthetic workloads and real-world datasets.
We further evaluate Proteus in RocksDB and show that it is able
to improve end-to-end performance by as much as 5.3x over more
brittle state-of-the-art methods such as SuRF and Rosetta. Our ex-
periments also indicate that the cost of modeling is not significant
compared to the end-to-end performance gains and that Proteus is
robust to workload shifts.

CCS CONCEPTS

« Information systems — Database design and models; Uni-
dimensional range search; « Theory of computation — Bloom
filters and hashing.
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1 INTRODUCTION

The Importance of Range Filters: Range queries are a funda-
mental operation in big data applications. Given a set S, a range
query [a,b] returns the members of § within the query interval, i.e.
Sn[a,b]. Example applications that need range queries and handle
large amounts of data include social media platforms using spatio-
temporal queries to aggregate user events [3], pattern discovery
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Figure 1: A self-designing filter achieves superior performance in
a wide variety of workloads. (Darker is better, lower FPR.)

and anomaly detection in time-series data streams [31], scientific
spatial models [47], graph databases [16, 33] and Blockchain an-
alytics [46]. Range queries over such data sets are expensive due
to the disk or network costs required to process the data. Using a
filter data structure to determine when no elements are in the query
range can vastly improve performance by preventing unnecessary
IO operations.

As an important unifying application, large-scale data systems
keep large volumes of data on cheap but high latency storage de-
vices. Answering range queries requires checking every data page
that intersects with the queried range to retrieve the relevant data.
For example, in widely used Log Structured Merge (LSM) tree-
based key-value stores, one or more pages must be checked per
level [2, 13, 19, 34, 43]. However, explicitly reading in all intersect-
ing data pages would be far too expensive. In this setting, a compact
range query data structure can be set up on a per page basis. Range
query structures then act as filters, which can determine that no
data in a range exists on a page (that is, we have an empty query)
before resorting to accessing disk. As such, much of our evaluation
considers the effectiveness of range filters in LSM-irees.

Strong Guarantees are Impractical: Most work on filtering has
been focused on single key queries. Such filters are referred to as
Approximate Membership Query structures (AMQs). AMQs such
as Bloom filters [10] and their many variants are used to avoid the
majority of unnecessary lookups for individual items in diverse
applications. AMQs tolerate a small probability of false positives
in order to achieve a compact representation of the key set that
supports membership queries. The false positive rate (FPR) is the
primary metric of a filter’s performance, as false positives incur
unnecessary lookups to verify their emptiness. Similar techniques
can be applied to the approximate range emptiness problem to
avoid unnecessary range lookups, but guaranteeing a low FPR for
all potential queries can be expensive. Prior work has shown that
to guarantee an FPR e for range emptiness queries of range size R
requires Q (log,(R) + log,(1/€)) bits per key (BPK) [23]. Achieving
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a small FPR for all queries including for large ranges therefore
requires an undesirable memory budget.

Design Tradeoffs are Necessary For Performance: Current range
filters aim to use less memory than theoretical worst-case guar-
antees require by not providing false positive guarantees for all
queries. Instead, state-of-the-art solutions prioritize particular types
of workloads, such as those with large ranges [48] or queries that
are correlated to the key set [36], by making hard-coded design
decisions that cater to their target use case. These range filters use
heuristic methods where the FPR depends on the relationship be-
tween the key and query sets, and provable guarantees are weak or
restricted to specific situations. These decisions limit their useful-
ness as deviation from the intended use cases results in increasingly
sub-optimal performance, as seen in Figure 1. This is an issue for
use cases not covered by current range filters, for example, particle
physics workloads that contain long ranges and correlated queries
when cross referencing time series data from multiple sensors to
identify events of interest [4]. Additionally, deviations can also
arise from workloads that shift over time. For instance, applications
with different data based on language, such as Wikipedia, exhibit
temporal skew in query distribution due to the correlation between
time zone and language [22, 42]. Therefore, a robust range filter
requires the ability to prioritize the desired use case by navigating
the range filter design space. However, to our knowledge, there
has been no prior work on formalizing the parameters of the range
filter design space and the tradeoffs therein.

A Formal Framework Allows for Informed Designs: The stan-
dard metric for FPR analysis is worst-case performance which fails
to capture the nuances of range filter design choices because they
optimize for specific use cases. We introduce the Contextual Prefix
FPR (CPFPR) model which formalizes how FPR varies across the
design space of prefix-based filters. We focus on the prefix filter
design space as this encompasses all state-of-the-art range filter
designs [1, 27, 36, 48]. The nuances of each design are captured by
expressing their FPR in terms of use case features, such as query
range size and the proximity between keys and queries. These fea-
tures can be concisely described by the characteristics of shared
prefixes and the number of unique prefixes of a given length. We
then apply the CPFPR model to techniques used by state-of-the-art
range filters in order to understand their design tradeoffs.
Self-Designing Approximate Range Filters: We use insights
from the CPFPR model to develop a novel class of readily optimized
range filters, that we have dubbed Protean Range Filters (PRFs).
PRFs navigate some portion of the range filter design space and aim
to choose the best design available for a given use case. We introduce
a novel PRF filter, Proteus, that spans a large portion of the prefix-
filter design space and makes use of the CPFPR model to navigate
it. Not only does Proteus encompass the design spaces of state-of-
the-art range filters, but it is also able to combine their designs in a
complementary fashion for even greater effect. The user need only
supply a sample of example queries to be fed into the CPFPR model.
Increased design flexibility paired with automated optimization
allows Proteus to outperform more constrained designs in the vast
majority cases, even when said designs are optimally tuned. We can
see in Figure 1 that Proteus achieves a low FPR on a larger region of
the workload space as compared to the state-of-the-art range filters
which are only optimal within confined, mostly disjoint regions.
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Contributions: Our contributions are as follows:

o Novel Range Filter: We present a novel range filter that can instan-
tiate configurations from across the current range filter design
space to meet the needs of various workloads within a limited
memory budget.

e Formalization of the Range Filter Design Space: We introduce the
CPFPR model which captures the tradeoffs in the design space of
prefix-based range filters. We use this model to break down and
incorporate the design elements of state-of-the-art range filters
into our novel range filter (Section 3).

o Efficiently Leveraging Context: We demonstrate how to practically
navigate the prefix filter design space (Section 4).

o Model Validation: We validate the accuracy of our model and
demonstrate its ability to optimize across the prefix filter design
space in a wide variety of settings using both synthetic workloads
and real world datasets (Section 5).

® Robust End-to-End Gains: We show how PRFs can be integrated in
a real world system, RocksDB, and demonstrate PRFs’ robustness
to changing workloads as well as end to end latency improve-
ments of up to 3.9x on 64-bit integers (Section 6) and 5.3x on
strings (Section 7).

2 THE RANGE FILTER DESIGN SPACE

Current solutions to the approximate range emptiness problem, or
Approximate Range Emptiness structures (AREs), use one of two
fundamental design elements: probabilistic Approximate Member-
ship Query data structures (AMQs) and deterministic search trees.
Both strategies use prefixes of the key set to encode the key space
at different granularities.

AMQs are natural building blocks as they are designed to reduce
unnecessary lookups by using a compact representation of the
data set that is small enough to fit in memory and supports fast
membership queries. A low non-zero false positive probability is
tolerated in order for the representation to be sufficiently compact,
but never a false negative. The search tree approach is more novel
and explicitly encodes prefixes of the key set as a trie.

2.1 Probabilistic Prefix Filters

One method used by current AREs is to include one or more AMQs
that encode regions of the key space with a single hashed value.
There are many examples of AMQs, such as Bloom Filters, Cuckoo
Filters, Quotient Filters, Xor Filters and Ribbon Filters [8, 10, 18, 20,
24], which we will collectively refer to as Bloom filters. Though
their specifics vary, Bloom filters generally make use of one or more
hash functions to encode the key set as a compact array. Hashing
allows for fast individual item lookups with a low probability of
false positives; however, valuable ordering information is lost in the
hashing process. In order to know whether a range [, 7] contains
members of the key set, every key from [ to r would need to be
queried individually and the probability that at least one of them
results in a false positive is then proportional to r — [. As such, the
usefulness of Bloom filters for such queries rapidly declines with
the size of the range being queried.

