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Abstract
The study of particle-packing models for bi-dispersed packings is important in the field of granular materials, from both 
theoretical and practical perspectives. Several particle-packing models have been developed for predicting the packing density 
(or specific volume) of a bi-dispersed packing. Most of the currently available models are phenomenological, which predict 
the specific volumes of a bi-dispersed packing as a function of fraction of species, and have applied to various fields, such as 
in concrete, pharmaceutical, soil engineering, etc. In this study, we analyze the packing densities of granular mixtures using 
an analogy to the thermodynamic theory for chemical solutions. The thermodynamic theory for chemical solutions provides 
the connections among the bulk solution density, the chemical interaction activities between species, and the concentration 
of each species in the solution. Parallel to the chemical potential of each species in the solution, we introduce an “excess free 
volume potential” for each granular species. With the interaction activities of two species in a bi-dispersed granular system, 
we explain the volume compaction behavior of a granular system from a new context. Subsequently, using the second law of 
thermodynamics, an analytical method is proposed to quantify the excess free volume potentials and to predict the density 
of a granular mixture. The developed analytical method is then validated by the experimental results of bi-dispersed pack-
ing mixtures of glass beads and silica sands. The performance of the analytical method and its validity are demonstrated.

Keywords  Binary granular system · Thermodynamics · Analytical method · Compaction

List of symbols

Packing descriptors
V 	� Total volume of a bi-dispersed packing
�	� Specific volume of a bi-dispersed packing
V0
1
,V0

2
	� Total volumes of each component in mono-

dispersed packing state
�0
1
, �0

2
	� Specific volumes of each component in mono-

dispersed packing state
N1,N2	� Total number of large particles and small parti-

cles in a bi-dispersed packing

y1, y2	� Solid volume fraction of each component in a 
bi-dispersed packing

v
g

1
, v

g

2
	� Particle solid volume of each component in a 

bi-dispersed packing
d1, d2	� Particle size of each component in a bi-dis-

persed packing
vm
1
, vm

2
	� Particle volume potential of the mth particle of 

each component in a bi-dispersed packing
v0
1
, v0

2
	� Average particle volume potential of each com-

ponent in mono-dispersed packing state
v1, v2	� Average particle volume potential of each com-

ponent in a bi-dispersed packing

Thermodynamics terms
X	� Compactivity (granular temperature)
S	� Granular entropy
V ′,V 	� Internal volume potential, Gibbs volume 

potential
�	� Extent of reaction
ΔV 	� Excess free volume potential of the bi-dis-

persed packing
Δv1,Δv2	� Excess free volume potential for each compo-

nent in a bi-dispersed packing
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�1, �2	� Interaction activity coefficients for each com-
ponent in a bi-dispersed packing

ri	� Particle size ratio
�1, �2(�)	� Material parameter for each component (aver-

aged value)
x̄	� Internal state variable

1  Introduction

This paper deals with a simple, yet fundamental, phenom-
enon in the physics of granular materials: granular compac-
tion. A packing of grains in a container gets more and more 
compact under gentle shaking or tamping. Under continuous 
shaking or tamping, a stationary state of volume is eventu-
ally established at equilibrium. In this paper, we focus on the 
volume characteristics of a bi-dispersed granular packing in 
a stationary state.

Compaction of bi-dispersed granular packings is related 
to both practical and basic scientific problems, which has 
been broadly studied for design and manufacturing in many 
fields, such as mineral, metallurgical, pharmaceutical, and 
geotechnical industries [28, 33, 43, 46]. It can be generally 
observed that packing density varies with the fraction of 
species in a bi-dispersed packing. Interestingly, the change 
of density with respect to the fraction of species is non-
monotonic, exhibiting a peak at a specific fraction of species.

Since these issues are shared in technological applica-
tions, many phenomenological models have been developed 
for predicting densities of bi-dispersed packings of various 
types of grains [10, 17, 19, 27, 35, 48, 53, 60, 61]. These 
models require two to four material parameters.

With the rapid advances in computer technology, the 
method of computer simulation has progressed significantly. 
Computer simulation has been applied by many researchers 
for studying geometric packing properties of polydisperse 
granular material (e.g., [20, 31, 45, 56, 58]). Many studies 
have been devoted specifically to the geometric properties 
and the bulk mechanical properties of bi-dispersed packing 
(e.g., [1, 18, 25, 34, 40, 50, 55]). Packing structural charac-
teristics of bi-dispersed mixtures have been investigated by 
computer simulation [13, 29, 38, 49].

A theoretical approach for bi-dispersed packing of 
spheres was developed by Danisch et al. [16] based on the 
formalism of Edwards’ statistical mechanics approach. How-
ever, the method requires a partition function to describe 
the microstate configurations, which needs to be established 
with the aid of numerical simulation. Thus, the method is 
not practically useful.

We intend to develop a novel approach to study the bi-dis-
persed granular packings, along the lines of analyzing mixed 
chemical solutions using the principles in thermodynamics. 
Due to the nature of granular material as a non-chemical and 

athermal material, classic thermodynamics is not applicable 
to the analysis of granular materials. Therefore, in the spirit 
of Edwards’ granular temperature approach, we suggest 
that both the thermal and chemical potentials (i.e., internal 
energy) be replaced by the volume potential of the granular 
system. Hopefully, it opens the door for applying thermo-
dynamics concepts of chemical solutions to the analysis of 
granular mixtures. The challenge is to establish the anal-
ogy between the chemical potential of a mixed solution and 
the volume potentials of species in a bi-dispersed granular 
packing.

In the next section, we first propose a fundamental equa-
tion that extends Edwards approach by analogously replac-
ing not only the thermal energy but also the chemical poten-
tial with the volume potentials of a granular equilibrium 
system. We then explain the modeling approach, which is 
similar to the formalism of equilibrium thermodynamics 
used in chemical solutions. In Sect. 3, using Euler’s theo-
rem, we characterize a bi-dispersed packing by two volume 
potentials, each corresponding to a species of particles. In 
Sect. 4, we formulate an equation that prescribes the excess 
free volume (in analogy to the Gibbs excess free energy) 
for a granular packing based on the interaction activities 
between the two species of particles. In Sect. 5, we study the 
experimentally observed behavior of interaction activities. In 
Sect. 6, we introduce an internal state variable, which repre-
sents the state of the packing configuration, and hypothesize 
an equation that defines a relationship between the internal 
state variable and the excess free volume potential. Apply-
ing the thermodynamics law of equilibrium, the internal 
state variable can be determined from the composition of 
the packing mixture. In Sect. 7, we summarize the proposed 
model, which is then validated by experimental results from 
mixtures of glass beads and silica sands in Sects. 8 and 9.

