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Abstract

The study of particle-packing models for bi-dispersed packings is important in the field of granular materials, from both
theoretical and practical perspectives. Several particle-packing models have been developed for predicting the packing density
(or specific volume) of a bi-dispersed packing. Most of the currently available models are phenomenological, which predict
the specific volumes of a bi-dispersed packing as a function of fraction of species, and have applied to various fields, such as
in concrete, pharmaceutical, soil engineering, etc. In this study, we analyze the packing densities of granular mixtures using
an analogy to the thermodynamic theory for chemical solutions. The thermodynamic theory for chemical solutions provides
the connections among the bulk solution density, the chemical interaction activities between species, and the concentration
of each species in the solution. Parallel to the chemical potential of each species in the solution, we introduce an “excess free
volume potential” for each granular species. With the interaction activities of two species in a bi-dispersed granular system,
we explain the volume compaction behavior of a granular system from a new context. Subsequently, using the second law of
thermodynamics, an analytical method is proposed to quantify the excess free volume potentials and to predict the density
of a granular mixture. The developed analytical method is then validated by the experimental results of bi-dispersed pack-
ing mixtures of glass beads and silica sands. The performance of the analytical method and its validity are demonstrated.
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1 Introduction

This paper deals with a simple, yet fundamental, phenom-
enon in the physics of granular materials: granular compac-
tion. A packing of grains in a container gets more and more
compact under gentle shaking or tamping. Under continuous
shaking or tamping, a stationary state of volume is eventu-
ally established at equilibrium. In this paper, we focus on the
volume characteristics of a bi-dispersed granular packing in
a stationary state.

Compaction of bi-dispersed granular packings is related
to both practical and basic scientific problems, which has
been broadly studied for design and manufacturing in many
fields, such as mineral, metallurgical, pharmaceutical, and
geotechnical industries [28, 33, 43, 46]. It can be generally
observed that packing density varies with the fraction of
species in a bi-dispersed packing. Interestingly, the change
of density with respect to the fraction of species is non-
monotonic, exhibiting a peak at a specific fraction of species.

Since these issues are shared in technological applica-
tions, many phenomenological models have been developed
for predicting densities of bi-dispersed packings of various
types of grains [10, 17, 19, 27, 35, 48, 53, 60, 61]. These
models require two to four material parameters.

With the rapid advances in computer technology, the
method of computer simulation has progressed significantly.
Computer simulation has been applied by many researchers
for studying geometric packing properties of polydisperse
granular material (e.g., [20, 31, 45, 56, 58]). Many studies
have been devoted specifically to the geometric properties
and the bulk mechanical properties of bi-dispersed packing
(e.g., [1, 18, 25, 34, 40, 50, 55]). Packing structural charac-
teristics of bi-dispersed mixtures have been investigated by
computer simulation [13, 29, 38, 49].

A theoretical approach for bi-dispersed packing of
spheres was developed by Danisch et al. [16] based on the
formalism of Edwards’ statistical mechanics approach. How-
ever, the method requires a partition function to describe
the microstate configurations, which needs to be established
with the aid of numerical simulation. Thus, the method is
not practically useful.

We intend to develop a novel approach to study the bi-dis-
persed granular packings, along the lines of analyzing mixed
chemical solutions using the principles in thermodynamics.
Due to the nature of granular material as a non-chemical and
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athermal material, classic thermodynamics is not applicable
to the analysis of granular materials. Therefore, in the spirit
of Edwards’ granular temperature approach, we suggest
that both the thermal and chemical potentials (i.e., internal
energy) be replaced by the volume potential of the granular
system. Hopefully, it opens the door for applying thermo-
dynamics concepts of chemical solutions to the analysis of
granular mixtures. The challenge is to establish the anal-
ogy between the chemical potential of a mixed solution and
the volume potentials of species in a bi-dispersed granular
packing.

In the next section, we first propose a fundamental equa-
tion that extends Edwards approach by analogously replac-
ing not only the thermal energy but also the chemical poten-
tial with the volume potentials of a granular equilibrium
system. We then explain the modeling approach, which is
similar to the formalism of equilibrium thermodynamics
used in chemical solutions. In Sect. 3, using Euler’s theo-
rem, we characterize a bi-dispersed packing by two volume
potentials, each corresponding to a species of particles. In
Sect. 4, we formulate an equation that prescribes the excess
free volume (in analogy to the Gibbs excess free energy)
for a granular packing based on the interaction activities
between the two species of particles. In Sect. 5, we study the
experimentally observed behavior of interaction activities. In
Sect. 6, we introduce an internal state variable, which repre-
sents the state of the packing configuration, and hypothesize
an equation that defines a relationship between the internal
state variable and the excess free volume potential. Apply-
ing the thermodynamics law of equilibrium, the internal
state variable can be determined from the composition of
the packing mixture. In Sect. 7, we summarize the proposed
model, which is then validated by experimental results from
mixtures of glass beads and silica sands in Sects. 8 and 9.

2 Approach of this paper
2.1 Connection to thermodynamics

Granular media, such as powders or sands, are made of
discrete particles of size larger than 100 pm, which often
interact only through dissipative contact forces. Without an
external drive, their kinetic energy is rapidly lost, thus the
granular media is referred to as a non-thermal system. Due
to the insignificance of their thermal energy in comparison
to the energy needed to move a grain, classic thermodynam-
ics is not useful for the analysis of granular material.
Edwards [21] suggested that, due to the dissipative nature
of granular systems, the role of the conserved quantity
should be played by the volume V of the system instead of
the internal energy U [8, 22, 23]. The Edwards approach
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has been verified for granular systems by many investigators
(e.g. [2, 15, 44], etc.).