This can be compensated for by hashing prefixes of the key set
rather than each individual key. Hashing a given prefix encodes
that there is at least one member of the key set with the given prefix.



Session 23: Storage and Indexing

This retains the benefits of hashing while allowing queries to the
Bloom filter to rule out entire regions of the key space at a time.
Prefix Bloom Filters: Prefix Bloom filters have been in use for
some time now, particularly in the context of network routing
[17]. By hashing a key prefix of length [ bits, the prefix Bloom
filter encodes a region of the key space of size 2¥—, where k is the
maximum key length. Using this strategy, a range of the key space
can be queried by querying the Bloom filter for each region that
overlaps with the desired range. This is well suited to situations
with clustered target ranges, like IP addresses in network routing,
as the prefix length used can be tuned to the cluster sizes. Prefix
Bloom filters are also used in key-value stores, but the constraint of
encoding the key space as fixed size, prefix defined regions limits
their usefulness when the target ranges are not well known. In
particular, prefix Bloom filters are very sensitive to the choice of
prefix length which we will discuss in more detail in Section 3.
Rosetta: Rosetta [36] is an ARE aimed specifically at range queries
in database systems using LSM trees, such as RocksDB [27]. These
systems have used prefix Bloom filters with shorter prefixes to filter
out large range queries; however, if they are not properly tuned,
these prefix filters perform very poorly on small to medium range
queries as well as individual key queries. This becomes even worse
if the queries are correlated to the key set and empty queries tend
to fall close to the key set.

Conceptually, Rosetta encodes the nodes of an implicit segment
tree, or binary trie, representing the entire key space. All nodes of
a given depth present in the key set are encoded by hashing the
corresponding prefixes into a single Bloom filter. The prefix filter
encoding the leaf nodes of the tree is then equivalent to a Bloom
filter populated with full key hashes. A range is queried by checking
for the presence of each node in the sub-tree corresponding to the
that range in depth first order. If any node is not present in its
respective prefix filter, the entire sub-tree rooted at that node is
known to be empty and is not queried further. If a given node may
be present, the sub-tree continues to be queried in depth-first order
until either a leaf node is reported as present, resulting in a positive
range query, or the entire sub-tree is found to be empty.

In practice, Rosetta does not encode every level of this tree and
is configured by apportioning the total memory budget between
the prefix Bloom filters encoding each prefix length. In particular,
Rosetta typically allocates all of its memory budget to the last few
prefix lengths. This allocation strategy works well for small ranges
and point queries, regardless of proximity to the key set, but larger
range queries will still require many Bloom filter queries to cover
the query range and performance trends towards that of an AMQ.

2.2 Deterministic Prefix Filters

Other solutions forgo the benefits of hashing to retain as much
ordering information as possible. These AREs typically make use
of an explicitly encoded search tree which performs a similar role
to the implicit tree encoded by Rosetta. In particular, tries are a
well studied method of encoding prefixes in a succinct search tree
[6,9, 21]. In order to fit these trees in memory, they must be pruned
down to prefixes of the key set. As before, each prefix found in the
tree represents a range that has at least one member of the key set,
while any prefix not found in the tree will not be present in the
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key set. The pruning therefore introduces the possibility of false
positives due to common prefixes between keys and non-keys.
These trees are more flexible than prefix Bloom filters in cer-
tain aspects as they can easily encode prefixes of different lengths
within the same structure and all sub-prefixes are also retained.
This comes with the downside of having to pay more memory for
longer prefixes, since the entire prefix must be explicitly stored,
as opposed to prefix Bloom filters which can dedicate available
memory to any individual prefix length.
SuRF: The Succinct Range Filter (SuRF) [48] is a state-of-the-art
ARE that encodes prefixes of the key set as a Fast Succinct Trie (FST).
It is a static filter and does not adapt to queries. The FST in SuRF
combines the LOUDS-Dense and LOUDS-Sparse representations
from [29] to achieve an efficient trie encoding (LOUDS-DS) which
allows SuRF to encode longer prefixes than other trie-based prefix
filters on the same memory budget. This encoding can also be
searched in constant time, so the query time is independent of the
size of the range. Despite this, encoding every full key in the FST is
still typically too expensive, so SuRF’s base configuration prunes
the branch for each key to the minimum length prefix that uniquely
identifies it in the key set. If there is additional memory available
it can be used to extend these prefixes. It can also be used to store
hashes of the key suffixes to help rule out individual keys, though
these do not provide any additional benefit for range queries.
Because SuRF is configured purely based on the key distribution,
sparsely populated regions of the key space are encoded more
coarsely. As with other prefix filters, these coarsely encoded regions
are not well suited for filtering queries that are close to the key
set. The requirement that each prefix be at least long enough to be
uniquely identified in the key set also means that SuRFs minimum
memory usage is determined by the distribution of the keys. Despite
the encoding being very compact, this can still pose an issue in
situations where tight memory budgets must be strictly maintained.

3 A CONTEXTUAL PREFIX FPR MODEL

In this section we will formalize how different aspects of a workload
affect the performance of prefix-based range filters in order to
understand the tradeoffs of different designs. We use this framework
to break down the fundamental components of state-of-the-art
AREs and realize a unified design space.

3.1 The Importance of Prefix Lengths
We begin by modeling a standard prefix Bloom filter as this forms

the basis for our more complex structures. When considering a
single prefix Bloom filter, the only parameter to configure is the
choice of prefix length. Figure 2 shows how a set of 4-bit keys can
be encoded using 1-4 bit prefixes. Each prefix hashed into the filter
encodes that at least one member of the key set contains that prefix;
therefore, a short prefix encodes many values while a long prefix
may only encode a few.

Consider a key space K with total order < ! and a prefix Bloom
filter encoding a key set K € K with prefix length [ and an FPR of
p. We use the following terms and notation:

The total order < depends on the types of keys being used. For instance, integer
keys would use the standard less-than-or-equal relation, while string keys would use
lexicographical ordering.
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Figure 2: Encodings of a 4-bit key space using 1-4 bit prefixes and
the respective prefixes required to cover the range [4, 8] (outlined
in red). Regions containing at least one key are shaded grey.

Q: An empty range query, i.e. an interval of K s.t. QNK = 0.

Xj: For an arbitrary set of values X and integer i, Xj is the set of

unique prefixes y s.t. len(y) = i and y is a prefix of some x €
X. Figure 2 shows Q; bordered in red for Q = [0100,1000]
and each ! € {1,2,3,4}.

LCP: The longest common prefix. For two arbitrary sets, X,Y,
we define Icp(X,Y) as the longest LCP between any pair
{x,ylxe X,ye Y}

As described in Section 2, a prefix Bloom filter returns negative
only if each prefix in Q; returns negative. If Q; N Kj is non-empty,
then Q is guaranteed to result in a false positive because it contains a
prefix used to encode K. Whether this happens is dependent on the
proximity of Q and K which we can express in terms of lep(Q, K).
If Iep(Q, K) is greater than the prefix length used to encode the key
set, then the corresponding members of the key and query set will
be indistinguishable from each other. This can be seen in Figure
2 where only the 4 bit encoding of the key space can distinguish
1000 from 1001 as they only differ in the 4th bit. Putting all of
this together, we can express the probability of a range query false
positive in terms of the prefix filter’s point query FPR, the range
size and proximity of the query to any key, as shown in Equation 1.