2 � Approach of this paper

2.1 � Connection to thermodynamics

Granular media, such as powders or sands, are made of 
discrete particles of size larger than 100 μm, which often 
interact only through dissipative contact forces. Without an 
external drive, their kinetic energy is rapidly lost, thus the 
granular media is referred to as a non-thermal system. Due 
to the insignificance of their thermal energy in comparison 
to the energy needed to move a grain, classic thermodynam-
ics is not useful for the analysis of granular material.

Edwards [21] suggested that, due to the dissipative nature 
of granular systems, the role of the conserved quantity 
should be played by the volume V of the system instead of 
the internal energy U [8, 22, 23]. The Edwards approach 
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has been verified for granular systems by many investigators 
(e.g. [2, 15, 44], etc.).

Assuming equiprobability exists for microstate configu-
rations of the system, Edwards defined a configurational 
“granular entropy S”, which is proportional to the logarithm 
of the number of mechanically stable microstates at a given 
volume. Instead of the temperature T, he also introduced 
a “granular temperature X”, named compactivity. Thus, 
in analogy to the expression in classical thermodynamics, 
dU = TdS , the compactivity is, therefore, related to the vol-
ume dependence of the entropy for a non-thermal granular 
system, given by dV = XdS [23]. Based on this concept, the 
granular system can be analyzed by a statistical mechanical 
formalism in much the same way that is done for a thermo-
dynamics system.

This statistical mechanical formalism has been suc-
cessfully applied to study the mechanical response at the 
jamming and its transition of granular matter and provided 
understanding about the nature of granular medium in solid, 
fluid, and gas phases [5, 32, 39, 42, 52].

The Edwards statistical mechanical formalism has also 
been applied to predict the compacted density for bi-dis-
persed mixtures of particles [16]. The key idea is to establish 
a partition function that prescribes the volumes at microstate 
so that a mean-field theory can then be used to calculate the 
density of the bi-dispersed mixture. However, the partition 
function needs to be established with the aid of numerical 
simulation. This limits much of the analysis to numerical 
evaluation of the expectation values. Although the method 
is fundamentally sound, it is practically not useful.

In this paper, we do not use the Edwards statistical 
mechanical formalism. Instead, we extend Edwards approach 
by analogously replacing not only the thermal energy but 
also the chemical potential with the volume potentials of a 
granular equilibrium system. Thus, the fundamental equa-
tion becomes:

Parallel to “internal energy”, V ′ can be termed “internal 
volume potential”. The second term on the right side of the 
equation is analogous to the chemical potential. The symbol 
Ni is the number of particles for the ith species in the system, 
and vi is the volume potential of the ith species. Equation (1) 
shows that, there is a contribution vi d Ni for each species to 
the total volume in a bi-dispersed granular system.

Because the entropy is not easily measured experimen-
tally, for convenience, we apply the Legendre transformation 
to the internal volume potential V ′ in Eq. (1), and we define 
a “Gibbs volume potential” V = V � − XS in analogous to 
Gibbs energy, then Eq. (1) becomes

(1)dV � = XdS +

N
∑

1

vidNi

At constant value of the intensive property X (i.e., dX = 0 ), 
Eq. (2) can be integrated to obtain

The Gibbs volume potential V  is a more useful property 
because, in this study on compaction of a bi-dispersed pack-
ing, the packing preparation procedure can be controlled 
experimentally. For the condition of dX = 0 , the volume 
potential V achieved under compaction for a bi-dispersed 
packing is expressed as:

The average volume potential of a large particle is 
referred to as v1 and the average volume potential of a small 
particle is referred to as v2 . In this paper, for convenience, 
the particle volume potential will always refer to the average 
particle volume potential. The value N1 is the total number of 
large particles, and N2 is the total number of small particles.

2.2 � Descriptors of a bi‑dispersed packing

A bi-dispersed packing consists of two species: the large-
particle group with particle size d1 , and the small-particle 
group with particle size d2 . Their corresponding solid par-
ticle volumes are vg

1
 and vg

2
 . The composition of the pack-

ing is described by the number of particles of the two spe-
cies N1 and N2 . The total volume of solid for the packing is 
v
g

1
N1 + v

g

2
N2 . The composition of a bi-dispersed packing is 

also commonly described by the solid volume fractions of 
the large and small particle groups,y1 and y2 , given by

The two species can be separately packed into two mono-
dispersed packings with volumes V0

1
 and V0

2
 . The average 

particle volume potentials for the two mono-dispersed pack-
ings are respectively v0

1
= V0

1
∕N1 and v0

2
= V0

2
∕N2.

The frequently used density descriptor is specific volume, 
which is defined as the ratio of the specimen volume to its 
solid volume. The specific volume � for the packing mixture 
and the specific volumes,�0

1
, �0

2
 , for the mono-dispersed pack-

ings of the two species are expressed as follows:

(2)dV = −SdX +

N
∑

1

vidNi

(3)V =

N
∑

1

viNi

(4)V = v1N1 + v2N2

(5)y1 =
v
g

1
N1

v
g

1
N1 + v

g

2
N2

; y2 =
v
g

2
N2

v
g

1
N1 + v

g

2
N2

(6)� =
V

v
g

1
N1 + v

g

2
N2

; �0
1
=

v0
1

v
g

1

; �0
2
=

v0
2

v
g

2
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It is noted that v0
1
 and v0

2
 can be directly measured from 

experiments, which are commonly known values for a par-
ticle mixing problem.