Assuming equiprobability exists for microstate configu-
rations of the system, Edwards defined a configurational
“granular entropy S, which is proportional to the logarithm
of the number of mechanically stable microstates at a given
volume. Instead of the temperature T, he also introduced
a “granular temperature X, named compactivity. Thus,
in analogy to the expression in classical thermodynamics,
dU = TdS, the compactivity is, therefore, related to the vol-
ume dependence of the entropy for a non-thermal granular
system, given by dV = XdS [23]. Based on this concept, the
granular system can be analyzed by a statistical mechanical
formalism in much the same way that is done for a thermo-
dynamics system.

This statistical mechanical formalism has been suc-
cessfully applied to study the mechanical response at the
jamming and its transition of granular matter and provided
understanding about the nature of granular medium in solid,
fluid, and gas phases [5, 32, 39, 42, 52].

The Edwards statistical mechanical formalism has also
been applied to predict the compacted density for bi-dis-
persed mixtures of particles [16]. The key idea is to establish
a partition function that prescribes the volumes at microstate
so that a mean-field theory can then be used to calculate the
density of the bi-dispersed mixture. However, the partition
function needs to be established with the aid of numerical
simulation. This limits much of the analysis to numerical
evaluation of the expectation values. Although the method
is fundamentally sound, it is practically not useful.

In this paper, we do not use the Edwards statistical
mechanical formalism. Instead, we extend Edwards approach
by analogously replacing not only the thermal energy but
also the chemical potential with the volume potentials of a
granular equilibrium system. Thus, the fundamental equa-
tion becomes:

N
dvV' = XdS + ) viN, (1)
1

Parallel to “internal energy”, V’ can be termed “internal
volume potential”. The second term on the right side of the
equation is analogous to the chemical potential. The symbol
N, is the number of particles for the ith species in the system,
and v; is the volume potential of the ith species. Equation (1)
shows that, there is a contribution v; d N, for each species to
the total volume in a bi-dispersed granular system.

Because the entropy is not easily measured experimen-
tally, for convenience, we apply the Legendre transformation
to the internal volume potential V' in Eq. (1), and we define
a “Gibbs volume potential” V = V' — XS in analogous to
Gibbs energy, then Eq. (1) becomes

N
dV = =SdX + ) vdN, 2)
1

At constant value of the intensive property X (i.e., dX = 0),
Eq. (2) can be integrated to obtain

N
V=Y VN 3)
1

The Gibbs volume potential V is a more useful property
because, in this study on compaction of a bi-dispersed pack-
ing, the packing preparation procedure can be controlled
experimentally. For the condition of dX = 0, the volume
potential V achieved under compaction for a bi-dispersed
packing is expressed as:

V=V1Nl +V2N2 (4)

The average volume potential of a large particle is
referred to as v, and the average volume potential of a small
particle is referred to as v,. In this paper, for convenience,
the particle volume potential will always refer to the average
particle volume potential. The value N, is the total number of
large particles, and N, is the total number of small particles.

2.2 Descriptors of a bi-dispersed packing

A bi-dispersed packing consists of two species: the large-
particle group with particle size d;, and the small-particle
group with particle size d,. Their corresponding solid par-
ticle volumes are v$ and vj. The composition of the pack-
ing is described by the number of particles of the two spe-
cies N, and N,. The total volume of solid for the packing is
VN, + V5N,. The composition of a bi-dispersed packing is
also commonly described by the solid volume fractions of
the large and small particle groups,y, and y,, given by

g
VN

=2 TV
ViN| + VN,

g
VN,

Y = = o
: VEN| + VEN,

&)

b))

The two species can be separately packed into two mono-
dispersed packings with volumes V¥ and VY. The average
particle volume potentials for the two mono-dispersed pack-
ings are respectively v? = V?/N] and vg = VS/NQ.

The frequently used density descriptor is specific volume,
which is defined as the ratio of the specimen volume to its
solid volume. The specific volume o for the packing mixture
and the specific volumes,v?, vg, for the mono-dispersed pack-
ings of the two species are expressed as follows:

0 0
—V . UO = &' L, = 2 (6)

g a7’ 1= 8> 27 8

VN + VN, vy V5
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It is noted that V? and Vg can be directly measured from
experiments, which are commonly known values for a par-
ticle mixing problem.

2.3 Modelling approach

Our objective is to derive a model that can predict the volume
of a bi-dispersed mixture V with any arbitrary species fraction
knowing the values of v¥ and v of the mono-dispersed pack-
ings of the two species.

The volume V can be predicted by Eq. (4) if the values of
particle volume potentials, v, and v,, are known. However, in
a bi-dispersed mixture, due to the interactions between parti-
cles of two species, the particle volume potentials v, and v,
are different from the particle volume potentials (V? and Vg) in
their mono-dispersed states. Note that the values of v, and v,
are defined as the average volume potentials for particles of
each species, while these particles are randomly distributed in
the packing mixture. Thus, it is not only difficult to separately
measure the values of v; and v, in experiments, but also a
challenge to create an analytical model that can predict the
values of v, and v,. To achieve a prediction model, there are
two types of approach:

(1) Using the formalism of statistical mechanics The chal-
lenge is to formulate a partition function that can ade-
quately encompass the complex configurations of all
microstates with all degrees of freedom [6]. Thus, one
needs to know the complete packing configuration in
detail, which is typically obtained from the computer
simulation method. The microstate configurations are
usually constructed based on the tessellations (Voronoi-
based or quadron-based) divided from the complete
packing configuration [7, 11, 51]. This approach is not
practical for developing a model as a predicting tool.

(2) Using the formalism of equilibrium thermodynamics
The challenge is to postulate an equation that defines
the relationship between an internal state variable and
the volume potentials of the two species. Although the
internal variable typically represents a macroscopic
average in some fashion of the packing configuration,
it is not required to represent the complete packing
configuration in detail, as long as the internal variable
can reflect the relevant features of the packing configu-
ration and provide a good correlation to the volume
potentials. Thus, the postulated internal state variable
must be based on physically observed behavior and be
constrained by the laws of thermodynamics [14, 30,
41].