1 -p)9l, Iep(ox) <1
Prp(@ =1, I < Iep(Q,K)

With only a single prefix Bloom filter, there is a clear contention
between how many regions must be queried (a short [), and whether
queries close to the key set can be distinguished from it (a long I).
One option to address this would be to split the memory budget
between multiple Bloom filters. The downside of this approach is
that each Bloom filter may only be able to contribute to a portion of
the queries. This can be justified if there is a substantial divergence
in types of queries such that a single prefix length will not be able to
handle all types of queries effectively. Take for instance a bimodal
distribution of small queries in close proximity to the key set and
large non-key-correlated queries. A single filter tuned to either half
of the query set would be effectively useless for the other half. How-
ever, this requires orders of magnitude of difference between range
sizes or key-query correlations for even two filters to be justified
as a less performant filter that can contribute to all or most of the
queries will result in better overall performance. If the distribution
is split between additional modes, the possible difference between
each decreases and the benefit of further subdividing our memory

4y
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becomes increasingly marginal. As such, we will only consider up
to one additional Bloom filter.

Consider then the same setting as before but with two Bloom
filters for prefix lengths I; < Iz with point query FPRs p1 and pz
respectively. We will have to consider several cases depending on
how the regions encoded by the first Bloom filter align with Q, for
which we will use the following additional terms and notation:

Iy, I;: Indicator variables for whether the ranges defined by the
first and last members of ), are not fully contained in Q.
Indicator variables for whether the first and last members of
Qy, are not in Kj,. If |Qy | = 1and Qj, C K}, let Iz = 1 and
I3 = 0. Note that we cannot have [y = I; =0or [y = I3 =0
since Q is empty.

The sets of I; prefixes that intersect with Q and contain the
first and last prefixes of Q), respectively.

The probability that i of the I; prefixes completely within Q
return false positives. This can be expressed as the probability
mass function for the binomial coefficient with n = |Qy, | -
Iy — I and p = p; as shown in Equation 3.

The probability that L or R respectively are not resolved at
the first Bloom filter and return only negatives at the second,

12,13:

L,R:

P{l{i):

given by Equation 2.

We now determine the probability of a false positive using two
Bloom filters. As before, if ) < Iz < Iep(Q, R), then Q is guaranteed
to result in a false positive. We therefore consider the case when
lep(Q,R) < L. Since Q N K is empty, any prefix of Q) such that
the corresponding set of values is fully contained in Q either yields
a false positive or a true negative. When a false positive for such
a prefix occurs, this yields ol=h queries that need to be done at
the second Bloom filter. However, Qj, can also share at most two
common prefixes with K, those at either end of the query; therefore,
these end prefixes may yield false positives or true positives. Also,
these end prefixes, being the only ones that may not be completely
within Q, result in a number of queries at the second Bloom filter
that depends on the overlap between Q and the prefix whenever a
positive (false or true) is returned.

The end prefix cases are covered by the p; and pg terms defined
in Equation 2. We then must also sum over the remaining possible
combinations of false positives resulting from @y, . Here Equation 3
gives the probability Py, (i) of having i false positives that each result
in 2lz=h queries at I3. For each of these we use the complement of
the probability that all I; queries return negative. Combining these
we obtain Equation 4.

(2)
3)

pL=p7 To(1-p2)*l pr=pP - 1 (1~ po)I¥!
L (10L1-L-1n)\ ; g
P{l{t): (lgill i 0 I)P;{l—Pl)lgill Ty—I,—i

191, L1 i
Prp@=1-pi-pr- . P (0-p)®™") (@

i=0

3.2 Tractable Tries

By using two Bloom filters with different prefix lengths, one can
reasonably address divergent query workloads, but their probabilis-
tic nature can still pose issues. As discussed before, the longer prefix
length is not well suited for large ranges, and any [; prefix fully
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within Q that results in a false positive will require ok=l prefixes
queries at I;. If there is much difference between I; and Iz, which is
likely if two Bloom filters are justified, then the second Bloom filter
will have a very low probability of catching larger ranges missed by
the first. We could reduce the number of false positives at the first
Bloom filter by allocating it a larger proportion of the memory, but
this also reduces the filter’s ability to deal with correlated queries
since this memory must be taken from the second Bloom filter.

Alternatively, using a uniform depth trie at l; puts a hard limit
on the number of prefix queries that may be required at Iz for any
range query. Consider then the same situation as before but /; now
represents the prefix length of the trie and p is the FPR of the Bloom
filter. Since the trie is deterministic, only prefixes that match the
leaf nodes will ever make it to the Bloom filter. As discussed prior,
only the first and last members of Qj, can ever match the key set,
ok=h+1_ 9 prefixes will need to be queried at I
for a given range query. The probability of a false positive is then
given by Equation 5.

s0 no more than

0, lep(QK) <l <by
Prp(Q) = 11— (1-p)etHEIRL 1y < 1ep(Q,K) < I
1, I <l <lep(Q,K)

©)

Not only is Equation 5 simpler to compute than Equation 4, but it
will achieve a better FPR for any combination of [; and I; assuming
that the Iz Bloom filter receives the same amount of memory in
each. This does come with the limitations that [; now has a fixed
memory cost for each possible length. There is then a hard limit on
how long I; can be and the longer it is, the less memory is available
for the I; Bloom filter. Despite this, a short [; is often cheaper to
store explicitly as a trie when compared to the memory a Bloom
filter would require to perform comparably. Tries are particularly
efficient when representing clustered data as there will be fewer
unique prefixes, but even sparse data sets are relatively cheap to
represent as an FST when using a sufficiently short prefix length.

4 PROTEAN RANGE FILTERS

Protean (pro-te-an) adj. —having a varied nature or ability to assume
different forms [38]

We define a Protean Range Filter (PRF) as a filter that supports
approximate range emptiness queries and configures its own design
to optimize performance for any given use case. We have presented
the CPFPR models for three PRFs: 1PBF —a standard prefix Bloom
filter (Equation 1), 2PBF —a pair of prefix Bloom filters (Equation 4)
and Proteus —a hybrid filter that uses both a trie and a prefix Bloom
filter (Equation 5). Other than the use of the respective CPFPR
models, 1PBF operates as described in Section 2 while 2PBF is
equivalent to an instance of Rosetta that uses only 2 filters. As such,
this section will focus primarily on the structure of Proteus and its
respective model. The models for 1PBF and 2PBF are implemented
in a similar fashion. We also provide a breakdown of the costs
associated with using the model and how these compare for each.
We assume fixed length, integer keys in this section and discuss
variable length keys in Section 7.
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Key Set: Ox00000C, 0x000010, 0x000017, 0x000410,
0Xx000413, 0x010300, 0x020060, OX0200A0

16 bits
20 bits

Trie len:
BF len:

Range Queries:
[0xBOF200, 0x010000]

060 [0x020073, 8x02089C]

Xx00

BF prefix queries:
{0x02007, 0x02008, O0x02009}

Figure 3: An example of Proteus using 24 bit keys with a trie depth
of 16 bits and a Bloom filter prefix length of 20 bits. The blue and
red show the logical paths of two empty range queries, the first
of which is resolved in the trie while the second is resolved in the
Bloom filter and could result in a false positive.

4.1 Hybrid Architecture

Unlike the other filters we have discussed, Proteus uses both prob-
abilistic and deterministic encodings of the key space: an FST and
a prefix Bloom filter. As opposed to SuRF, the FST in Proteus does
not encode a unique prefix for every key, but rather all unique key
prefixes of a fixed length, resulting in a FST with uniform depth.
Recall that SuRF prunes the branch for each key to the minimum
length prefix that uniquely identifies it in the key set and can ex-
tend these prefixes with explicitly stored key bits. Similarly, in the
Proteus FST, any trie branch encoding a single key is extended to
the chosen trie depth by explicitly storing the additional key bits,
rather than using the LOUDS-DS trie encoding. A toy example of a
Proteus encoding a 24 bit key space is shown in Figure 3 using a trie
depth and Bloom filter prefix length of 16 and 20 bits respectively.
A uniform trie depth is used in part because it simplifies the
modeling process, but also because we believe it to be a better use
of memory. The intuition here is that sparse regions of the key
space that use a coarse encoding are highly susceptible to false
positives since they encode very large empty sub-regions. Similarly,
encoding a densely populated portion of the key space at a coarse
granularity will only result in small empty sub-regions that are less
likely to cause false positives. SuRF requires a unique prefix for
each key in order to support queries other than range emptiness
such as range counts and sums, but this also imposes a minimal
memory requirement and limits its usefulness for situations with
strict memory constraints. Alternatively, a uniform depth can be
adjusted to fit within any memory constraint while any leftover
memory can still be put to use in the Bloom filter. While Proteus
does not support range queries other than emptiness queries, re-
placing the Bloom filter with a counting Bloom filter would provide
this functionality [11]. The Bloom filter is assigned a prefix length
between the maximum key length and the depth of the trie.
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Algorithm 1 The modeling process for prefix length selection.