2.3 � Modelling approach

Our objective is to derive a model that can predict the volume 
of a bi-dispersed mixture V with any arbitrary species fraction 
knowing the values of v0

1
 and v0

2
 of the mono-dispersed pack-

ings of the two species.
The volume V can be predicted by Eq. (4) if the values of 

particle volume potentials, v1 and v2 , are known. However, in 
a bi-dispersed mixture, due to the interactions between parti-
cles of two species, the particle volume potentials v1 and v2 
are different from the particle volume potentials ( v0

1
 and v0

2
 ) in 

their mono-dispersed states. Note that the values of v1 and v2 
are defined as the average volume potentials for particles of 
each species, while these particles are randomly distributed in 
the packing mixture. Thus, it is not only difficult to separately 
measure the values of v1 and v2 in experiments, but also a 
challenge to create an analytical model that can predict the 
values of v1 and v2 . To achieve a prediction model, there are 
two types of approach:

(1)	 Using the formalism of statistical mechanics The chal-
lenge is to formulate a partition function that can ade-
quately encompass the complex configurations of all 
microstates with all degrees of freedom [6]. Thus, one 
needs to know the complete packing configuration in 
detail, which is typically obtained from the computer 
simulation method. The microstate configurations are 
usually constructed based on the tessellations (Voronoi-
based or quadron-based) divided from the complete 
packing configuration [7, 11, 51]. This approach is not 
practical for developing a model as a predicting tool.

(2)	 Using the formalism of equilibrium thermodynamics 
The challenge is to postulate an equation that defines 
the relationship between an internal state variable and 
the volume potentials of the two species. Although the 
internal variable typically represents a macroscopic 
average in some fashion of the packing configuration, 
it is not required to represent the complete packing 
configuration in detail, as long as the internal variable 
can reflect the relevant features of the packing configu-
ration and provide a good correlation to the volume 
potentials. Thus, the postulated internal state variable 
must be based on physically observed behavior and be 
constrained by the laws of thermodynamics [14, 30, 
41].

In this paper, we adopt the second approach. In the follow-
ing, we investigated the physical meaning of v1 and v2 , and 
their relations to the values of v0

1
 and v0

2
.

3 � Assessment of partial volume potential

Since the volume V of a granular system is an extensive vari-
able, which is homogeneous of degree 1, thus according to 
Euler’s theorem, the total volume of a mixture is

Comparing Eq.  (7) with Eq.  (4), the volume potential 
vi = �V∕�Ni . Thus, Eq. (7) provides a method of interpreting 
the volume potential vi of each species from several experi-
mentally measured V for bi-dispersed packings with vari-
ous species fractions y1 and y2 . The function V(y1, y2) can be 
numerically constructed from the experimental data. Since y1 , 
y2 are related to N1,N2 (see Eq. 5), the function V(y1, y2) can 
be converted to V(N1,N2) , and their derivatives �V∕�Ni can 
be obtained.

The definition of �V∕�Ni also conceptually provides a link 
between the volume potential vi and the microstate configura-
tions. The partial derivative represents the change of packing 
volume dV caused by mixing a small number (d Ni ) of parti-
cles of the ith species to the packing mixture while the total 
particle number Nj of the other species is kept constant. In 
order to evaluate the partial derivative, the number of particles, 
d Ni , should be small enough from the view of calculus. Since 
the microstate configurations play a major role, we conceptu-
ally consider the number of particles d Ni as a single particle 
mixed into the packing mixture, so that we can focus on the 
microstate configuration of this added single particle and its 
neighboring particles. We repeat the single particle mixing for 
a large number ( M) of times and obtain a large set of micro-
state configurations.

For the mth trial, the single particle occupies a space, 
denoted as particle volume vm

i
 . The particle volume is depend-

ent on the location of this particle and the configuration of its 
surrounding particles. Based on the hypothesis that all micro-
configurations are equally probable, the particle volume vi (i.e., 
�V∕�Ni in Eq. (7)) can be regarded as the mean of the particle 
volume vm

i
 for the M microstates.

The microstates probed by the single particle mixing pro-
cess provides a method to assess the value of vi from the view 
of microstate configurations. The characteristics of microstate 

(7)V
(

N1,N2

)

= N1

(

�V

�N1

)

+ N2

(

�V

�N2

)

(8)vi =
1

M

M
∑

m=1

vm
i
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configuration will be investigated to formulate the excess free 
volume potentials for each species.

4 � Excess free volume potential due 
to interaction of species

The particle volume potential for a mono-dispersed packing 
v0
i
 is analogous to the chemical potential of an ideal solution. 

After mixing of two mono-dispersed species, the particle 
volume potential in the bi-dispersed packing for each species 
is denoted by vi.

Analogous to the excess Gibb’s free energy in the classic 
thermodynamics, an excess free volume potential, denoted 
by Δvi , is defined as the difference between the particle vol-
ume potential vi in a mixture and the particle volume poten-
tial v0

i
 in a mono-dispersed packing.

The parameter � is the extent of reaction, which is between 0 
and 1. In our study, we consider only the equilibrium condi-
tion of a bi-dispersed packing (i.e., � = 1) . Thus, the excess 
free volume at equilibrium state is Δvi = v0

i
− vi.

The excess free volume Δvi of the ith species, in a bi-
dispersed packing, is caused by the interaction between 
particles of two different species. In the following, we 
investigated the value range of the excess free volume 
potentials Δvi for each species by examining their micro-
state configurations.

4.1 � Embedment formation of a large particle

In a bi-dispersed packing of two species (size groups of d1 
and d2 ), the excess free volume Δv1 for the large particle 
(species with size d1 ) can be examined from the micro-
state configurations with a large particle at the center sur-
rounded by its neighboring particles. The large particles can 
be viewed as embedded in the particle mixture; thus, it is 
termed as an embedment formation. The free volume of a 
center particle depends on the configuration of its surround-
ing particles. Two extremes can be observed: (1) when the 

(9)vi = v0
i
− Δvi�

neighboring particles surrounding a central large particle are 
all large particles, as shown in Fig. 1a, the particle volume 
potential v2 is expected to be same as that of the mono-dis-
persed packing 

(

v
1
= v0

1

)

 . (2) when the neighboring particles 
surrounding a central large particle are all small particles, 
as shown in Fig. 1b, and the small particles are sufficiently 
small ( d2∕d1 ≈ 0) , the void volume associated with the cen-
tral particle is almost zero. The average particle volume v1 
is approximately to be the particle solid volume 