@ Springer

In this paper, we adopt the second approach. In the follow-
ing, we investigated the physical meaning of v, and v,, and
their relations to the values of v9 and v9.

3 Assessment of partial volume potential

Since the volume V of a granular system is an extensive vari-
able, which is homogeneous of degree 1, thus according to
Euler’s theorem, the total volume of a mixture is

0 )%
V<N1’N2)=N'<6_]\‘7/1>+N2<6_1\72> @)

Comparing Eq. (7) with Eq. (4), the volume potential
v;=0dV /oN,. Thus, Eq. (7) provides a method of interpreting
the volume potential v; of each species from several experi-
mentally measured V for bi-dispersed packings with vari-
ous species fractions y, and y,. The function V(y,, y,) can be
numerically constructed from the experimental data. Since y,,
¥, are related to N,N, (see Eq. 5), the function V(y,,y,) can
be converted to V(N,, N,), and their derivatives 0V /0N, can
be obtained.

The definition of 0V /0N, also conceptually provides a link
between the volume potential v; and the microstate configura-
tions. The partial derivative represents the change of packing
volume dV caused by mixing a small number (d N,) of parti-
cles of the ith species to the packing mixture while the total
particle number N; of the other species is kept constant. In
order to evaluate the partial derivative, the number of particles,
d N,, should be small enough from the view of calculus. Since
the microstate configurations play a major role, we conceptu-
ally consider the number of particles d N; as a single particle
mixed into the packing mixture, so that we can focus on the
microstate configuration of this added single particle and its
neighboring particles. We repeat the single particle mixing for
a large number (M) of times and obtain a large set of micro-
state configurations.

For the mth trial, the single particle occupies a space,
denoted as particle volume v'". The particle volume is depend-
ent on the location of this particle and the configuration of its
surrounding particles. Based on the hypothesis that all micro-
configurations are equally probable, the particle volume v, (i.e.,
0V /oN;in Eq. (7)) can be regarded as the mean of the particle
volume v!" for the M microstates.

M
1
v, = i Z vl 3
m=1
The microstates probed by the single particle mixing pro-
cess provides a method to assess the value of v; from the view
of microstate configurations. The characteristics of microstate
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configuration will be investigated to formulate the excess free
volume potentials for each species.

4 Excess free volume potential due
to interaction of species

The particle volume potential for a mono-dispersed packing
0

v; is analogous to the chemical potential of an ideal solution.
After mixing of two mono-dispersed species, the particle
volume potential in the bi-dispersed packing for each species
is denoted by v;.

Analogous to the excess Gibb’s free energy in the classic
thermodynamics, an excess free volume potential, denoted
by Av,, is defined as the difference between the particle vol-
ume potential v; in a mixture and the particle volume poten-

tial V? in a mono-dispersed packing.
v, = v? - Av¢ )

The parameter { is the extent of reaction, which is between 0
and 1. In our study, we consider only the equilibrium condi-
tion of a bi-dispersed packing (i.e., { = 1). Thus, the excess
free volume at equilibrium state is Av; = V? -V,

The excess free volume Av; of the ith species, in a bi-
dispersed packing, is caused by the interaction between
particles of two different species. In the following, we
investigated the value range of the excess free volume
potentials Av; for each species by examining their micro-

state configurations.
4.1 Embedment formation of a large particle

In a bi-dispersed packing of two species (size groups of d,
and d,), the excess free volume Av, for the large particle
(species with size d;) can be examined from the micro-
state configurations with a large particle at the center sur-
rounded by its neighboring particles. The large particles can
be viewed as embedded in the particle mixture; thus, it is
termed as an embedment formation. The free volume of a
center particle depends on the configuration of its surround-
ing particles. Two extremes can be observed: (1) when the

(b)

Fig. 1 Micro-configurations of a large particle surrounded by: a all
large particles and b all small particles

(a)

neighboring particles surrounding a central large particle are
all large particles, as shown in Fig. 1a, the particle volume
potential v, is expected to be same as that of the mono-dis-
persed packing (v, = v). (2) when the neighboring particles
surrounding a central large particle are all small particles,
as shown in Fig. 1b, and the small particles are sufficiently
small (d, /d, = 0), the void volume associated with the cen-
tral particle is almost zero. The average particle volume v,
is approximately to be the particle solid volume (Vl = Vél' )
In a general case, the surrounding neighbor particles are
bi-dispersed and d, /d, is not small, then the particle volume
potential v, is expected to be between the two extremes, i.e.,

Vf <v; < V(l). It can be expressed as:
0 0_ 8 — 0_\8
V=V, - Otl(v1 — vl) or Av, = ocl(v1 - Vl) (10)

The activity coefficient «, represents the interaction activ-
ity of the large particles in the bi-dispersed packing. Its value
is between 0 and 1. When a, = 0,thenv, = v?, the particle
volume potential of large particles in the bi-dispersed pack-
ing is same as that in the mono-dispersed packing. Thus,
there is no interaction activity. Whereas, when a, = 1, then
v, = Vf , the particle volume potential is smaller than that in
the mono-dispersed packing due to the interaction activity.
The exact value of a, is dependent on the composition of
the bi-dispersed packing (i.e., particle sizes d; and d, and
particle number of each species N, and N,).