Input K - the key set

Input k - the maximum key length in bits

Input m - the memory budget in bits

Input S - the set of empty sample queries

Output (I, l,) - prefix lengths for the best FPR

Function trieMem([) - returns size of trie with depth [.

Function BFfpr(m, n) - returns Bloom filter FPR. for m bits and n elements.

1: procedure Moper(K, k, m, 5)
2 unsigned int resolvedInTriel[k]
3 map nRegionsQueried[k]1Ck] = stores pairs (nRegions, count)
4: for Qin S do
5: minLen « lep(K, Q) & LCP is the min granularity to filter Q
6: for tLen « 0 such that trieMem(tLen) < mdo
7 if tLen > minLen then
8: resolvedInTrie[tLen]++
9 forblLen « tlen + 1 uptok do
10: if tLen < minLen && bLen > minLen then
11: nRegionsQueried[tLen][bLen].increment(lz|L| + I:|R])
12: minFPR « 1
13: for tLen « 0 such that trieMem(tLen) < m do
14: tFPR « 1 - (resolvedInTrie[tLen] / |S|)
15: if tFPR < minFPR then » Can be changed to tFPR < minFPR
16: minFPR « tFPR
17: (I, 1z) « (tLen, @)
18: for bLen « tLen + 1uptok do
19: bFPR < BFfpr(m - trieMem(tLen), |Kpien|) = Any BF can be used
20: FPR«— 0
21: queries « resolvedInTrie
22: for (nRegions, count) in nRegionsQueried[tlen, blLen] do
23: FPR « FPR + nRegions * bFPR * count
24: queries « queries + count
25: FPR« FPR + (|S| - queries) / |5|
26: if FPR < minFPR then & Can be changed to FPR < minFPR
27: minFPR «— FPR
28: (I, 1) « (tLen, bLen)
29: return ([, [z)

Proteus reaps the benefits of both encodings while also miti-
gating their shortcomings. The trie is able to efficiently rule out
large ranges in constant time, while the prefix Bloom filter can
be positioned to catch most of the queries that would fall within
the empty sub-regions encoded by the trie. Careful choice of the
Bloom filter’s prefix length will also improve the prefix Bloom
filter’s performance independent of the trie. When exploring the
configuration space, Proteus is free to dedicate its entire memory
budget to either encoding and so can be either entirely probabilistic
or deterministic depending on the context. Configuring Proteus
amounts to choosing the prefix lengths for the trie and Bloom filter.
The possible prefix lengths of the trie are limited by the memory
budget while any memory not used in the trie can be assigned to
any single prefix length using the Bloom filter.

4.2 Operations

Queries in Proteus are carried out by searching the combined struc-
ture for any members of Q, in depth-first order. If any prefix
x € @y NKj, is found in the trie, then the prefixes y N Qy, s.t.
x is a prefix of y are queried in the Bloom filter. If any of these
prefixes are present in the Bloom filter or return a false positive,
the query ends and returns positive. If all of these prefixes return
negative at the Bloom filter, the query continues to the next match-
ing leaf node in the trie. If there are no more valid leaves in the
trie and all queried Bloom filter regions have returned negative,
the query returns negative. Queries that land sufficiently far from
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the key set are then ruled out in the trie as Icp(Q, K) will be short,
while queries that land closer to the key set must rely on the Bloom
filter. In Figure 3, the query Q = [0x00F200, 9x010000] (blue) is
an example of the former. The trie is searched for any member of
Qh = [@0x00F2, @x0100], but none are found so no prefixes are
queried at the Bloom filter and the query returns negative. How-
ever, for Q = [0x020073, 0x02009C] (red), a matching prefix is
found in the trie, #x0200, so the members of Qy with this prefix,
{0x02007, 0x02008, 0x02009}, must all be queried at the Bloom
filter. In this case we have that lep(Q,K) < 2 = Qp, NKj, =0,
so the query will return negative so long as none of the prefixes
queried at the Bloom filter result in false positives.

4.3 Using the CPFPR Model

Proteus determines its configuration by calculating the expected
FPR for each possible configuration and choosing the one resulting
in the lowest FPR, as shown in Algorithm 1. This involves extracting
and storing the necessary information from a set of empty sample
queries and the key set, then using it to compute Equation 5 for the
desired memory budget.

Bloom Filter FPR: The false positive probability p in Equation
5 is dependent on the type of Bloom filter being used. We imple-
mented Proteus using a standard Bloom filter [10] for simplicity
and calculate p according to Equation 6, where n is the number of
key prefixes in the filter, m is the number of bits allocated to it, and
[m/n - In(2)] hash functions are used.?

\ [m/n-In(2)]
p=(1-e@) (6)

Note that both Equation 5 and Algorithm 1 are AMQ-agnostic.
The Bloom filters in our PRFs can be replaced with any AMQ, and
we need only use the corresponding FPR formula.

Count Key Prefixes: As the Bloom filter FPR is dependent on the
number of elements, we must count the number of unique key
prefixes, |Kj|, for all possible prefix lengths I. This can be done
by computing the successive LCPs of the sorted key set as each
successive LCP indicates the minimum prefix length at which a
key is uniquely represented. This is an O(|K|) operation, assuming
the keys are already sorted. In our example application, RocksDB
—described in Section 6 —the keys are sorted internally for the filter.
Calculate Trie Memory: The number of unique key prefixes |Kj|
is also used to estimate the size of the trie at each depth [. This
estimation is based on the implementations of LOUDS-Sparse and
LOUDS-Dense as described in [48]. We also implemented a method
to accurately calculate the trie size, but this dominated the combined
modeling and construction cost of the filter and provided little
benefit. As is, we overestimate the cost of the trie because we do
not consider the memory saved by using explicitly stored key bits
after a key has been uniquely represented in the FST. When the trie
is short, this has little to no effect as very few keys will be uniquely
represented. This error then grows with the depth of the trie, but
any leftover memory is simply allocated to the Bloom filter. We also
use this to approximate the ideal number of FST levels that should
be encoded with LOUDS-Dense and LOUDS-Sparse respectively,

2A max limit of 32 hash functions is imposed since m/n can be quite high for short
prefix lengths resulting in very large hash function counts that are not practical when
making multiple prefix queries. We use the MurmurHash3 and CLHASH hash functions
for integer and string workloads respectively [35].
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N&? 1 2 3 4 5
Bound 0.00425 0.00132 0.00005 0.000002 0.0000001

Table 1: Bounds for e=N9°/(2p) 4 ¢~N&/(3p) for different values
of N&%, p < 0.1.

rather than relying on a fixed ratio as SuRF does. This allows our
FST to be even more memory-efficient than SuRF.

Count Query Prefixes: Here we obtain the relevant metrics from
our sample queries. For each Q € S, we must determine which
trie depths will resolve the query as well as the number of regions
required to cover Q for each possible prefix length [, |Q;|. The first of
these requires lep(K, Q) which entails searching K for the nearest
member to Q. In the worst case, computing this for all queries
is O(|S|log, |K|), but we sort the left query bounds, which costs
O(|S|log, |S]), and start each search from the key found for the
previous query. For the second, we simply shift the left and right
bounds of Q to each prefix length and take their difference. This is
a constant amount of work for each query.