(

v
1
= v

g

1

)

.
In a general case, the surrounding neighbor particles are 

bi-dispersed and d2∕d1 is not small, then the particle volume 
potential v1 is expected to be between the two extremes, i.e., 
v
g

1
< v1 < v0

1
 . It can be expressed as:

The activity coefficient �
1
 represents the interaction activ-

ity of the large particles in the bi-dispersed packing. Its value 
is between 0 and 1. When �

1
= 0 , then v1 = v0

1
 , the particle 

volume potential of large particles in the bi-dispersed pack-
ing is same as that in the mono-dispersed packing. Thus, 
there is no interaction activity. Whereas, when �

1
= 1 , then 

v1 = v
g

1
 , the particle volume potential is smaller than that in 

the mono-dispersed packing due to the interaction activity. 
The exact value of �

1
 is dependent on the composition of 

the bi-dispersed packing (i.e., particle sizes d1 and d2 and 
particle number of each species N1 and N2).

4.2 � Filling formation of a small particle

Now we examine the microstate configurations with a small 
particle at the center surrounded by its neighboring particles. 
The small particle can be viewed as filling in the voids of the 
large particles; thus, it is termed as a filling formation. The 
free volume of a center particle depends on the configuration 
of its surrounding particles. Two extremes can be observed: 
(1) when the neighbor particles surrounding a central small 
particle are all small particles, as shown in Fig. 2a, the par-
ticle volume potential v2 is expected to be same as that of the 
mono-dispersed packing 

(

v
2
= v0

2

)

 . (2) when the neighboring 
particles surrounding a central small particle are all large 

(10)v1 = v0
1
− �1(v

0
1
− v

g

1
) or Δv1 = �1(v

0
1
− v

g

1
)

Fig. 1   Micro-configurations of a large particle surrounded by: a all 
large particles and b all small particles

Fig. 2   Micro-configurations of a small particle surrounded by: a all 
small particles and b all large particles
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particles, as shown in Fig. 2b, and the central small particle 
is sufficiently small ( d2∕d1 ≈ 0) , so that it fits into a void of 
surrounding large particles as a float particle, which remains 
mobile even though their surrounding particles are jammed 
(i.e., mechanical stable). These type of small particles are 
called rattler-particles [5]. In this case, the small particles 
caused no change in the packing volume, thus the particle 
volume potential v2 = 0.

Again, in a general case, if the surrounding neighboring 
particles are bi-dispersed and the d2∕d1 is not small, then 
the particle volume potential v2 is expected to be between 
the two extremes, i.e., 0 < v2 < v0

2
 . It can be expressed as:

The activity coefficient �2 represents the interaction 
activity of the small particles in the bi-dispersed packing. 
Its value is also between 0 and 1, depending on the composi-
tion of the bi-dispersed packing.

Based on Eqs. (10) and (11), the total volume of a bi-
dispersed packing can be further derived as a function of the 
activity coefficients �1 and �2.

In Eq. (12), v0
1
 and v0

2
 are known values for mono-dis-

persed packings. The value of vg
1
 , N1,N2 are the known com-

position of the packing. Thus, the activity coefficients �1 and 
�2 are the only unknowns, which are essential parameters 
for a quantitative prediction of the volume of a bi-dispersed 
packing.

(11)v2 = v0
2
− �2v

0
2

or Δv2 = �2v
0
2

(12)
V = v1N1 + v2N2 =

(

v0
1
− �1(v

0
1
− v

g

1
)
)

N1 + v0
2

(

1 − �2
)

N2

5 � Activity coefficients

5.1 � Experiments used to interpret the activity 
coefficients

The activity coefficients are dependent on the microstate 
configurations of particles, which are influenced by two 
main factors: the relative particle sizes (or the particle size 
ratio d2∕d1 ) and the species fractions of the bi-dispersed 
packing. The influences of these two factors are exam-
ined in this section using the experimentally measured 
results on glass beads reported by Kwan et al. [35]. In 
their experiments, four different particle size groups were 
selected with sizes d (mm) = 1.43, 3.29, 5.26, 11.71. The 
measured particle volume potential v0

i
 for these four mono-

dispersed packing are (1.652, 1.672, 1.68, 1.706). The four 
particle groups were mixed into three bi-dispersed systems 
denoted by size combinations ( d1, d2) : (3.29, 1.43), (5.26, 
1.43), and (11.74, 1.43). Each system has 9 combinations 
of species-fractions (i.e., the fractions of small particles 
y2 varies from 0.1 to 0.9). All bi-dispersed samples were 
compacted using the same packing procedure specified in 
British Standard [9].

Following the procedure described in Sect. 3, we inter-
pret the particle volume potentials v1 and v2 from the 
measured specific volumes � of the bi-dispersed packings 
of glass beads. First, the function �

(

y1, y2
)

 can be numeri-
cally constructed and converted to V

(

N1,N2

)

. Next, for 
each bi-dispersed packing, the particle volume potentials 
v1 and v2 (i.e., �V∕�N1 and �V∕�N2 ) can be computed. 
Then, from Eqs. (10) and (11), values of the activity coef-
ficients �1 and �2 can be calculated for each bi-dispersed 
packing and plotted in Fig. 3.

Figure 3 shows that the activity coefficients �1 and �2 
are significantly influenced by both size ratio and species 
fractions. To separate the influence of these two factors, 
we first eliminate the factor of species fraction. In the 

Fig. 3   The activity coefficients �1 and �2 interpreted from experimental results for bi-dispersed packings with three size ratios
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measured results shown in Fig. 3, we select two specific 
conditions (fractions y2 = 0 , and y2 = 1 ). For the y2 = 0 
condition, the coefficient �2 represents the interaction 
activity of a few small particles in a mono-dispersed pack-
ing of large particles. Whereas, for the y2 = 1 condition, 
the coefficient �1 represents the interaction activity of a 
few large particles in a mono-dispersed packing of small 
particles. In both cases, the packing mixtures are termed 
dilute granular mixtures (an analogy to the dilute chemi-
cal solutions.)