4.2 Filling formation of a small particle

Now we examine the microstate configurations with a small
particle at the center surrounded by its neighboring particles.
The small particle can be viewed as filling in the voids of the
large particles; thus, it is termed as a filling formation. The
free volume of a center particle depends on the configuration
of its surrounding particles. Two extremes can be observed:
(1) when the neighbor particles surrounding a central small
particle are all small particles, as shown in Fig. 2a, the par-
ticle volume potential v, is expected to be same as that of the
mono-dispersed packing (v, = v9). (2) when the neighboring
particles surrounding a central small particle are all large

G

(a) (b)

Fig.2 Micro-configurations of a small particle surrounded by: a all
small particles and b all large particles
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particles, as shown in Fig. 2b, and the central small particle
is sufficiently small (d,/d; =~ 0), so that it fits into a void of
surrounding large particles as a float particle, which remains
mobile even though their surrounding particles are jammed
(i.e., mechanical stable). These type of small particles are
called rattler-particles [5]. In this case, the small particles
caused no change in the packing volume, thus the particle
volume potential v, = 0.

Again, in a general case, if the surrounding neighboring
particles are bi-dispersed and the d,/d, is not small, then
the particle volume potential v, is expected to be between
the two extremes, i.e.,0 < v, < Vg. It can be expressed as:

—0 0
Vy =V, — @V, Or

Av, = V) (1)
The activity coefficient a, represents the interaction
activity of the small particles in the bi-dispersed packing.
Its value is also between 0 and 1, depending on the composi-
tion of the bi-dispersed packing.
Based on Eqgs. (10) and (11), the total volume of a bi-
dispersed packing can be further derived as a function of the

activity coefficients a; and a,.

V=vN +V,N, = (V] =, (V) = V)N, + V) (1 = &) N,
12)
In Eq. (12), v? and vg are known values for mono-dis-
persed packings. The value of Vf , N, N, are the known com-
position of the packing. Thus, the activity coefficients a; and
a, are the only unknowns, which are essential parameters
for a quantitative prediction of the volume of a bi-dispersed
packing.

5 Activity coefficients

5.1 Experiments used to interpret the activity
coefficients

The activity coefficients are dependent on the microstate
configurations of particles, which are influenced by two
main factors: the relative particle sizes (or the particle size
ratio d, /d,) and the species fractions of the bi-dispersed
packing. The influences of these two factors are exam-
ined in this section using the experimentally measured
results on glass beads reported by Kwan et al. [35]. In
their experiments, four different particle size groups were
selected with sizes d (mm)=1.43, 3.29, 5.26, 11.71. The
measured particle volume potential v? for these four mono-
dispersed packing are (1.652, 1.672, 1.68, 1.706). The four
particle groups were mixed into three bi-dispersed systems
denoted by size combinations (d;,d,): (3.29, 1.43), (5.26,
1.43), and (11.74, 1.43). Each system has 9 combinations
of species-fractions (i.e., the fractions of small particles
y, varies from 0.1 to 0.9). All bi-dispersed samples were
compacted using the same packing procedure specified in
British Standard [9].

Following the procedure described in Sect. 3, we inter-
pret the particle volume potentials v, and v, from the
measured specific volumes v of the bi-dispersed packings
of glass beads. First, the function v(y,, y,) can be numeri-
cally constructed and converted to V(N;,N,). Next, for
each bi-dispersed packing, the particle volume potentials
v, and v, (i.e., dV/ON, and dV /dN,) can be computed.
Then, from Egs. (10) and (11), values of the activity coef-
ficients a; and a, can be calculated for each bi-dispersed
packing and plotted in Fig. 3.

Figure 3 shows that the activity coefficients @; and a,
are significantly influenced by both size ratio and species
fractions. To separate the influence of these two factors,
we first eliminate the factor of species fraction. In the

1.0 1.0 1.0
~ A i ol Y I 1 d;=526 - “ d; =3.29 -*-
S g A ol %08 { =14 --0---a; | B gl d=143 —--0-=- q;
gy et 8] g
g os1 1 ° A Soe{ B B'\‘ S 06
£ y & w oo009 2
T 04 Vo od=117 g 04 {0 K g 04 c
3 n =143 3 X 3 c
2 024 ¢ & 202 hol > 02 0&T ._.o-o-}%
5 $Q = | e 5 I Y
= 7 ~ - - <
£ o0ew 0-0-0-0-0-0-0 £ 00 ¢ & V00000 £ 00¢e® °°0-0-0-0-0-

02 -02 -0.2

00 02 04 06 08 10
Fraction of Small Particles, y,

00 02 04 06 08 10
Fraction of Small Particles, y,

00 02 04 06 08 1.0
Fraction of Small Particles, y,

Fig.3 The activity coefficients @, and @, interpreted from experimental results for bi-dispersed packings with three size ratios
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measured results shown in Fig. 3, we select two specific
conditions (fractions y, =0, and y, = 1). For the y, =0
condition, the coefficient @, represents the interaction
activity of a few small particles in a mono-dispersed pack-
ing of large particles. Whereas, for the y, = 1 condition,
the coefficient a, represents the interaction activity of a
few large particles in a mono-dispersed packing of small
particles. In both cases, the packing mixtures are termed
dilute granular mixtures (an analogy to the dilute chemi-
cal solutions.)

5.2 Theinteraction activity of a species in a dilute
granular mixture

The activity coefficients a; and a, at the two specific condi-
tions (fractions y, = 0, and y, = 1) correspond to the six
points (A, B, C, A’, B’, C’) shown in Fig. 3.

(1) y, = 1: The three points (A’, B’, C’) represent the «;
of three packing mixtures: each packing mixture cor-
responds to a few particles of size d, (d;=3.29, 5.26,
11.71 mm) in a mono-dispersed base packing with
particle size x = 1.43 mm. Note that for all three pack-
ing mixtures, the microstate configurations are in
embedment formation (i.e., the microstate configura-
tion resembles a large particle surrounded by all small
particles). The activity coefficient of the large particles
a, for the three cases are plotted against the size ratio
r; = x/d,in Fig. 4.