Calculate Configuration FPRs: Once we have gathered the above
information from K and S, we have everything we need to compute
Equation 5 for each Q and configuration. Averaging these across a
given configuration gives us our corresponding expected FPR. The
advantage of gathering all the information first is that the false pos-
itive probabilities for the individual queries can be batched together.
Specifically, all queries with the same |Q;| for a given prefix length
I have the same false positive probability and can thus be calculated
together. The number of such calculations is then dependent on the
number of queries with distinct prefix counts for each configuration.
If range query sizes vary significantly, then most queries will have
a distinct number of prefixes and the number of calculations per
configuration approaches O(|5|), which is not ideal.

To counteract this, we bin the query prefix counts into k bins of
exponentially increasing size, where k is the maximum key length
in bits. Bin i contains the number of queries with prefix counts in
[2i-1,2%) as well as the average number of prefix counts for those
queries and bin 0 contains the number of queries resolved in the
trie. A single batch FPR calculation is then performed for each non-
empty bin using the average prefix query count. Calculating the
total FPR for a given configuration therefore requires at most k
batch calculations. This significantly reduces the amount of mod-
eling work and has little effect on the accuracy. This is because
the probability of returning negative for an empty query decays
exponentially with the number of prefix queries required. Despite
containing more disparate values, the bins with larger ranges will
still batch together queries with similar false positive probabilities.
Sample Size: We based our sample size on confidence intervals
derived using a Chernoff bound. Using N queries, we obtain an
estimate p of the FPR of a given configuration by dividing the
number of false positives found by N. Assuming the N queries
are independently false positives with probability p, a standard
Chernoff bound (see, e.g., Chapter 4 of [41]) yields the following
bound for the probability that our estimate, p, is within & of p:

Pr(p € [p-6, p+8]) = 1-min (26_2N'52, NS/ (2p) 4 e_Ngz"r(Bp)).
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Count (Cglc. Count Calc.

K . Build
ey Trie  Query  Config . Total

Prefixes Mem. Prefixes  FPRs Filter
1PBF 32 - 9 1 3139 3181
2PBF 32 - 81 884 3239 4236
Proteus 32 1 71 1 3130 3235

SuRF - 482 482

Rosetta 3 4775 4778

Table 2: Breakdown and comparison of filter construction times,
including modeling. Values are rounded up to nearest millisecond.

In our setting, typically p < 0.1. Table 1 provides (upper bounds

for) the largest value of NS (2p) 4 e_Ngzl’J(SP)) for p < 0.1, for
different values of N&%. For example, with sample sizes of 10,000
and 50,000 queries, the probability that p differs from p by more
than 0.01 will be at most 0.00425 and 0.0000001 respectively. Note
that this is an upper bound and so the actual probability will likely
be smaller in practice. Furthermore, accurately estimating the FPR
of each configuration is less consequential than finding a good
configuration. So long as our estimates are close, we will end up
with a configuration that is close to ideal. We show in Section 5.1
the accuracy of our FPR estimates over the space of possible PRF
configurations for a sample size of 10K queries. In Section 5.2, we
compare Proteus configured using 20K sample queries against the
state-of-the-art on diverse workloads.
Modeling Cost Breakdown: Table 2 shows a breakdown of these
costs for 10M normally distributed keys, a sample of 20K correlated
empty queries, and a memory budget of 10 BPK. This workload is
designed to maximize the number of possible configurations for
Proteus and consequently the computation required for modeling.
We use normally distributed keys to increase the number of viable
configurations to test as there will be more common key prefixes,
thereby making the trie more compact. The queries are correlated
to the keys just enough that most will not be resolved in the trie
which increases the number of calculations required to compute
the expected FPR for each configuration. Lastly, we use range sizes
uniformly distributed between 2 and 2%° to have a large number of
distinct prefix counts. 2PBF uses a maximum range size of 21> due
to values overflowing when computing the binomial coefficient in
Equation 4 for queries with a large number of prefixes.

Looking at the results in Table 2, we see that the modeling time
for 1PBF (~42ms) is about two orders of magnitude smaller than its
construction time (~3s), which is just that of a standard Bloom filter.
Proteus’s modeling is a modestly more expensive (~100ms) but is
still dominated by the construction time (~3s). It is worth noting
that, without the binning, calculating the expected FPRs for each
configuration becomes the dominant factor for all of our PRFs, in
the worst case. With the binning, the combined modeling and build
cost of both 1PBF and Proteus is comparable to the construction
cost of a standard Bloom filter. However, the modeling cost alone
for 2PBF is comparable to the construction cost for a Bloom filter,
even with reduced range size. This is for a number of reasons. While
Proteus’s potential configurations are limited by the cost of its trie,
2PBF’s choice of I; has no such limit. 2PBF therefore considers all
combinations of I; < Iz € [1, 64] for multiple memory allocations.
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Figure 4: The CPFPR model accurately predicts the FPR for all possible designs of different Protean Range Filters.

An exhaustive search of all possible memory allocations is infeasible,
sowe implement 2PBF to test 2 asymmetric allocations (60-40/40-60)
and a symmetric allocation. Furthermore, the probabilistic nature
of the first filter results in many possible outcomes for each query,
all of which must be considered when calculating the query’s false
positive probability. This puts 2PBF’s modeling time (~1s) on the
same order of magnitude as it’s construction time (~3s). Note that
this is a worst case workload for modeling time but not filter build
time. This is because 2PBF only ends up using a single Bloom filter
while Proteus does not use a trie. However, the worst case build
time for Proteus will not be significantly larger since the FST can
be built very quickly, as shown by SuRF’s build time. 2PBF’s build
time can as much as double if it has to build a second Bloom filter.

5 MODEL VALIDATION

Here we demonstrate the accuracy of the described CPFPR models
and evaluate our PRFs (1PBF, 2PBF, and Proteus) as in-memory
standalone filters. We show that Proteus selects optimal designs
across a variety of workloads and achieves better FPRs than state-
of-the-art AREs due to its broader design space. In Section 6, we
evaluate these AREs in RocksDB with end-to-end system metrics.
We use 64-bit unsigned integers for our experiments in Section 5
and Section 6 and focus on strings in Section 7.

Datasets: The real world datasets come from the Searched on
Sorted Data (SOSD) benchmark for index structures [30, 37].

e UntrorMm: Keys are generated uniformly from [@, 2% - 1].

e NorMAL: Keys are generated with a mean of 2°* and a standard
deviation of 264 - 0.01.

e Books: Amazon booksale popularity data for 800M books. This
data has a fairly heavy skew with many more low popularity
scores than high.

e FACEBOOK: A set of 200M upsampled Facebook user IDs. This
data is fairly dense and covers a relatively small range of values
with uniformly distributed gaps.

Workloads: We test variations of YCSB Workload E, a range-scan

intensive workload. Queries are of the form [1left, left+offset],

where offset is chosen uniformly at random from [2, RMAX]
unless otherwise stated. For point queries, of fset is set to 0.
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e UNnIFORM: left is taken uniformly at random from [@, 964
RMAX].

e CORRELATED: A key is chosen uniformly at random from the
dataset and then left is chosen uniformly at random from [key+1
key+CORRDEGREE]. We use a default CORRDEGREE of 2'°.

® SrLIT: An even split of UNIFORM and CORRELATED queries, similar
to the particle physics workload mentioned in Section 1.

o REAL: For a real world dataset, we uniformly sample 10M integers
to use as keys and another 1M integers to use as the left bounds.

Experimental Setup: All experiments were run on Linux kernel
5.13.12-arch1-1 with an AMD Ryzen 7 1800X 8-core processor, 16GB
RAM, and 1TB Samsung 850 EVO SSD. For each experiment, 1M
queries were executed serially on a single thread with a sample of
20K queries and a data set of 10M keys.