5.2 � The interaction activity of a species in a dilute 
granular mixture

The activity coefficients �1 and �2 at the two specific condi-
tions (fractions y2 = 0 , and y2 = 1 ) correspond to the six 
points (A, B, C, A’, B’, C’) shown in Fig. 3.

(1)	 y2 = 1 : The three points (A’, B’, C’) represent the �1 
of three packing mixtures: each packing mixture cor-
responds to a few particles of size d1 ( d1 = 3.29, 5.26, 
11.71 mm) in a mono-dispersed base packing with 
particle size x = 1.43 mm. Note that for all three pack-
ing mixtures, the microstate configurations are in 
embedment formation (i.e., the microstate configura-
tion resembles a large particle surrounded by all small 
particles). The activity coefficient of the large particles 
�1 for the three cases are plotted against the size ratio 
r1 = x∕d1 in Fig. 4.

(2)	 y2 = 0 : The three points (A, B, C) represent the �2 of 
three mixtures: each packing mixture corresponds to 
a few particles of size d2 = 1.43 mm in a mono-dis-
persed base packing with particle size x ( x = 3.29, 5.26, 
11.74 mm). In all three packing mixtures, the micro-
state configurations are in filling formation (i.e., the 

microstate configuration resembles a small particle sur-
rounded by all large particles). The activity coefficient 
of the small particles �2 for the three cases are plotted 
against the size ratio r2 = d2∕x in Fig. 4.

Figure 4 show in which the interaction activity of a species 
is dependent on the particle size ratio of the two species. A 
higher size ratio indicates a greater difference in the volume 
potentials between the two species, thus leads to higher inter-
action activity. Species in chemical solutions are not classified 
by sizes. However, the same principle also applies in chemical 
solutions that a greater difference in the chemical potentials 
between the two species of molecules leads to higher interac-
tion activity.

The data points in Fig. 4 fit well to a power law, given by

For the two activity coefficients �1 and �2 , Eq. (13) repre-
sents respectively,

The experimental data in Fig. 4 shows that the two curves 
are nearly identical. The fitted values of exponents are nearly 
the same (i.e., �1 = �2 = � = 2.4).

5.3 � The interaction activity of a species 
in a concentrated granular mixture

In Fig. 3, except the two specific conditions mentioned above, 
all data points are considered as concentrated granular mix-
tures (analogous to concentrated chemical solution). All 
activity coefficients, �1 and �2 , are significantly influenced by 
both factors: species-fractions and particle size ratio. For bi-
dispersed packings with a given size ratio, the values of �1 and 
�2 vary opposite in trends with respect to the fraction of small 
particles y2 , thus they are negatively correlated. The influences 
for these two factors (size ratio and fractions) are compounded 
and not easy to phenomenologically describe. Therefore, it is 
desirable to have a theoretical model to predict the interaction 
activities of species due to the combined influences.

For a chemical solution of known concentration, the exact 
elements of substances and their free energies are known pre-
cisely. Therefore, the interaction activities of species in the 
solution can be theoretically determined [4, 26, 47]. Obvi-
ously, the theory of chemical solution is not applicable to 
granular material. However, although there is no chemical 
reaction between granular particles, the analogous particle 
volume potentials interact in a similar way to that of chemical 
potentials between species. Thus, the activity coefficients of 
a granular mixture can be analyzed based on the principle of 
potential balance between the two species. Here, we attempt 

(13)�i =
(

1 − ri
)�i (i = 1, 2)

(14)�1 =

(

1 −
x

d1

)�1

; �2 =

(

1 −
d2

x

)�2

Fig. 4   Activity coefficients versus size ratios x∕d1 or d2∕x . The varia-
ble x is the particle size of mono-dispersed base packings in the dilute 
mixture
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to develop an innovative model that can be used to determine 
the activity coefficients �1 and �2 for granular mixtures based 
on the balance of volume potentials of the two granular species 
at equilibrium.

6 � Internal state variable

6.1 � Connection between internal state variable 
and particle volume potentials

The challenge is to postulate a relationship between an inter-
nal state variable and the particle volume potentials of the 
two species. Although the internal variable typically repre-
sents a macroscopic average in some fashion of the packing 
configuration, it is not required to represent the complete 
packing configuration in detail, as long as the internal varia-
ble can reflect the relevant features of the packing configura-
tion and provide a good correlation to the volume potentials. 
Thus, the postulated internal state variable must be based on 
physically observed behavior and constrained by the laws of 
thermodynamics.

Since the activity coefficients are dependent on the con-
figuration of the packing mixture, we first hypothesize an 
internal variable, which represent the packing configuration, 
and then we postulate an equation that defines the relation-
ship between the activity coefficients and the internal state 
variable. Our purpose is to hypothesize a simple form of 
internal state variable while it still can reflect the relevant 
features of the packing configuration, so that the postulated 
equation is general enough to encompass the relevant mate-
rial behaviors to be predicted.

The postulated internal state variable x is a scaler with a 
unit of length. The physical meaning of x can be regarded 
as the effective particle size of the bi-dispersed packing (i.e., 
the bi-dispersed packing is regarded as a mono-dispersed 
packing with particle size x ). We hypothesize that, in a 
bi-dispersed packing, the activity coefficient of a species 

is related to the two particle sizes d1, d2 and the effective 
particle size x in the same form as Eq. (14), except that the 
particle size x for the mono-dispersed packing is replaced 
by the effective particle size x of the bi-dispersed packing. 
Thus, the activity coefficients for the two species are linked 
to the variable x by:

Note that the activity coefficients of both species refer 
to the same packing mixture (i.e., the same state variable 
x ). Thus, the activity coefficients are correlated through the 
same variable x . In this way, when the value of �1 is high, the 
value of �2 is low, and vice versa. The postulated equation 
provides a negative trend of correlation between �

1
 and �

2
.

Since the value of �i is between 0 and 1, the value of x for 
a bi-dispersed packing is within the range of d1 ≥ x ≥ d2 . 
Using Eq. (15a or 15b), the exact values of x can be back 
calculated from the measured �

1
 or �

2
 for the bi-dispersed 

packings with various species fractions. The values of x , 
calculated using the measured �

1
 or �

2
 displayed in Fig. 3, 

are plotted in Fig. 5. For each species fraction, two different 
values x can be back calculated: one from Eq. (15a) and the 
other from Eq. (15b). The range of calculated x is shown as 
the shaded zone in Fig. 5.