(2) y, =0: The three points (A, B, C) represent the a, of
three mixtures: each packing mixture corresponds to
a few particles of size d, = 1.43 mm in a mono-dis-
persed base packing with particle size x (x=3.29, 5.26,
11.74 mm). In all three packing mixtures, the micro-
state configurations are in filling formation (i.e., the

1.0
\
\
\
\
08 F O

o \

o]

: b

5 \

506 N\

3] \

b= \Q

@

o

O 04} \

> \

2 A

Q N\,

2 .\ eq,
02 f O . oa,
0.0 L L I “S5- ‘

0 0.2 0.4 0.6 0.8 1
(x/d4 or dy/x)

Fig.4 Activity coefficients versus size ratios x/d, or d,/x. The varia-
ble x is the particle size of mono-dispersed base packings in the dilute
mixture

microstate configuration resembles a small particle sur-
rounded by all large particles). The activity coefficient
of the small particles a, for the three cases are plotted
against the size ratio r, = d, /x in Fig. 4.

Figure 4 show in which the interaction activity of a species
is dependent on the particle size ratio of the two species. A
higher size ratio indicates a greater difference in the volume
potentials between the two species, thus leads to higher inter-
action activity. Species in chemical solutions are not classified
by sizes. However, the same principle also applies in chemical
solutions that a greater difference in the chemical potentials
between the two species of molecules leads to higher interac-
tion activity.

The data points in Fig. 4 fit well to a power law, given by

a=(1-r)" (=12 (13)

For the two activity coefficients «; and a,, Eq. (13) repre-
sents respectively,

x m dz m
a1=<1—d—) 5 a2=<1—?> (14)
1

The experimental data in Fig. 4 shows that the two curves
are nearly identical. The fitted values of exponents are nearly
the same (i.e.,n; = n, = n =2.4).

5.3 The interaction activity of a species
in a concentrated granular mixture

In Fig. 3, except the two specific conditions mentioned above,
all data points are considered as concentrated granular mix-
tures (analogous to concentrated chemical solution). All
activity coefficients, a; and a,, are significantly influenced by
both factors: species-fractions and particle size ratio. For bi-
dispersed packings with a given size ratio, the values of a; and
a, vary opposite in trends with respect to the fraction of small
particles y,, thus they are negatively correlated. The influences
for these two factors (size ratio and fractions) are compounded
and not easy to phenomenologically describe. Therefore, it is
desirable to have a theoretical model to predict the interaction
activities of species due to the combined influences.

For a chemical solution of known concentration, the exact
elements of substances and their free energies are known pre-
cisely. Therefore, the interaction activities of species in the
solution can be theoretically determined [4, 26, 47]. Obvi-
ously, the theory of chemical solution is not applicable to
granular material. However, although there is no chemical
reaction between granular particles, the analogous particle
volume potentials interact in a similar way to that of chemical
potentials between species. Thus, the activity coefficients of
a granular mixture can be analyzed based on the principle of
potential balance between the two species. Here, we attempt
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to develop an innovative model that can be used to determine
the activity coefficients a; and a, for granular mixtures based
on the balance of volume potentials of the two granular species
at equilibrium.

6 Internal state variable

6.1 Connection between internal state variable
and particle volume potentials

The challenge is to postulate a relationship between an inter-
nal state variable and the particle volume potentials of the
two species. Although the internal variable typically repre-
sents a macroscopic average in some fashion of the packing
configuration, it is not required to represent the complete
packing configuration in detail, as long as the internal varia-
ble can reflect the relevant features of the packing configura-
tion and provide a good correlation to the volume potentials.
Thus, the postulated internal state variable must be based on
physically observed behavior and constrained by the laws of
thermodynamics.

Since the activity coefficients are dependent on the con-
figuration of the packing mixture, we first hypothesize an
internal variable, which represent the packing configuration,
and then we postulate an equation that defines the relation-
ship between the activity coefficients and the internal state
variable. Our purpose is to hypothesize a simple form of
internal state variable while it still can reflect the relevant
features of the packing configuration, so that the postulated
equation is general enough to encompass the relevant mate-
rial behaviors to be predicted.

The postulated internal state variable X is a scaler with a
unit of length. The physical meaning of X can be regarded
as the effective particle size of the bi-dispersed packing (i.e.,
the bi-dispersed packing is regarded as a mono-dispersed
packing with particle size x). We hypothesize that, in a
bi-dispersed packing, the activity coefficient of a species

is related to the two particle sizes d,, d, and the effective
particle size x in the same form as Eq. (14), except that the
particle size x for the mono-dispersed packing is replaced
by the effective particle size x of the bi-dispersed packing.
Thus, the activity coefficients for the two species are linked
to the variable X by:

>"I

e

Note that the activity coefficients of both species refer
to the same packing mixture (i.e., the same state variable
X). Thus, the activity coefficients are correlated through the
same variable x. In this way, when the value of «, is high, the
value of a, is low, and vice versa. The postulated equation
provides a negative trend of correlation between a, and a,.

Since the value of ; is between 0 and 1, the value of x for
a bi-dispersed packing is within the range of d; > x > d,.
Using Eq. (15a or 15b), the exact values of x can be back
calculated from the measured a, or a, for the bi-dispersed
packings with various species fractions. The values of X,
calculated using the measured a, or a, displayed in Fig. 3,
are plotted in Fig. 5. For each species fraction, two different
values X can be back calculated: one from Eq. (15a) and the
other from Eq. (15b). The range of calculated x is shown as
the shaded zone in Fig. 5.