5.1 Model Accuracy

We validate the accuracy of the CPFPR models for 1PBF, 2PBF,
and Proteus by comparing the expected FPR —as calculated by
the corresponding CPFPR model —with the observed FPR on all
possible designs in the respective filter design spaces. We use a
sample size of 10K queries for these experiments, demonstrating
our accuracy at the lowest N&2 in Table 1.

1PBF: We run two experiments to highlight the impact of each
of our contextual parameters, range size and correlation between
keys and queries, as shown in Figure 4a. The top graph varies RMAX
on UNIFORM-UNIFORM, while the bottom graph varies CORRDEGREE
on UNIFORM-CORRELATED. The RMAX for the bottom graph is fixed
at 27 and the prefix length on the x-axis represents the different
possible designs for 1PBF.

In Figure 4a.1, we see that the observed FPR quickly increases
once the prefix length passes 64 — log, RMAX. Before this threshold,
a given range query will not require more than 2 regions to be
queried in the prefix Bloom filter as the range queries are all smaller
than the regions encoded the prefix filter. Since we use UNIFORM
keys and queries, the significant majority of queries do not fall
close to keys. As such, empty sub-regions only become an issue
for prefix lengths shorter than 30. The same effect becomes more
prevalent in Figure 4a.2 where we see that any prefix length shorter
than 64 — log, CORRDEGREE is affected by empty sub-regions. Since
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Figure 5: Proteus optimally configures its design on diverse workloads with varying range sizes and memory budgets.

Figure 4a.b uses a range size of 27, any prefix length longer than
57 will also result in more false positives due to range size. When
log, CORRDEGREE > 7, the prefix filter must contend with false

positives resulting from both empty sub-regions and range size.

In both experiments, the 1PBF CPFPR model is able to accurately
capture the effects of both conditions as they pertain to the FPR.

2PBF & Proteus: For both of our PRFs that use two prefix lengths,

we focus on a situation that calls for multiple prefix lengths, as
described in Section 3. We use NORMAL-SPLIT with short range
CORRELATED and long range UNIFORM queries to necessitate the
use of two prefix lengths. The FPRs for each design are shown in
Figure 4b and 4c for 2PBF and Proteus respectively. The expected
FPRs are shown in the upper right triangle of the matrix while the
corresponding observed FPRs are reflected in the lower left.

For both filters, we correctly predict the optimal design, and

accurately predict the range of FPRs over the entire design space.

The optimal design for 2PBF is uses prefix lengths of 26 and 57 bits
while Proteus’s optimal design uses a 24 bit trie and a prefix length
of 58 bits. The corresponding expected and observed FPRs are 11.4%

and 12.3% for 2PBF and 5.17% and 4.91% for Proteus respectively.

These values may seem high in terms of the FPRs typically achieved
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by AMQs, but this is also a highly adversarial case which current
AREs are unable to handle. We re-visit this use case in Section 6.3
in the context of end-to-end system performance. The gray region
corresponds to the part of the parameter space where the trie is
too large for the memory budget (10 BPK). Despite its more limited
design space, Proteus achieves lower FPRs than 2PBF.

Figure 4b shows the results for the best memory division between
the two Bloom filters, a 50-50 split. This works best as our SpLIT
query distribution is evenly split between small, key-correlated
queries and large, uniformly distributed queries. 2PBF also considers
asymmetric memory allocations, as described in Section 4.

Both Proteus and 2PBF fully encompass 1PBF’s design space
and will always achieve an equivalent or lower FPR. Moreover,
even though Proteus and 2PBF occupy slightly different design
spaces, in the situations where a second Bloom filter is helpful, it is
outperformed by Proteus’s trie.

5.2 Optimizing Across the Design Space

We now demonstrate Proteus’s ability to select optimal designs
across a variety of workloads. We also contrast Proteus flexibility
against state-of-the-art AREs Rosetta and SuRF for each, as shown
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in Figure 5. Each row in Figure 5 shows the results for a DATASET-
WORKLOAD pair for point queries, small range queries, large range
queries and a combination of point and range queries. The SuRF
results show the lowest FPR for all possible configurations of real
and hash-suffix bits, but in practice users will need to implement a
policy to choose the appropriate SuRF configuration. In these ex-
periments, Proteus and Rosetta both use 20K empty sample queries
which gives us a bound of 0.00425 for § = 0.1, as per Table 1. This
will give us higher confidence in the optimality of Proteus’s chosen
design as we compare its performance across workloads.
Effective Navigation of Design Space: For nearly all use cases,
Proteus is able to choose a design that achieves a low FPR. This
is less true for large CORRELATED queries —an adversarial case for
any prefix-based filter —as Proteus must rely entirely on a Bloom
filter design. Even so, Proteus is able to achieve a much lower
FPR than any state-of-the-art ARE by picking a prefix length that
balances the number of prefixes per query and the number of range
queries distinguishable from the key set. In situations where SuRF
and Rosetta are optimal, Proteus takes on a similar design to the
respective filter and achieves similar performance. For instance,
Rosetta and Proteus are virtually indistinguishable in terms of FPR
in point query workloads. Similarly, Proteus and SuRF achieve very
similar FPRs on FACEBOOK-REAL as the keys lie in a narrow range
which causes both Proteus and SuRF to have extremely deep tries.
Impact of Restricted Design Spaces: However, if the optimal
design lies outside the restricted design spaces of SuRF or Rosetta,
then the corresponding filter’s performance will be limited. For
example, consider the UNIFORM-CORRELATED small range query
workload. Despite only a small increase in range size from the
point query workload, a full length prefix filter is no longer optimal
for lower memory budgets as the benefit from distinguishing all
queries is outweighed by the benefit of querying fewer prefixes,
as corroborated by Proteus’s design. Even so, Rosetta will always
dedicate the majority of its memory to the full length prefix filter.
For all point query workloads as well as the mixed query workloads
for UN1FORM-CORRELATED and NORMAL-SPLIT, SuRF achieves its
best FPR with the use of hash-suffix bits and only achieves good
FPR with high memory budgets. In such cases, a Bloom filter is
a more efficient use of memory and can be tuned to optimize for
arbitrary range sizes, in contrast to the hash-suffix bits which are
only used for point queries. We can also observe SuRF’s minimum
memory requirement across the various workloads. In most cases,
it requires 11-12 BPK, while Proteus can always achieve equivalent
if not better performance at 8BPK.

Additional Benefits of the Hybrid Design Space: The combi-
nation of complementary design elements in Proteus allows it to
achieve better FPR than designs which rely only on a single tech-
nique. Even for some point query workloads, such as NoRMAL-
UNIFORM, a hybrid design can leverage a short, memory-efficient
trie to achieve a better FPR-memory tradeoff than a standard Bloom
filter. Furthermore, on SpLIT workloads, Proteus is able to gracefully
handle both types of queries, but more brittle structures may have
to sacrifice performance on a certain portion of the queries. For
instance, on the mixed NORMAL-SpLIT workload at a low memory
budget, Rosetta and SuRF can only filter the CORRELATED point
queries and the UNIFORM range queries respectively.

1679

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

6 SYSTEM EVALUATION: ROCKSDB

We integrate Proteus into RocksDB —a popular key-value store
—and demonstrate that it improves end-to-end range query perfor-
mance by up to 3.9x and 3.3x over Rosetta and SuRF respectively
across a variety of workloads, with consistently better performance
at low BPKs (8-12). This speed-up is due to a reduction in I/O op-
erations as a result of the lower FPR achieved. Furthermore, we
show that the additional cost of modeling in filter construction does
not significantly impact the end-to-end performance of RocksDB
and that Proteus is able to adapt smoothly to changes in the query
workload distribution, unlike Rosetta and SuRF which suffer drastic
declines in performance on certain adversarial distributions.