The shaded zone between the two values is very narrow, 
indicating that a single value of x can be used to calcu-
late both coefficients. In Fig. 5, the range of fractions y2 
can be classified into three regions: (I) the large particles 
dominant region, (II) the transitional region, and (III) the 
small particles dominant region. In the first region, the 
fraction of small particles y2 is small and the effect parti-
cle size x ≈ d1 . The large particles are connected in direct 
contact, and the microstate configurations are dominant 
by the filling formation. As the fraction y2 increases, in 
the second region, the small particles fill most of the void 
space between the large particles and start to separate the 

(15a, b)�1 =

(

1 −
x

d1

)�

; �2 =

(

1 −
d2

x

)�

Fig. 5   Effective particle size x back calculated from activity coefficients for bi-dispersed packings with three size ratios. The range of fractions 
y2 is classified into three regions: (I) the large particles dominant region, (II) the transitional region, and (III) the small particles dominant region
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direct contact of the large particles. In the third region, 
the fraction y2 continues to increase. The separated and 
isolated large particles are now embedded in the matrix 
formed by small particles, resulting in a microstate con-
figuration that is dominant by small particles.

Substituting the value range of x shown in Fig. 5 to 
Eq. (15a) and Eq. (15b), the calculated range of activity 
coefficients are plotted and shown as the shaded zones in 
Fig. 6. The good agreement between the shaded zones and 
the experimentally obtained data also indicates that, for a 
given packing mixture, a single value of x is sufficient to 
model the activity coefficients of both species.

6.2 � Second law and criterion for achieving 
equilibrium

As described previously, the internal state variable x can 
be back calculated from activity coefficients but cannot be 
obtained directly from the composition of the bi-dispersed 
packing. Thus, for modeling purposes, the variable x is 
not known priori and needs to be determined theoreti-
cally. In Eq. (15), the particle volume potentials of both 
species are governed by the value of x . Thus, x must be 
constrained so that the equilibrium of the two potentials is 
achieved. According to the second law of thermodynam-
ics, equilibrium is achieved when the excess free energy 
is minimized (i.e., dGE ≤ 0 ) for any process in an isolated 
system. Analogous to this notion, in our formulation, the 
excess free volume potential must be minimized at system 
equilibrium. Based on Eqs. (10) and (11), the excess free 
volume potential can be written as

(16)ΔV
(

x
)

=

2
∑

i=1

(v0
i
− v1)Ni

Using the complete expression of the excess free vol-
ume potentials in Eqs. (10) and (11), Eq. (16) can be fur-
ther expressed in terms of activity coefficients.

For the excess free volume potential ΔV
(

x
)

 , at con-
stant packing composition N1,N2 , the equilibrium con-
dition can be achieved by, �ΔV(x)

�x
= 0 , which leads to 

N1
�v1

�x
+ N2

�v2

�x
= 0 . The two terms in this equation can be 

regarded as two thermodynamic forces, and the zero sum of 
the two forces assures the condition of equilibrium.

The equilibrium condition can also be written in terms of 
activity coefficients based on Eq. (17), so that the relation 
between the two activity coefficients �1 and �2 is given by

The two terms in Eq. (18) can also be regarded as two 
thermodynamic forces. The relationship between �1 and �2 
is obtained by seeking the balance of these two forces.

In the three equations, Eq. (15a), Eq. (15b) and Eq. (18), 
the variables v0

1
 , v0

2
 , vg

1
 , N1 and N2 are known constants. The 

three unknowns x, �1 and �2 can then be solved by the three 
equations. With the solved activity coefficients �1 and �2 , the 
volume potentials v1 and v2 for each species can be obtained 
by Eqs. (10) and (11). The total volume of the packing mix-
ture can be determined by (see Eq. (12))

(17)ΔV
(

x
)

=

2
∑

i=1

ΔviNi = �1
(

x
)

(v0
1
− v

g

1
)N1 + �2

(

x
)

v0
2
N2

(18)
��1

(

x
)

�x
(v0

1
− v

g

1
)N1 +

��2
(

x
)

�x
v0
2
N2 = 0

(19)V =
(

v0
1
− �1(v

0
1
− v

g

1

)

)N1 +
(

v0
2
− �2v

0
2

)

N2.

Fig. 6   The activity coefficients calculated from the estimated values of x
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7 � Model summary

In Eq. (19), the particle number N1,N2 and V are cumber-
some to be used due to the huge number of particles of the 
two species. For practical purpose, unit-less variables are 
preferred. The volumes 

(

V, v0
1
, v0

2
, v

g

1

)

 can be replaced by 
specific volumes (�, �0

1
, �0

2
) by using the following relation-

ship: v0
1
= �0

1
v
g

1
 ; v0

2
= �0

2
v
g

2
 ; V = �

(

v
g

1
N1 + v

g

2
N2

)

 . Note that, 
by definition, the specific volume can be regarded as the 
volume potential per unit of solid mass.

The number N1,N2 can be expressed in terms of the frac-
tions of particles y1 and y2 by Eq. (5). And the volume to be 
predicted by Eq. (4) can be changed to a more convenient 
form, given by:

Thus, Eqs. (15), (18) and (19) can be replaced respec-
tively by Eqs. (21), (22), and (23) shown below. The model 
can be summarized as follows.

Given a bi-dispersed packing specified by d1, d1, �01, �
0
2
, y1 

and y2 , the specific volume � of the bi-dispersed packing can 
be predicted by the following three equations

The solution procedure is as follows.
First, using Eqs. (23) and (22), the unknown variables 

x , �1 and �2 can be solved. Then, substituting the solved 
values of �1 and �2 into Eq. (21), the specific volume � of a 
bi-dispersed packing can be predicted. The value of � is a 
material parameter, which is calibrated from the measured 
specific volume � of one specimen (i.e., a bi-dispersed pack-
ing with a particular solid fraction y2 ). The calibrated value 
� can be used to predict the results for bi-dispersed packings 
made of the same material.