The shaded zone between the two values is very narrow,
indicating that a single value of x can be used to calcu-
late both coefficients. In Fig. 5, the range of fractions y,
can be classified into three regions: (I) the large particles
dominant region, (II) the transitional region, and (III) the
small particles dominant region. In the first region, the
fraction of small particles y, is small and the effect parti-
cle size x = d,. The large particles are connected in direct
contact, and the microstate configurations are dominant
by the filling formation. As the fraction y, increases, in
the second region, the small particles fill most of the void
space between the large particles and start to separate the

d
-2
X

(15a, b)

16.0 16.0 16.0
: : —Eq. 152 : : ——Eq. 15a [ ——Eq. 15a
I | ' Eq. 15b | , Eq. 15b : : ———Eq. 15b
12.0 4 ! ' 12.0 1 ! ! 1204 '
| | [ | [
— | — [ | — [
€ | £ I | £ o
§, 8.0 1 : é 8.0 4 : : £ 804 ' !
1 . | y I d,=5.26 Ix ] :II: d,=3.29
1 ! | d,=1.43 o d,=1.43
|
[ | (]
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Fraction of Small Particles, y,
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Fraction of Small Particles, y,

Fig.5 Effective particle size x back calculated from activity coefficients for bi-dispersed packings with three size ratios. The range of fractions
y, is classified into three regions: (I) the large particles dominant region, (II) the transitional region, and (III) the small particles dominant region
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direct contact of the large particles. In the third region,
the fraction y, continues to increase. The separated and
isolated large particles are now embedded in the matrix
formed by small particles, resulting in a microstate con-
figuration that is dominant by small particles.

Substituting the value range of x shown in Fig. 5 to
Eq. (15a) and Eq. (15b), the calculated range of activity
coefficients are plotted and shown as the shaded zones in
Fig. 6. The good agreement between the shaded zones and
the experimentally obtained data also indicates that, for a
given packing mixture, a single value of X is sufficient to
model the activity coefficients of both species.

6.2 Second law and criterion for achieving
equilibrium

As described previously, the internal state variable x can
be back calculated from activity coefficients but cannot be
obtained directly from the composition of the bi-dispersed
packing. Thus, for modeling purposes, the variable x is
not known priori and needs to be determined theoreti-
cally. In Eq. (15), the particle volume potentials of both
species are governed by the value of x. Thus, x must be
constrained so that the equilibrium of the two potentials is
achieved. According to the second law of thermodynam-
ics, equilibrium is achieved when the excess free energy
is minimized (i.e., dG* < 0) for any process in an isolated
system. Analogous to this notion, in our formulation, the
excess free volume potential must be minimized at system

Using the complete expression of the excess free vol-
ume potentials in Egs. (10) and (11), Eq. (16) can be fur-
ther expressed in terms of activity coefficients.

2
AV(X) = D AVN, = o, (X) (V) = VON, + &, (X)VIN, (17)
i=1

For the excess free volume potential AV()_C), at con-
stant packing composition N&&{/v(%j the equilibrium con-
dition can be achieved by, = = 0, which leads to
N, % + Nz% = 0. The two terms in this equation can be
regarded as two thermodynamic forces, and the zero sum of
the two forces assures the condition of equilibrium.

The equilibrium condition can also be written in terms of
activity coefficients based on Eq. (17), so that the relation

between the two activity coefficients a; and «a, is given by

0a, (X)

oa, E)_c)

ox

V) = VN, + VIN, =0 (18)

The two terms in Eq. (18) can also be regarded as two
thermodynamic forces. The relationship between «; and a,
is obtained by seeking the balance of these two forces.

In the three equations, Eq. (15a), Eq. (15b) and Eq. (18),
the variables v?, vg, Vf , Ny and N, are known constants. The
three unknowns X, a; and @, can then be solved by the three
equations. With the solved activity coefficients «; and a,, the
volume potentials v, and v, for each species can be obtained
by Eqgs. (10) and (11). The total volume of the packing mix-

ture can be determined by (see Eq. (12))

equilibrium. Based on Eqs. (10) and (11), the excess free V= (V? - al(v? - Vf))Nl + (Vg - azvg)Nz. (19)
volume potential can be written as
2
AV(X) = D (W = V)N, (16)
i=1
1.0 1.0 1.0
N ] ~ Eq. 15a ®q,, Exp. « Eq. 15a ®q,, Exp.
U‘ 0.8 1 P t{ 0.8 Eq. 15b oaq,, Exp. 5~ 0.8 Eq. 15b ®a,, Exp.
S 90, o ® ® T S
£ 0.6 - o, Exp. € 06 £ 06
o) k) [}
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Fig. 6 The activity coefficients calculated from the estimated values of x

Fraction of Small Particles, y,
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7 Model summary

In Eq. (19), the particle number N,,N, and V are cumber-
some to be used due to the huge number of particles of the
two species. For practical purpose, unit-less variables are
preferred. The volumes (V, v(l), vg, Vf ) can be replaced by
specific volumes (v, v?, 0(2)) by using the following relation-
ship: v0 = 09v%; v) = 00v3; vV = o(VEN, + VAN, ). Note that,
by definition, the specific volume can be regarded as the
volume potential per unit of solid mass.

The number N|,N, can be expressed in terms of the frac-
tions of particles y, and y, by Eq. (5). And the volume to be
predicted by Eq. (4) can be changed to a more convenient

form, given by:
v =01y 0, (20)

Thus, Eqgs. (15), (18) and (19) can be replaced respec-
tively by Egs. (21), (22), and (23) shown below. The model
can be summarized as follows.

Given a bi-dispersed packing specified by d;, d;, !, 09,y
and y,, the specific volume v of the bi-dispersed packing can
be predicted by the following three equations

o(X) = (o) = (X) (0] = 1))y + (1 = (%) )y, (21)

oa; (X) 0 da,(X)

-1 +—
P AU

3 n d2 n
0= (-3)0 == (-3) -

The solution procedure is as follows.

First, using Eqs. (23) and (22), the unknown variables
X, a; and a, can be solved. Then, substituting the solved
values of a; and a, into Eq. (21), the specific volume v of a
bi-dispersed packing can be predicted. The value of # is a
material parameter, which is calibrated from the measured
specific volume v of one specimen (i.e., a bi-dispersed pack-
ing with a particular solid fraction y,). The calibrated value
n can be used to predict the results for bi-dispersed packings
made of the same material.