6.1 Proteus System Integration

RocksDB uses an LSM tree architecture which organizes data on
disk into levels of increasing size, where each level L; (except Lg) is
range partitioned into multiple sorted runs or Static Sorted Table
(SST) files that occupy disjoint key ranges. The SST files in Lj are
directly flushed to disk from MemTables —in-memory structures
that buffer writes —and thus typically have overlapping key ranges.
Static filters (e.g. Bloom filters) are built on every SST file to reduce
unnecessary accesses for non-existent keys. When a level L; reaches
its maximum capacity, RocksDB selectively merges SST files from
L; into Lj44, triggering the construction of new filters on the merged
data in the new L1 SST files. This process is called compaction.
Range Query Implementation: Similar to [36], we modify the
RocksDB closed Seek logic to first check all filters for the existence
of keys in the queried range. If all filters return false, then Seek
returns an invalid iterator. For the filters that return true, RocksDB
proceeds to retrieve the smallest keys from the associated SST files
that are greater than or equal to the lower query bound. This is done
by binary searching over the index block which stores min/max
information in each SST file and fetching the corresponding data
block. If the global smallest key is smaller than the upper query
bound, an iterator pointing to that key is returned. Otherwise, an
invalid iterator is returned for the empty range query.

Sample Query Queue: Since Proteus (and Rosetta) need sample
queries, we create a fixed size query queue and seed it with an
initial query sample. Older queries are evicted with a FIFO policy.
This changing set of sample queries is used in conjunction with the
keys in each SST file to determine the optimal filter design for each
SST file at construction time. In our experiments, we use a queue
size of 20K queries (~320KB) and update the queue with every 100th
executed empty query.

Tuning RocksDB: Since all filters have to be queried during a
closed Seek, we curtail this CPU cost by tuning RocksDB to fit
more data in each SST file, thereby reducing the number of filters
queried. This also helps to control the overall cost of modeling from
filter construction when there are heavy compactions. We increase
the SST file size from the default of 64MB to 256MB and scale up the
size of L1 and the MemTables to maintain the same number of SST
files that fit in them with default settings.? Similarly, we selectively
enable data compression for certain levels. We leave the few SST
files in Ly and L1 uncompressed to maintain the speed of MemTable
flushes and Ly — L1 compactions. For SST files in Lz, we use LZ4

Swrite_buffer_size = 256MB, max_bytes_for_level_base = 1024MB
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Figure 7: Proteus is robust against extreme workload shifts.

compression —a light-weight compression algorithm recommended
by RocksDB [28] that balances CPU cost and compression size. We
use heavy-weight ZSTD compression for SST files in L3 onwards
as they are less frequently modified and contain bulk of the data in
the LSM tree. We ensure that the filters are cached in the RocksDB
block cache? and assign RocksDB 6 background threads for flushes
and compactions.

6.2 Experimental Setup

We use the same datasets, range query workloads, and machine
described in Section 5 for experiments carried out in RocksDB
v6.20.3. For each 8 byte integer key, we generate an associated
512 byte value. The first half of all values are zeroed out, while
the second half is randomly generated which yields a constant
compression ratio of 0.5. To ensure that all experiments start from
a consistent LSM tree state, we manually flush the MemTable after
populating the initial, empty database, and wait for all background
compactions to finish before executing the benchmark. In Section
6.3, the initial database has 50M key-value pairs which yields a 4
level (~14GB compressed) LSM tree with ~70 SST files. In Section 6.4,
we first insert 20M key-value pairs to get a 3 level (~6GB compressed)
LSM tree with ~40 SST files, and subsequently Put an additional
40M key-value pairs over the course of the experiments. In both
cases, Lg is empty in the initial database state as we set RocksDB
to compact all Ly SST files to L for sake of consistency. Lastly, we
warm the RocksDB block cache (1GB) and the OS page cache by
running 1M uniformly distributed point queries of existing keys to
ensure that all indexes and filters are loaded into memory.

6.3 End-to-End Performance

We measure the end-to-end range query performance in terms of
workload execution latency for Proteus, SuRF, and Rosetta on four

4cache_index_and_filter_blocks = true,
pin_le_filter_and_index_blocks_in_cache = true
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Figure 8: Proteus is robust to immediate, extreme workload shifts.

use cases targeting different points in the design space. As shown
in Figure 6, Proteus achieves the lowest latency across all work-
loads on low memory budgets, improving upon SuRF and Rosetta
by as much as 3.3x and 3.9x respectively. In RocksDB, one of the
primary sources of latency is I/O when accessing the SST files. As
such, a lower FPR generally results in lower latency because we can
avoid unnecessary I/0. However, situations such as thrashing in
RocksDB’s internal cache or excessive prefix queries during Bloom
filter probes can result in higher latency despite a low FPR. For
example, Rosetta improves its FPR on NORMAL-UNIFORM as its mem-
ory budget increases by using more hash functions per Bloom filter,
but the resulting latency increases. This is because a large range
query requires Rosetta to query many prefixes and the CPU cost for
each is proportional to the number of hash functions used. Proteus
is able to frequently avoid this as the trie limits - and sometimes
eliminates all - prefix queries made at the Bloom filter. SuRF has an
effectively constant computational cost for queries, but can suffer
due to pressure on RockDB'’s internal cache. This can be seen in
both the NorRMAL-SPLIT and UNIFORM-CORRELATED workloads. We
observed that SuRF puts more pressure on RocksDB’s internal cache
which results in thrashing after passing a certain FPR threshold
(~0.1 to 0.2 in our experiments).? This thrashing severely impacts
the overall system latency. We also observed that SuRF’s memory
footprint varies by as much as 3 BPK across SST files, while Proteus
and Rosetta maintain consistent BPKs and do not result in thrashing.
Naturally, I/O savings would be magnified for larger datasets.

6.4 Robustness to Shifting Query Distribution

We now evaluate the robustness of Proteus: its ability to main-
tain good end-to-end performance when the workload shifts. We
examine incrementally shifting workloads which mimic real-life
applications with temporal skew, such as Wikipedia. As shown in

Srocksdb.block.cache. add shows that more data blocks are added to the cache
when using SuRF compared to Proteus with similar FPR.
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Section 3, a range filter’s performance is primarily affected by the
relative positioning between the data keys and the queried keys.
Thus, changing the queries or the data are essentially equivalent in
terms of impact on filter performance and so we focus on changing
the query distribution to be able to control the relative key-query
proximities. We test with workloads that gradually shift between
large range UNIFORM queries and small range CORRELATED queries
which favor shorter and longer prefix lengths respectively. To mag-
nify the difference in Proteus designs, we maintain a NORMAL key
distribution when shifting from long UNIFORM queries to short
CORRELATED queries as the trie chosen for UNIFORM queries is inef-
fective for CORRELATED queries and take memory away from the
Bloom filter. Similarly, we maintain a UNIFORM key distribution
for a short CORRELATED to long UNIFORM query transition which
precludes the use of a trie for long UNIFORM queries.

For each workload, we define the workload transition ratio as the
probability of executing a query from the end query distribution. We
test 60M closed Seeks with a workload transition ratio increasing
linearly from 0 to 1. We start with an initial database of 20M keys
and uniformly interleave 40M Puts with the 60M Seeks to trigger
periodic compactions and construction of new filters.

In Figure 7, we show the cumulative latency as the respective
workloads transition from one type of query to another, and re-
port the FPR for every batch of 5M Seeks. Proteus is resilient to
the extreme workload shifts and is able to instantiate new designs
to maintain a consistently low Seek latency. As shown in Figure
7.1 and 7.2, Proteus has a smooth increase in cumulative latency
which stems from the low FPR maintained as the workload shifts.
This is because Proteus can configure itself accurately by relying
on the sample query queue to provide an up-to-date view of the
query workload. The end-to-end behavior observed also highlights
that the additional cost of modeling for Proteus during filter con-
struction does not impact the overall performance despite heavy
ongoing compactions (~15-20 for each 5M Seek batch). In contrast,
the latencies for SuRF and Rosetta increase sharply when the work-
load transitions past 0.5 for UNIFORM— CORRELATED (Figure 7.1)
and CORRELATED— UNIFORM (Figure 7.2) respectively. Due to their
restricted design spaces, Rosetta and SuRF can only effectively han-
dle one of the two types of queries. We observe the impact of their
brittle designs in the FPR which decreases as the workload shifts.