8 � Validation with experiments on glass 
beads

In this section, we evaluate the performance of the model by 
comparing the model predicted and experimentally meas-
ured results on bi-dispersed packings made of glass beads of 
various fractions and various particle size ratios.

(20)� = �1y1 + �2y2

(21)�
(

x
)

=
(

�0
1
− �1

(

x
)(

�0
1
− 1

))

y1 +
(

1 − �2
(

x
))

�0
2
y2

(22)
��1

(

x
)

�x
(�0

1
− 1)y1 +

��2
(

x
)

�x
�0
2
y2 = 0

(23)�1 =

(

1 −
x

d1

)�

; �2 =

(

1 −
d2

x

)�

8.1 � Glass beads with various fractions of small 
particles

Experimental measurements obtained from spherical glass 
beads mixtures, reported by Kwan et al. [35] and described 
in Sect. 5.1, were selected for model verification. The spe-
cific volumes of all bi-mixtures were achieved by a packing 
preparation procedure specified by British Standard [9]. A 
bi-dispersed packing is defined by the following parameters 
d1, d2, �

0
1
, �0

2
, y1 and y2 (note: y1 + y2 = 1).

In this validation, specific volumes of nine bi-dis-
persed specimens were measured with various fractions 
( y2 = 0.1, 0.2,… ..0.9 ). The parameters of the bi-dispersed 
packings are as follows: particle sizes d1 = 11.71  mm, 
d2 = 1.43 mm, the specific volumes for the two species in 
their mono-dispersed state �0

1
 = 1.706, �0

2
 = 1.652.

Fig. 7   Trial and error process to calibrate the value of � = 2.4 using 
the measure � (1.45) for the glass beads mixture with y

2
 = 0.2

Fig. 8   The model predicted values of x for glass beads mixtures with 
various fractions of small particles y

2
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First, we calibrate � using the measured � = 1.45 for 
the packing mixture with y2 = 0.2 . For several trial values 
of � , the predicted values of � are plotted in Fig. 7. The 
calibrated value of � is 2.4. For this specimen at y2 = 0.2 , 

the corresponding value of x = 9.54 , �1 = 0.0175 , and 
�2 = 0.6772.

Next, we use the calibrated value of � = 2.4 to predict the 
specific volumes of the other 8 mixtures with different frac-
tions. The calculated x for various fractions of y2 from the 
model is plotted in Fig. 8 as a solid line, compared with the 
back calculated values from measured data (see Sect. 5.1) 
plotted in Fig. 8 as the shade zone. It shows that the model 
can predict the x values very well using the principle of 
minimization of excess free volume potential.

The predicted specific volumes � are shown in Fig. 9 as 
a solid line, compared with the measured results plotted as 
circular symbols. This figure shows a very good agreement 
between prediction and measured results.

It is note that the specimen, with the lowest predicted 
volume (i.e., optimum density), has a fraction of y2 = 0.28 . 
The prediction agrees with the measured results. The trend 
of V shape for the variation of � versus y2 is also captured by 
the model. It is noted that at the lowest value of specific 
volume, the derivative of � in Eq. (20) with respect to y2 is 
zero, i.e., ��

�y2
= 0 . According to Eq. (20), this derivative 

leads to �1 = �2 . Thus, at the condition of optimum density, 
the specific volumes of the two species are equal. The pre-
dicted specific volumes for both species are shown in 
Fig. 10. It shows that, at the point of optimum density, 
y2 = 0.28 , x = 2.842 , the specific volumes for both species 
are also equal to the specific volume of packing mixture (i.e., 
�1 = �2 = � = 1.343 ). Note that at the optimum density, the 
activity coefficients are not equal; �1 = 0.513 , and 
�2 = 0.186.

8.2 � Glass beads with various particle size ratios

We further probe the predictive power of our model for bi-
dispersed packings with different ratios of particle sizes. The 
experimental results obtained by Kwan et al. [35] for three 
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Fig. 9   The predicted specific volume � for various y2 compared with 
the measured results from glass beads mixtures (measured data from 
Kwan et al. [35]

Fig. 10   Predicted specific volumes for the two species. At optimum 
density �1 = �2 = � = 1.343

Fig. 11   The model predicted values of x vs y2 for the three glass beads mixtures with different size ratios
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systems of bi-dispersed packing (see Sect. 6.1), are used for 
this validation.

Since all packings were made of same types of spherical 
glass beads, we use the same value of � = 2.4. Using Eqs. 
(21–23), the calculated x vs y2 are shown in Fig. 11 for the 
three systems (i.e. three size ratios) of bi-dispersed particle 
mixtures. Each system of a given size ratio contains nine 
packing mixtures (with fractions y2 = 0.1, 0.2,… .0.9 ), total 
27 specimens for the three systems.

Figure 11 shows that, for all three size ratios, the model 
predicted x (shown as solid lines) fit well with those back 
calculated from experiment (shown as shaded zone). The 
variation of x also show three regions that governs the char-
acteristics of microstate configurations. The predicted spe-
cific volumes for the three bi-dispersed systems are shown 
in Fig. 12, which are in good agreement with the measured 
results.

The model also correctly predicts the magnitudes and the 
species fractions of the optimum densities for the three bi-
dispersed systems. It is noted that all 27 predictions were 
made by using only one parameter � = 2.4. It demonstrates 
that the proposed simple model has captured the underlying 
physics of granular compaction of a bi-dispersed packing.

9 � Validation with experiments on sand 
mixtures

The experiments used for model verification in the previous 
section were obtained from man-made glass beads. In this 
section, the validation will be carried out using silica sand, 
which involve particles of non-spherical shape and different 
surface texture, compared with glass beads.

Experimental results for a soil mixture (Silica#16-#18 
#50-#80) reported by Yilmaz [59] were selected for model 
verification. The two size-groups of sand were obtained from 
sieving sand through standard sieves. It is noted that, due 
to the angular shape of sand, in each species, the sizes and 
shapes of sand grains are not exactly the same. The specific 
volumes of all silica sand mixtures were achieved by a sam-
ple preparation procedure specified by ASTM D4253 [3]. 
The system of bi-dispersed packings of the silica sand is 
defined by four parameters: d1 = 1.08 mm, d2 = 0.263 mm, 
�0
1
 = 1.633, �0

2
 = 1.696. The aim now is to compare the pre-

dicted and measured specific volumes for packing mixtures 
with various y2.