8 Validation with experiments on glass
beads

In this section, we evaluate the performance of the model by
comparing the model predicted and experimentally meas-
ured results on bi-dispersed packings made of glass beads of
various fractions and various particle size ratios.

@ Springer
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Fig. 7 Trial and error process to calibrate the value of n = 2.4 using
the measure v (1.45) for the glass beads mixture with y,=0.2
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Fig.8 The model predicted values of x for glass beads mixtures with
various fractions of small particles y,

8.1 Glass beads with various fractions of small
particles

Experimental measurements obtained from spherical glass
beads mixtures, reported by Kwan et al. [35] and described
in Sect. 5.1, were selected for model verification. The spe-
cific volumes of all bi-mixtures were achieved by a packing
preparation procedure specified by British Standard [9]. A
bi-dispersed packing is defined by the following parameters
d,,d,, v(]), v2,y1 and y, (note: y, +y, = 1).

In this validation, specific volumes of nine bi-dis-
persed specimens were measured with various fractions
(y, =0.1,0.2, ... ..0.9). The parameters of the bi-dispersed
packings are as follows: particle sizes d;=11.71 mm,
d,=1.43 mm, the specific volumes for the two species in
their mono-dispersed state v)=1.706, v)=1.652.
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Fig.9 The predicted specific volume v for various y, compared with
the measured results from glass beads mixtures (measured data from
Kwan et al. [35]
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Fig. 10 Predicted specific volumes for the two species. At optimum
density v, = v, =0 =1.343

First, we calibrate n using the measured v = 1.45 for
the packing mixture with y, = 0.2. For several trial values
of 5, the predicted values of v are plotted in Fig. 7. The
calibrated value of # is 2.4. For this specimen at y, = 0.2,

the corresponding value of x =9.54, a; = 0.0175, and
a, = 0.6772.

Next, we use the calibrated value of #n=2.4 to predict the
specific volumes of the other 8 mixtures with different frac-
tions. The calculated x for various fractions of y, from the
model is plotted in Fig. 8 as a solid line, compared with the
back calculated values from measured data (see Sect. 5.1)
plotted in Fig. 8 as the shade zone. It shows that the model
can predict the x values very well using the principle of
minimization of excess free volume potential.

The predicted specific volumes v are shown in Fig. 9 as
a solid line, compared with the measured results plotted as
circular symbols. This figure shows a very good agreement
between prediction and measured results.

It is note that the specimen, with the lowest predicted
volume (i.e., optimum density), has a fraction of y, = 0.28.
The prediction agrees with the measured results. The trend
of V shape for the variation of v versus Yy, is also captured by
the model. It is noted that at the lowest value of specific
volume, the derivative of v in Eq. (20) with respect to y, is
» — . According to Eq. (20), this derivative

3
leads to v, ;2 v,. Thus, at the condition of optimum density,
the specific volumes of the two species are equal. The pre-
dicted specific volumes for both species are shown in
Fig. 10. It shows that, at the point of optimum density,
v, = 0.28, x = 2.842, the specific volumes for both species
are also equal to the specific volume of packing mixture (i.e.,
v; = v, = v = 1.343). Note that at the optimum density, the
activity coefficients are not equal; @; =0.513, and
a, = 0.186.

Zero, i.e.

8.2 Glass beads with various particle size ratios

We further probe the predictive power of our model for bi-
dispersed packings with different ratios of particle sizes. The
experimental results obtained by Kwan et al. [35] for three
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Fig. 11 The model predicted values of x vs y, for the three glass beads mixtures with different size ratios
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systems of bi-dispersed packing (see Sect. 6.1), are used for
this validation.

Since all packings were made of same types of spherical
glass beads, we use the same value of #=2.4. Using Egs.
(21-23), the calculated x vs y, are shown in Fig. 11 for the
three systems (i.e. three size ratios) of bi-dispersed particle
mixtures. Each system of a given size ratio contains nine
packing mixtures (with fractions y, = 0.1,0.2, ... .0.9), total
27 specimens for the three systems.

Figure 11 shows that, for all three size ratios, the model
predicted x (shown as solid lines) fit well with those back
calculated from experiment (shown as shaded zone). The
variation of x also show three regions that governs the char-
acteristics of microstate configurations. The predicted spe-
cific volumes for the three bi-dispersed systems are shown
in Fig. 12, which are in good agreement with the measured
results.

The model also correctly predicts the magnitudes and the
species fractions of the optimum densities for the three bi-
dispersed systems. It is noted that all 27 predictions were
made by using only one parameter n=2.4. It demonstrates
that the proposed simple model has captured the underlying
physics of granular compaction of a bi-dispersed packing.

9 Validation with experiments on sand
mixtures

The experiments used for model verification in the previous
section were obtained from man-made glass beads. In this
section, the validation will be carried out using silica sand,
which involve particles of non-spherical shape and different
surface texture, compared with glass beads.
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Fig. 12 The predicted specific volumes for various y, for three glass
beads mixtures compared with the measured results (data from Kwan
et al. [35])
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Experimental results for a soil mixture (Silica#16-#18
#50-#80) reported by Yilmaz [59] were selected for model
verification. The two size-groups of sand were obtained from
sieving sand through standard sieves. It is noted that, due
to the angular shape of sand, in each species, the sizes and
shapes of sand grains are not exactly the same. The specific
volumes of all silica sand mixtures were achieved by a sam-
ple preparation procedure specified by ASTM D4253 [3].
The system of bi-dispersed packings of the silica sand is
defined by four parameters: d,=1.08 mm, d,=0.263 mm,
19=1.633, v)=1.696. The aim now is to compare the pre-
dicted and measured specific volumes for packing mixtures
with various y,.