We repeated the same experiments for Proteus with an immedi-
ate change in query distribution, simulated by not mixing the two
distributions, with results shown in Figure 8. We observe a larger
increase in FPR and latency after the drastic transition since the
filter designs are not optimal for the new query distribution, but
the decrease in performance is temporary as the filters are rebuilt
using the updated query cache, giving robust performance.

7 VARIABLE LENGTH KEYS

Database workloads commonly include variable length keys, which
often arise from concatenations of various metadata [12, 25]. In this
section, we show how Proteus can be used with variable length keys
and demonstrate that the CPFPR model extends to any key length.
We also show that Proteus reduces end-to-end query latency in
RocksDB by as much as 5.3x vs. SuRF on a real-world string dataset.
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7.1 Extending the Model and Filter

Modeling: Shifting from a fixed length integer key space to a
variable length key space in the CPFPR model is equivalent to
changing the total ordering from a less-than-or-equal relation to
a lexicographical relation. For longer keys, Proteus also has more
potential designs due to the larger range of prefix lengths. In the
context of static filters, the length of the longest key in the dataset
is known and therefore Proteus’s design space is well defined.
Filter Operation: The trie portion of Proteus handles string keys
without requiring any modifications. On the other hand, variable
length keys give rise to an exploding number of prefixes to query
in the prefix Bloom filters. In addition, every Bloom filter query
inherently increases the probability of a false positive. Proteus
achieves low FPR and query time by padding short keys and queries
with trailing null bytes to a chosen prefix length, thus mapping
the key space onto a fixed-length key space. This means that the
prefix Bloom filter does not distinguish between short keys and
their padded equivalents, which will result in false positives if
the application does not make the same assumption. Finally, we
changed the Bloom filter hash function from MurmurHash3 to
CLHASH which can handle strings [5, 35].

7.2 Validation and Evaluation

Experimental Setup: We run in-memory and RocksDB bench-
marks similar to Section 5.2 and Section 6.3 respectively. For in-
memory experiments, we generate three datasets of fixed-length
string keys of size 80, 200, and 1440 that conform to either a Un1-
FORM or NoRMAL distribution. UNIFORM keys are concatenations of
uniformly generated key bytes up to the specified key length, while
NorMAL keys are normally distributed around the middle of the key
space with standard deviation o = 0.01 - 254, Specifically, the mean
key is defined to be the string with a most significant byte value
of 128 followed by null bytes up to the key length. We also gener-
ated UNIFORM, CORRELATED, and SPLIT synthetic string workloads
with RMAX 23° and CORRDEGREE 2?°. The in-memory experiments
were run with 10M keys, IM queries, and 20K sample queries. For
RocksDB experiments, we use an internet domain dataset compris-
ing ~31M crawled .org domains [44]. The domains are 5 to 253
bytes long with a median length of 21 bytes and follow a log-normal
distribution (R? = 0.98). The initial database was populated with
20M domain keys and 512 byte random values, resulting in a 3
level (~6GB compressed) LSM tree with ~30 SST files. Another 10M
random domains were used to generate queries with RMAX 23, as
with our other REAL workloads. To control the distribution of RMAX,
we pad the dataset with null bytes to the max key length. Note that
this does not affect the performance of SuRF as it only considers
the keys up to their unique prefixes which will be unchanged by
the padding. For Proteus, the padding would ideally be done on
a per-SST file basis to avoid unnecessary padding and modeling
of designs with longer prefix lengths. These costs are incurred at
construction time and not measured in the read-only experiment.
FPR is Unaffected by Key Length: In Figure 9a-d, we present
in-memory results for 1440-bit keys. As with integers, Proteus
outperforms SuRF across distributions and filter sizes. Experiments
with other key lengths show the same performance patterns as only
the range size and key-query proximity matter.
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Figure 9: Proteus achieves lower FPR than SuRF on synthetic strings (a-d) and lower RocksDB latency on real-world strings (e).

Modeling Time Increases with Key Length: While the model-
ing accuracy is preserved across key length, the number of possible
designs is O(k?) with respect to the maximum key length. Longer
keys can therefore result in a significant increase in the time re-
quired to model the designs. In our in-memory benchmarks, the
time to model all possible designs with 1440-bit keys ranged from
2.82 to 149 seconds. The worst case is too expensive for most real
world applications; however, we can achieve an order of magnitude
speedup by using a coarser search as the difference in performance
for similar designs is often quite small. The results for Proteus
shown in Figure 9 were obtained by only modeling 128 uniformly
spaced Bloom filter prefix lengths for all feasible trie depths. The
modeling times with this optimization ranged from 0.86 to 14.3
seconds while still achieving similar performance.

The structure of the modeling also lends itself very well to par-

allel computation. As shown in Section 4.3, the dominant cost of
the sampling is extracting the information needed to model each
sample query relative to each design. This can be done indepen-
dently on both a per-query and per-design basis. Since modern
database services are hosted on elastic cloud architectures, occa-
sional increases in CPU usage can easily be amortized at a low cost
compared to the benefits of a more performant filter.
Proteus Maintains Strong Performance on Strings: Figure 9
shows the results of our real-world string benchmark in RocksDB.
Proteus outperforms SuRF in both end-to-end latency and FPR by an
even larger margin using the aforementioned coarse-grained model-
ing. We see the impact of design tradeoffs amplified for longer keys
—SuRF’s rigid design requires a large minimum memory budget
and limits the effectiveness of additional filter memory. Conversely,
Proteus’s flexible design allows it to distribute memory between
its design elements for more efficient memory use. As shown in
Figure 9, SuRF requires at least 16 BPK while Proteus can achieve
significant performance gains with as little as 8 BPK.

8 RELATED WORK

Our investigation is part of a broader initiative in the systems
community to design contextually-customized data structures.

Adaptive Range Filter: The Adaptive Range Filter (ARF) [1] adapts
its binary trie structure in response to queries, extending branches
to compensate for false positives and retracting them to maintain
its memory footprint. However, ARF’s encoding strategy limits its
memory efficiency and requires significant time and memory to
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pre-train [48]. Similar adaptive techniques have been applied to
AMOQs to deal with adversarial workloads [7, 40].

Stacked Filters: Stacked Filters [15] also use modeling to incorpo-
rate workload specific information in their design. However, their
model is designed for point rather than range queries.

Data Calculator: Similar to PRFs, the Data Calculator [26] breaks
down a complex design space into its fundamental design primitives
and models the behavior of designs to determine the optimal design
for a given workload. However, the Data Calculator focuses on the
design space of key-value structures rather than range filters and
merely synthesizes the optimal design rather than instantiating it.
Learned Structures: Several iterations of learned Bloom filters
use learned models to leverage patterns in the data for better per-
formance [14, 39, 45]. These filters are designed for single item
queries and perform poorly on range queries for the same reasons
as other AMQs. This method of fitting to the use case also requires
the presence of patterns in the data that are amenable to the model
being used. Similar techniques have been applied to indexing struc-
tures in databases to speed up searches [32]. Indexes can also be
used to answer range queries, but they are larger, general purpose
structures which typically require more I/O to answer a query.

9 SUMMARY AND OPPORTUNITIES

This paper introduces Proteus, a self-designing range filter that
achieves robust performance across a large variety of workloads.
The core idea is that (1) Proteus unifies the design spaces of state-
of-the-art range filters to cover a wider range of workloads and (2)
is able to instantiate workload-optimal designs. Analysing cutting-
edge range filtering techniques through the lens of the CPFPR
model reveals adversarial workloads which no current design can
handle practically, suggesting the need for further expansion of
the range filter design space. Other promising directions include
extending the CPFPR model to support higher order optimization
strategies by incorporating metrics such as query latency as well as
exploring non-uniform memory allocation strategies in RocksDB.
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