First, the test result of � = 1.47 for y2 = 0.2 is used for 
the calibration of parameter � . Following the same trial 

Fig. 12   The predicted specific volumes for various y2 for three glass 
beads mixtures compared with the measured results (data from Kwan 
et al. [35])

Fig. 13   The model predicted x for the silica sand mixtures with vari-
ous fractions of small particles y

2

Fig. 14   The predicted specific volumes for various fractions y
2
 com-

pared with the measured results from silica sand mixtures (data 
reported by Yilmaz [59])
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and error process, the calibrated value of � is 2.1 for the 
bi-dispersed packings of silica sand mixtures. Note that, for 
spherical glass beads, the value of � = 2.4. The particles for 
silica sand are sub-angular in shape.

Using � = 2.1 , the calculated internal state variable x for 
various y2 is plotted in Fig. 13.

The calculated x has a similar shape with that obtained 
for glass beads. It also shows three zones for the characteris-
tics of microstate configurations. The underlying physics are 
similar between glass beads and sand. The model predicted 
specific volumes are shown in Fig. 14 as a dashed line, com-
pared with the measured results plotted as circle symbols. 
This figure shows a very good agreement between prediction 
and measured results.

This prediction method is then applied to predict 24 sets 
of sand mixtures listed in Table 1. There is one material 
parameter � corresponding to each type of sand mixture of 
various fractions of small particles y2 . The calibrated value 
of � is expected to be influenced by the shape and surface 
textures of sand particles. The value of � is from 2.0 to 
5.5 for natural sand as listed in Table 1. The comparisons 

between prediction and measurements for the 24 types of 
mixtures are shown in Fig. 15, which demonstrated an over-
all good agreement. Therefore, the proposed model is appli-
cable to natural sand.

10 � Conclusion

Analogic similarities are drawn between the chemical poten-
tials of a solution with two species and the volume potentials 
of a granular mixture with two components. Following the 
Edwards’ approach by replacing energy with volume in ther-
modynamics, we build a simple model to predict the specific 
volume of bi-dispersed granular packing. We introduced an 
internal state variable to represent the state of packing con-
figuration, which leads to a simple method of describing 
the excess free volume potential by considering the inter-
action activity between the two species in a bi-dispersed 
packing. We also use the principal of minimum excess free 
volume potential to determine the activity coefficients. The 

Table 1   List of material properties for 24 sets of bi-dispersed granular soil mixtures

Sand/silt mixture References d1 (mm) d2 (mm) �0
1

�0
2

Large particle shape Small particle shape �

Ottawa 50/200-Nevada fines Lade and Yamamuro 
[37]

0.2 0.05 1.548 1.754 Angular Angular 2.4

Ottawa F95-Nevada fines 0.16 0.05 1.580 1.754 Subrounded Angular 2.6
Nevada 50/200-Nevada fines 0.14 0.04 1.570 1.754 Subangular Angular 2.3
Nevada 50/80-Nevada fines Lade et al. [36] 0.21 0.05 1.581 1.754 Subangular to angular Subangular to angular 2.7
Nevada 80/200-Nevada fines 0.12 0.05 1.617 1.754 Subangular to angular Subangular to angular 3.0
Nevada 

50/80-Nevada80/200 + fines
0.17 0.05 1.581 1.754 Subangular to angular Subangular to angular 3.0

Hokksund Yang [57] 0.45 0.04 1.570 1.760 Sharp edges, cubical Angular, subangular 4.2
MGM Fourie and Papageo-

rigou [24]
0.12 0.01 1.755 2.000 Angular to sub-

rounded
Thin and plate-like 4.3

Vietnam Cho [12] 0.37 0.16 1.552 1.583 Subangular Subangular 2.5
Cambria-Nevada fines Lade et al. [36] 1.5 0.05 1.538 1.754 Rounded Angular 5.5
Cambria-Nevada 50/80 1.5 0.21 1.538 1.581 Rounded Subangular 3.1
Cambria-Nevada 80/200 1.5 0.12 1.538 1.624 Rounded Angular 4.2
Nevada 50/80- Nevada 80/200 0.21 0.12 1.581 1.617 Subangular to angular Subangular to angular 2.1
Foundry sand/crushed silica 

fines
Thevanayagam et al. 

[54]
0.25 0.01 1.608 1.627 Rounded to sub-

rounded
Angular 5.5

Silica#16-#18 #30-#50 Yilmaz [59] 1.08 0.4 1.633 1.644 Subangular Subangular 2.0
Silica#16-#18 #30-#80 1.08 0.42 1.633 1.590 Subangular Subangular 2.0
Silica#16-#18 #50-#80 1.08 0.26 1.633 1.696 Subangular Subangular 2.1
Silica#16-#18 #80-#100 1.08 0.17 1.633 1.682 Subangular Subangular 2.1
Silica#16-#18 #80-#120 1.08 0.14 1.633 1.697 Subangular Subangular 2.1
Silica#16-#18 #80-#200 1.08 0.1 1.633 1.651 Subangular Subangular 2.1
Silica#16-#18 #100-#120 1.08 0.14 1.633 1.697 Subangular Subangular 2.1
Silica#16-#18 #100-#200 1.08 0.1 1.633 1.668 Subangular Subangular 2.1
Silica#16-#18 #120-#200 1.08 0.1 1.633 1.682 Subangular Subangular 2.4
Silica#16-#18 #200-#400 1.08 0.06 1.633 1.700 Subangular Subangular 2.4
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model only requires one calibrated parameter for the type 
of material.

Using the proposed model, the predicted results are 
in excellent agreement with the experimental data on 

glass beads and on 24 types of natural sand. These results 
validate the model as a tool for predicting the effects of 
bidispersity on random packings. The model performance 
demonstrates that the model, based on thermodynamics 

Fig. 15   The comparison between prediction and measure specific volumes for the 24 types of bi-dispersed granular soil mixtures
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theory, can capture the correct underlying physics of gran-
ular compaction of bi-dispersed packings.
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