First, the test result of v = 1.47 for y,=0.2 is used for
the calibration of parameter #. Following the same trial

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Small Particles, y,

Fig. 13 The model predicted X for the silica sand mixtures with vari-
ous fractions of small particles y,
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Fig. 14 The predicted specific volumes for various fractions y, com-
pared with the measured results from silica sand mixtures (data
reported by Yilmaz [59])
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and error process, the calibrated value of # is 2.1 for the
bi-dispersed packings of silica sand mixtures. Note that, for
spherical glass beads, the value of # = 2.4. The particles for
silica sand are sub-angular in shape.

Using # = 2.1, the calculated internal state variable X for
various Yy, is plotted in Fig. 13.

The calculated x has a similar shape with that obtained
for glass beads. It also shows three zones for the characteris-
tics of microstate configurations. The underlying physics are
similar between glass beads and sand. The model predicted
specific volumes are shown in Fig. 14 as a dashed line, com-
pared with the measured results plotted as circle symbols.
This figure shows a very good agreement between prediction
and measured results.

This prediction method is then applied to predict 24 sets
of sand mixtures listed in Table 1. There is one material
parameter # corresponding to each type of sand mixture of
various fractions of small particles y,. The calibrated value
of n is expected to be influenced by the shape and surface
textures of sand particles. The value of # is from 2.0 to
5.5 for natural sand as listed in Table 1. The comparisons

between prediction and measurements for the 24 types of
mixtures are shown in Fig. 15, which demonstrated an over-
all good agreement. Therefore, the proposed model is appli-
cable to natural sand.

10 Conclusion

Analogic similarities are drawn between the chemical poten-
tials of a solution with two species and the volume potentials
of a granular mixture with two components. Following the
Edwards’ approach by replacing energy with volume in ther-
modynamics, we build a simple model to predict the specific
volume of bi-dispersed granular packing. We introduced an
internal state variable to represent the state of packing con-
figuration, which leads to a simple method of describing
the excess free volume potential by considering the inter-
action activity between the two species in a bi-dispersed
packing. We also use the principal of minimum excess free
volume potential to determine the activity coefficients. The

Table 1 List of material properties for 24 sets of bi-dispersed granular soil mixtures

Sand/silt mixture References d; (mm) d, (mm) y? U(z] Large particle shape ~ Small particle shape 7
Ottawa 50/200-Nevada fines ~ Lade and Yamamuro 0.2 0.05 1.548 1.754 Angular Angular 24
[37]
Ottawa F95-Nevada fines 0.16 0.05 1.580 1.754 Subrounded Angular 2.6
Nevada 50/200-Nevada fines 0.14 0.04 1.570 1.754 Subangular Angular 23
Nevada 50/80-Nevada fines Lade et al. [36] 0.21 0.05 1.581 1.754 Subangular to angular Subangular to angular 2.7
Nevada 80/200-Nevada fines 0.12 0.05 1.617 1.754 Subangular to angular Subangular to angular 3.0
Nevada 0.17 0.05 1.581 1.754 Subangular to angular Subangular to angular 3.0
50/80-Nevada80/200 + fines
Hokksund Yang [57] 0.45 0.04 1.570 1.760 Sharp edges, cubical  Angular, subangular 4.2
MGM Fourie and Papageo-  0.12 0.01 1.755 2.000 Angular to sub- Thin and plate-like 4.3
rigou [24] rounded
Vietnam Cho [12] 0.37 0.16 1.552 1.583 Subangular Subangular 2.5
Cambria-Nevada fines Lade et al. [36] 1.5 0.05 1.538 1.754 Rounded Angular 5.5
Cambria-Nevada 50/80 1.5 0.21 1.538 1.581 Rounded Subangular 3.1
Cambria-Nevada 80/200 1.5 0.12 1.538 1.624 Rounded Angular 4.2
Nevada 50/80- Nevada 80/200 0.21 0.12 1.581 1.617 Subangular to angular Subangular to angular 2.1
Foundry sand/crushed silica ~ Thevanayagametal.  0.25 0.01 1.608 1.627 Rounded to sub- Angular 5.5
fines [54] rounded

Silica#16-#18 #30-#50 Yilmaz [59] 1.08 0.4 1.633 1.644 Subangular Subangular 2.0
Silica#16-#18 #30-#80 1.08 0.42 1.633 1.590 Subangular Subangular 2.0
Silica#16-#18 #50-#80 1.08 0.26 1.633 1.696 Subangular Subangular 2.1
Silica#16-#18 #80-#100 1.08 0.17 1.633 1.682 Subangular Subangular 2.1
Silica#16-#18 #80-#120 1.08 0.14 1.633 1.697 Subangular Subangular 2.1
Silica#16-#18 #80-#200 1.08 0.1 1.633 1.651 Subangular Subangular 2.1
Silica#16-#18 #100-#120 1.08 0.14 1.633 1.697 Subangular Subangular 2.1
Silica#16-#18 #100-#200 1.08 0.1 1.633 1.668 Subangular Subangular 2.1
Silica#16-#18 #120-#200 1.08 0.1 1.633 1.682 Subangular Subangular 2.4
Silica#16-#18 #200-#400 1.08 0.06 1.633 1.700 Subangular Subangular 2.4
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Fig. 15 The comparison between prediction and measure specific volumes for the 24 types of bi-dispersed granular soil mixtures

model only requires one calibrated parameter for the type
of material.

Using the proposed model, the predicted results are
in excellent agreement with the experimental data on

@ Springer

glass beads and on 24 types of natural sand. These results
validate the model as a tool for predicting the effects of
bidispersity on random packings. The model performance
demonstrates that the model, based on thermodynamics
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theory, can capture the correct underlying physics of gran-
ular compaction of bi-dispersed packings.
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